
SOS model partition function and the elliptic

weight functions

S Pakuliak†]?, V Rubtsov‡], A Silantyev†‡?

† Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow reg., Russia
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Abstract. We generalize a recent observation [1] that the partition function of the 6-
vertex model with domain-wall boundary conditions can be obtained by computing the
projections of the product of the total currents in the quantum affine algebra Uq(ŝl2)
in its current realization. A generalization is proved for the the elliptic current algebra
[2, 3]. The projections of the product of total currents are calculated explicitly and
are represented as integral transforms of the product of the total currents. We prove
that the kernel of this transform is proportional to the partition function of the SOS
model with domain-wall boundary conditions.

1. Introduction

The main aim of this paper is to apply the method of elliptic current projection to the

computation of the universal elliptic weight functions. The projection of currents first

appeared in the works of B. Enriquez and the second author [4], [5], as a method to

construct a higher genus analog of the quantum groups in terms of Drinfeld currents [6].

The current (or “new”) realization supplies a quantum affine algebra with a second co-

product, the “Drinfeld co-product”. The standard and Drinfeld co-products are related

by a “twist” (see [4]). The quantum algebra is decomposed in two different ways a

product of two Borel subalgebras. For each subalgebra, we can consider its intersection

with these two Borel subalgebras and express it as their product. Thus we obtain for

each subalgebra a pair of projection operators from it to each of these intersections. The

above-mentioned twist is defined by a Hopf pairing of the subalgebras and the projection

operators. See Section 4 where we recall an elliptic version of this construction.

S. Khoroshkin and the first author have applied this method to a factorization

of the universal R-matrix [7] in quantum affine algebras, in order to obtain universal

weight functions [1, 8] for arbitrary quantum affine algebras. The weight functions play
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a fundamental role in the theory of deformed Knizhnik-Zamolodchikov and Knizhnik-

Zamolodchikov-Bernard equations. In particular, in the case of Uq(ĝln), acting by the

projection of Drinfeld currents onto the highest weight vectors of irreducible finite-

dimensional representations, one obtains exactly the (trigonometric) weight functions

or off-shell Bethe vectors. In the canonical nested Bethe Ansatz, these objects are

defined implicitly by recursive relations. Calculations of the projections are an effective

way to determine the hierarchical relations of the nested Bethe Ansatz.

It was observed in [1] that the projections for the algebra Uq(ŝl2) can be represented

as integral transforms and that the kernels of these transforms are proportional to the

partition function of the finite 6-vertex model with domain-wall boundary conditions

(DWBC) [1]. We prove that the elliptic projections described in [2] make it possible

to derive the partition function for elliptic models. We show that the calculation of

the projections in the current elliptic algebra [2, 3] yields the partition function of the

Solid-On-Solid (SOS) model with domain-wall boundary conditions.

The partition function for the finite 6-vertex model with domain wall boundary

conditions was obtained by Izergin [9], who derived recursion relations for the partition

function and solved them in determinant form. The kernels of the projections satisfy

the same recursion relations and provide another formula for the partition function.

The problem of generalizing Izergin’s determinant formula to the elliptic case has

been extensively discussed in the last two decades. One can prove that the statistical sum

of the SOS model with DWBC cannot be represented in the form of a single determinant.

While this paper was in preparation, H. Rosengren [10] showed that this statistical sum

for an n × n lattice can be written as a sum of 2n determinants, thus generalizing

Izergin’s determinant formula. His approach relates to some dynamical generalization

of the method of Alternating-Sign Matrices and follows the famous combinatorial proof

of Kuperberg [16].

We expect that the projection method gives a universal form for the elliptic weight

function [11] as it does for the quantum affine algebras [12]. When this universal weight

function is represented as an integral transform of the product of the elliptic currents,

we show that the kernel of this transform gives an expression of the partition function

for the SOS model. On the one hand we generalize Izergin’s recurrent relations and

on the other hand we generalize to the elliptic case the method proposed in [1] for

calculating the projections. We check that the kernel extracted from the universal

weight function and multiplied by a certain factor satisfies the recursion relations that

have been obtained, which uniquely define the partition function for the SOS model

with DWBC. Our formula given by the projection method coincides with Rosengren’s.

An interesting open problem which deserves more a extensive study is the relation

of the projection method with the elliptic Sklyanin-Odesskii-Feigin algebras. It was

observed in the pioneering paper [3] that half of the elliptic current generators satisfy the

commutation relations of the W -elliptic algebras of Feigin. Another intriguing relation

was observed in [17]: there existe a certain subalgebra in the “λ-generalization” of the

Sklyanin algebra such that its generators obey the Felder’s R-matrix quadratic relations
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given in [18]. The latter paper gives also a description of the elliptic Bethe eigenvectors

(the elliptic weight functions).

This is a strong indication that the projection method should be considered and

interpreted in the framework of the (generalized) Sklyanin-Odesskii-Feigin algebras. We

hope to discuss this problem elsewhere.

The main results of this paper were reported at the 7-th International Workshop on

“Supersymmetry and Quantum Symmetry” in JINR, Dubna (Russia), July 30 - August

4, 2007.

The paper is organized as follows. In section 2 we briefly review the finite 6-vertex

model with DWBC, and we present the formulae for the partition function: Izergin’s

determinant formula and the formula obtained by the projection method. Section 3 is

devoted to the SOS model with DWBC. We briefly introduce the model and pose the

problem of how to calculate the partition function of this model. We derive analytical

properties of the partition function that allow us to reconstruct the partition function

exactly. In section 4 we introduce the projections in terms of the currents for the

elliptic algebra, following [2]. We generalize the method proposed in [1] to this case in

order to obtain the integral representation of the projections of products of currents.

Then, using a Hopf pairing, we extract the kernel and show that it satisfies all the

necessary analytical properties of the partition function of the SOS model with DWBC.

In Section 5, we investigate the trigonometric degeneration of the elliptic model and of

the partition function with DWBC. We arrive at the 6-vertex model case in two steps.

The model obtained after the first step is a trigonometric SOS model. Then we show

that the degeneration of the expression derived in Section 4 coincides with the known

expression for the 6-vertex model partition function with DWBC. An appendix contains

the necessary information on the properties of elliptic polynomials.

2. Partition function of the finite 6-vertex model

Let us consider a statistical system on a square n × n lattice, where the columns and

rows are numbered from 1 to n from right to left and from bottom to top, respectively.

This is a 6-vertex model where the vertices on the lattice are associated with Boltzmann

weights which depend on the configuration of the arrows around a given vertex. The six

possible configurations are shown in Fig. 1, The weights are functions of two spectral

parameters z, w and ananisotropy parameter q:

a(z, w) = qz − q−1w, b(z, w) = z − w,
c(z, w) = (q − q−1)z, c̄(z, w) = (q − q−1)w.

(1)

Let us associate the sign ‘+’ to the arrows directed upward and to the left, while

the sign ‘−’ is associated to to the arrows directed downward and to the right as shown
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Figure 1. Graphical presentation of the Boltzmann weights.

in Fig. 1. The Boltzmann weights (1) are gathered in the matrix

R(z, w) =


a(z, w) 0 0 0

0 b(z, w) c̄(z, w) 0

0 c(z, w) b(z, w) 0

0 0 0 a(z, w)

 (2)

acting in the space C2 ⊗ C2 with the basis eα ⊗ eβ, α, β = ±. The entry R(z, w)αβγδ ,

α, β, γ, δ = ± coincides with the Boltzmann weight corresponding to Fig. 2:

α
δ β

γ

Figure 2. The Boltzmann weight R(z, w)αβγδ .

Different repartitions of the arrows on the edges form different configurations

{C}. A Boltzmann weight of the lattice is the product of the Boltzmann weights

at each vertex. We define the partition function of the model as the sum of the

Boltzmann weights of the lattice over all possible configurations, subject to some

boundary conditions:

Z({z}, {w}) =
∑
{C}

n∏
i,j=1

R(zi, wj)
αijβij
γijδij

. (3)

Here αij, βij, γij, δij are the signs corresponding to the arrows around the (i, j)-th

vertex. We consider an inhomogeneous model where the Boltzmann weights depend on

the column by the variable zi and on the row by the variable wj (see Fig. 3).

We choose the so-called domain-wall boundary conditions (DWBC) that fix the

boundary arrows (signs) as shown in Fig. 3. In other words, the arrows enter on the left

and right boundaries and leave on the lower and upper ones.
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Figure 3. Inhomogeneous lattice with domain wall boundary conditions.

In [9], A. G. Izergin found a determinant representation for the partition function

of the lattice with DWBC,

Z({z}, {w}) = (q − q−1)n
n∏

m=1

wm ×

×

n∏
i,j=1

(zi − wj)(qzi − q−1wj)∏
n≥i>j≥1

(zi − zj)(wj − wi)
det

∣∣∣∣∣∣∣∣ 1

(zi − wj)(qzi − q−1wj)

∣∣∣∣∣∣∣∣
i,j=1,...,n

. (4)

Izergin’s idea was to prove a symmetry of the polynomial (3), and then use it to find

recursion relations for the quantity Z({z}, {w}) and to observe that these recursion

relations allow the reconstruction of Z({z}, {w}) in a unique way and that the same

recursion relations are valid for the determinant formula (4).

On the other hand it was observed that the kernel of the projection of n currents is

a polynomial of the same degree, and satisfies the same recursion relations [1]. It means

that this kernel coincides with the partition function for the n × n lattice. Moreover,

the theory of projections gives another expression for the partition function:

Z({z}, {w}) = (q − q−1)n
n∏

m=1

wm
∏

n≥i>j≥1

q−1wi − qwj
wi − wj

×

×
∑
σ∈Sn

∏
1≤i<j≤n
σ(i)>σ(j)

qwσ(i) − q−1wσ(j)

q−1wσ(i) − qwσ(j)

∏
n≥i>k≥1

(qzi − q−1wσ(k)
∏

1≤i<k≤n

(zi − wσ(k)), (5)

where Sn is the group of permutations. Here the factor
qwσ(i)−q−1wσ(j)

q−1wσ(i)−qwσ(j)
appears in the

product if both conditions i < j and σ(i) > σ(j) are satisfied simultaneously.

3. Partition function for the SOS model

3.1. Description of the SOS model

The SOS model is a face model. We introduce it in terms of heights as usual, but then

we represent it in the R-matrix formalism as in [13]. This language is more convenient to
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Figure 4. The numbering of faces.

generalize the results reviewed in Section 2 and to prove the symmetry of the partition

function.

Consider a square n×n lattice with vertices enumerated by the index i = 1, . . . , n as

in the previous case. It has (n+1)×(n+1) faces enumerated by pairs (i, j), i, j = 0, . . . , n

(see Fig. 4). To each face we assign a complex number called its height in such a way

that the differences of the heights corresponding to the neighboring faces are ±1. Let

us denote by dij the height corresponding to the face (i, j) placed to the upper left of

the vertex (i, j). Then the last condition can be written in the form |dij − di−1,j| = 1,

for i = 1, . . . , n, j = 0, . . . , n, and |dij − dij−1| = 1 for i = 0, . . . , n, j = 1, . . . , n. Each

distribution of heights dij (i, j = 0, . . . , n) subject to these conditions and to boundary

conditions defines a configuration of the model. It means that the partition function of

this model can be represented in the form

Z =
∑
C

n∏
i,j=1

Wij(di,j−1, di−1,j−1, di−1,j, dij), (6)

where Wij(di,j−1, di−1,j−1, di−1,j, dij) is the Boltzmann weight of the (i, j)-th vertex

depending on the configuration by means of the heights of the neighboring faces as

follows [14]

Wij(d+ 1, d+ 2, d+ 1, d) = a(ui − vj) = θ(ui − vj + ~),

Wij(d− 1, d− 2, d− 1, d) = a(ui − vj) = θ(ui − vj + ~),

Wij(d− 1, d, d+ 1, d) = b(ui − vj; ~d) =
θ(ui − vj)θ(~d+ ~)

θ(~d)
,

Wij(d+ 1, d, d− 1, d) = b̄(ui − vj; ~d) =
θ(ui − vj)θ(~d− ~)

θ(~d)
,

Wij(d− 1, d, d− 1, d) = c(ui − vj; ~d) =
θ(ui − vj + ~d)θ(~)

θ(~d)
,

Wij(d+ 1, d, d+ 1, d) = c̄(ui − vj; ~d) =
θ(ui − vj − ~d)θ(~)

θ(−~d)
.

(7)

As in the 6-vertex case the variables ui, vj are attached to the i-th vertical and j-th

horizontal lines respectively, ~ is a nonzero anisotropy parameter ‡. The weights are

‡ In the elliptic case, we use additive variables ui, vj and an additive anisotropy parameter ~ instead
of the multiplicative variables zi = e2πiui , wi = e2πivi and the multiplicative parameter q = eπi~.
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Figure 5. The Boltzmann weights for the SOS model.

expressed by means of the ordinary odd theta-function defined by the conditions

θ(u+ 1) = −θ(u), θ(u+ τ) = −e−2πiu−πiτθ(u), θ′(0) = 1. (8)

Let us introduce the notations

αij = di−1,j − dij, βij = di−1,j−1 − di−1,j, γij = di−1,j−1 − di,j−1, δij = di,j−1 − dij. (9)

The differences (9) take the values ±1 and we attach them to the corresponding edges

as in Fig. 2: γi,j+1 = αij is the sign attached to the vertical edge connecting the (i, j)-

th vertex to the (i, j + 1)-st one, βi,j+1 = δij is the sign attached to the horizontal

edge connecting the (i, j)-th vertex to the (i + 1, j)-th one. The configuration can be

considered as a distribution of these signs on the internal edges subject to the conditions

αij + βij = γij + δij, i, j = 1, . . . , n. In terms of signs on the external edges the DWBC

are the same as shown in Fig. 3. Additionally, we have to fix one of the boundary

heights, for example, dnn.

The Boltzmann weights (7) can be represented as the entries of a dynamical elliptic

R-matrix [13]:

Wij(di,j−1, di−1,j−1, di−1,j, dij) = R(ui − vj; ~dij)
αijβij
γijδij

,

R(u;λ) =


a(u) 0 0 0

0 b(u;λ) c̄(u;λ) 0

0 c(u;λ) b̄(u;λ) 0

0 0 0 a(u)

 . (10)

Let Tαin
γi1

(ui, {v}, λi) be the column transfer matris. It is a matrix-valued function of

ui, all spectral parameters vj, j = 1, . . . , n and the parameters λi related to the heights:

Tαin
γi1

(ui, {v}, λi)βin...βi1δin...δi1
= (11)

=
(
R(n+1,n)(ui − vn;λin)R(n+1,n−1)(ui − vn−1;λi,n−1) · · ·R(n+1,1)(ui − v1;λi1)

)αin;βin...βi1

γi1;δin...δi1
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=
(
R(n+1,n)(ui − vn; Λin)R(n+1,n−1)(ui − vn−1; Λi,n−1) · · ·R(n+1,1)(ui − v1; Λi1)

)αin;βin...βi1

γi1;δin...δi1
,

where λij = ~dij = λi + ~
n∑

l=j+1

δil, λi = ~din = λ + ~
n∑

l=i+1

αln, Λij = λi + ~
n∑

l=j+1

H(l).

The matrix H(l) acts in the l-th two-dimensional space Vl ∼= C2 as diag(1,−1) and the

R-matrix R(a,b) acts nontrivially in the tensor product Va⊗Vb. The superscript n+ 1 in

the R-matrices is regarded as belonging to an auxiliary space Vn+1
∼= C2. The partition

function (6) corresponding to DWBC (αin = +1, β1i = −1, γi1 = −1, δni = +1,

i = 1, . . . , n) can be represented by means of the column transfer matrices:

Z+−
−+({u}, {v};λ) =

(
T+
−(u1, {v}, λ1) · · ·T+

−(un, {v}, λn)
)−...−

+...+
, (12)

where λi = λ+ ~(n− i). Similarly one can define the row transfer matrix.

3.2. Analytical properties of the partition function

Here we describe the analytical properties of the SOS model partition function which

are analogous to those used by A.G. Izergin in order to recover the partition function

of the 6-vertex model. These properties uniquely define this partition function.

Proposition 1 The partition function with DWBC Z+−
−+({u}, {v};λ) is a symmetric

function in both sets of variables ui and vj.

The proof is based on the dynamical Yang-Baxter equation (DYBE) for the R-

matrix [13]

R(12)(t1 − t2;λ)R(13)(t1 − t3;λ+ ~H(2))R(23)(t2 − t3;λ) =

= R(23)(t2 − t3;λ+ ~H(1))R(13)(t1 − t3;λ)R(12)(t1 − t2;λ+ ~H(3)).

In order to prove the symmetry of the partition function Z+−
−+({u}, {v};λ) under the

permutation vj ↔ vj−1, we rewrite the DYBE in the form

R(n+1,j)(ui − vj; Λij)R
(n+1,j−1)(ui − vj−1; Λij + ~H(j))

×R(j,j−1)(vj − vj−1; Λij) = R(j,j−1)(vj − vj−1; Λij + ~H(n+1)) (13)

×R(n+1,j−1)(ui − vj−1; Λij)R
(n+1,j)(ui − vj; Λij + ~H(j−1)).

Multiplying the i-th column matrix (11) by R(j,j−1)(vj − vj−1; Λij) to the right and

moving it to the left using (13), the relation [H1 + H2, R(u, λ)] = 0 and the equality

Λij + ~αin = Λi−1,j, we obtain

Tαin
γi1

(ui, {v}, λi)R(j,j−1)(vj − vj−1; Λij) = R(j,j−1)(vj − vj−1; Λi−1,j)

×P(j,j−1)Tαin
γi1

(ui, {vj ↔ vj−1}, λi) · · ·Tαnn
γn1

(un, {vj ↔ vj−1}, λn)P(j,j−1), (14)

where P ∈ End(C2⊗C2) is a permutation matrix: P(e1⊗e2) = e2⊗e1 for all e1, e2 ∈ C2

and the notation {vj ↔ vj−1} means that the set of parameters {v} with vj−1 and vj are

interchanged. Multiplying the product of the column matrix by R(j,j−1)(vj − vj−1; Λnj)

to the right and moving it to the left using (14) one yields

Tα1n
γ11

(u1, {v}, λ1) · · ·Tαnn
γn1

(un, {v}, λn)R(j,j−1)(vj − vj−1; Λnj) = R(j,j−1)(vj − vj−1; Λ0,j)

×P(j,j−1)Tα1n
γ11

(u1, {vj ↔ vj−1}, λ1) · · ·Tαnn
γn1

(un, {vj ↔ vj−1}, λn)P(j,j−1), (15)
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where Λ0,j = λ + ~
n∑
i=1

αin + ~
n∑

l=j+1

H(l), Λnj = λn = λ. Finally, comparing the matrix

element (·)−,...,−+,...,+ of both sides of (15), taking into account Formula (12) and the identities

R(u, λ)−−γδ = a(u)δ−γ δ
−
δ , R(u, λ)αβ++ = a(u)δα+δ

β
+, P−−γδ = δ−γ δ

−
δ , Pαβ++ = δα+δ

β
+,

(where δαγ is the Kronecker symbol) and substituting αin = +1, γi1 = −1, one derives

Z+−
−+({u}, {v};λ) = Z+−

−+({u}, {vj ↔ vj−1};λ). (16)

Similarly, using the row transfer matrix one can obtain the following equality from the

DYBE:

Z+−
−+({u}, {v};λ) = Z+−

−+({uj ↔ uj−1}, {v};λ). (17)

The partition function with DWBC satisfies relations (16), (17) for each j = 1, . . . , n,

which is sufficient to establish the symmetry under an arbitrary permutation. �

Proposition 2 The partition function with DWBC (12) is an elliptic polynomial § of

degree n with character χ in each variable ui, where

χ(1) = (−1)n, χ(τ) = (−1)n exp
(

2πi(λ+
n∑
j=1

vj)
)
. (18)

Due to the symmetry with respect to the variables {u} it is sufficient to prove

the proposition for the variable un. To represent explicitly the dependence of

Z+−
−+({u}, {v};λ) on un, we consider all the possibilities for the states of the edges

attached to the vertices located in the n-th column. First, consider the (n, n)-th

vertex. Due to the boundary conditions αnn = δnn = +1 and to the condition

αnn + βnn = γnn + δnn we have two possibilities: either βnn = γnn = −1 or

βnn = γnn = +1. In the first case, one has a unique possibility for the rest of the

n-th column: γnj = −1, βnj = +1, j = 1, . . . , n − 1; in the second case, there

are two possibilities for the (n, n − 1)-st vertex: either βn,n−1 = γn,n−1 = −1 or

βn,n−1 = γn,n−1 = +1, etc. Finally the partition function is represented in the from

Z+−
−+({u}, {v};λ) =

n∑
k=1

n∏
j=k+1

a(un − vj) c̄(un − vk;λ+ (n− k)~)

×
k−1∏
j=1

b̄(un − vj;λ+ (n− j)~)gk(un−1, . . . , u1, {v};λ),

where gk(un−1, . . . , u1, {v};λ) are functions which do not depend on un. Each term of

this sum is an elliptic polynomial of degree n with the same character (18) in the variable

un. �

Remark 1 Similarly, one can prove that the function Z+−
−+({u}, {v};λ) is an elliptic

polynomial of degree n with character χ̃ in each variable vi, where χ̃(1) = (−1)n,

χ̃(τ) = (−1)ne2πi(−λ+
Pn
i=1 ui).

§ The definition of elliptic polynomials and their properties are given in Appendix A.
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Proposition 3 The n-th partition function with DWBC (12) with the condition

un = vn − ~ can be expressed through the (n− 1)-st partition function:

Z+−
−+(un = vn − ~, un−1, . . . , u1; vn, vn−1, . . . , v1;λ) = (19)

=
θ(λ+ n~)θ(~)

θ(λ+ (n− 1)~)

n−1∏
m=1

(
θ(vn − vm − ~)θ(um − vn)

)
Z+−
−+(un−1, . . . , u1; vn−1, . . . , v1;λ).

Considering the n-th column and the n-th row and taking into account that

a(un − vn)|un=vn−~ = a(−~) = 0 we conclude that the unique possibility for a non-

trivial contribution is: βnn = γnn = −1, γnj = −1, βnj = +1, j = 1, . . . , n − 1,

βin = −1, γin = +1, i = 1, . . . , n − 1. The last formulae impose the same DWBC for

the (n− 1)× (n− 1) sublattice: δn−1,j = βnj = +1, j = 1, . . . , n− 1, αi,n−1 = γin = +1,

i = 1, . . . , n − 1, dn−1,n−1 = dnn. Thus the substitution un = vn − ~ to the partition

function for the whole lattice yiefds

Z+−
−+(un = vn − ~, un−1, . . . , u1; vn, vn−1, . . . , v1;λ)

= c̄(−~;λ)
n−1∏
j=1

b̄(vn − vj − ~;λ+ (n− j)~)
n−1∏
i=1

b(ui − vn;λ+ (n− i)~)

×Z+−
−+(un−1, . . . , u1; vn−1, . . . , v1;λ). (20)

Using the explicit expressions (7) for the Boltzmann weights, one can rewrite the last

formula in the form (19). �

Remark 2 From Formula (20) we see that the following transformation of the R-matrix

b(u, v;λ)→ ρ b(u, v;λ), b̄(u, v;λ)→ ρ−1 b̄(u, v;λ) (21)

does not change the recursion relation (19), where ρ is a non-zero constant which does

not depend on u, v and λ.

Lemma 1 If the set of functions {Z(n)(un, . . . , u1; vn, . . . , v1;λ)}n≥1 satisfies the

conditions of Propositions 1, 2, 3 and the initial condition

Z(1)(u1; v1;λ) = c̄(u1 − v1) =
θ(u1 − v1 − λ)θ(~)

θ(−λ)
(22)

then

Z+−
−+(un, . . . , u1; vn, . . . , v1;λ) = Z(n)(un, . . . , u1; vn, . . . , v1;λ). (23)

Due to (22), this lemma can be proved by induction on n. Let the equality (23)

be valid for n − 1. Consider the functions Z+−
−+(un, . . . , u1; vn, . . . , v1;λ) and

Z(n)(un, . . . , u1; vn, . . . , v1;λ) as functions of un. Both are elliptic polynomials of degree

n with character (18). They have the same value at the point un = vn − ~, and due to

the symmetry of these functions with respect to the parameters {vj}nj=1 they coincide

at all points un = vj − ~, j = 1, . . . , n. It follows from Lemma 2 (see Appendix A) that

these functions are identical. �

Remark 3 As we can see from the proof of Lemma 1, it is sufficient to establish the

symmetry only with respect to the variables vj.
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Remark 4 The transformation (21) of the R-matrix does not change the partition

function with DWBC.

4. Elliptic projections of currents

Let K0 = C[u−1][[u]] be the completed space of complex-valued meromorphic functions

defined in the neighborhood of the origin which have only simple poles at this point.

Let {εi} and {εi} be dual bases in K0 such that
∮

du
2πi
εi(u) εj(u) = δij.

4.1. Current description of the elliptic algebra

Let A be a Hopf algebra generated by elements ĥ[s], ê[s], f̂ [s], s ∈ K0, subject to the

linear relations

x̂[α1s1 + α2s2] = α1x̂[s1] + α2x̂[s2], α1, α2 ∈ C, s1, s2 ∈ K0,

where x ∈ {h, e, f}. The commutation relations will be written in terms of the currents,

h+(u) =
∑
i≥0

ĥ[εi;0]εi;0(u), h−(u) = −
∑
i≥0

ĥ[εi;0]ε
i;0(u),

f(u) =
∑
i

f̂ [εi]εi(u), e(u) =
∑
i

ê[εi]εi(u). (24)

The currents e(u) and f(u) are called the total currents. They are defined in terms of

dual bases of K0 and their definition does not depend on the choice of these dual bases

(see [3, 15]). The currents h+(u) and h−(u) are called the Cartan currents and they are

defined in terms of the special basis

εk;0(u) =
1

k!

(
θ′(u)

θ(u)

)(k)

, k ≥ 0; εk;0(u) = (−u)k, k ≥ 0.

The commutation relations are [2]:

[K±(u), K±(v)] = 0, [K+(u), K−(v)] = 0,

K±(u)e(v)K±(u)−1 =
θ(u− v + ~)

θ(u− v − ~)
e(v),

K±(u)f(v)K±(u)−1 =
θ(u− v − ~)

θ(u− v + ~)
f(v),

θ(u− v − ~)e(u)e(v) = θ(u− v + ~)e(v)e(u), (25)

θ(u− v + ~)f(u)f(v) = θ(u− v − ~)f(v)f(u), (26)

[e(u), f(v)] = ~−1δ(u, v)
(
K+(u)−K−(v)

)
,
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where K+(u) = exp
(
e~∂u−e−~∂u

2∂u
h+(u)

)
, K−(u) = exp (~h−(u)) and δ(u, v) =

∑
n∈Z

un

vn+1 is

a delta-function ‖ for K0. The algebra A is a non-central version of the algebra A(τ)

introduced in [3]. This algebra is equipped with the co-product and co-unit:

∆K±(u) = K±(u)⊗K±(u),

∆e(u) = e(u)⊗ 1 +K−(u)⊗ e(u),

∆f(u) = f(u)⊗K+(u) + 1⊗ f(u),

ε(K±(u)) = 1, ε(e(u)) = 0, ε(f(u)) = 0.

Let AF and AE be the subalgebras of A generated by the generators ĥ[εi;0], f̂ [s],

and ĥ[εi;0], ê[s], respectively, s ∈ K0. The subalgebra AF is described by the currents

K+(u), f(u), and the subalgebra AE by K−(u), e(u). We introduce the notation H+

for the subalgebra of A generated by ĥ[εi;0]. As stated in [2], the bialgebras (AF ,∆op)

and (AE,∆) are dual with respect to the Hopf pairing 〈·, ·〉:AF × AE → C defined in

terms of currents as follows:〈
f(u), e(v)

〉
= ~−1δ(u, v),

〈
K+(u), K−(v)

〉
=
θ(u− v − ~)

θ(u− v + ~)
. (27)

These formulae uniquely define a Hopf pairing on AF × AE. In particular, one can

derive the following formula〈
f(tn) · · · f(t1), e(vn) · · · e(v1)

〉
=

= ~−n
∑
σ∈Sn

∏
l<l′

σ(l)>σ(l′)

θ(vσ(l) − vσ(l′) + ~)

θ(vσ(l) − vσ(l′) − ~)

n∏
m=1

δ(tm, vσ(m)). (28)

4.2. Projections of currents

We define the projections as linear maps acting on the subalgebra AF . Dual projections,

which we do not consider here, act in the subalgebra AE. We define the projections in

terms of the half-currents f+
λ (u) and f−λ (u), defined below. These are usually defined

as parts of the sum (24) (with the corresponding sign) such that f(u) = f+
λ (u)− f−λ (u).

Here λ is the parameter for the decomposition of the total current into the difference

of half-currents. Elliptic half-currents are investigated in details on the classical level

in [15]. We will introduce the half-currents by their representations by means of integral

transforms of the total current f(u):

f+
λ (u) =

∮
|v|<|u|

dv

2πi

θ(u− v − λ)

θ(u− v)θ(−λ)
f(v), f−λ (u) =

∮
|v|>|u|

dv

2πi

θ(u− v − λ)

θ(u− v)θ(−λ)
f(v), (29)

where λ /∈ Γ = Z + Zτ . The half-current f+
λ (u) is called positive and f−λ (u) is called

negative.

‖ One can find more details about distributions acting on K0 and their significance in the theory of
current algebras in our previous paper [15].
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The corresponding positive and negative projections are also parameterized by λ

and they are defined on the half-currents as follows:

P+
λ (f+

λ (u)) = f+
λ (u), P−λ (f+

λ (u)) = 0, (30)

P+
λ (f−λ (u)) = 0, P−λ (f−λ (u)) = f−λ (u). (31)

Let us first define the projections in the subalgebra Af generated by the

currents f(u). As a linear space this subalgebra is spanned by the products

f(un)f(un−1) · · · f(u1), n = 0, 1, 2, . . .. It means that any element of Af can be

represented as a sum (maybe infinite) of integrals ¶∮
dun · · · du1

(2πi)n
f(un) · · · f(u1) sn(un) · · · s1(u1), sn, . . . , s1 ∈ K0.

It follows from the PBW theorem proved in [2] that any element of Af can also be

represented as the sum of the integrals∮
dun · · · du1

(2πi)n
f−λ+2(n−1)~(un) · · · f−λ+2m~(um+1)f

+
λ+2(m−1)~(um) · · · f+

λ (u1)sn(un) · · · s1(u1),

sn · · · s1 ∈ K0, 0 ≤ m ≤ n. Therefore, it is sufficient to define the projections on these

products of half-currents:

P+
λ (x−x+) = ε(x−)x+, P−λ (y−y+) = y−ε(y+), (32)

where

x− = f−λ+2(n−1)~(un) · · · f−λ+2m~(um+1), y− = f−λ (un) · · · f−λ−2(n−m−1)~(um+1),

x+ = f+
λ+2(m−1)~(um) · · · f+

λ (u1), y+ = f+
λ−2(n−m)~(um) · · · f+

λ−2(n−1)~(u1).

The product of zero number of currents is identified with 1 and in this case: ε(1) = 1.

The counit ε of a nonzero number of half-currents is always zero. So, this definition

generalizes Formulae (30) and (31). We complete the definition of the projections on

the subalgebra AF = Af ·H+ by the formulae

P+
λ (at+) = P+

λ (a)t+, P−λ (at+) = P−λ (a)ε(t+),

where a ∈ Af , t+ ∈ H+.

4.3. The projections and the universal elliptic weight function

Consider the expressions of the form

P+
λ−(n−1)~(f(un)f(un−1) · · · f(u2)f(u1)), (33)

where the parameter λ− (n−1)~ is chosen for symmetry reasons. Let us begin with the

case n = 1. Formula (30) implies that in this case the projection is equal to the positive

half-current, which can be represented as an integral transform of the total current:

P+
λ (f(u1)) = f+

λ (u1) =

∮
|u1|>|v1|

dv1

2πi

θ(u1 − v1−λ)

θ(u1 − v1)θ(−λ)
f(v1).

¶ The integral
∮

without limits means a formal integral – a continuous extension of the integral over
the unit circle.



SOS model partition function and the elliptic weight functions 14

The kernel of this transform gives the initial condition for the partition function with a

factor:

Z(1)(u1; v1;λ) = θ(~)θ(u1 − v1)
θ(u1 − v1−λ)

θ(u1 − v1)θ(−λ)
. (34)

The projections (33) can be calculated by generalizing the method proposed in [1]

for the algebra Uq(ŝl2). The method uses a recursion over n. Let us first present the

last total current in (33) as the difference of half-currents:

P+
λ−(n−1)~(f(un) · · · f(u2)f(u1)) = (35)

= P+
λ−(n−3)~(f(un) · · · f(u2))f

+
λ−(n−1)~(u1)− P+

λ−(n−1)~(f(un) · · · f(u2)f
−
λ−(n−1)~(u1)).

In the first term we move out the positive half-current from the projection and, therefore,

calculation of this term reduces to the computation of the (n− 1)-st projection. In the

second term in (35) we move the negative half-current to the left step by step using the

following commutation relation [2]

f(v)f−λ (u1) =
θ(v − u1 − ~)

θ(v − u1 + ~)
f−λ+2~(u1)f(v) +

θ(v − u1 + λ+ ~)

θ(v − u1 + ~)
Fλ(v),

where

Fλ(v) =
θ(~)

θ(λ+ ~)
(f+
λ+2~(v)f+

λ (v)− f−λ+2~(v)f−λ (v)).

At each step we obtain an additional term containing Fλ(u) and at the last step

the negative half-current is annihilated by the projection:

P+
λ−(n−1)~(f(un) · · · f(u2)f

−
λ−(n−1)~(u1)) =

n∑
j=2

Qj(u1)Xj, (36)

where

Qj(u) =
θ(uj − u+ λ− (n− 2j + 2)~)

θ(uj − u+ ~)

j−1∏
k=2

θ(uk − u− ~)

θ(uk − u+ ~)
,

Xj = P+
λ−(n−1)~(f(un) · · · f(uj+1)Fλ−(n−2j+3)~(uj)f(uj−1) · · · f(u2)).

Setting u1 = ui in (36), we can substitute the negative half-current for the positive

one using the commutation relation for the total currents f(u) and the equality

f(u)f(u) = 0. Moving out the positive half-current to the left one obtains a linear

system of equations for Xi, i = 2, . . . , n:

P+
λ−(n−3)~(f(un) · · · f(u2))f

+
λ−(n−1)~(ui) =

n∑
j=2

Qj(ui)Xj. (37)

Multiplying each equation (37) by

θ(ui − u+ λ)

θ(λ)

n∏
k=2

θ(uk − ui + ~)

θ(uk − u+ ~)

n∏
k=2
k 6=i

θ(uk − u)

θ(uk − ui)
,
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summing over i = 2, . . . , n and using the interpolation formula (see Appendix A)

Qj(u) =
n∑
i=2

Qj(ui)
θ(ui − u+ λ)

θ(λ)

n∏
k=2

θ(uk − ui + ~)

θ(uk − u+ ~)

n∏
k=2
k 6=i

θ(uk − u)

θ(uk − ui)
(38)

yields

P+
λ−(n−3)~(f(un) · · · f(u2))

n∑
i=2

θ(ui − u+ λ)

θ(λ)

n∏
k=2

θ(uk − ui + ~)

θ(uk − u+ ~)

n∏
k=2
k 6=i

θ(uk − u)

θ(uk − ui)
f+
λ−(n−1)~(ui)

=
n∑
j=2

Qj(u)Xj. (39)

Comparing (39) with (36), we conclude that

P+
λ−(n−1)~(f(un) · · · f(u2)f

−
λ−(n−1)~(u1)) = P+

λ−(n−3)~(f(un) · · · f(u2))

×
n∑
i=2

θ(ui − u1 + λ)

θ(λ)

n∏
k=2

θ(uk − ui + ~)

θ(uk − u1 + ~)

n∏
k=2
k 6=i

θ(uk − u1)

θ(uk − ui)
f+
λ−(n−1)~(ui). (40)

Finally, returning to Formula (35) we derive the following expression for the projection

P+
λ−(n−1)~(f(un) · · · f(u2)f(u1)) = P+

λ−(n−3)~(f(un) · · · f(u2))f
+
λ−(n−1)~(u1;un, . . . , u2),(41)

where we introduce the linear combination of the currents:

f+
λ−(n−2m+1)~(um;un, . . . , um+1) = f+

λ−(n−2m+1)~(um)−
n∑

i=m+1

θ(ui − um + λ+ (m− 1)~)

θ(λ+ (m− 1)~)

×
n∏

k=m+1

θ(uk − ui + ~)

θ(uk − um + ~)

n∏
k=m+1
k 6=i

θ(uk − um)

θ(uk − ui)
f+
λ−(n−2m+1)~(ui). (42)

Continuing this computation by induction we obtain an expression for the projections

in terms of the half-currents (42):

P+
λ−(n−1)~(f(un) · · · f(u2)f(u1)) =

←−∏
n≥m≥1

f+
λ−(n−2m+1)~(um;un, . . . , um+1). (43)

Using the addition formula
n∏
i=1

Gλi(ui − v) =
n∑
i=1

n∏
j=1
j 6=i

Gλj(uj − ui)Gλ0(ui − v), (44)

where Gλ(u − v) = θ(u−v+λ)
θ(u−v)θ(λ)

, λ0 =
n∑
i=1

λi, one can represent the half-currents (42) as

integral transforms of the total current:

f+
λ−(n−2m+1)~(um;un, . . . , um+1) =

=
n∏

k=m+1

θ(uk − um)

θ(uk − um + ~)

∮
|ui|>|v|

dv

2πi

θ(um − v − λ− (m− 1)~)

θ(um − v)θ(−λ− (m− 1)~)

n∏
k=m+1

θ(uk − v + ~)

θ(uk − v)
f(v).
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Replacing each combination of the half-currents (42) in (43) by their integral form we

obtain

P+
λ−(n−1)~(f(un) · · · f(u2)f(u1)) =

∏
n≥k>m≥1

θ(uk − um)

θ(uk − um + ~)

∮
|ui|>|vj |

dvn · · · dv1

(2πi)n

∏
n≥k>m≥1

θ(uk − vm + ~)

θ(uk − vm)

n∏
m=1

θ(um − vm − λ− (m− 1)~)

θ(um − vm)θ(−λ− (m− 1)~)
f(vn) · · · f(v1). (45)

Formulae (43) and (45) yield expressions for the universal elliptic weight functions

in terms of the current generators of the algebra A.

4.4. Universal weight function and SOS model partition function

To extract the kernel from the expression (45) and derive a formula for the partition

function we use the Hopf pairing (27). Let us calculate the following expression

generalizing (34):

Z(n)(un, . . . , u1; vn, . . . , v1;λ) =
n∏

i,j=1

θ(ui − vj)
∏

n≥k>m≥1

θ(uk − um + ~)θ(vk − vm − ~)

θ(uk − um)θ(vk − vm)

×(~θ(~))n
〈
P+
λ−(n−1)~(f(un) · · · f(u1)), e(vn) · · · e(v1)

〉
. (46)

Using the expression for the projection of the product of the total currents (45) and

Formula (28) we obtain

Z(n)(un, . . . , u1; vn, . . . , v1;λ) =

= θ(~)n
n∏

i,j=1

θ(ui − vj)
∏
k>m

θ(vk − vm − ~)

θ(vk − vm)

∑
σ∈Sn

∏
l<l′

σ(l)>σ(l′)

θ(vσ(l) − vσ(l′) + ~)

θ(vσ(l) − vσ(l′) − ~)
×

×
∏
k>m

θ(uk − vσ(m) + ~)

θ(uk − vσ(m))

n∏
m=1

θ(um − vσ(m) − λ− (m− 1)~)

θ(um − vσ(m))θ(−λ− (m− 1)~)
= (47)

=
∏
k>m

θ(vk − vm − ~)

θ(vk − vm)

∑
σ∈Sn

∏
l<l′

σ(l)>σ(l′)

θ(vσ(l) − vσ(l′) + ~)

θ(vσ(l) − vσ(l′) − ~)
×

×
∏
k>m

θ(uk − vσ(m) + ~)
∏
k<m

θ(uk − vσ(m))
n∏

m=1

θ(um − vσ(m) − λ− (m− 1)~)θ(~)

θ(−λ− (m− 1)~)
.

From this formula we see that the expression (47) defines a holomorphic function of the

variables ui.

Theorem 1 The set of functions {Z(n)(un, . . . , u1; vn, . . . , v1;λ)}n≥1 defined by For-

mula (46) satisfies the conditions of Propositions 1, 2, 3 and the initial condition (22).

They coincide with the partition functions of the SOS model with DWBC:

Z+−
−+(un, . . . , u1; vn, . . . , v1;λ) =

=
∏

n≥k>m≥1

θ(vk − vm − ~)

θ(vk − vm)

∑
σ∈Sn

∏
l<l′

σ(l)>σ(l′)

θ(vσ(l) − vσ(l′) + ~)

θ(vσ(l) − vσ(l′) − ~)

∏
1≤k<m≤n

θ(uk − vσ(m))
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×
∏

n≥k>m≥1

θ(uk − vσ(m) + ~)
n∏

m=1

θ(um − vσ(m) − λ− (m− 1)~)θ(~)

θ(−λ− (m− 1)~)
. (48)

The initial condition (22) is satisfied because Formula (34) is satisfied. The first factor

in the right-hand side of (46) is symmetric with respect to both sets of variables. The

symmetry with respect to the variables {u} and the variables {v} follows from the com-

mutation relations (26) and (25) respectively. Formula (47) implies that (46) are elliptic

polynomials of degree n with character (18) in the variables ui, in particular in un. We

now substitute un = vn − ~ to (47). The non-vanishing terms in the right-hand side

correspond to the permutations σ ∈ Sn satisfying σ(n) = n. Substituting un = vn − ~
into these terms, one obtains the recursion relation (19). �

5. Degeneration of the partition function

In this section, we investigate the trigonometric degenerations of the formulae obtained

in the elliptic case. In particular, taking the corresponding trigonometric limit in the

expression for the SOS model partition function (48) reproduces the expression for the

6-vertex partition function (5).

First we consider the degeneration of the R-matrix, the matrix of Boltzmann

weights, which defines the model. To do so we need the formula for the trigonometric

degeneration (τ → i∞) of the odd theta function,

lim
τ→i∞

θ(u) =
sin πu

π
.

In terms of the multiplicative variables z = e2πiu, w = e2πiv, this formula can be rewritten

as follows:

2πieπi(u+v) lim
τ→i∞

θ(u− v) = z − w.

Multiplying the R-matrix (10) by 2πieπi(u+v) and taking the limit we obtain the following

matrix which depends rationally on the multiplicative variables z, w and on the

multiplicative parameters q = eπi~, µ = e2πiλ:

R(z, w;µ) = 2πieπi(u+v) lim
τ→i∞

R(u− v;λ) =

=


zq − wq−1 0 0 0

0 (z−w)(µq−q−1)
(µ−1)

(z−wµ)(q−q−1)
(1−µ)

0

0 (zµ−w)(q−q−1)
(µ−1)

(z−w)(µq−1−q)
(µ−1)

0

0 0 0 (zq − wq−1)

 . (49)

The matrix (49) inherits the property of satisfying the dynamical Yang-Baxter equation

and it defines a statistical model called the trigonometric SOS model.
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To obtain the non-dynamical trigonometric case we need to implement the

additional limit λ→ −i∞ implying µ→∞ (or λ→ i∞ implying µ→ 0):

R̃(z, w) = lim
µ→∞

R(z, w;µ) =


zq − wq−1 0 0 0

0 q(z − w) (q − q−1)w 0

0 (q − q−1)z q−1(z − w) 0

0 0 0 zq − wq−1

 . (50)

The matrix (50) differs from the matrix of the Boltzmann weights of the 6-vertex

model (2) by the transformation (21). Taking into account Remark 4 (from Subsection

3.2), we conclude that both matrices (2) and (50) define the same partition function

Z({z}, {w}) with DWBC +.

To obtain the partition function with DWBC for the trigonometric SOS model,

one should multiply the partition function with DWBC for the elliptic SOS model by a

factor and take the trigonometric limit:

Z+−
−+({z}, {w};µ) =

n∏
k,j=1

(2πieπi(uk+vj)) lim
τ→i∞

Z+−
−+({u}, {v};λ) =

=
∏

n≥k>m≥1

wkq
−1 − wmq

wk − wm

∑
σ∈Sn

∏
l<l′

σ(l)>σ(l′)

wσ(l)q − wσ(l′)q
−1

wσ(l)q−1 − wσ(l′)q
(51)

×
∏

n≥k>m≥1

(zkq − wσ(m)q
−1)

∏
1≤k<m≤n

(zk − wσ(m))
n∏

m=1

(zm − wσ(m)µq
2(m−1))(q − q−1)

(1− µq2(m−1))
.

It is easy to prove that Formula (5) is obtained from Formula (51) by taking the limit:

Z({z}, {w}) = lim
µ→∞

Z+−
−+({z}, {w};µ).
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Appendix A. Interpolation formula for elliptic polynomials

A group homomorphism χ: Γ → C×, where Γ = Z + τZ and C× is the multiplicative

group of nonzero complex numbers is called a character. Each character χ and integer

number n define a space Θn(χ) consisting of the holomorphic functions on C with the

translation properties

φ(u+ 1) = χ(1)φ(u), φ(u+ τ) = χ(τ)e−2πinu−πinτφ(u).

If n > 0 then dim Θn(χ) = n (and dim Θn(χ) = 0 if n < 0). The elements of the space

Θn(χ) are called elliptic polynomials (or theta-functions) of degree n with character χ.

Proposition 4 Let {φj}nj=1 be a basis of Θn(χ), with character χ(1) = (−1)n, χ(τ) =

= (−1)ne2πiα, then the determinant of the matrix ||φj(ui)||≤i,j≤n is equal to

det ||φj(ui)|| = C · θ(
n∑
k=1

uk − α)
∏
i<j

θ(ui − uj), (A.1)

where C is a nonzero constant.

Consider the ratio

det ||φj(ui)||
θ(
∑n

k=1 uk − α)
∏

i<j θ(ui − uj)
. (A.2)

This is an elliptic function of each ui with only simple poles in any fundamental domain

(the points ui satisfying
∑n

k=1 uk−α ∈ Γ). Therefore, it is a constant function of each ui.

Thus this ratio does not depend on ui and we have to prove that it does not vanish, that

is that the determinant det ||φj(ui)|| is not identically zero. Let us denote by ∆i1,...,ik
j1,...,jk

the minor of this determinant corresponding to the i1-th, . . ., ik-th rows and the j1-th,

. . ., jk-th columns. Suppose that this determinant is identically zero and consider the

following decomposition

det ||φj(ui)|| =
n∑
k=1

(−1)k+1φk(y1)∆
2,...,n
1,...,k−1,k+1,...,n. (A.3)

Since the functions φk(y1) are linearly independent, the minors ∆2,...,n
1,...,k−1,k+1,...,n are

identically zero. Decomposing the minor ∆2,...,n
2,...,n we conclude that the minors

∆3,...,n
2,...,k−1,k+1,...,n are identically zero, and so on. Finally, we obtain that ∆n

n = φn(yn)

is identically zero which cannot be true. �

Lemma 2 Let us consider two elliptic polynomials P1, P2 ∈ Θn(χ), where χ(1) = (−1)n,

χ(τ) = (−1)neα, and n points ui, i = 1, . . . , n, such that ui − uj 6∈ Γ, i 6= j,

and
∑n

k=1 uk − α 6∈ Γ. If the values of these polynomials coincide at these points,

P1(ui) = P2(ui), then these polynomials coincide: P1(u) = P2(u).
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Decomposing the polynomials under consideration as Pa(u) =
∑n

i=1 p
i
aφi(u), a = 1, 2,

we obtain the system of equations
n∑
i=1

pi12φi(u) = 0,

with respect to the variables pi12 = pi1 − pi2. We have proved that the determinant of

this system is equal to (A.1) and therefore is not zero. Hence, this system has only the

trivial solution pi12 = 0, but this implies P1(u) = P2(u). �
Let P ∈ Θn(χ) be an elliptic polynomial, where χ(1) = (−1)n, χ(τ) = (−1)ne2πiα,

and ui, i = 1, . . . , n, be n points such that ui − uj 6∈ Γ, i 6= j, and
∑n

k=1 uk − α 6∈ Γ.

This polynomial can be recovered from the values at these points:

P (u) =
n∑
i=1

P (ui)
θ(ui − u+ α−

∑n
m=1 um)

θ(α−
∑n

m=1 um)

n∏
k=1
k 6=i

θ(uk − u)

θ(uk − ui)
. (A.4)

Indeed, the right hand side belongs to Θn(χ), this equality holds at the points u = ui.

Using Lemma 2, we conclude that (A.4) holds at all u ∈ C.

Consider the meromorphic functions

Qj(u) =
θ(uj − u+ λ− (n− 2j + 2)~)

θ(uj − u+ ~)

j−1∏
k=2

θ(uk − u− ~)

θ(uk − u+ ~)
.

It is easy to check that the functions

Pj(u) =
n∏
k=2

θ(uk − u+ ~)Qj(u) =

= θ(uj − u+ λ− (n− 2j + 2)~)

j−1∏
k=2

θ(uk − u− ~)
n∏

k=j+1

θ(uk − u+ ~)

belong to Θn−1(χ), where χ(1) = (−1)n−1, χ(τ) = (−1)n−1e2πiα, α = λ +
∑n

k=2 uk.

Since λ 6∈ Γ, the polynomials Pj(u) can be recovered from by their values Pj(ui) via the

interpolation formula (A.4). Taking into account the relation between Qj(u) and Pj(u)

we obtain Formula (38). ∗
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