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Abstract

The main result of this paper is the computation of the Lie super-
algebras of holomorphic vector fields on complex flag supermanifolds,
introduced by Yu.l. Manin. We prove that with several exceptions
any holomorphic vector field is fundamental with respect to the nat-
ural action of the Lie superalgebra gl,,,,(C).

1 Introduction

It is a classical result that all holomorphic vector fields on a flag mani-
fold in C™ are fundamental for the natural action of the general linear Lie
group GL,(C). More precisely the Lie algebra of holomorphic vector fields
on a flag manifold is isomorphic to pgl,(C). Similar statement holds with
some exceptions for flag manifolds that are isotropic with respect to a non-
degenerate symmetric or skew-symmetric bilinear form in C". These results
were obtained by A.L. Onishchik in 1959, see example [A] for details.

In [Man]| Yu.I. Manin constructed four series of complex compact homo-
geneous supermanifolds corresponding to four series of classical linear Lie
superalgebras: gl,,,(C), osp,,,(C), 7sp,(C) and q,(C), see [Kac] for pre-
cise definitions. The present paper is devoted to the calculation of the Lie
superalgebras of holomorphic vector fields on complex flag supermanifolds
corresponding to the Lie superalgebra gl,,,,(C). It turns out that under some
restrictions on the flag type all global holomorphic vector fields are funda-
mental with respect to the natural action of the Lie superalgebra gl,,,,,(C).
In case of super-Grassmannians the similar result was obtained in [OS].

mln

In the present paper we study flag supermanifold Fk| , of type k|l in the
vector superspace C™". Here we put k = (ki,..., k) and | = (Iy,...,1,)
such that

0<k.<...<ki<m, 0<I[....<[1<n and
O<k +l.<...<ki+l<m+n.

(1)
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The number 7 is called the length of FZH” The idea of the proof is to use

results of [OS] and the following fact. For r > 1 the supermanifold FZ‘LZ‘" is the
total space of a holomorphic superbundle with base space isomorphic to the
super-Grassmannian F;Z |71 and the fiber isomorphic to a flag supermanifold
of length »—1. The projection of this superbundle is equivariant with respect
to the natural actions of the Lie supergroup GL,,,(C) on the total space and
base space of F;nu‘n

Let p : M — B be a morphism of supermanifolds. A vector field v defined
on M is said to be projectable with respect to p if there is a vector field v

on B such that
p*(vi(f)) = v(p*(f))

for any f € Opg. A vector field v on M is called vertical if it is projected to
0. If p is a projection of a superbundle, then every projectable vector field v
is projected to a unique vector field v;. In [B] the following statement was
proven. If p : M — B is the projection of a superbundle with fibre § with
Os(8p) = C, this is any global holomorphic function on § is constant, then
every vector field on M is projectable with respect to p. Denote by v(M)
the Lie superalgebra of holomorphic vector fields on M. If Og(Sy) = C, we
have a map

P o(M) = v(B).

This map is a Lie superalgebra homomorphism, and its kernel Ker P is the
set of all vertical vector fields.

Consider the superbundle FZTIIR The space of global holomorphic func-
tions Os(Sp) was computed in [V3]. It was shown that Os(Sy) = C under

some restrictions on the flag type k|l. Therefore, in general all holomorphic
mln
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vector fields on M are projectable to the super-Grassmannian B = F
we have the following homomorphism of Lie superalgebras

P u(FZTl'”) N n(Fg;‘(;l).

From the equivariance of p with respect to the actions of GLy,,(C) it follows
that the natural Lie algebra homomorphisms

12 Gl (C) = 0(FY)") and s : g, (C) = o(F})

satisfy the relation pus = P o u. Assuming that the homomorphism pug is
surjective, in other words assuming that

o(F 1) =~ pgl,,(C),



we see that P is also surjective. The main goal of this paper is prove that P
is injective. Then P is invertible and we have

p="P"opuz
Therefore,
o(F})") = pgl,(C):

The main result of this paper was announced in [V4] in case 0 < k, <
..<ki<mand0<l[ ... <l <n and the idea of the proof was sketched
in [V1] also in this case. Here we give the proof in general case. Our main
result is the following.

Theorem. Assume that r > 1 and that we have the following restrictions
on the flag type:

(ki 1) # (Kie1,0), (0,11, i > 2;

(ki Killioa, 1) # (1,0[li1, Loy — 1), (1,1|li_1, 1), i > 1;
(ki Killioa, 1) # (kioy, kg — 1|1,0), (ki1 1]1,1), @ > 1;
U #£(0,...,0n o, ..., 1), k|l (m, ks, ... K 0,...,0).

Then
o(F}}") 2 pgl(C).
If k|l =(0,...,0|n,la,...,1.) or k|l = (m, ko, ..., k:|0,...,0), then
O(F)") 2 Wi &(\ (&1, -+, &mn) @ p3l, (C)),

where W, = Der A(&1, ..., &mn)-

2 Preliminaries

2.1 Flag supermanifolds

We will use the word “supermanifold” in the sense of Berezin and Leites
[BL]. Throughout we will restrict our attention to the complex-analytic ver-
sion of the theory. Recall that a complez-analytic superdomain of dimension
s|t is a Zg-graded locally ringed space of the form

U = Uo, Fu, @c \(1)),

where Fy, is the sheaf of holomorphic functions on an open set U, C C*
and A(¢) is the Grassmann algebra with ¢ generators. A complex-analytic
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supermanifold of dimension s|t is a Zy-graded locally ringed space that is
locally isomorphic to a complex-analytic superdomain of dimension s|t. We
will denote a supermanifold by M = (M, O), where M, is the underlying
complex-analytic manifold and Oy, is the structure sheaf.

Let us give an explicite description of a flag supermanifold in terms of
charts and local coordinates (see also [Man, V3]). Let us take two non-
negative integers m,n € Z and two sets of non-negative integers

k=(ki,....k) and [=(l,...,1)
such that (1) holds. The underlying space of the supermanifold FZ‘LZ‘" is
the product F7* x F}' of two flag manifolds of types k = (k1,...,k,) and
I = (ly,...,l,) in the vector spaces C™ and C", respectively. Let us fix two
subsets

Is() C {1, .. .’l{}sfl} and ISI C {1, .. .,1571}7

where kg = m and ly = n, such that |I5| = ks, and |I;| = [, for any
s=1,...,r. Weput I, = (I,1,;5) and I = ([1,...,1,). We assign the
following (ks—1 + ls_1) X (ks + ls)-matrix

ZIS:(‘;_I(S ):/s), s=1,...,r, (2)

to any [I;. Here we assume that
Xs = (xlsj) € Matk-571 xks (C>7 }/TS = (yfj> € Ma;t1371 xls (C>7

are even elements and elements of the matrices =, = (), Hs = (nj;) are
odd. We also assume that Z;, contains the identity submatrix Ej, ., of size
(ks + 1) X (ks + Is) in the lines with numbers i € I and ks 1 + 14, @ € L.
For example in case

Is() — {ks—l - ks + 17 ) ks—l}a [si = {ls—l - ls + 17 ) ls—l}

the matrix Z;, has the following form:

X, =,
E,, O
O e
0 E,

Here E, is the identity matrix of size ¢ x ¢. For simplisity of notation we use
here the same letters X, Y;, =5 and Hy as in (2).



We see that the sets Iy = (Iyg,..., 1) and Iy = (Li1,..., 1) determine
the charts Uy, and V; on the flag manifolds F}' and F7', respectively. We
can take the non-trivial elements (i.e., those are not contained in the identity
submatrix) from X, and Y; as local coordinates in Uy, and Uy, , respectively.
Summing up, we have defined the following atlas on F}* x F}":

{U] = UI() X UIi}

with charts are parametrized by I = (I;). The sets [y and I also deter-
mine the superdomain U; with underlying space U; and with even and odd
coordinates zf;, yi; and &, 15, respectively. (As above we assume that z7;,
Yij» & and n;; are non-trivial. That is they are not contained in the identity
submatrix.) Let us define the transition functions between two superdomains
U; and U, that correspond to I = (I5) and J = (Js), respectively, by the

following formulas:
Zy =210y, Zs, =Cr 5, Z1Cry, 522 (3)

Here (7, ;. is an invertible submatrix in Z;, that coinsists of the lines with
numbers ¢ € J5 and ks_1 + ¢, where ¢ € J,1. In other words, we choose the
matrix Cf,;, in such a way that Z; contains the identity submatrix Ej 4,
in lines with numbers ¢ € Jg and k,_; + ¢, where i € J,;. These charts
and transition functions define a supermanifold that we denote by FZTI‘"
This supermanifold we will call the flag supermanifold of type k|l. In case
r = 1 this supermanifold is called the super-Grassmannian and is denoted
by Grm‘mk“.

Let M = (Mg, Op) be a complex-analytic supermanifold. Denote by
T = Der (Op) the sheaf of vector fields on M. It is a sheaf of Lie superal-

gebras with respect to the following multiplication
(X,Y] = XY — (—=1)PXrMy x.

The global sections of T are called holomorphic vector fields on M. They
form a complex Lie superalgebra that we denote by v(M). This Lie super-
algebra is finite dimensional in case when M, is compact. The goal of this
paper is to compute the Lie superalgebra v(M) when M is a flag superman-
ifold of type k|l in C™I".

As usual we denote by gl,,,,(C) the general Lie superalgebra of the su-

m|n

perspace C™". It coinsists of the following matrices:

( é 15) ) , where Aegl (C) and B € gl,(C).

b}



Denote by GL;,,(C) the Lie supergroup of the Lie superalgebra gl,,,(C).
(See [V5] for more information about Lie supergroups.) In [Man] an action
of GLy,,(C) on the supermanifold FZ@‘“ was defined. In our coordinates this
action is given by the following formulas:

(L,(Z[l,...,ZIT))}—>(ZJ1,...,ZJT), where

L €GLu(C), Zj =LZ,00", Z; =Cs17.C7% @
Here (] is an invertible submatrix in LZ;, that consists of the lines with
numbers i € J;5 and m+1, where i € J;1, and Cy, where s > 2, is an invertible
submatrix in Cs_1Z;, that consists of the lines with numbers i € J5 and
ks_1-+1, where ¢ € Ji,. This Lie supergroup action induces a Lie superalgebra
homomorphism

12 Glngn(C) = 0(F").

In case r = 1 in [OS, Lemma 1] it was proven that Ker u = (E,,1,), where
E,. 1, is the identity matrix of size m +n. In general case r > 1 we also have
Ker t = (Ey4y) and the proof is similar to [OS, Lemma 1]. We see that
induces an injective homomorphism of Lie superalgebras

it @i (C)/(Enin) — 0(FY").

We will show that with some exceptions this homomorphism is an isomor-
phism.

2.2 Superbundles and projectable vector fields

Recall that a morphism of complez-analytic supermanifolds M to N is a
pair f = (fo, f*), where fo : My — N is a holomorphic map and f* : Oy —
(f0)«(Opq) is @ homomorphism of sheaves of superalgebras.

Definition 1. A superbundle is a set (M, B, p,S), where § is fiber, B is base
space, M is total space and p = (pg, p*) : M — B is projection, such that
there exists an open covering {U;} on By, isomorphisms v; : (py* (U;), On) —
(U;, Op) x S and the following diagram is commutative:

(po " (Us), Oa) — (U;,05) x S
p pr
(Ui708> ; (U17OB)

id



where pr is the natural projection.
Usually we will denote a superbundle (M, B, p,S) just by M.

Remark. From the form of transition functions (3) it follows that for » > 1
the supermanifold FZL'” is a superbundle with base Gr,, 1,1, and fiber FZ}”ZZ,I,
where k' = (kg, ..., k) and I" = (I3, ...,l,). In local coordinates introduced

above the projection p is given by
(Zl, Zg, R Zn) — (Zl>

Moreover, Formulas (4) tell us that the projection p is equivariant with re-

spect to the action of the supergroup GL,,,(C) on FZ‘LI‘" and Gy g, |1, -

Let p = (po, p*) : M — N be a morphism of supermanifolds.

Definition 2. A vector field v € v(M) is called projectable with respect to
p, if there exists a vector field v; € v(N) such that

P (vi(f) = v(p*(f)) forall feOy.
In this case we say that v is projected to vy.

Projectable vector fields form a super Lie subalgebra (M) in v(M). In
case if p is a projection of a superbundle, the homomorphism p* : Oy —
p+(Or) is injective. Hence, any projectable vector field v is projected into
unique vector field v; = P(v) and we have the following map

P:o(M) = oN), v

It is a homomorphism of Lie superalgebras. A vector field v € v(M) is called
vertical, if P(v) = 0. Vertical vector fields form an ideal Ker P in v(M).
We will need the following proposition proved in [B].

Proposition 1. Let p : M — B be the projection of a superbundle with
fiber S. Assume that Og(Sy) = C, i.e. any global holomorphic function is
constant. Then any holomorphic vector field from v(M) is projectable with
respect to p and we have a homomorphism of Lie superalgebras v : o(M) —

o(B).

Let p : M — B be a superbundle with fiber S. We define the sheaf
W on By in the following way. We asign to any open set U C By the set
of all vertical vector fields on the supermanifold (py*(U), Or¢). In [V1] the
following proposition was proven.

Proposition 2. Assume that Sy is compact. Then W is a localy free sheaf
of Op-modules and dim W = dim v(S).
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Clearly, the Lie algebra W(By) coincides with the ideal of all vertical
vector fields in v(M). Let us describe the corresponding to W graded sheaf.
Consider the following filtration in Og

OB:joDlej2...

where J is the sheaf of ideals in Op generated by odd elements. We have
the corresponding graded sheaf of superalgebras

Op = P (0s),, where (Op), = J"/J"".

p=>0

Putting W,y = J*W we get the following filtration in W:
WZW([))DW@)D.... (5)
We define the Z-graded sheaf of Fp,-modules by

W=EW,, where W,=Wy)/Wps. (6)

p>0

Here Fp, is the structure sheaf of the underlying space By. The Zy-grading in
Wy induces the Z,-grading in W,. Using Proposition 2 we get the following
result.

Proposition 3. Assume that Sy is compact. Then W, is a locally free sheaf
of Fp,-modules. Any fiber of the corresponding vector bundle is isomorphic

to v(8S).

2.3 The Borel-Weyl-Bott Theorem

To calculate the Lie superalgebra of vector fields we will use the Borel-
Weyl-Bott Theorem, see for example [A] for details. This theorem permits
to compute cohomology with values in a holomorphic homogeneous bundle
over a flag manifold. For completeness we formulate it here adapting to our
notations and agreements.

Let G = GL,,(C) x GL,(C) be the underlying space of GLy,,(C), P be
a parabolic subgroup in G and R be the reductive part of P. Assume that
E, — G/P is the homogeneous vector bundle corresponding to a represen-
tation ¢ of P in E = (E,)p. Denote by &, the sheaf of holomorphic section
of this vector bundle. In the Lie superalgebra gl,,,,(C)s ~ gl,,(C) @ gl,,(C)
we fix the Cartan subalgebra t = t; @ t;, where

t = {diag(p,. . )} and & = {ding(i,.... A)},
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the following system of positive roots:
At = AT UAT,

where
Af = {mi =y, i<} and Af = {3 =\, p<a},

and the following system of simple roots & = ®; U &5, where

o, = {041, ---,Oénf1}, o = i — fiv1, Po= {ﬁl, ---,5n—1}, 5p = )\p - )\p+1~

Denote by t*(R) a real subspace in t* spaned by p; and A;. Consider the
scalar product (, ) in t*(R) such that the vectors x;, A; form an orthonormal
basis. An element v € t*(R) is called dominant if (v,a) > 0 for all a € A™.

Theorem 1. [Borel-Weyl-Bott|. Assume that the representation ¢ : P —
GL(E) is completely reducible and Ay, ..., s are highest weights of | R. Then
the G-module H°(G/ P, £,) is isomorphic to the sum of irruducible G-modules
with highest weights \;,, ..., \;,, where \;, are dominant highest weights.

2.4 Holomorphic functions on flag supermanifolds

Holomorphic functions on homogeneous supermanifolds and in particu-
lar on flag supermanifolds were studied in [V3]. It is well-known that any
holomorphic function on a connected compact complex manifold is constant.
This statement is false for a supermanifold with a connected compact under-
lying space. However in case of flag supermanifolds the following theorem
holds true:

Theorem 2. [V3] Consider the flag supermanifold M = Fzrlln Assume that

(K1) % (my o Karos oo ) |[(Ls o 0, 0, 0),
(k1) # (k1y .o ks, 0,00 0) (g ooy lsyay ooy ),

for any s > 0. Then O (M) = C. In other words under conditions (7) any

holomorphic function on FZTlln is constant.
Otherwise

F" ~ (pt, /\(mn)) x (F§" x F})

and Op(Mo) = N(mn), where \(mn) is the Grassmann algebra with mn
generators.



3 Vector fields on flag supermanifolds

3.1 Vector fields on super-Grassmannians

In previous sections we have seen that G, k) is & GLy,n(C)-homogene-
ous superspace. The action of GL,,(C) on Gryp, ki is given by Formulas
(4). This action induces the Lie algebra homomorphism

U g[mm((:) — U(Grmm’k‘l).

The kernel of this homomorphism is eqaul to (E,,1,), [OS, Lemma 1]. Fur-
ther we will use the following notation:

P8l (C) == 9l (C)/ (Emn).-
The Lie superalgebra of holomorphic vector fields on super-Grassmannian
Gryjn ki Was computed in [Bun, OS, Oni, Ser].

Theorem 3. The homomorphism p : gl
always surjective and

C) — v(Gryjnep) Is almost

m\n(

0(GTppn i) = Pl (C).
The exeptional cases are the following.
1.1 For the super-Grassmannian Grajg 1)1 we have
D(G’I‘Q'Q’l‘l) ~ p5[2|2(C)EB 5[2(@),
where pslyy(C) = sly2(C) /< By >.
1.2 For Gryj,opn—1 = Gryj1n—1j0 = Gry11 =~ Grypip, n > 2, we have
o(Grijn0n-1) =~ W, = Der /\(Cl, e G-
1.3 In the degenerate case GTpn 0ln =~ GIpyjn,mjo We have
U(Fgﬁ?) ~ Wi = Der/\(gla s 7Cmn)
1.4 For Grypp o)1 =~ Grajg1j0 =~ Grajg12 =~ Grajg 21 We have
o(Grajp20p) H,P (2),

where ad z acts on the Lie superalgebra of Cartan type Hy as the
grading operator.
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In case
O0<k<m and 0<l<n, (m|n,k|l)#(2]2,1]1),

the Lie superalgebra of vector fields was computed in [OS]. Results 1.1
and 1.2 of Theorem 3 were obtained in [Bun] (see also [OS] for an explicit
description of the Lie superalgebra) and [Oni, Ser]|, respectively. Result 1.3
of Theorem 3 is obvious. Result 1.4 of Theorem 3 follows from arguments
in [Ser], Proof of Theorem 2.6. Note that in the statement of Theorem 2.6
in [Ser] and also in [OS, Theorem 7] the Lie superalgebra of vector fields in
case 1.4 was pointed incorrectly.

We will need an explicit description of the Lie superalgebra of holomorphic
vector fields on Gryjg 1)1, Case 1.1 of Theorem 3, in the following local chart

O3 = 8
< O

The image of gly,(C)y with respect to the homomorphism g from Theorem
3 is given by:

n(En) = 33'8% + 58%’ n(Er2) = %7 p(E2) = —wa% - 778%’

p(En) = —9«”2% - 93776% - ifﬁa% + &78%’ (Esy) = 8%’ 5
p(Eys) = —y28% = y&(% = yna% - 5776%, p(Ess) = ya% + ”a%’
1(Eu) = —ya% - 8%

The image of 9[2‘2((:)1 with respect to the homomorphism p from Theorem
3 is given by:

0 0 0 0
p(Ews) = €’ ((Es) = o’ p(E3) = s Yae

0 0 0 0 0
p(Es) = gf)_y + If)_n’ p(Fag) = —xn% - $98—§ + ?ﬂ]a—ya o)

(E)——fg—acg—l—:cf2 (E)——x2+ g
:u 41) — y ay yan an :u 24) — aé- TIay?
0 0

1(Es) = Y, o
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Additional holomorphic on Gryjs 1)1 vector fields are

0 0
— —. 1
A direct computation shows that
0 0
0(Gryp 1) =~ gl (C)o @ pglyp(C)1 @ <778—57 53_77> (11)

as glyo(C)g-modules.
Let us give an explicit description of the Lie superalgebra of holomorphic
vector fields on Gryjp 12, Case 1.4 of Theorem 3 in the following local chart

(12)

OO~ K
o~ o
—_ o ofn

The definition of the Lie superalgebra H, can be found in [Kac]. For com-
pleteness we remind it here. We have H4 C Der A(by,...,04) and H4 consists
of all elements in the form:

4
_\N~9r 9 _
Df_iﬂaeiaei, feNoi....0.), f(0)=0.

The Lie superalgebra H, is Z-graded and in chosen chart the image of an
injective homomorphism Hy — v(Gryjzj2) is given by the following vector
fields:

~ 0 0 0 0
<H4>-1:<a—&’ e " )
. 0 d 0
(Hy)o = <%a 51 85 v+ 5285 51 %
9, 0
5285 51 ¢, + 95528—52 + —> (13)
()= (6l &r w6 +5152£ vt glgza£>

~ 0
(H)o §182
The Z-graded operator mentioned in Theorem 3 is given by:

0

2_51 o€, +£28§2
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We will call the super-Grassmannians from 1.1-1.4 of Theorem 3 excep-
tional. Note that the super-Grassmannian Groy, o =~ GTpjo,p0 is just usual
Grassmannians isomorphic to Gr,,;. It is well-known that

U(Grml) ~ pg[n(C),

see [A] for details.

3.2 Vector fields on flag supermanifolds. Main case

Assume that » > 1. From now on we use the following notations:
| Kl
M = FZTln, B = Grm|n7k1u1 and S = Fk,l‘l,l,

where k' = (kq, ..., k.) and ' = (lo,...,l.). If Os(Sy) = C, then by Proposi-
tion 1 the projection of the superbundle M — B determines the homomor-
phism of Lie superalgebras

P o(M) — v(B).

This projection is GL,y,j,(C)-equivariant. Hence for the natural Lie superal-
gebra homomorphisms 4 : gl,,,,(C) — v(M) and pp : gl,,,(C) — 0(B) we
have

ps =P op.
By Theorem 3, the homomorphisms ug and hence the homomorphism P is
almost always surjective. We will prove that P is injective. Hence,

p="P " opus (14)

is surjective and

(M) = gl (C)/(Ermyn)-

In previous section we constructed a locally free sheaf W on By. The sheaf
W possesses the natural action of the Lie group G = GL,,(C) x GL,(C), be-
cause G is the underlying space of GL,,,,(C). This action preserves the
filtration (5) and induces the action in the sheaf Y. Hence the vector bun-
dle Wy — B, corresponding to the localy free sheaf W, is homogeneous.
Consider the local chart on the super-Grassmannian B corresponding to

]16:{m—k;1+1,...,m} and ]1I:{n_l1+17"'7n}‘ (15)
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The coordinate matrix Z;, in this case has the following form

X, =
| By 0

=1y (16)
0 E

1

Denote by o the point in By defined by the following equations:

X1=Y1=

[1]

1:H1:0.

Then By is naturally isomorphic to G/H, where H is the stabilizer of 0. An
easy computation shows that H contains all matrices in the following form:

AL 00 0
¢t Bi 0 0
0 0 A 0 | (17)
0 0 C B

where
Ay € GL,,, 4, (C), Ay € GL,,_,(C), By € GLg, (C) and By € GL,;, (C).
The reductive part R of H is given by the following equations
C;=0, i=1,2.

Let us compute the representation ¢ of H in the fiber (W), of Wq over
the point 0. We identify (Wy), with the Lie superalgebra of holomorphic
vector fields v(S), see Proposition 3. Let us choose an atlas on M defined
by Iy = (115, I,1), see (15), and by certain I, s = 2,...,r. In notations (16)
and (17) the group H acts in the chart defined by Z;, in the following way:

A0 0 0 X, & A1 X, AZ,
Ci Bp 0 0 E, 0 | | GXi+B  CF
0 0 A 0 H v, |~ Ay H, AY)
0 0 C B, 0 B, CoHy GV + By

Hence, for Z;, we have

Ole + Bl ClEl X2 EQ _
CyHy oY1 + By Hy Y,
_ (C1X1 4+ B1)Xo+ CiZ1Hy  (C1Xy + B1)Z2 + C151Y3
CoHy Xo+ (CoY1 + Bo)Hy CoHy Zo + (Co2Y1 4+ Bo)Ys )

(18)
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Note that the local coordinates of Z;,, s > 2, can be interpreted as local
coordinates on the fiber S of the superbundle M. To obtain the action of H
in the fiber (Wy), in these coordinates we put

X1:}/1:O and Ele1:0

in (18) and modify Z;, s > 3, accordingly. We see that the nilradical of
H and the subgroup GL,,_¢,(C) x GL,,_;,(C) in R act trivially on & and
that the subgroup GLg, (C) x GL;, (C) C R acts in the natural way. In other
words the action of H in S over o is given by the following formulas:

B, 0 Xy EHy _ B X, Bi=, (19)
0 B Hy Y5 ByHy ByY; )

This means that H acts as the underlying space of the Lie supergroup
GLg, 1, (C) on the flag supermanifold S, see (4). Furthermore assume that

Zy T
U(S) = g[kl\h (C)/<Ek1+l1> = {( T; Z; ) + < Ek1+ll >} )

where Z; € gl;,(C) and Z; € gl;,(C). Then the induced action of the Lie
group GLy, (C) x GL, (C) on (Wy), = 8(S) coinsides with the adjoint action
of the underlying Lie group of the Lie supergroup GLy,|;, (C). More precisely,
we have

B 0 Z T BilY oo\
(5 5)((5 2)r<ma) (5 50)-
(20)

B\Z\B;' B\T\B;*
< By,B' ByZyBy' ) T B >

where By € GLy, (C) and By € GL;, (C).

Denote by Ady, and Ad;, the adjoint representations of GLg, (C) and
GLy;, (C) on sli, (C) and sl;, (C), respectively, and by px, and p;, the standard
representations of GLg, (C) and GL;, (C) in C* and Ch, respectively. We
denote by 1 the one dimensional trivial representation of GLy, (C) x GL;, (C).
The following lemma follows from (20).

Lemma 1. The representation v of H in the fiber (W), = v(S) is com-
pletely reducible. The nilradical of H acts trivially in (Wy),. If v(S) ~

g[k1|ll (C)/<Ek1+ll>7 then
Ady, + Ady, +pr, @ pj, + o1, @ py, + 1 for kil >0,
¢‘R = Adk1 for k?l > 07 ll = O, (21)
Adh for k; = 0, Iy > 0.
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Further we will use the chart on FZTll” defined by I, = I,5 U I,7, where Iy;
is as above, and

Is() = {ks—l — k8+ 17...,k5_1}7 Isi — {ls—l - l8+ 17"'7l5—1}

for s > 2. The coordinate matrices of this chart have the following form

X, =g
ZIS = flks }(/)' ) s = 17 ka
0 E

where again the local coordinates are
Xs = (ﬁfj% Y, = (yfﬂa e = ( zsj) and H = (77183)

We denote this chart by U and the corresponding chart on B by Ug. In other
words, Up is given by the coordinate matrix (16).

Lemma 2. The vector fields % and % are fundamental. This is they are
induced by the natural action of GLy,),,(C) on M.

Proof. Let us prove this statement for example for the vector field %. This
11

vector field corresponds to the one-parameter subgroup exp(7E;,), where

a=m+n—I[,+1and 7 is an odd parameter. Indeed, the action of this

subgroup is given by

X, = X, =
Ey, E,, 0
VA A > 9
H, Y — H, Y and . 2, s> 2,
0 El1 0 El1
where
B T + 5111 te 51111
= = ’ : .0
AP S

Let us choose a basis v;, where i = 1,...dim(0(S)), in v(S). Any holo-
morphic vertical vector field on M can be written uniquely in the form

w = Z fava: (22)
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where f, are holomorphic functions on ¢ depending only on coordinates from
Zr1,. We will need the following two lemmas:

Lemma 3. If Ker P # {0}, then dim W) (By) > dim W (Bo).
Note that since By is compact, dim W) (By) < oo for all .

Proof. By definition we have the inclusion of sheaves W1y < W) and hence
we have the inclusion of the vector spaces of global sections

Way(Bo) = W) (Bo)-

Therefore we need to show that there exists a vector field v € Wg)(By) such
that v ¢ W) (By). Consider a vector field w € Wy (By) written in the form
(22). Assume that there is a function f, that depends for example on odd
coordinate {}J Then w = Sz»ljw’ + w”, where w' and w” are local vertical
vector fields and their coefficients (22) do not depend on &}, and w' # 0.
Using Lemma 2 and the fact that Ker P is an ideal in v(M), we see that

/
w =

0
(= w] € KerP.
9E;;
In particular, w’ is a global vertical vector field. In this way we can exclude
all odd coordinates &}; and n;;. Therefore there exists a vector field v from

Ker P such that v € Wo)(By) but v ¢ Wy (By).00
Lemma 4. We have

( C, 0<ki<m, 0<l; <m
tl@tg@c, 1<k1:m,0<ll<n;
Pty dC, 0<ki<m, 1<l =n;

t, & C, l=ki=m, 0<l; <nm;
N tg@C, O<k1<m,1:l1:n;
Wo(By) ~ < {0}, O0<ky<m, 0=10 <mn, or (23)

0=k <m, 0<ly <n, or

O=ki<m, 1=10 <n, or

1:I€1Sm,0:l1<n;
Ty, 1<k1:m,O:ll<n;
Ty, O=k1<m,1<11:n,

\
where vy, tg, t3, vy are irreducible sl,,(C) & sl,,(C)-modules with the highest
weights [ty — fm, 1 — A, A1 — Wm and Ay — A\, respectively. The trivial
1-dimensional module C corresponds to the highest weight 0.

Proof. We compute the vector space of global sections of W using the Borel-

Weyl-Bott Theorem 1. The representation ¢ of H in (Wy), is described in
Lemma 1. From (21) it follows that the highest weights of ¢ have the form:
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Hm—ki1+1 — Bms Um—ki1+1 — s >\n711+1 — Hm, )‘nle»l — A, O for ky, 3 > 1;

I — Ay An—iy 41 — My An—iy+1 — An, 0 for by =1, 13 > 1;
® Llm—ky+1 — Mmy Mm—ki+1 — Ay An — M, 0 for by > 1,13 =1
® [y — Apy Ay — i, O for ky =1, 1, =1;

® [k 41 — M for ky > 1,11 = 0;

e N\ 1 — Ay for ky =0, > 1.

(Note that for k&y =1, l; = 0 and k; = 0, [; = 1 the representation space of
1 is trivial.) Therefore the dominant highest weights of ¢ have the following
form:

e 0,if0< ki <mand0< Il <mn;

0, 11 — fhms 11 — Ap, if 1L < by =m, 0 <y <n;

0,p1—/\n,if1:k1:m,0<l1<n;

0,/\1—/\n,)\1—um,if0<k1<m,1<l1:n;

0, A\ — i, ifO< by <m, 1 =1, =mn;
® [ — i, if 1<k =m,0=1 <n;
e\ — )\, if0=k<m, 1<l =n.
We have no dominant weights in the following cases:
e 0<k<m,0=10<mn
e 0=k <m,0<Il; <mn
e 0=ki<m, 1=10<n;
e l=FKk<m, 0=1[ <n.

By Borel-Weyl-Bott Theorem we get the result.[J
We are ready to prove the following theorem.

Theorem 4. Assume thatr > 1. If

OS(SO) = C? U<S> = pg[k1|ll (C)a (klall) 7£ (m,()) and (kla ll) 7A (Oan)a
then Ker P = {0}.

18



Proof. Consider the super-stabilizer H C GLy,,(C) of o. It contains all
super-matrices of the following form:

Al 0 * 0
Cl Bl * D1
* D2 CQ BQ

where the size of all matrices is as in Formula (17). Consider also the following
Lie subsupergroup £ in H:

By D

Dy By )

Clearly, £ ~ GLy,;, (C). Repeating computations (18) for super-matrix (24),
we see that £ acts on S in the natural way, see (4), and the [-module (W), ~
pgly,;, (C) is isomorphic to the adjoint [-module. Here I >~ gl |, (C) is the
Lie superalgebra of L.

Let 7 : W — Wy = W/W]) be the natural map and 7, : W — (W), be
the composition of m and of the evaluation map at the point o. We have the
following commutative diagram:

W(By) 5 W(s,)

~| |

(Wo)o 24 (W),

where X € [. (Note that the vector space W(By) is an ideal in v(M) and in
particular it is invariant with respect to the action of £.) Denote by V the
image m,(W(By)). From the commutativity of this diagram it follows that

V< (Wo)o =~ pal,;, (C)

is invariant with respect to the adjoint representation of pg[klul(C). There-
fore, V' is an ideal in pgl,, |, (C).

Let us describe ideals of the Lie superalgebra pgly, ;, (C), where (ki,11) #
(1,1), see [Kac] for details. (The Lie superalgebra pgl;; (C) is nilpotent. We
do not consider this case here because Og(Sy) # C for S = Fllc‘,‘ll,) This Lie
superalgebra contains two trivial ideals I = {0}, pgl;,;, (C) and it has one
proper ideal

sl (C) = sl ik, (C) /(Eary)
for k; = 1;.
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Clearly, we have V C Im(7), where v : Wy(Bo) — (W), is the evaluation
map. By Lemma 4, we see that Im(y) never coinsides with pgly, ;, (C) or
psly, ik, (C). Hence, V' = {0}. In other words, all sections of 7(W(By)) are
equal to 0 at the point o. Since Wy is a homogeneous bundle, we get that
T(W(By)) are equal to 0 at any point. Therefore, 7(W(By)) = {0} and

W(By) ) =~ W(Bo))-

From Lemma 3 it follows that Ker P = {0}.00
Using Theorem 4 and Formula (14), we get the following statement:

Theorem 5. Assume thatr > 1. If
Os(S8y) = C, v(F["7) = pgl,;,,(C) and v(Fyy') ~ pgly,y, (C),

then
0(E7") = pgl, . (C)-

3.3 Vector fields on flag supermanifolds, some excep-
tional cases

3.3.1 The base B is an exceptional super-Grassmannian

Assume that r > 1, Os(Sy) = C and B = FZ?'(;I is one of the following
super-Grassmanians:

a) F?J\Z = FSTJ:L or FZ:S, case 1.3 of Theorem 3.

b) F/'l' = F2 or F22, case 1.4 of Theorem 3. (We do not consider super-
1l 12 201
Grassmannians Fﬂg and Fgﬁ here, because in these cases Og(Sy) # C.)
c) FZ”Z = Ftl)IZA’ where n > 2, or FZEHO, where m > 2, case 1.2 of
Theorem 3. This case we will consider in a separate paper.

d) F’,Z'Gl = Ffﬁ, case 1.1 of Theorem 3. In this case Os(Sy) # C. We do
not consider this case here.

mln _
kil

is a superpoint, i.e. it is a superdomain

Case a. Without loss of generality we may consider only the case F
Fg‘:'t" In this case the base space Fg‘lrll"
with the underlying space {pt}, one point, and with mn odd coordinates.
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Since le‘n is a superbundle with the base space isomorphic to a superpoint,

we have

F" = Fg" < F))j,, where ' =(0,...,0) and I' = (ly,....1,).

Our goal now is to prove the following theorem.

Theorem 6. Assume that r > 1 and (ki,l1) = (m,0) or (ki,l;) = (0,n).
Then

O(F}") = Wi & \(mn) @ pgl, (C) ).
where W, = Der(A(mn)).

Proof. The result follows from the following facts:

Fy =Fp" x B, 0s(S) =C, Os(By) = /\(mn),
o(F") = Wi, 0(Eg) ~ pl, (C).

Oln
In more details, since Og(Sy) = C, we have a Lie superalgebra homomor-
phism
P o(F") = o(Fy") o Wi,

mln

Since the bundle projection Fk\l — F
factor

8},‘7 is just the projection to the first

Fm|n _ Fm\n x FO\n

mln
kI Oln i = Fop

all vector fields on Fgﬂf can be lifted to FZTZ'” The kernel of P is isomorphic

to A(mn) ® pgl,, (C). The proof is complete.[]

Case b. Assume that » = 2. Without loss of generality we may consider

only the case leﬁl = Fflg Under restriction Og(Sy) = C the fiber S can be

one of the following super-Grassmanians:

2 12
S = F1|1 or Fo\l'

We have seen that U(ng) ~ H,;3 (2), see (13), Theorem 3. A standard
computation shows that the image of gly,(C) in U(Fﬂ;) is

(Fy)-1 ® (Hy)o @ (Hy)1 @ (2) ~ paly(C).
Therefore,
b(F}) ~ paly,(C) & (6), (25)
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as vector superspaces. (See (13) for the definition of §.) By Theorem 2 we
have Os(Sy) = C. Hence by Proposition 1 we have a homomorphism of Lie

superalgebras
2[2 2[2
P :o(F;) — o(Fj).

By Theorem 3 we see that v(S) =~ pgl;5(C). Therefore by Theorem 4 the ho-
momorphism 7P is injective. The vector fields from pgly,(C) are fundamental
with respect to the action of the Lie superalgebra g[2|2(C). Hence they can

be lifted to the flag supermanifold Fkll Therefore we need to find P~1(6).
We will show that 6 ¢ Im(P), i.e. 6 cannot be lifted to Fi'ﬁ

Theorem 7. We have

U(F?\Q Dizn) = Pl (C) and u(F?fO)lm)) ~ pgly,(C).

. : 2[2 .
Proof. Consider the following chart on F(Ll)‘ @1)"

1 0
0 0
Zfl = 1 0 ) Z]Q = ny (26)
0 1 01

O O~ 8

Assume that w := P~1(0) is well-defined. Since all vector fields on F(l DIE1)

are projectable, in cootdinates (26) w is equal to 6 + v, where v = fay + g(%
is a vertical vector field and f, g are holomorphic functions in coordinates
(26). Let us find f and g. We need the following fundamental vector fields

on F?? ) written in coordinates (26):

(LDI(21
0 0 0 0
Eyzr— ——, Eur— -, Eup '—>£2_+y_7
e O 00
32 192 oy’ 1852 oy
Here we denote by E;; the elementary matrix from gly,(C).
Since Ker P = {0}, using (27), we get
0 (9f d 0dg 0 0
_|_
a1 =€+ Gk o oy~ K
0 8f J dg 0 8
_’ —_ + Jp— A
RURE T RS STAE T A
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Hence,

of _, 0a_ 0l 0,
o oe Ve e
Furthermore,
0 0 af 0 0dg 0
56 5 =65+ Gy * oo
Hence, g—; =0 and g—z = —&;. Now we see that
g B g )
0§10y L 0yo& '

This is a contradiction. Therefore,
_ 2/2
P1(z) =0 and b(F) ) ~ poly(C).

The proof in the case F( 0)(2.1) 18 similar.[]

3.3.2 The fiber S is an exceptional super-Grassmannian

Assume that r = 2, Og(Sy) = C and S = Fi;lg is one of the following
super-Grassmanians:

a) S = F2 case 1.1 of Theorem 3;

1)1

b) § = F(Q)ﬁ, Fflg, Ffl; or F;E, case 1.4 of Theorem 3;

_ pllh k1 1L k|1
c) S= Fou1> Fr 1o Fipy or Fyyp, where n > 2, case 1.2 of Theorem 3.

d) §= ngllh FZHQ, case 1.3 of Theorem 3. In both cases Og(Sy) # C.

We do not consider this case here.

Our goal now is to prove the following theorem.
Theorem 8. Assume that r = 2 and the fiber S of the superbundle Fk\l‘n ]

a super-Grassmanian of type a or b. Then we have

o(F})") = pgl,,;. (C).

First of all let us compute the representation ¢ of the stabilizer H in
these cases. Formula (19) tells us that the action of H in S coinsides with
the restriction of this action on GLgj2(C)s. We need the following lemma:

Lemma 5. The representation v of H in the fiber (Wy), is completely
reducible and its highest weights are:
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1. Hm—1— Htm, )\nfl - )\TL7 Hm—1— /\n7 /\nfl — Hm, 07 Hm—1 +,U/m - )\nfl - )\n;
A1+ A — f—1 — Jm, IN case a.

2. Hm—1— Htm, )\n 1 >\n; Hm—1— )\n7 )\n 1~ Hm, 0 Hm—1 +'um_>\n—1 _)\na

. 2[2
in case b, super-Grassmannians F0=1 and F1I2

3. Hm—1—Hm, /\n 1 /\n; Hm—1— )‘n; /\n 17— Mm, 07 _Mm—l_ﬂm+/\n—1+/\n7

. 2[2
in case b, super-Grassmannians F lo and F2:1'

Proof. As in Section 3.2, we see that the nilradical of H and the subgroup
GL.,—2(C) x GL,—2(C) in H act trivialy on S. The subgroup GLy(C) x
GL3(C) acts in the natural way. Consider Decomposition (11). We computed
already highest weights of gly,(C)g-module pgly,(C). They are

Hm—1 — Hm, )\n—l - )\na Hm—1 — )\na >\n—1 — Hm, 0. (28)
Using the explicite description of U(Flll) given by (8), (9) and (10), we get:

0

[m—1p(E11) + pimit(Ea2) + A1 pt(Ess) + Appi(Ega), §a—n] —

0
Hm—1 T+ o — )\n— - >\n 5_;
(K1 1= An) o
0
[m—1p(En) + pimpt(Ez2) 4+ An1p(Ess) + Aup(Eaa), 778—5] =
0

<_,um—1 — Htm + )\n—l + )\n)na_g

Here Ej;, where i = 1...4, are elementary matrices from glyy(C)g. The
result follows.

Let us prove the second statement. Consider Dt

12
of U(Fﬂg) We see easily that the vector subspaces (¢) and pgl,,(C) are in-
variant with respect to the action of the Lie algebra pgly,(C)g. Again the
vector space pg[2|2((C) was decomposed into a sum of irreducible representa-
tions, see (20). The highest weights of ¢[pgly5(C) are given by (28). Let us

compute the highest weight of (f). The image of the Cartan subalgebra

and decomposition (25)

diag(umfb /Lm) X diag(knfla )\n)

with respect to the homomorphism g : glyo(C)g — U(Fﬂ;) in chart (12) is
given by

0 0
p(En) = 8 + & 96, + fzag ; ,LL(E22) = —37%,
p(Esg) = _618_51’ p(Ess) = —52 05,

24



We have

(-1t (Er1) + fimpt(Eag) + An—1pu(Ess) + App(Eag), 0] =
(,umfl + Hm — )\an - )\n)e

The result follows.

Computations in the cases F22 F2? and F

2|
211> £ oj1 |

2 ..
1o are similar.(d

Proof of Theorem 8. First of all let us compute the vector space of global
sections of the vector bundle Wy using Theorem 1. The dominant highest
weights of the representation 1) are in case a:

1. 0if m >2and n > 2;

2. 0, pby — po, 11 — Apy b1+ pto — A1 — A, for m =2 and n > 2;
3.0, Ay — Aoy, AL — gy A1+ Ao — 1 — by for m > 2 and n = 2.
In case b for Og ~ Fﬂg or Fﬁﬁ the dominant highest weights of ¢ are:

1. 0 form > 2, n > 2;
2.0, g — po, 1 — Apy i1+ o — Apog — A form =2, n > 2;
3.0, A\t — Ao, Ay — fyp, for m > 2, n = 2.
In case b for Og ~ F;E or Fflg the dominant highest weights of ¢ are:
1. 0 form > 2, n > 2;
2.0, py — po, p1 — Ay, form =2, n > 2;
3.0, A1 — Aoy AL — iy, —Hm—1 — fm + A1+ Ao for m > 2 n = 2.

We restrict all weights on the Cartan subalgebra of sl,,(C) & sl,,(C) C
gl,,(C) @ gl,,(C). By Theorem 1, in case a we have:

. C, m> 2, n>2;
W()(Bo): C@tl@tg@tg, m:2,n>2;
Chrydrsdrg, m>2,n=2.

Without loss of generality we consider only the case b, Og ~ Fﬂ; or Fgﬁ
We have

- C, m>2 n>2;
Wo(Bo)Z C@tl@tQ@tg, m=2n>2;
CeryPrs, m>2,n=
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Here vy, t9, t3, ty4, t5, tg are irreducible sl,,,(C) @ sl,(C)-modules with highest
weights py — po, ft1 — Ay p1 + fto — A1 — Apy A1 — Aoy Ay — iy, and Ay +
A9 — fbm—1 — lm, Tespectively, and C is the irreducible sl,,,(C) @ s, (C)-module
with weight 0.

We use notations of Theorem 4. We have seen that V' is invariant with
respect to the action of Lie superalgebra pgly5(C). Consider the case a. In

case VNVO(BO) = C, we have V' = C or {0}. Since pgly»(C) does not have any
I-dimensional ideals, the trivial module C is not pgly,(C)-invariant. Hence,

V = {0}. Consider the case WO(BO) ~ C@r; Dty Drsg. As in Proof of
Theorem 4, we see that any combination of H-modules v(C), v(t1), v(r2)
and 7(t3) is not invariant with respect to pgly»(C), see explicit description
(8), (9) and (10). Hence again V' = {0}. We finish the proof similarly to
Theorem 4.

Other cases are similar.[]

3.4 Main result
We put kg = m, lo = n.

Theorem 9. Assume that r > 1 and that we have the following restrictions
on the flag type:

(ki 1)) # (kie1,0), (0,1i1), i > 2;

(ki Killioa, 1) # (1,0[Li1, Loy — 1), (1,1|li_1, 1), i > 1;
(ki Killioa, 1) # (kioy, kg — 1|1,0), (ki1 1[1,1), @ > 1;
U #£(0,...,00n o, ..., 1), k|l (m, ks, ... K 0,...,0).

Then
0(F}j/") = pgly(C).
If k|l =(0,...,0|n,la,...,1.) or k|l = (m, ko, ..., k:|0,...,0), then
0(F1") = Wi €(\(&0 -+ Emn) @ g1, (C)),
where W, = Der A(&1, ..., &mn)-

Note that the flag supermanifolds FZI‘Z‘" and Fﬁ‘km are isomorphic.
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