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ALGEBRAIC DEFORMATIONS OF TORIC VARIETIES I.

GENERAL CONSTRUCTIONS

LUCIO CIRIO, GIOVANNI LANDI, AND RICHARD J. SZABO

Abstract. We construct and study noncommutative deformations of toric varieties by
combining techniques from toric geometry, isospectral deformations, and noncommuta-
tive geometry in braided monoidal categories. Our approach utilizes the same fan struc-
ture of the variety but deforms the underlying embedded algebraic torus. We develop
a sheaf theory using techniques from noncommutative algebraic geometry. The cases
of projective varieties are studied in detail, and several explicit examples are worked
out, including new noncommutative deformations of Grassmann and flag varieties. Our
constructions set up the basic ingredients for thorough study of instantons on noncom-
mutative toric varieties, which will be the subject of the sequel to this paper.
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Introduction

This paper is the first part of a series of articles in which we define and study a class
of noncommutative toric varieties, and construct instantons thereon. Our approach is in-
spired by the theory of isospectral deformations [13] and a construction due to Ingalls [23].
We expand and elaborate on some of the constructions introduced in the latter paper us-
ing techniques from noncommutative geometry in braided monoidal categories. We start
with a noncommutative deformation of an algebraic torus and use this to deform every
toric variety on which the torus acts. This is done in a fashion that does not alter the
combinatorial fan data describing the toric variety.

Part of the motivation for our construction comes from enumerative geometry and at-
tempts to provide physical interpretations of enumerative invariants of toric varieties.
In [24, 10], it is argued that the computation of Donaldson–Thomas invariants of a toric
threefold X can be reduced to the problem of locally enumerating noncommutative in-
stantons on each open patch of X , and then assembling the local contributions into a
global quantity using the gluing rules of toric geometry. This heuristic construction works
because noncommutative deformations of C3 are simple enough to explicitly construct in-
stantons thereon, but the construction utilizes commutative toric geometry techniques to
glue together quantities which are locally constructed using methods of noncommutative
geometry. In the the present paper we define a precise notion of “noncommutative toric
variety” which leads to a more global picture of their noncommutative geometry and of
the construction of instantons thereon. Although our main interest lies in the construction
of noncommutative instantons, the requisite building blocks turn out to be rather tech-
nically involved and lengthy. Thus the present paper is a (partly expository) systematic
development of the general machinery required. The treatment of instanton counting on
these varieties is defered to a sequel [12].
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Another motivation for our constructions comes from string geometry. Chiral fermion
fields on a quantum curve can be embedded in string theory as an intersecting D-brane
configuration together with a B-field [16]. Mathematically, this system is described by a
holonomic D-module. In some instances, the category of D-modules is in correspondence
with the category of modules on a noncommutative variety, of which some of our con-
structions furnish explicit examples and give precise realizations of the noncommutative
geometry alluded to in [16]. The simplest example of such a correspondence is between
right ideals of the algebra of differential operators on the affine line and line bundles over
a certain noncommutative deformation of the projective plane CP2 [6]. The classifica-
tion of bundles on noncommutative CP2 is related to the construction of instantons on a
noncommutative R4 [25].

From a mathematical perspective, our general construction produces new examples of
noncommutative varieties. In particular, by considering noncommutative deformations of
projective toric varieties, we give new examples of noncommutative grassmannians, and
more generally flag varieties. We use techniques of noncommutative algebraic geometry
to develop a sheaf theory for our varieties. Our treatment of flag varieties includes a
noncommutative twistor theory, while our development of sheaf theory also produces
sheaves of differential forms, all of which are instrumental in the analysis of instantons [12].
An alternative approach to noncommutative toric varieties can be found in [8].

The organisation of this paper is as follows. In §1 we review the various algebraic
constructions that we need, in particular the Hopf cocycle twisting procedure which will
allow us to construct our deformations within a braided categorical framework. This
framework will be utilized throughout the paper as a systematic means of deforming not
only the varieties involved, but also geometric objects defined thereon.

In §2 we apply this twisting procedure to define a noncommutative deformation of
the complex algebraic torus (C×)n, which extends the standard (real) noncommutative
torus and is the basic building block for all constructions in this paper. We use this to
construct a twist deformation of the algebraic group GL(n), which requires a suitable
notion of quantum determinant. We give a new description of these noncommutative
determinants. We also work out the related braided exterior algebras of noncommutative
minors. These ingredients are used in the description of the noncommutative geometry
of Grassmann and flag varieties.

In §3 we use the noncommutative algebraic torus to give a general definition of non-
commutative toric varieties, using their combinatorial description in terms of fan data.
Only the algebras of characters are deformed, not their group structure, and hence our
noncommutative toric varieties are described by the same fan data. We illustrate the
construction through several explicit examples.

In §4 we construct categories of quasi-coherent sheaves on generic noncommutative toric
varieties, and establish basic properties of them paralleling the commutative case. We
provide an explicit categorical description of sheaves which are equivariant with respect
to the toric action, and a relationship between ideal sheaves and invariant subschemes of
the noncommutative variety. These aspects are crucial ingredients for the enumeration of
instantons that will be constructed in [12]. We also build sheaves of differential forms.

In §5 we turn to the special case of deformations of projective toric varieties, for which
various constructions can be made very explicit. We demonstrate that our local defini-
tion of noncommutative deformations of complex projective spaces CPn is equivalent to a
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“global” description which is a special instance of the noncommutative weighted projec-
tive spaces considered in [5]. We use these spaces to define noncommutative Grassmann
and flag varieties as noncommutative quadrics in projective space, through suitable defor-
mations of Plücker embeddings. We study the embedding relations in detail and derive
conditions for the embeddings into noncommutative projective space to exist.

Finally, in §6 we describe in detail the properties of the categories of quasi-coherent
sheaves on our noncommutative projective varieties, some of which are consequences of
the general theory developed in [5]. We also study in detail the tautological bundles and
sheaves of differential forms on our noncommutative grassmannians. The general frame-
work presented in this section will lie at the heart of our construction of noncommutative
instantons and their twistor description in [12].

Acknowledgments. We thank Simon Brain, Ugo Bruzzo, Brian Dolan and Michel
Dubois-Violette for helpful discussions. The work of RJS was supported in part by grant
ST/G000514/1 “String Theory Scotland” from the UK Science and Technology Facilities
Council.

1. Algebraic preliminaries

This section summarizes the algebraic constructions which will be used throughout this
paper and its sequel [12]. We present a general framework for working with the symmetries
of the noncommutative varieties that we shall encounter later on. We also recall some
notions from the localization theory for noncommutative algebras.

1.1. Twist deformations of symmetries. Let H be a Hopf algebra over C with co-
product ∆ : H → H⊗H, counit ε : H → C, and antipode S : H → H. We will make use
of the conventional Sweedler notation ∆(h) = h(1) ⊗ h(2) (with implicit summation) and

(id⊗∆)∆(h) = (∆⊗ id)∆(h) = h(1) ⊗ h(2) ⊗ h(3) .

Definition 1.1. Let H⊗A→ A, h⊗ a 7→ h ⊲ a be a left action of the Hopf algebra H on
a unital algebra A with product µ : A⊗ A → A. The action is said to be covariant if the
compatibility conditions

h ⊲ µ(a⊗ b) = µ
(
∆(h) ⊲ (a⊗ b)

)
:= µ

(
(h(1) ⊲ a)⊗ (h(2) ⊲ b)

)
, h ⊲ 1 = ε(h) 1(1.2)

hold for all h ∈ H and a, b ∈ A. In this case A is called a left H-module algebra.

Similarly, a left action ⊲ of the Hopf algebra H on a coalgebra (C, δ, ǫ) is said to be
covariant, making the latter a left H-module coalgebra, if the compatibility conditions

δ(h ⊲ c) = ∆(h) ⊲ δ(c) :=
(
h(1) ⊲ c(1)

)
⊗
(
h(2) ⊲ c(2)

)
, ǫ(h ⊲ c) = ε(h) ǫ(c)

hold for all h ∈ H and c ∈ C, with the notation δ(c) = c(1) ⊗ c(2).

The Hopf algebra H is itself an H-module algebra with respect to the left adjoint action
h ⊲ad g = adh(g) := h(1) g S(h(2)) for h, g ∈ H. We recall next how to produce new Hopf
algebra structures on H by deforming the original one using two-cocycles of H.

Definition 1.3. An element F ∈ H ⊗ H is called a Drinfel’d twist element for H if it
has the following properties:

(1) F is invertible;
(2) F is counital: (id⊗ ε)(F ) = (ε⊗ id)(F ) = 1; and
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(3) F obeys the cocycle condition: (1⊗ F ) (id⊗∆)(F ) = (F ⊗ 1) (∆⊗ id)(F ).

In the category of left H-modules, a Drinfel’d twist in the Hopf algebra H generates a
deformation of the product µ : A⊗A→ A on every algebra object A. Similarly, the twist
can be used to deform the coproduct δ : C → C ⊗ C on every coalgebra object C. The
results are H-module algebras or coalgebras respectively. In the present paper we shall
concentrate on the algebra cases.

Theorem 1.4. (1) A Drinfel’d twist element F = F (1) ⊗ F (2) ∈ H ⊗ H defines a
twisted Hopf algebra structure HF with the same multiplication and counit as H,
but with new coproduct and antipode given for h ∈ H by

(1.5) ∆F (h) = F ∆(h)F−1 , SF (h) = UF S(h)U
−1
F

where UF = F (1) S
(
F (2)

)
.

(2) If A is a left H-module algebra, the deformed product

(1.6) a ⋆F b := µ
(
F−1 ⊲ (a⊗ b)

)

for a, b ∈ A makes AF = (A, ⋆F ) into a left HF -module algebra with respect to the
same action of H.

There are analogous results for right actions. If A is an H-module algebra, then the
collection of left H-invariant elements HA forms an ideal of A in which the product
associated to a Drinfel’d twist for H by Theorem 1.4 coincides with the undeformed
product [11].

In general, the deformation of the H-module algebra structure of H itself provided
by Theorem 1.4 need not be compatible with the Hopf algebra structure of H, because
generically one has ∆(h⋆F g) 6= ∆(h)⋆F∆(g). In order to obtain a deformation of both the
underlying variety of H and the quantum group associated to H, we use a dual framework
dealing with coactions.

Definition 1.7. Let Φ : A → A ⊗H, Φ(a) = a(0) ⊗ a(1) be a right coaction of the Hopf
algebra H on a unital algebra A with product µ : A⊗ A → A. The coaction is said to be
covariant if the linear map Φ is a unital algebra morphism,

Φ
(
µ(a⊗ b)

)
= µ

(
a(0) ⊗ b(0)

)
⊗ a(1) b(1) , Φ(1) = 1⊗ 1 ,(1.8)

for all a, b ∈ A. In this case A is called a right H-comodule algebra.

The initial coproduct ∆ of H defines a right coaction of the Hopf algebra H on itself,
and it makes H into an H-comodule algebra. For dually paired Hopf algebras H and
F, with nondegenerate pairing 〈−,−〉 : H × F → C, to a right coaction of F on (an
algebra, a coalgebra, etc.) A there corresponds a left action of H on A. Thus, e.g., a right
F-comodule algebra is a left H-module algebra. The left regular action of H on F:

h ⊲ α = α(1)

〈
h , α(2)

〉
(1.9)

for h ∈ H and α ∈ F, is a covariant action which makes F into a left H-module algebra.

Definition 1.10. A linear map F∨ : H⊗H → C is called a dual Drinfel’d twist element
for H if it has the following properties for all f, g, h ∈ H:

(1) F∨ is convolution-invertible: There exists a linear map F∨ −1 : H⊗H → C such
that

F∨
(
f(1) ⊗ g(1)

)
F∨ −1

(
f(2) ⊗ g(2)

)
= F∨ −1

(
f(1) ⊗ g(1)

)
F∨

(
f(2) ⊗ g(2)

)
= ε(f) ε(g) ;
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(2) F∨ is unital: F∨(f ⊗ 1) = F∨(1⊗ f) = ε(f); and
(3) F∨ obeys the cycle condition:

F∨
(
f(1) ⊗ g(1)

)
F∨

(
f(2) g(2) ⊗ h

)
= F∨

(
g(1) ⊗ h(1)

)
F∨

(
f ⊗ g(2) h(2)

)
.

Theorem 1.11. (1) A dual Drinfel’d twist element F∨ for H defines a twisted Hopf
algebra structure HF∨

with the same coproduct and counit as H, but with new
algebra structure and antipode given for g, h ∈ H by

g ×F∨ h = F∨
(
g(1) ⊗ h(1)

) (
g(2) · h(2)

)
F∨ −1

(
g(3) ⊗ h(3)

)
,

SF
∨

(g) = UF∨(
g(1)

)
S
(
g(2)

)
UF∨ −1

(
g(3)

)
(1.12)

where UF∨

(g) = F∨(g(1) ⊗ S(g(2))).
(2) If A is a right H-comodule algebra, the deformed product

(1.13) a ⋆F
∨

b := µ
(
a(0) ⊗ b(0)

)
F∨ −1

(
a(1) ⊗ b(1)

)

for a, b ∈ A makes AF
∨

= (A, ⋆F
∨

) into a right HF∨

-comodule algebra.

The proof of Theorem 1.11 can be found in [32]. Again, there is an analogous result
for left coactions. If the two Hopf algebras H and F are dually paired, then to any twist
element F = F (1) ⊗ F (2) ∈ H ⊗ H there is a canonically associated dual twist element
F∨ : F ⊗ F → C defined by

(1.14) F∨(α⊗ β) =
〈
F , α⊗ β

〉
:=

〈
F (1) , α

〉 〈
F (2) , β

〉

for α, β ∈ F. Every time an H-module algebra is also an F-comodule algebra (i.e. the
action determines a coaction of the dual Hopf algebra) any deformation obtained using
the twist F of H can be equivalently described using the dual twist F∨ of F defined
by (1.14). However, the dual twist element depends only on the pairing, without any
reference to an action of F.

In our main examples, we will use this Hopf algebraic approach as a means of deforming
the algebra of functions on a variety acted upon by a group. Given a Lie group G, the
enveloping algebra U(g) of the Lie algebra g of G is a Hopf algebra over C. This Hopf
algebra has coproduct given on primitive elements x ∈ g by ∆(x) = 1⊗ x+ x⊗ 1, counit
by ε(x) = 0, and antipode by S(x) = −x. The adjoint action of H on itself extends the
usual adjoint action of Lie algebra elements x ∈ g. When the group G acts on a space X ,
the algebra of functions on X is a U(g)-module algebra.

Let F = Fun(G) be the algebra generated by commuting matrix elements gij in finite-
dimensional representations of G, with i, j = 1, . . . , dim(G) . Let gij(P ) ∈ C denote their
evaluations on group elements P ∈ G. The commutative algebra F is a Hopf algebra with
coproduct given by ∆∨(gij) =

∑
k gik⊗gkj, i.e. the transpose of the map given by matrix

multiplication, antipode S∨(gij)(P ) = gij(P
−1) for P ∈ G, and counit ε∨(gij) = δij . The

Hopf algebra F is dual to the enveloping Hopf algebraH, with dual pairing 〈h, g〉 = h(g)(1)
the evaluation at the identity of the bi-invariant differential operator on G associated to
h ∈ H acting on the function g ∈ F. When the group G acts on a space X , the algebra
of functions on X is a Fun(G)-comodule algebra.

As we will need below formal power series in some parameters θ, we will rather need
to work in the quantum enveloping algebra H = U(g)[[θ]], the θ-adic completion of U(g).
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1.2. Braided monoidal categories of Hopf-module algebras. A useful unifying
framework in which to analyse our noncommutative deformations is provided by braided
monoidal categories, wherein the noncommutativity is completely encoded in a braiding
of a category whose objects are commutative varieties.

Definition 1.15. A braided monoidal (or quasitensor) category (C ,⊗,Ψ) is a monoidal
category (C ,⊗) with a natural equivalence between the two functors ⊗,⊗op : C ×C → C

given by functorial isomorphisms

(1.16) ΨV,W : V ⊗W −→ W ⊗ V

for all objects V,W of C , obeying hexagon relations which express compatibility of Ψ with
the associativity structure of the tensor product ⊗ (see e.g. [32, Fig. 9.4]). The operators
(1.16) are called braiding morphisms. If in addition Ψ2 = id, the category (C ,⊗,Ψ) is
said to be a symmetric (or tensor) category.

Our interest in braided monoidal categories stems from the category of Hopf-modules
introduced in §1.1. We shall denote by HM the (sub)category of Hopf-module algebras.

An algebra map A
σ
−→ B is a morphism of the category HM if and only if it fits into the

commutative diagram

H ⊗A
id⊗σ //

��

H ⊗B

��
A σ

// B

where the vertical arrows are the H-actions, i.e. σ is an H-equivariant map.

On the tensor product of two Hopf-module algebras A⊗B we will consider the action
of the Hopf algebra H defined by

(1.17) ∆(h) ⊲ (a⊗ b) =
(
h(1) ⊲ a

)
⊗
(
h(2) ⊲ b

)

for all a ∈ A, b ∈ B, and h ∈ H. Both the algebra structure of A ⊗ B and the braiding
in the category are determined by a quasitriangular structure of H, i.e. an invertible
R-matrix R = R(1) ⊗ R(2) in H⊗H obeying

τ ◦∆(h) = R∆(h)R−1

and

(∆⊗ id)R = R
(1) ⊗ R

(1) ⊗
(
R

(2)
)2
, (id⊗∆)R =

(
R

(1)
)2

⊗ R
(2) ⊗ R

(2)

where τ : H ⊗ H → H ⊗ H is the flip map which interchanges the two factors of H.
See [32] for proofs of the following results.

Proposition 1.18. If (H,R) is a quasitriangular Hopf algebra, then the category of left
H-module algebras HM is a braided monoidal category with braiding morphism

(1.19) ΨA,B(a⊗ b) =
(
R

(2) ⊲ b
)
⊗

(
R

(1) ⊲ a
)

for all a ∈ A and b ∈ B.

When the Hopf algebra is triangular, i.e. R−1 = R(2) ⊗ R(1), or τ ◦ R−1 = R, the
category HM is symmetric, i.e. the braiding in (1.19) squares to the identity: Ψ2 = id.
If in addition H is cocommutative, like the classical enveloping algebras U(g), then the
R-matrix can be taken to be R = 1 ⊗ 1 and the braiding morphism is given by the flip
morphism τ , where τA,B : A⊗B → B⊗A interchanges the factors as τA,B(a⊗ b) = b⊗ a.
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In this case, the ordinary tensor algebra structure of A⊗B is compatible with the action
of H, i.e. (a1⊗ b1) · (a2⊗ b2) := (a1 a2)⊗ (b1 b2). In the general case, the algebra structure
on A⊗B which is acted upon covariantly by H depends on the quasitriangular structure.

Proposition 1.20. If (H,R) is a quasitriangular Hopf algebra and A,B are H-module
algebras, then the braided tensor product A ⊗̂B is the vector space A⊗B endowed with
the product

(1.21) (a1⊗b1) ·(a2⊗b2) := (a1⊗1)ΨB,A(b1⊗a2) (1⊗b2) = a1
(
R

(2)⊲a2
)
⊗
(
R

(1)⊲b1
)
b2 .

With this product A ⊗̂B is an H-module algebra.

In a braided monoidal category of algebras it is natural to relate the notion of commu-
tativity to the braiding morphism. The usual definition of commutativity of an algebra
A may be expressed as the invariance of the multiplication µ : A ⊗ A → A under the
flip morphism τA,A : A⊗ A → A ⊗ A, i.e. µ ◦ τA,A = µ. In a braided monoidal category
(C ,⊗,Ψ) it is natural to replace τ , which is not necessarily a morphism in the category,
by the braiding morphism Ψ. This motivates the following definition.

Definition 1.22. An algebra object A in the category HM is braided commutative if its
multiplication map µ : A ⊗ A → A is invariant with respect to the braiding morphism
ΨA,A : A⊗ A→ A⊗ A as

(1.23) µ ◦ΨA,A = µ or a b =
(
R

(2) ⊲ b
) (

R
(1) ⊲ a

)
,

for every a, b ∈ A.

If A is an object in the category HM , and AF is the twisted Hopf-module algebra
defined by a Drinfel’d twist element F = F (1) ⊗ F (2) ∈ H ⊗H as in Theorem 1.4, then
the braiding morphism ΨF and tensor product ⊗̂F on the category HF

M are defined as in
Propositions 1.18 and 1.20 with respect to the twist deformed quasitriangular structure

RF =
(
F (2) ⊗ F (1)

)
RF−1 .

There is a natural equivalence between braided monoidal categories of left Hopf-module
algebras defined by the functor

FF :
(
HM , ⊗̂ , Ψ

)
−→

(
HF

M , ⊗̂F , ΨF

)

which acts as the identity on objects and morphisms of HM [26, Thm. XV.3.5], the
nontriviality being contained in what happens to the braided monoidal structure. This
functorial isomorphism implies that any H-covariant construction in the category HM of
H-module algebras has a twisted analog in the category HF

M of HF -module algebras.

1.3. Ore localization. Given a commutative unital algebra over C which is a domain,
one usually localizes with respect to a subset which is closed under multiplication. For
noncommutative algebras, the existence of the localization is guaranteed, for example, by
an additional Ore condition on the subset.

Definition 1.24. Let A be a noncommutative unital algebra over C. A left denominator
set in A is a subset S ⊂ A such that for all a ∈ A and for all s, t ∈ S the following
conditions hold:

(1) S is closed under multiplication: s t ∈ S;
(2) S satisfies the left permutable Ore condition: (S · a) ∩ (A · s) 6= 0; and
(3) S is left invertible: If a s = 0 then there exists u ∈ S such that u a = 0.
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The last condition in Definition 1.24 is automatically satisfied when A is a domain. A
completely analogous definition gives the notion of a right denominator set. Given a left
denominator set S ⊂ A, one defines the localization algebra A[S−1] = S−1 · A as the set
of equivalence classes in S × A generated by the equivalence relation (s1, a1) ∼ (s2, a2) if
and only if there exists t ∈ S such that (s1 a2 − s2 a1) t = 0. As usual, one regards the
equivalence class [(s, a)] as the “fraction” s−1 a, and defines an algebra structure on these
equivalence classes as follows. For the addition, the Ore condition applied to s1 and s2
means that there are elements s̃ ∈ S and ã ∈ A such that s̃ s1 = ã s2. We can thus define

(1.25) s−1
1 a1 + s−1

2 a2 := (s̃ s1)
−1 (s̃ a1 + ã a2) .

It is not difficult to prove that this definition does not depend on the choice of represen-
tatives for the equivalence classes. For the multiplication, we use the Ore condition on s2
and a1 to introduce elements s̃ ′ ∈ S and ã ′ ∈ A such that ã ′ s2 = s̃ ′ a1. We then define

(1.26)
(
s−1
1 a1

)
·
(
s−1
2 a2

)
:=

(
s̃ ′ s1

)−1 (
ã ′ a2

)
,

and again this definition does not depend on the choice of representatives for the equiv-
alence classes. Geometrically, the localization A →֒ A[S−1] corresponds to deleting the
locus specified by the vanishing of elements of S in the variety dual to A.

2. Algebraic torus deformations

This paper systematically combines constructions from toric geometry and the theory of
isospectral deformations. Isospectral deformations produce noncommutative geometries
by using the isometric action of a real n-dimensional torus Tn on a riemannian (spin)
manifold and its noncommutative deformation Tnθ [13]. We will extend these constructions
to actions of the algebraic torus (C×)n, in order to obtain an analogous deformation of
toric algebraic varieties. In this section we spell out the various algebraic constructions
behind these deformations. Throughout this paper an implicit sum over repeated upper
and lower indices is always understood.

2.1. The noncommutative algebraic torus. The definition of the noncommutative
real torus essentially relies on harmonic analysis and a choice of homomorphism of groups
between the space of characters and the torus itself. This procedure may be easily ex-
tended to a generic locally compact abelian Lie group G. We are ultimately interested
in the case G = (C×)n. Let A(G) ⊂ C∞(G) be the commutative algebra of a class of
functions on G with a suitable growth condition “at infinity”. The Fourier transform on
G provides a decomposition of every function f ∈ A(G) over a basis of functions {χp}p∈Ĝ
labelled by the group of characters of G, i.e. its Pontrjagin dual Ĝ = HomC(G,C

×). For

every p ∈ Ĝ, we set χp to be the function on G defined by χp(g) = 〈p, g〉, for g ∈ G,

where 〈−,−〉 : Ĝ × G → C× is the pairing between G and Ĝ. This defines the Fourier

components f̂ : Ĝ→ C of f ∈ A(G) as

f̂(p) =

∫

G

f(g)χp(g) dg

where p ∈ Ĝ and dg denotes the bi-invariant Haar measure of G. Using L2-orthonormality
of the characters, the inverse Fourier transformation is given by

f(g) =

∫

Ĝ

f̂(p)χp(g) dp
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with dp the bi-invariant Haar measure of Ĝ.

In order to define a noncommutative associative product on A(G) it is enough to de-
scribe it on theG-eigenbasis {χp}p∈Ĝ and then extend it to A(G) via the Fourier transform.

Given a homomorphism of groups Θ : Ĝ→ G, we set

χp ⋆Θ χq := χp ·
(
Θ(p) ⊲ χq

)
=

〈
q , Θ(p)

〉
χp+q

for p, q ∈ Ĝ. Here the symbol ⊲ denotes the (left) action of the group G on A(G). Using
the Fourier transformation this extends to a product on functions f, f ′ ∈ A(G):

(f ⋆Θ f
′ )(g) =

∫

Ĝ×Ĝ

f̂(p) f̂ ′(q)χp+q(g)
〈
q , Θ(p)

〉
dp dq .

The vector space A(G) with this product defines a noncommutative associative algebra
denoted AΘ(G).

Example 2.1. Let G = V be a locally compact abelian vector Lie group of (real) dimension

n. Then Ĝ ∼= V ∗ = HomR(V,R). By choosing an R-basis of V , there are isomorphisms
V ∼= Rn and V ∗ ∼= Rn. In this case the homomorphism Θ may be taken to be a linear
endomorphism on V defined by a real skew-symmetric n×n matrix θ ∈

∧2 V , and we get
the Moyal product on Rn.

Example 2.2. Let G = V/L with V as in Example 2.1 and L ⊂ V a lattice of maximal

rank n. Then Ĝ ∼= L∗ = HomZ(L,Z). Upon choosing a Z-basis for L, there are isomor-
phisms L ∼= Zn, L∗ ∼= Zn and G ∼= Tn. In this case we put Θ(p) = exp( i

2
θ · p) for p ∈ L∗

with θ again a real skew-symmetric n × n matrix, and we obtain the noncommutative
torus Tnθ .

When G = T is an algebraic torus of (complex) dimension n over C, we proceed as
follows. Let L be a lattice of rank n. Let L∗ = HomZ(L,Z) be the dual lattice and denote
the canonical pairing between the lattices by 〈−,−〉 : L∗×L→ Z. The dual lattice is the
group of characters {χp}p∈L∗ which provide a basis of T -eigenfunctions on the algebraic

torus T = L ⊗Z C
×, i.e. one has Ĝ = L∗ ∼= HomC(T,C

×). Thus L ∼= HomC(C
×, T )

is the lattice of one-parameter subgroups of T . Pick a Z-basis e1, . . . , en of L, with
corresponding dual basis e∗1, . . . , e

∗
n for L∗. Then there is an isomorphism T ∼= (C×)n. Set

p =
∑

i pi e
∗
i ∈ L∗ and t =

∑
i ei ⊗ ti ∈ T . Then the characters are given by

χp(t) = tp := tp11 · · · tpnn .(2.3)

The Fourier components in this case are given by

(2.4) f̂(p) =

∫

T

f(t) t p d×t

with respect to the T -invariant measure d×t = (dt dt )/|t|2. Using the discrete measure on

the Pontrjagin dual T̂ = L∗, every function f : T → C with suitable growth “at infinity”
can be written in terms of its Fourier components via the Laurent power series expansion

f(t) =
∑

p∈L∗

f̂(p) tp .

The space Cχp is the eigenspace for the T -action corresponding to the character given
by 〈p,−〉 : T → C× in HomC(T,C

×) ∼= L∗. Thus the L∗-grading gives precisely the
eigenspace decompositions of algebraic objects, dual to T -invariant geometric objects.
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The homomorphism Θ : L∗ → T is defined by a complex skew-symmetric n× n matrix
θ via the usual relation Θ(p) = exp( i

2
θ · p). The real part of θ again describes the

deformation of the compact real torus Tn ⊂ (C×)n, while the imaginary part applies to
the “dilatation” part given by (R+)n, according to the polar decomposition

(C×)n = (R+)
n
× Tn ∼= Rn × Tn .

In this way we may think of the deformation of (C×)n as a simultaneous and independent
deformation of Rn and Tn as given in Example 2.1 and Example 2.2. However, for concrete
computations this prescription is not very useful, because the Moyal deformation affects
log |t| for elements t ∈ (C×)n and thus leads to rather involved commutation relations.
The transformation (2.4) with this decomposition of (C×)n is the Fourier transform with
respect to the real torus and the Mellin transform with respect to (R+)n.

As an algebraic variety, the torus (C×)n is dual to the Laurent polynomial algebra in
n variables C(t1, . . . , tn) := C[t± 1

1 , . . . , t± 1
n ]. The monomials in this coordinate algebra

are the functions labelled by the characters χp(t) = tp that we introduced in (2.3). The
deformation of the product between such functions may be written explicitly as

(2.5) zp ⋆θ w
q = exp

(
i
2
pi θ

ij qj
)
zp · wq

where z =
∑

i ei ⊗ zi, w =
∑

i ei ⊗ wi ∈ T , and p, q ∈ L∗. The product (2.5) is extended
linearly to all of C(t1, . . . , tn).

Definition 2.6. The vector space A(T ) = C(t1, . . . , tn) with the product ⋆θ is called the
quantum Laurent algebra Aθ(T ) = Cθ(t1, . . . , tn) and its elements are called quantum
Laurent polynomials. It is dual to a noncommutative variety denoted (C×

θ )
n.

Remember that θ is a complex matrix. As we show explicitly in §2.2, the regular action
of the group T on itself extends to an action on (C×

θ )
n. In particular, T acts by algebra

automorphisms with respect to the product ⋆θ.

2.2. Twisted toric actions. Using the Hopf algebraic approach described in §1.1, we can
alternatively define the quantum Laurent algebra by twisting the (quantum) enveloping
algebra H of the algebraic torus group T . This is simply the polynomial algebra in n
commuting elements Hi, the infinitesimal generators of the group. In fact we rather need
formal power series in some parameters θ, but we will abuse notation by simply writing
H = H[[θ]], while always implicitly understanding a θ-adic completion of H.

As twisting element we take the abelian Drinfel’d twist

F = Fθ := exp
(
− i

2
θij Hi ⊗Hj

)
.(2.7)

The infinitesimal action of T on characters is given by Hi ⊲ χp = 〈p, ei〉χp for p ∈ L∗.
Then formula (1.6) for a = zp and b = wq monomials in the algebra A(T ) = C(t1, . . . , tn)
coincides exactly with (2.5).

On the other hand, in this case H = Hθ := HFθ
as Hopf algebras. Since the Lie algebra

of T is abelian, the coproduct ∆θ := ∆Fθ
of Hθ computed from (1.5) is unaffected by the

deformation and is given on generators by

∆θ(Hi) = ∆(Hi) = Hi ⊗ 1 + 1⊗Hi .

The antipode defined in (1.5) is also unaffected by the deformation, SFθ
= S, as is always

the case with Drinfel’d twist elements of the form (2.7) [11]. Indeed, one shows that the
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element UFθ
= F

(1)
θ S

(
F

(2)
θ

)
in this case is the identity by computing its n-th order term

for any n > 0 in a formal power series expansion in θ. This term is proportional to

θi1j1 · · · θinjn Hi1 · · ·Hin S(Hj1 · · ·Hjn) = (−1)n θi1j1 · · · θinjn Hi1 · · ·Hin Hj1 · · ·Hjn = 0 ,

and the vanishing follows from θij = −θji and HiHj = Hj Hi for each i, j = 1, . . . , n.
Thus H = Hθ as a Hopf algebra, and the deformed algebra Aθ(T ) is also an H-module
algebra with respect to the same (undeformed) toric action. In this case the deformation
of the triangular structure R = 1 ⊗ 1 of H by the twist element (2.7) gives the twisted
R-matrix

RFθ
= F−1

θ (1⊗ 1)F−1
θ = F−2

θ ,(2.8)

so that the twisted enveloping algebra Hθ is triangular, τ ◦ R
−1
Fθ

= RFθ
, but no longer

cocommutative, resulting in a nontrivial, albeit symmetric, braiding in the category Hθ
M .

The coproduct on the algebra of functions A(T ) on the torus T is given on character
elements χp : T → C×, p ∈ L∗, by

∆∨(χp) = χp ⊗ χp ,(2.9)

while the antipode is the inverse S∨(χp) = χ−1
p in C×. For this undeformed case, the dual

pairing between generators Hi of T and the character algebra A(T ) is provided by the
evaluation of the Lie derivative LHi

with respect to the invariant vector field associated
to Hi; in particular for the characters one finds:

〈Hi, χp〉 := LHi
(χp)(1) = pi .

Using the Drinfel’d twist (2.7) and its dual twist element F∨ = F θ defined by (1.14),
from Theorem 1.11 we obtain the twisted Hopf algebra Funθ(T ) with deformed product
on characters given by

χp ×θ χq = F θ(χp ⊗ χq) (χp · χq)F
θ −1(χp ⊗ χq)

=
〈
Fθ , χp ⊗ χq

〉
(χp · χq)

〈
F−1
θ , χp ⊗ χq

〉

= exp
(
− i

2
pi θ

ij qj
)
(χp · χq) exp

(
i
2
pi θ

ij qj
)

= χp · χq ,

which coincides with the undeformed product on the character algebra. The antipode
is also unaffected by the deformation, SF

θ

∨ (χp) = S∨(χp), as can be checked directly by
using (1.12), or by using duality and the fact that the antipode in Hθ is unchanged by the
deformation in this case. Thus the quantum group symmetry underlying the quantum
Laurent algebra also coincides with the classical (undeformed) toric symmetry.

2.3. The noncommutative variety GLθ(n). Some of our constructions will rely on
a noncommutative (C×)n deformation of the general linear group GL(n) over C. The
deformation is realized using the action of the algebraic torus by a (dual) Drinfel’d twist
on the algebra of functions Fn := Fun(GL(n)) on GL(n), as described in §1.1, which
depends on an n× n skew-symmetric complex matrix θ. The Hopf algebra Fn is dual to
the enveloping Hopf algebra H

n = U(gl(n)). The left regular action of Hn on Fn, defined
in general in (1.9), is a covariant action which makes Fn into a left Hn-module algebra.
There is an analogous right regular covariant action of Hn on Fn which makes Fn into a
right Hn-module algebra.

The deformation of GL(n) which we use in the following is the only one which deforms
Fn as a Hopf algebra, and also as an Hn-bimodule algebra. Within the context of §1.1
and §1.2, it would be more natural to consider Fn as a left Hn-module algebra via either



ALGEBRAIC DEFORMATIONS OF TORIC VARIETIES I 13

the left regular action or the left adjoint action, or by their right acting versions. For
our purposes this is undesirable as it introduces an asymmetry between row and column
operations on matrix elements considered in the following. The deformation we use is
compatible with the Hopf algebra structure, which is instrumental in some of our later
constructions of differential forms, and moreover it is the one that is compatible with the
embeddings we will consider into noncommutative projective spaces.

We first twist the standard Hopf algebra structure of Hn to obtain Hn
θ , using the

twist element (2.7), where the Hi are the generators of the Lie algebra of the diagonally
embedded maximal torus (C×)n ⊂ GL(n). Let {Eij}i,j=1,...,n be the standard basis of
gl(n), with matrix elements (Eij)kl = δik δjl and Hi = Eii, and the commutation relations

[Eij , Ekl] = Eil δjk − Ekj δil , [Hk, Eij ] = Eij
(
δki − δkj

)
.

These are used to compute the twisted coproduct ∆θ := ∆Fθ
as in (1.5). A straightforward

computation, along the lines of [11], yields

∆θ(Eij) = Eij ⊗ λ−1
ij + λij ⊗ Eij

with the group-like element λij defined by

λij = exp
(

i
2
θkl (δik − δjk)Hl

)
.

As expected, the generators Hi of the twist have undeformed coproduct.

By the general discussion of §1.1, in order to obtain a deformation of Fn which preserves
the quantum group structure, we use the Drinfel’d twist F∨ = F θ defined as in (1.14),
which is dual to the initial twist (2.7). As in §2.2 we compute the pairings

〈Hk, gij〉 = Hk(gij)(1) = LHk
(gij)(1) = gij(Hk) = δik δjk ,

with the generators gij of the algebra Fn. Using Theorem (1.11) we then obtain the
twisted Hopf algebra Fθn still generated by elements gij , but now with noncommutative
relations between them given by

gij ×θ gkl =
n∑

m,p,r,s=1

F θ(gir ⊗ gks) (grm · gsp)F
θ−1(gmj ⊗ gpl)

=
n∑

m,p,r,s=1

〈
Fθ , gir ⊗ gks

〉
(grm · gsp)

〈
F−1
θ , gmj ⊗ gpl

〉

=

n∑

m,p,r,s=1

qki δir δks (grm · gsp) qmp δmj δpl = qki qjl (gij · gkl) ,(2.10)

where
qij := exp

(
i
2
θij

)
.

Introducing coefficients

(2.11) Qij ; kl = qki qjl = q−1
ik qjl , Q2

ij ; kl = q2ki q
2
jl

we write the commutation rule for the deformed product as

(2.12) gij ×θ gkl = Q2
ij ; kl gkl ×θ gij .

As usual, the coproduct ∆∨ and the counit ε∨ are left unchanged. On the other hand,
the commutativity of the generators Hi implies, as in §2.2, that the antipode SF

θ

∨ (gij) =
S∨(gij) is unaltered as well.
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Definition 2.13. The noncommutative Hopf algebra F
θ
n = (Fn,×θ,∆∨, ε∨, S∨) is called

the algebraic torus deformation quantum group of GL(n). It is dual to a noncommutative
variety denoted GLθ(n).

A proper definition of the variety GLθ(n) involves the notion of noncommutative de-
terminant; we will return to this point in detail in §2.4.

Remark 2.14. This formalism may also be adapted to define noncommutative rectangular
d× n matrix algebras, with d < n, as the C-subalgebra of Fθn generated by gij with i ≤ d.
There is a C-algebra retraction of Fθn onto this subalgebra whose kernel is generated by gij
with i > d, and hence the subalgebra is isomorphic to Fθn / 〈gij〉i>d.

In the sequel we will drop the product notation ×θ for simplicity. The Hopf algebra Fθn
is dually paired with Hn

θ under the same pairing which links the untwisted algebras. The
left Hn

θ -module structure of Fθn is given by (1.9) and is straightforwardly computed to get

Eij ⊲ gkl = g
(1)
kl

〈
Eij , g

(2)
kl

〉

=
n∑

m=1

gkm
〈
Eij , gml

〉

=
n∑

m=1

gkm gml(Eij)

=

n∑

m=1

gkm δmi δjl = δjl gki .

2.4. Quantum determinants. The coordinate algebra of the noncommutative variety
GLθ(n) should be properly defined as the Ore localization of the noncommutative algebra
generated by arbitrary matrix units with respect to an invertible and permutable element
detθ, the determinant element. If we consider the elements at the crossings of rows i, j
and columns k, l of a given matrix, then the determinant of this 2 × 2 sub-matrix is
classically given by gik gjl− gjk gil. In order to get a well-defined element of Fθn, we put in
front of every monomial in the matrix elements gij a suitable element of the deformation
matrix. For example, in front of gik gjl we write Qjl ; ik, so that the determinant of the
minor above is Qjl ; ik gik gjl − Qil ; jk gjk gil. This is well-defined because if we choose to
write the determinant using a different ordering of the monomials, then we get the same
element of Fθn thanks to the relations (2.12) which imply

Qjl ; ik gik gjl = Qik ; jl gjl gik .

For a generic n×n matrix we can define the determinant by adapting the usual Laplace
expansion in minors, with respect to either rows or columns, or the Leibniz formula which
expresses it as a linear combination of products

∏
i gi σ(i) or

∏
i gσ(i) i as σ runs through

the symmetric group Sn weighted by its sign. Using the above rule for the coefficients
in front of every monomial to pull out a factor Qlj ; ki for every pair gki glj appearing in
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∏
i gi σ(i), we define

detθ :=
∑

σ∈Sn

sgn(σ)
( n−1∏

j=1

n−j∏

i=1

Qi+j σ(i+j) ; j σ(j)

)
g1σ(1) · · · gnσ(n)

=
∑

σ∈Sn

sgn(σ)
( n−1∏

j=1

n−j∏

i=1

Qσ(i+j) i+j ;σ(j) j

)
gσ(1) 1 · · · gσ(n)n .(2.15)

This element corresponds to a mapping of Sn into the braid group Bn on n strands, as
we shall see below.

The formula (2.15) may be rewritten in a more succinct way by using the fact that the
classical Leibniz formula can be expressed in terms of the totally antisymmetric Levi–
Civita symbol ǫ as

ǫi1···in g1 i1 · · · gn in =
1

n!
ǫj1···jn ǫi1···in gj1 i1 · · · gjn in .

In the noncommutative case, we introduce a θ-deformed Levi–Civita symbol ǫθ which
satisfies braided antisymmetry rules. Since the row and column indices in (2.11) and

(2.12) behave differently, we actually require two different symbols ǫ
(r)
θ , which refers to

row indices, and ǫ
(c)
θ , which refers to column indices. In this way we may absorb the Q-

dependent coefficients of (2.15), consistently with the braided antisymmetry. Explicitly,

ǫ
i1···in (r)
θ = sgn(i1 · · · in)

n−1∏

k=1

n−k∏

r=1

Qr+k ir+k ; k ik ,

ǫ
j1···jn (c)
θ = sgn(j1 · · · jn)

n−1∏

k=1

n−k∏

r=1

Qjr+k r+k ; jk k .

They obey the alternating rules

ǫ
i1··· iα···iβ ···in (r)
θ = − q2iαiβ ǫ

i1··· iβ ···iα ···in (r)
θ ,

ǫ
j1··· jα···jβ ···jn (c)
θ = − q2jβjα ǫ

j1··· jβ ···jα ···jn (c)
θ .(2.16)

For example, for n = 2 we define ǫ
12 (c)
θ = q21 and ǫ

21 (c)
θ = −q12, and the sole braided

antisymmetry relation ǫ
12 (c)
θ = −q221 ǫ

21 (c)
θ is satisfied. Similarly, we put ǫ

12 (r)
θ = q12. In

this sense ǫ
(r)
θ may be thought of as the inverse of the symbol ǫ

(c)
θ .

Definition 2.17. The quantum determinant is the element of Fθn given by

(2.18) detθ =
1

n!
ǫ
i1···in (r)
θ ǫ

j1···jn (c)
θ gi1j1 · · · ginjn .

Theorem 2.19. The element detθ is a T -eigenvector which is left and right permutable
in Fθn.

Proof: The first statement follows from an elementary calculation using the coproduct
∆θ(Hi) of §2.2 and the (C×)n-action Hi⊲gkl = δil gkl. For the second statement, note that
since every monomial occuring in detθ is of the form

∏
i gi σ(i) for some permutation σ in
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Sn, every row and column index appears exactly once. By (2.12), commuting a generic
element gkl from right to left in such a monomial picks up the coefficient

n∏

i=1

Q2
i σ(i) ; kl =

n∏

i=1

q2ki q
2
σ(i) l .

It follows that

(detθ) gkl =
( n∏

i=1

Q2
ii ; kl

)
gkl (detθ)

for all k, l = 1, . . . , n, and hence (detθ)F
θ
n = Fθn (detθ). �

Corollary 2.20. The set of non-negative powers of detθ is a left and right denominator
set in F

θ
n.

Corollary 2.21. The element detθ is central in Fθn if and only if
n∑

k=1

θki =

n∑

k=1

θkj (mod 2π)

for all i, j = 1, . . . , n.

Although our deformation of the general linear group lies in the class of deformations
considered in [3], our definition of quantum determinant is different, though it satisfies the
same formal properties. The element (2.18) originates from the braiding of the category
of Hopf-module algebras described in §1.2, in the enveloping algebra approach, since this
captures pairwise noncommutativity relations in a deformed exterior algebra. Consider
the Hopf algebra H

n
θ dual to F

θ
n. The θ-deformed exterior algebra of degree d for an

element V in the category Hn
θ
M of Hn

θ -module algebras is defined as

(2.22)
∧d
θ V := V ⊗d

/ 〈
v1 ⊗ v2 +Ψθ(v1 ⊗ v2)

〉
v1,v2∈V

,

where Ψθ := ΨFθ
= τ ◦ F−2

θ is the braiding morphism of the category. For θ = 0 we

recover the usual flip operator Ψ0 = τ and the exterior algebra
∧d V . For θ 6= 0 we obtain

a braided skew-symmetric algebra
∧d
θ V , which is spanned by the collection of minors of

order d ≤ n in elements of V when n is the number of generators of V . For this, consider
two multi-indices I = (i1 · · · id) and J = (j1 · · · jd) which label the rows and columns of a
given minor, and define the determinant ΛIJ of this sub-matrix as

(2.23) ΛIJ =
1

d!
ǫ
i1···id (r)
θ ǫ

j1···jd (c)
θ gi1j1 · · · gidjd

where the symbols ǫθ satisfy alternating rules derived from (2.22). Here the Hn
θ -module

structure of GL(n) ∼= GL(V ) is induced from theHn
θ -module structure of V and of its dual

V ∗. When this Hn
θ -module structure induces the noncommutative product (2.12) among

the entries of elements of GL(V ), the alternating properties of the deformed Levi–Civita
symbols coincide with those of (2.16).

Remark 2.24. Our definition (2.22) of exterior algebra is equivalent to the standard
definition of an exterior algebra in a braided monoidal category [37] (see also [27, §13.2.2]),
written in the symmetric case. In this construction one takes the quotient of the tensor
algebra by the kernel of the antisymmetrizer. A slightly different, but somewhat simpler,
definition involves the quotient by the ideal generated by the kernel of the antisymmetrizer
in degree two, which coincides with the morphism id − Ψθ [27, p. 512]. This agrees with
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our definition (2.22), since we work in a symmetric category with Ψ2
θ = id, and so the

kernel of the antisymmetrizer id−Ψθ coincides with the image of the symmetrizer id+Ψθ.

For later use we work out the explicit commutation rules between any two d×d and d′×d′

minors ΛIJ and ΛI
′J ′

for the case V = Fθn, regarded as the coordinate algebra A(GLθ(n))
of the noncommutative variety GLθ(n), with |I| = |J | = d and |I ′ | = |J ′ | = d′. One has

ΛIJ ΛI
′J ′

= ǫ
i1···id (r)
θ ǫ

j1···jd (c)
θ ǫ

i′1···i
′

d′
(r)

θ ǫ
j′1···j

′

d′
(c)

θ

(
gi1j1 · · · gidjd

) (
gi′1j′1 · · · gi′d′j

′

d′

)

=
( d∏

α=1

d′∏

α′=1

Q2
iαjα ; i′

α′ j
′

α′

)

× ǫ
i1···id (r)
θ ǫ

j1···jd (c)
θ ǫ

i′1···i
′

d′
(r)

θ ǫ
j′1···j

′

d′
(c)

θ

(
gi′1j′1 · · · gi′d′ j

′

d′

) (
gi1j1 · · · gidjd

)

=
( d∏

α=1

d′∏

α′=1

Q2
iαjα ; i′

α′ j
′

α′

)
ΛI

′J ′

ΛIJ .

Introducing the coefficient

RIJ ; I′J ′ =
d∏

α=1

d′∏

α′=1

Qiαjα ; i′
α′j

′

α′
(2.25)

we have the commutation relations

(2.26) ΛIJ ΛI
′J ′

= R2
IJ ; I′J ′ ΛI

′J ′

ΛIJ .

In particular, this shows that the minors of order d generate a subalgebra.

Another useful identity concerns how minors behave when we choose two multi-indices
which differ only by transposition on a pair of indices. Consider a pair of multi-indices
of the form J = (j1 · · · jα · · · jβ · · · jd) and J

tαβ = (j1 · · · jβ · · · jα · · · jd). From (2.23) it is
straightforward to obtain the alternating relations

(2.27) ΛIJ = − q2jαjβ ΛIJ
tαβ

,

which can be further generalized to arbitrary permutations.

3. Noncommutative toric varieties

The strategy of (toric) isospectral deformations is that once we have a noncommutative
deformation of the torus we can deform every space acted upon by it. For riemannian
manifolds the isospectral condition means restricting to isometric actions. Using the
algebraic torus T ∼= (C×)n and its deformation constructed in §2.1, we will now proceed
to deform toric algebraic varieties. Our approach makes use of and extends a construction
due to Ingalls [23].

3.1. Noncommutative deformations of toric varieties. Toric varieties X may be
described in several equivalent ways. As complex varieties they come with an open em-
bedding of an algebraic torus, which is dense in X . In this picture their geometry is
encoded by combinatorial data, a fan, that describes the way in which (C×)n acts on
X . As symplectic manifolds they come with a hamiltonian action of a real torus. The
corresponding moment map, whose image is a convex polytope, provides the information
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about the structure of X . Noncommutative deformations of toric varieties in the sym-
plectic framework are defined in [8]. In this paper we will use the fan picture. For a more
exhaustive introduction to toric varieties, along with further definitions and terminology,
see e.g. [15, 20].

Definition 3.1. A toric variety X of dimension n is an irreducible algebraic variety over
C which contains (C×)n as a Zariski open subset and the regular action of (C×)n on itself
extends to an action on the whole of X.

Basic examples are the affine planes Cn, the projective spaces CPn, the grassmannians
Gr(d;n), and the weighted projective spaces CPn[a0, a1, . . . , an]. In the following we will
denote by LR = L ⊗Z R ∼= Rn the real vector space obtained from a lattice L. Its dual
vector space is L∗

R = L∗ ⊗Z R ∼= (Rn)∗.

Definition 3.2. A rational polyhedral cone σ ⊂ LR is a cone σ = R+v1 ⊕ · · · ⊕ R+vs
generated by finitely many elements v1, . . . , vs ∈ L. It is strongly convex if it does not
contain any real line, σ ∩ (−σ) = 0.

Definition 3.3. For every strongly convex rational polyhedral cone σ ⊂ LR of dimension
n we define the dual cone

σ∨ =
{
m ∈ L∗

R

∣∣ 〈m, u〉 ≥ 0 ∀u ∈ σ
}
.

Given a strongly convex rational polyhedral cone σ, we will now show how to construct
a normal affine toric variety U [σ]. The set σ∨∩L∗ is a finitely generated semigroup under
addition. Let (m1, . . . , ml) be the generators of this semigroup, so that

σ∨ ∩ L∗ ∼= Z+m1 ⊕ · · · ⊕ Z+ml .

Note that in general σ∨ is not strongly convex, so l ≥ n. To each ma =
∑

i (ma)i e
∗
i we as-

sociate a Laurent monomial in C(t1, . . . , tn) by the assignmentma 7→ tma = t
(ma)1
1 · · · t

(ma)n
n .

The product between two such elements is given by the corresponding sum of characters,
tma · tmb := tma+mb . Thus the generators of σ∨ ∩ L∗ span a subalgebra of C(t1, . . . , tn)
which we denote by C[σ]. The affine toric variety U [σ] is defined to be the spectrum of
C[σ], i.e. C[σ] is the coordinate algebra of U [σ]. Note that the inclusion 0 →֒ σ induces
an embedding of the torus T = U [0] as a dense open subset of U [σ].

The variety U [σ] may also be described as an embedding in the complex plane Cl. If
σ∨∩L∗ has l generators, consider the polynomial algebra C[x1, . . . , xl] (one variable xa for
each ma). Recall that the generators ma are l rational vectors in L

∗
R, so there are exactly

l − n linear relations among them. Then we may quotient the algebra C[x1, . . . , xl] by
the ideal generated by the l−n relations among the vectors ma, realized as multiplicative
relations among the variables xa. If we denote the subspace generated by these relations
as R[ma] ⊂ C[x1, . . . , xl], then we get a realization of U [σ] as the spectrum of the quotient
algebra C[σ] = C[x1, . . . , xl]/〈R[ma]〉.

We obtain generic toric varieties by gluing together affine toric varieties. This has a
corresponding picture in terms of cones.

Definition 3.4. Given a cone σ ⊂ LR, a face τ ⊂ σ is a subset of the form τ = σ ∩m⊥

for some m ∈ σ∨, where m⊥ := {u ∈ LR | 〈m, u〉 = 0}.

Definition 3.5. A fan Σ ⊂ LR is a non-empty finite collection of strongly convex rational
polyhedral cones in LR satisfying the following conditions:
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(1) If σ ∈ Σ and τ is a face of σ, then τ ∈ Σ; and
(2) If σ, τ ∈ Σ, then the intersection σ ∩ τ is a face of both σ and τ .

To a fan Σ in LR we associate a toric variety X = X [Σ]. The cones σ ∈ Σ correspond
to the open affine subvarieties U [σ] ⊂ X [Σ], and U [σ] and U [τ ] are glued together along
their common open subset U [σ ∩ τ ] = U [σ] ∩ U [τ ]. Various properties of X [Σ], such as
smoothness and compactness, may be stated entirely in terms of the fan structure Σ (see
e.g. [20] for details).

Our definition of noncommutative toric varieties will involve a multi-parameter defor-
mation X [Σ] → Xθ[Σ] which makes use of the same fan structure Σ, deforming only the
product structure of the coordinate algebra of every strongly convex rational polyhedral
cone of Σ. We have already defined the quantum Laurent algebra Cθ(t1, . . . , tn), the coor-
dinate algebra of the noncommutative algebraic torus (C×

θ )
n. Since the undeformed torus

(C×)n is densely contained in every toric variety X [Σ] =
⋃
σ∈Σ U [σ], we expect to have

morphisms between the noncommutative algebras corresponding to the noncommutative
varieties Xθ[Σ] and Cθ(t1, . . . , tn).

We begin by defining noncommutative affine toric varieties. They are associated to
a strongly convex rational polyhedral cone σ ⊂ LR, just as in the commutative case.
However, now we use the complex skew-symmetric matrix θ to define a noncommutative
product in the algebra C[σ], according to the group character relation given by

χp ⋆θ χq = exp
(

i
2
pi θ

ij qj
)
χp+q .

Thus if (m1, . . . , ml) are the generators of the semigroup σ∨∩L∗ and tma are the associated
Laurent monomials, then the algebra Cθ[σ] is defined to be the subalgebra of Cθ(t1, . . . , tn)
generated by {tma} with product

tma ⋆θ t
mb := exp

(
i
2
(ma)i θ

ij (mb)j
)
tma+mb .

This may be regarded as a deformation of the algebra generated by the characters, but,
we stress once again, not of their group structure. It is for this reason that we will describe
noncommutative toric varieties by using the same fan of the corresponding commutative
varieties. The noncommutative affine variety corresponding to the algebra Cθ[σ] is denoted
Uθ[σ]. It is a multi-parameter deformation of U [σ].

Proposition 3.6. The action of the torus T on (C×
θ )

n restricts to a faithful torus action
Φ on Uθ[σ], which is dually a map Φ : T → Aut(Cθ[σ]).

Proof: On generators of the algebra Cθ[σ] of the form tma =
(
t
(ma)1
1 , . . . , t

(ma)n
n

)
with

ma ∈ σ∨ ∩ L∗ and a = 1, . . . , l, the action of τ = (τ1, . . . , τn) ∈ T is given by

Φτ (t
ma) =

(
t
(ma)1
1 τ1, . . . , t

(ma)n
n τn

)
.

The corresponding infinitesimal action of the torus generator Hi is then

Hi ⊲ t
ma = (ma)i t

ma ,

i.e. multiplication by the coefficient (ma)i, the i-th component of ma. If the action is
not faithful, there is at least one index i with corresponding generator Hi acting trivially
and for this i one would have (ma)i = 0 for every a, i.e. the generators of the dual cone
would have vanishing i-th component. But this would mean that every vector along the
i-th component has negative pairing with elements of the cone σ, which contradicts the
assumption that σ is strongly convex. �
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This toric action really parallels the undeformed situation: strongly convex cones σ
represent the affine toric varieties U [σ] that are glued together to get the full toric variety
X ; and in each of them the torus is embedded and acts freely (the usual extension of the
action of the torus on itself). In other words, the U [σ]’s are open affine toric subvarieties
of X , so they carry a faithful action of the torus.

Recall that the L∗-grading gives precisely the eigenspace decompositions of algebraic
objects, dual to T -invariant geometric objects. In particular, since the torus T acts on
Cθ[σ] by C-algebra automorphisms for each σ ∈ Σ, the algebra Cθ[σ] is spanned by T -
eigenvectors for which the corresponding eigenvalues are rational. This yields a vector
space decomposition

(3.7) Cθ[σ] =
⊕

p∈L∗

Cθ[σ]
p ,

where Cθ[σ]
p denotes the eigenspace of Cθ[σ] labelled by the character p ∈ L∗, and

Cθ[σ]
p ⋆θ Cθ[σ]

q ⊂ Cθ[σ]
p+q for all p, q ∈ L∗, since T acts by automorphisms. Thus we get

a grading of Cθ[σ] by the free abelian group of characters L∗, such that the homogeneous
elements are the T -eigenvectors in Cθ[σ].

We have seen how affine toric varieties may also be regarded as subvarieties of complex
planes Cl, via the quotient algebra C[σ] = C[x1, . . . , xl]/〈R[ma]〉. An analogous realization
is possible for noncommutative affine toric varieties. Remembering that in general l ≥ n,
the noncommutative deformation of the polynomial algebra C[x1, . . . , xl] is obtained from
the multiplicative relations between the monomials tma . If we denote θ̌ab := (ma)i θ

ij (mb)j
with a, b = 1, . . . , l, i, j = 1, . . . , n and q̌ab = exp( i

2
θ̌ab), then the relation between Laurent

monomials becomes

(3.8) tma ⋆θ̌ t
mb := q̌ab t

ma+mb .

As a consequence, the generators of the algebra of the affine variety obey

q̌ba xa ⋆θ̌ xb = q̌ab xb ⋆θ̌ xa

or equivalently

(3.9) xa ⋆θ̌ xb =
(
q̌ab

)2
xb ⋆θ̌ xa .

The relations (3.9) define the l-dimensional noncommutative complex plane with coor-
dinate algebra Cθ̌[x1, . . . , xl], which is a special instance of the general class of quantum
affine spaces considered by Manin [34].

The l−n linear relations among the generators of the dual cone {ma} are now expressed
in the character algebra. These relations can always be brought to the form

l∑

a=1

(ps,a − rs,a) ma = 0 ,

for s = 1, . . . , l−n, with non-negative integer coefficients ps,a, rs,a. For each s, one obtains
from (3.8) the additional relation

(3.10) x
ps,1
1 ⋆θ̌ · · · ⋆θ̌ x

ps,l
l =

( ∏

1≤a<b≤l

(
q̌ab

)ps,a ps,b−rs,a rs,b ) x
rs,1
1 ⋆θ̌ · · · ⋆θ̌ x

rs,l
l .

The subspace of relations (3.10) is denoted Rθ̌[ma]. It is a multi-parameter deformation
of the subspace R[ma], which generates a two-sided ideal in Cθ̌[x1, . . . , xl]. Thus we
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may realize Uθ[σ] either as the noncommutative algebra Cθ[σ] or as the quotient algebra
Cθ̌[x1, . . . , xl]/〈Rθ̌[ma]〉.

We obtain generic noncommutative toric varieties Xθ[Σ] by gluing together noncom-
mutative affine toric varieties. If σ and σ′ are two cones in the fan Σ which intersect
along the face τ = σ ∩ σ′, then there are canonical morphisms between the associated
noncommutative algebras Cθ[σ] → Cθ[τ ] and Cθ[σ

′ ] → Cθ[τ ] induced by the inclusions
τ →֒ σ and τ →֒ σ′. The images of these morphisms in Cθ[τ ] are related by an equi-
variant algebra automorphism which plays the role of a “coordinate transition function”
between Uθ[σ] and Uθ[σ

′ ], and may be described explicitly as follows. On τ∨ ∩ L∗ there
is a complete set of relations of the form

l∑

a=1

(
ua − va

)
ma +

l′∑

a′=1

(
u′a′ − v′a′

)
m′
a′ = 0

among the generators {ma}
l
a=1 and {m′

a′}
l′

a′=1 of the dual semigroups of σ and σ′, with
non-negative integers ua, va and u

′
a′ , v

′
a′ . For each of these relations, the generators xa and

x′a′ of the algebras Cθ[σ] and Cθ[σ
′ ] are identified in Cθ[τ ] through the relation

xu11 ⋆θ̌ · · · ⋆θ̌ x
ul
l ⋆θ̌ ◦ x′1

u′1 ⋆θ̌ ′ · · · ⋆θ̌ ′ x′l′
u′
l′

=
( ∏

1≤a<b≤l

(
q̌ab

)ua ub −va vb ) ( ∏

1≤a′<b′≤l′

(
q̌ ′
a′b′

)u′
a′
u′
b′
−v′

a′
v′
b′

)

×
( l∏

a=1

l′∏

a′=1

(
q̌ ◦
aa′

)ua u′
a′
−va v′

a′

)
xv11 ⋆θ̌ · · · ⋆θ̌ x

vl
l ⋆θ̌ ◦ x′1

v′1 ⋆θ̌ ′ · · · ⋆θ̌ ′ x′l′
v′
l′

where θ̌ ◦
aa′ := (ma)i θ

ij (m′
a′)j and q̌ ◦

aa′ = exp( i
2
θ̌ ◦
aa′), while θ̌

′
a′b′ := (m′

a′)i θ
ij (m′

b′)j and

q̌ ′
a′b′ = exp( i

2
θ̌ ′
a′b′), together with the commutation relations

xa ⋆θ̌ ◦ x′a′ =
(
q̌ ◦
aa′

)2
x′a′ ⋆θ̌ ◦ xa .

Since each algebra Cθ[σ] for σ ∈ Σ is a subalgebra of Cθ(t1, . . . , tn), there is a morphism
(C×

θ )
n →֒ Xθ[Σ]. This also means that the intersection of the algebras Cθ[σ] is well-

defined, and the “algebra of functions” A
(
Xθ[Σ]

)
on Xθ[Σ] can be represented via the

exact sequence

0 −→ A
(
Xθ[Σ]

)
−→

∏

σ∈Σ

Cθ[σ] −→
∏

σ,σ′∈Σ

Cθ[σ ∩ σ′ ] ,(3.11)

with the gluing automorphisms above. By Proposition 3.6, the toric actions on Uθ[σ] for
σ ∈ Σ all agree, and hence combine to give an action of T on Xθ[Σ].

Remark 3.12. Toric isospectral deformations can be shown to be strict deformation quan-
tizations in the sense of Rieffel [35]. It is an open question if our deformation, which may
be thought of as generated by Cn instead of Rieffel’s Rn, satisfies a similar property.

In the remainder of this section we will work out some explicit examples of noncom-
mutative deformations of toric varieties. We set qij := exp

(
i
2
θij

)
for i < j. It may

be regarded as a form q ∈
∧2 T ∼= (C×)n (n−1)/2 with qij = q(e∗i , e

∗
j) = 〈e∗i ,Θ(e∗j)〉, or

equivalently as a map q ∈ HomZ(
∧2 L∗,C×). When n = 2 we write q := exp

(
i
2
θ
)
with

θ = θ12 = −θ21 ∈ C. In the following we omit the star product symbol ⋆θ from the
notation for brevity.
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3.2. Algebraic Moyal plane and D-modules. The simplest toric variety (besides T
itself) is the n-dimensional complex plane Cn. Let us start from the embedding of the
commutative torus (C×)n →֒ Cn given by the log map

ti 7−→ zi = log ti , i = 1, . . . , n ,

so that the toric action on Cn is λi ⊲zj = zj+δij log λj for a set of generators λ1, . . . , λn of
the (C×)n-action. Consider the multi-parameter deformation (C×

θ )
n of the torus defined

by the quantum Laurent algebra Cθ(t1, . . . , tn) with generators ti and relations

ti tj = q2ij tj ti .

An application of the Baker–Campbell–Hausdorff formula shows that the corresponding
elements zi obey the commutator relations

[zi, zj ] = i θij .

The algebra of polynomial functions Cθ[z1, . . . , zn] over C generated by zi, i = 1, . . . , n
subject to these relations is dual to a noncommutative affine variety that we call the
algebraic Moyal plane Cnθ . This algebra can be identified with the d-th Weyl algebra
D(Cd) of polynomial differential operators on the complex space Cd, with d = ⌊n

2
⌋, whose

projective modules furnish basic examples of D-modules. For n = 4, this is the same
as the noncommutative variety C4

~ defined in [25, §3.4]. All algebras Cθ[z1, . . . , zn] for
θ = (θij) nondegenerate are isomorphic, and hence the varieties Cnθ are the same for all
nondegenerate θ. More generally, Cnθ and Cnθ′ are isomorphic if and only if the matrices θ
and θ′ have the same rank.

3.3. Noncommutative projective plane. The toric geometry of the projective plane
CP2 can be described by a fan Σ of the lattice L ∼= Z2 of characters for the action of the
algebraic torus T = L ⊗Z C

× ∼= (C×)2 on CP2. Let e1, e2 be a basis of L. Set v1 = e1,
v2 = e2 and v3 = −e1 − e2. These vectors generate the three one-dimensional cones
τi = R

+vi of Σ. The three maximal cones of Σ are generated by pairs of these vectors as

σi = R
+vi+1 ⊕ R

+vi+2 , i = 1, 2, 3

(with the labels read mod 3) with σi ∩ σi+1 = τi+2 and σi ∩ σj = 0 otherwise. The
corresponding open affine subvarieties U [σi] generate an open cover of X [Σ] = CP2. The
zero cone is the triple overlap σ1 ∩ σ2 ∩ σ3 = 0.

We now go through the maximal cones and write out the relations among the generators
of the subalgebra Cθ[σi] ⊂ Cθ(t1, t2). There are no relations R[ma] in this case, as each
dual cone σ∨

i is strongly convex and hence the generators of σ∨
i ∩ L∗ are independent.

(1) The generators of the semigroup σ∨
3 ∩ L∗ are m1 = e∗1 and m2 = e∗2. In this

case θ̌ = θ and the algebra Cθ[σ3] = Cθ[x1, x2] is generated by the elements
xa = tma = ta, a = 1, 2 with the relations

x1 x2 = q2 x2 x1 .(3.13)

(2) The semigroup σ∨
2 ∩ L∗ is generated by m1 = −e∗1 and m2 = e∗2 − e∗1. In this case

θ̌ = −θ, and Cθ[σ2] is generated by elements x1 = tm1 = t−1
1 , x2 = tm2 = t−1

1 t2
satisfying the relation

x1 x2 = q−2 x2 x1

which is (3.13) after sending q → q−1.
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(3) The semigroup σ∨
1 ∩ L∗ is generated by m1 = e∗1 − e∗2 and m2 = −e∗2. In this case

θ̌ = θ, and Cθ[σ1] is generated by elements x1 = tm1 = t1 t
−1
2 , x2 = tm2 = t−1

2 ,
again with the relations (3.13).

All three varieties Uθ[σi] ∼= C2
θ are thus copies of the two-dimensional algebraic Moyal

plane.

We now glue the noncommutative affine toric varieties together. Consider, for example,
the face τ1 = σ3 ∩ σ1. The semigroup τ∨1 ∩ L∗ is generated by m1 = e∗1, m2 = e∗2 and
m3 = −e∗2 = −m2. The generators of the subalgebra Cθ[τ1] = Cθ[t1, t2, t

−1
2 ] are the

elements y1 = t1, y2 = t2 and y3 = t−1
2 with the relations

y1 y2 = q2 y2 y1 , y1 y3 = q−2 y3 y1 , y2 y3 = 1 = y3 y2 .(3.14)

Recalling that Cθ[σ1] = Cθ[t1, t2] and Cθ[σ3] = Cθ[t1 t
−1
2 , t−1

2 ], it follows that the algebra
morphisms Cθ[σ1] → Cθ[τ1] and Cθ[σ3] → Cθ[τ1] are both natural inclusions of subal-
gebras. Moreover, as subalgebras of Cθ[τ1], there is a natural algebra automorphism
Cθ[σ1] → Cθ[σ3] defined on generators by (t1, t2) 7→ (t1 t

−1
2 , t−1

2 ). The other faces are
similarly treated, and the noncommutative toric geometry of CP2

θ = Xθ[Σ] can thus be
assembled into a diagram of gluing morphisms

Cθ
[
t−1
1 , (t1 t

−1
2 ) , (t1 t

−1
2 )−1

]

��
Cθ

[
t−1
1 , t−1

1 t2
]

44iiiiiiiiiiiiiiii

//

��

Cθ(t1, t2) Cθ
[
t1 t

−1
2 , t−1

2

]
oo

��

jjUUUUUUUUUUUUUUUU

Cθ
[
t1 , t

−1
1 , t2

]

44iiiiiiiiiiiiiiiii

Cθ[t1, t2]oo //

OO

Cθ
[
t1 , t2 , t

−1
2

]

jjUUUUUUUUUUUUUUUUU

The noncommutative affine variety associated to the zero cone is the spectrum of the full
deformed character algebra Cθ[0] = Cθ(t1, t2), corresponding to the open embedding of
the noncommutative algebraic torus.

3.4. Noncommutative orbifold. We can also deform singular toric varieties in our
formalism. For illustration, let us consider the quotient singularity C2/Z2, where the
cyclic group Z2 is generated by the action (z1, z2) 7→ (−z1,−z2) for (z1, z2) ∈ C2. The
quotient can be described as the locus of the equation x y−z2 = 0 in C3. The fan Σ of the
lattice L ∼= Z2 consists of a single cone σ = R+v1⊕R

+v2, where v1 = e1 and v2 = e1+2e2.
The semigroup σ∨∩L∗ is generated by m1 = 2e∗1−e

∗
2, m2 = e∗2 and m3 = e∗1, so that R[ma]

is generated by the single relation m1 +m2 = 2m3. The coordinate algebra Cθ[t1, t2]
Z2 of

the noncommutative affine variety Xθ[Σ] = Uθ[σ] is thus generated by x = t21 t
−1
2 , y = t2

and z = t1 with the relations

x y = q4 y x , x z = q2 z x , y z = q−2 z y

and
x y − q2 z2 = 0 .

The blow-up of the quotient singularity C2/Z2 is the total space of the canonical holo-
morphic line bundle OCP1(−2) → CP1, which defines the non-singular Hirzebruch–Jung
resolution isomorphic to the toric A1 ALE space. It is obtained by adding the vector
v0 = e1 + e2 to the fan Σ above. There are now two maximal cones σ+ = R+v1 ⊕ R

+v0
and σ− = R+v0⊕R

+v2, with dual semigroups generated by m±
1 = ± e∗1 and m

±
2 = e∗2∓ e

∗
1,



24 LUCIO CIRIO, GIOVANNI LANDI, AND RICHARD J. SZABO

respectively. The coordinate algebras of the noncommutative affine toric varieties Uθ[σ±]
are generated respectively by elements u± = t± 1

1 , v± = t∓ 1
1 t2 subject to the relations

u± v± = q± 2 v± u± ,

and hence Uθ[σ±] ∼= C2
θ. The dual semigroup of the one-dimensional cone given by the

intersection τ = σ+∩σ− = R+v0 is generated by m1 = e∗1 and m2 = e∗1− e
∗
2, together with

m3 = e∗2 − e∗1 = −m2. The generators of Cθ[τ ] are the elements y1 = t1, y2 = t−1
1 t2 and

y3 = t1 t
−1
2 with the relations (3.14). The noncommutative algebraic torus deformation of

the resolution is thus described by the diagram of gluing morphisms given by

Cθ
[
t1 , (t

−1
1 t2) , (t

−1
1 t2)

−1
]

��
Cθ

[
t1 , t

−1
1 t2

]

44jjjjjjjjjjjjjjj

// Cθ(t1, t2) Cθ
[
t−1
1 , t1 t2

]
oo

jjTTTTTTTTTTTTTTT

where the first diagonal arrow is the natural subalgebra inclusion and the second diagonal
arrow is inclusion after the algebra automorphism Cθ[σ+] → Cθ[σ−] given by sending
(t1, t2) 7→ (t−1

1 , t2).

3.5. Noncommutative conifold. Consider the threefold ordinary double point, or coni-
fold singularity, defined by the locus of the equation x y − z w = 0 in C4. Its fan Σ in
L ∼= Z3 consists of a single maximal cone σ generated by w1 = e1, w2 = e2, w3 = e1 + e3
and w4 = e2 + e3. The dual cone σ∨ ∩ L is generated by m1 = e1, m2 = e2, m3 = e3 and
m4 = e1+e2−e3, so that m1+m2 = m3+m4. The generators of the coordinate algebra of
the noncommutative conifold Xθ[Σ] = Uθ[σ] are thus the elements x = t1, y = t2, z = t3
and w = t1 t2 t

−1
3 subject to the relations

x y = q212 y x , x z = q213 z x , xw = q212 q
−2
13 w x ,

y z = q223 z y , y w = q−2
12 q

−2
23 w y , z w = q213 q

2
23 w z ,

and

x y − q212 q
−2
13 q

−2
23 z w = 0 ,

where as before qij = exp( i
2
θij) and θ = (θij) is the 3×3 matrix describing the deformation

of the embedded algebraic torus.

The crepant resolution of the conifold singularity is the total space of the rank two
holomorphic bundle OCP1(−1) ⊕ OCP1(−1) → CP1, which is a non-singular toric Calabi–
Yau threefold. The fan Σ of the lattice L ∼= Z3 is defined by the vectors v1 = e1+ e2+ e3,
v2 = e1 + e3, v3 = e1 and v4 = e1 + e2, the maximal cones σ1 = R

+v1 ⊕R
+v2 ⊕R

+v3 and
σ2 = R

+v1 ⊕ R
+v3 ⊕ R

+v4, and their overlap τ = σ1 ∩ σ2 = R
+v1 ⊕ R

+v3.

(1) σ∨
1 ∩ L∗ is generated by m1 = e∗2, m2 = e∗3 − e∗2 and m3 = e∗1 − e∗3, so Cθ[σ1] is

generated by x = t2, y = t−1
2 t3 and z = t1 t

−1
3 with the relations

x y = q223 y x , x z = q−2
12 q

−2
23 z x , y z = q−2

12 z y .

(2) σ∨
2 ∩ L∗ is generated by m1 = e∗3, m2 = e∗1 − e∗2 and m3 = e∗2 − e∗3, so Cθ[σ2] is

generated by x = t3, y = t1 t
−1
2 and z = t2 t

−1
3 with the relations

x y = q−2
13 q

2
23 y x , x z = q−2

23 z x , y z = q212 q
−2
13 q

2
23 z y .
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(3) τ∨ ∩ L∗ is generated by m1 = e∗2, m2 = e∗1 − e∗2 and m3 = e∗2 + e∗3, together with
m4 = −e∗2 − e∗3 = −m3, so Cθ[τ ] is generated by y1 = t2, y2 = t1 t

−1
2 , y3 = t2 t3 and

y4 = t−1
2 t−1

3 with the relations

y1 y2 = q−2
12 y2 y1 , y1 y3 = q223 y3 y1 , y1 y4 = q−2

23 y4 y1 ,

y2 y3 = q212 q
2
13 q

−2
23 y3 y2 , y2 y4 = q−2

12 q
−2
13 q

2
23 y4 y2 , y3 y4 = q223 y4 y3 .

The noncommutative toric geometry is described by the diagram of gluing morphisms

Cθ
[
t2 , t1 t

−1
2 , (t2 t3) , (t2 t3)

−1
]

��
Cθ

[
t2 , t

−1
2 t3 , t1 t

−1
3

]

33hhhhhhhhhhhhhhhhhh

// Cθ(t1, t2, t3) Cθ
[
t3 , t1 t

−1
2 , t2 t

−1
3

]
oo

kkVVVVVVVVVVVVVVVVVV

where the second diagonal arrow is the subalgebra inclusion and the first diagonal arrow
is inclusion after the automorphism sending t3 7→ t1. Note the similarity with the gluing
morphisms of the quotient singularity blow-up of §3.4.

4. Sheaves on noncommutative toric varieties

In this section we develop a sheaf theory on noncommutative toric varieties, follow-
ing [23]. The idea is that the “topology” of the noncommutative space Xθ = Xθ[Σ] is
given by the cones in the fan Σ (the toric open sets in the topology of Xθ). The assign-
ment σ 7→ Cθ[σ] of the noncommutative algebra Cθ[σ] to every cone σ ∈ Σ is viewed as
the structure sheaf OXθ

of the noncommutative toric variety Xθ.

4.1. Quasi-coherent sheaves. We begin with the following elementary result.

Lemma 4.1. For each cone σ ∈ Σ, the algebra Cθ[σ] is a noetherian domain.

Proof: Since the quantum Laurent algebra Cθ(t1, . . . , tn) is a domain, so is the subalgebra
Cθ[σ]. As the algebra Cθ̌[x1, . . . , xl] is an iterated polynomial algebra over C, all of its
ideals are finitely-generated, i.e. it is noetherian. Since Cθ[σ] can be realized as a quotient
algebra of the noncommutative polynomial algebra Cθ̌[x1, . . . , xl], it is also noetherian. �

We use the category Open(Xθ) of toric open sets to define the category of sheaves on
the variety Xθ = Xθ[Σ]. We call a set of inclusions (σi →֒ σ)i∈I of cones a covering if
σ =

⋃
i∈I σi. Then Open(Xθ) always contains a sufficiently fine open cover. The category

Open(Xθ) with the data of coverings forms a Grothendieck topology on Xθ.

Proposition 4.2. The association σ 7→ Cθ[σ] defines a sheaf of C-algebras OXθ
on

Open(Xθ).

Proof: Let (σi →֒ σ)i∈I be a covering, i.e. σ =
⋃
i∈I σi. Then Cθ[σ] =

⋂
i∈I Cθ[σi], where

the intersection is well-defined since each algebra Cθ[σi] is contained in Cθ(t1, . . . , tn).
Thus, as in (3.11), the sequence

0 −→ Cθ[σ]
p
−→

∏

i∈I

Cθ[σi]
q
−→

∏

i,j∈I

Cθ[σi ∩ σj ](4.3)

is exact, and the result follows. �
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We now definemod(Xθ) to be the category of sheaves of right OXθ
-modules onOpen(Xθ).

If Σ consists of a single cone σ, i.e. Xθ[Σ] = Uθ[σ] is an affine variety, then

mod
(
Uθ[σ]

)
∼= mod

(
Cθ[σ]

)
(4.4)

coincides with the category of right Cθ[σ]-modules. We denote by M̃ the sheaf associated
to a module M under the isomorphism (4.4). A sheaf of right OXθ

-modules is called

quasi-coherent if its restriction to each affine open set Uθ[σ] is of the form M̃ for some
right Cθ[σ]-module M . It is called coherent if M is finitely-generated.

Let coh(Xθ) denote the category of quasi-coherent sheaves of right OXθ
-modules. Given

a cone σ in Σ, we write coh(σ) for the category of right Cθ[σ]-modules. There are restric-
tion functors

j•σ : coh(Xθ) −→ coh(σ)(4.5)

for each open inclusion jσ : U [σ] →֒ X [Σ]. Let tor(σ) be the full Serre subcategory of
coh(Xθ) generated by objects E such that j•σ(E) = 0. In [23, Prop. 4.3] the following
fundamental result is proven.

Proposition 4.6. Let σ be a cone in Σ. Then the restriction functor (4.5) is exact, and
there is a natural equivalence of categories

coh(Xθ)
/
tor(σ) ∼= coh(σ) .

Each cone σ in the fan Σ gives a toric open set of Xθ[Σ]. We will use Proposition 4.6 to
reduce geometric problems in the category coh(Xθ) to algebraic problems in the algebra
Cθ[σ] via the localization functors j•σ. This gives an explicit description of the quotient
category. The objects of coh(σ) are the same as those of coh(Xθ), and we write Eσ for
the object in coh(σ) corresponding to a sheaf E. The morphisms are given by

Homcoh(σ)(Eσ, Fσ) = lim
−→
E′

Homcoh(Xθ)(E
′, F ) ,

where the inductive limit is taken over all subsheaves E ′ ⊂ E with j•σ(E/E
′ ) = 0.

For any pair of sheaves E, F ∈ coh(Xθ), let Ext
p(E, F ) be the p-th derived functor of

the Hom-functor Hom(E, F ) = Homcoh(Xθ)(E, F ). For a sheaf E ∈ coh(Xθ), we define

Hp(Xθ, E) := Extp(OXθ
, E) .

Definition 4.7. (1) A coherent sheaf E ∈ coh(Xθ) is called locally free or a bundle if
each Eσ, σ ∈ Σ corresponds to a free module Cθ[σ]

⊕r for some r ∈ N. The integer
r is called the rank of E.

(2) A coherent sheaf E ∈ coh(Xθ) is called torsion free if each Eσ, σ ∈ Σ has no
finite-dimensional submodules, or equivalently if it admits an embedding E →֒ E

into a locally free sheaf E. The rank of E is the rank of E minus the rank of E/E.

4.2. Equivariant sheaves. Recall from §3.1 that for each σ ∈ Σ there is a grading
(3.7) of the algebra Cθ[σ] by the free abelian group of characters L∗, the homogeneous
elements in the decomposition being identified with the eigenvectors of the T -action on
Cθ[σ]. To get a similar eigenspace decomposition on right Cθ[σ]-modules, we need to lift
the T -action. We denote with modHθ

(
Cθ[σ]

)
the subcategory of the category mod(Cθ[σ])

made of left T -equivariant right Cθ[σ]-modules. There is a left action of the Hopf algebra
Hθ on elements M ∈ modHθ

(
Cθ[σ]

)
which is compatible with the Hθ-action on Cθ[σ].
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This means that h ⊲ (M · a) = (h(1) ⊲ M) · (h(2) ⊲ a) for h ∈ Hθ, a right Cθ[σ]-module M ,
and a ∈ Cθ[σ] (with the usual notation ∆(h) = h(1) ⊗ h(2) for the coproduct). Objects

of modHθ
(
Cθ[σ]

)
admit then an L∗-graded T -eigenspace decomposition M =

⊕
p∈L∗ Mp

such that Mp ·Cθ[σ]
q ⊂ Mp+q for all p, q ∈ L∗, and tma ⊲Mp ⊂ Mma+p for all p ∈ L∗ and

for ma ∈ σ∨ ∩ L∗. This also means that the category of right Cθ[σ]-modules carrying
a compatible left Hθ-action is naturally a braided monoidal category of left Hθ-modules.
Via the braiding morphism Ψθ, we can deform the category HM as described in §1.2, and
there is a functorial equivalence between the categories modH

(
C[σ]

)
and modHθ

(
Cθ[σ]

)
.

This construction extends to give a left Hθ-action on the category coh(Xθ) and T -
equivariant sheaves on Open(Xθ), i.e. the subcategory cohHθ(Xθ) of coherent sheaves
E ∈ coh(Xθ) with a compatible T -action, which decompose as direct sums

E =
⊕

p∈L∗

Ep

of T -eigensheaves Ep of OXθ
-modules. If E is locally free, then each summand Ep is

also locally free. There is a functorial equivalence between the categories cohH(X) and
cohHθ(Xθ).

4.3. Invariant subschemes and ideal sheaves. In applications to instanton counting
problems, which will be presented in [12], one is faced with the task of classifying the fixed
points of the natural torus action on the category coh(Xθ) obtained by lifting the action
of T on Xθ as described in §4.2. In the classical case, one uses the orbit decomposition
theorem [20] asserting that the toric variety X [Σ] is a disjoint union over the orbits Oσ

of the T -action on X , which are in bijective correspondence with the cones σ ∈ Σ. One
has dimC(σ) + dimC(Oσ) = n, and Oσ ⊂ Oτ if and only if τ is a face of σ. In particular,
the fixed points of the torus action, i.e. the closed T -orbits, correspond to the maximal
cones in the fan Σ, while O0 = T . We will now show that these orbits are somewhat more
easily classified in the noncommutative case, in the sense that they arise as the generic
T -invariant subvarieties in Xθ.

In analogy with the classical setting, we have the notion of a “noncommutative scheme”.

Definition 4.8. A closed subscheme of Xθ is a full subcategory Yθ ⊆ coh(Xθ) whose
inclusion functor i• has a right-adjoint i! and a left-adjoint i•.

Definition 4.9. An ideal sheaf on Open(Xθ) is a coherent sheaf I ∈ coh(Xθ) whose
restriction to each affine open set Uθ[σ] is a two-sided ideal Iσ of the algebra Cθ[σ].

For each cone σ ∈ Σ, it follows from Lemma 4.1 that every torsion free module of rank
one in coh(σ) = mod(Cθ[σ]) is the image of a right ideal of Cθ[σ]. Hence an ideal sheaf
I ∈ coh(Xθ) can be regarded as a torsion free sheaf of rank one on Open(Xθ). Moreover,
the category of sheaves of right OXθ

/I-modules determines a closed subscheme Yθ of Xθ.
The following result describes to what extent this correspondence fails to be a bijection
(generalizing the commutative case; see e.g. [14, §3]).

Theorem 4.10. There is a bijective correspondence between closed subschemes of Xθ and
ideal sheaves I on Open(Xθ) such that Iσ ⋆θ Cθ[σ ∩ σ′ ] = Iσ′ ⋆θ Cθ[σ ∩ σ′ ] on overlaps
Uθ[σ ∩ σ′ ].

Proof: Let i• be the inclusion of a subcategory in coh(Xθ) corresponding to a closed
subscheme Yθ, with left adjoint functor i•. Then the map Yθ → Yθ, M 7→ i• i

•(M) is
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surjective. Fix a cone σ ∈ Σ, and suppose that M ∈ tor(σ), i.e. j•σ(M) = 0. Since
the restriction functor j•σ is exact, the map j•σ(M) → j•σ i• i

•(M) is also surjective, and
hence by Proposition 4.6 the functor i• i

• acts on the category coh(σ). It follows [23,
Prop. 4.5] that Cθ[σ] → i• i

•(Cθ[σ]) is a surjective bimodule morphism, whose kernel
is the desired two-sided ideal Iσ. Conversely, given an ideal sheaf I on Open(Xθ) with
the stated property, we define the functor i• by mapping the module M over Cθ[σ] to
M/M ⋆θ Iσ ∈ mod(Cθ[σ]/Iσ). �

If σ is a cone in the fan Σ, and τ ∈ Σ is a face of σ, define Iσ(τ) to be the kernel of the
algebra morphism Cθ[σ] → Cθ[τ ]. Then

Iσ(τ) =
⊕

m/∈τ∨∩L∗

Cχm(4.11)

is an ideal in Cθ[σ], and hence each face τ ⊂ σ canonically determines a closed subscheme
of Xθ. The cone point of a strongly convex cone σ is a distinguished torus fixed point of
U [σ]. It follows that for any given face τ →֒ σ, there is a natural morphism Cθ[σ] → Cθ[τ ]
dual to inclusion of an orbit closure.

Definition 4.12. A closed subscheme Yθ is irreducible if each inclusion of a full subcat-
egory Yθ ⊂ Wθ ∪ Zθ implies Yθ ⊂ Wθ or Yθ ⊂ Zθ, where Wθ, Zθ are closed subschemes of
Xθ and Wθ ∪ Zθ is the full subcategory of coh(Xθ) whose objects M are extensions

0 −→ ω −→ M −→ ζ −→ 0 ,

of objects ω and ζ of Wθ and Zθ respectively.

The union operation ∪ in Definition 4.12 corresponds to the product of ideals in each
algebra Cθ[σ], σ ∈ Σ [23, Prop. 4.5] for the correspondence in Theorem 4.10. It follows
that irreducible subschemes give prime ideals on each open affine set Uθ[σ] under the
correspondence of this theorem. For a subset S ⊂ L∗

R, we denote

S⊥ :=
{
v ∈ LR

∣∣ 〈u, v〉 = 0 ∀u ∈ S
}
,

and for a C-algebra A we denote by Spec(A) the spectrum of A, i.e. the set of prime
ideals equipped with the Zariski topology. Recall from Definition 3.3 that σ∨ denotes the
cone dual to σ.

The following characterization of the irreducible subschemes of Xθ is proven in [23,
Thm. 6.8].

Proposition 4.13. There is a natural bijection between the set of irreducible subschemes
of Xθ(Σ) and the disjoint union

⊔
σ∈Σ Spec

(
Cθ[(σ

⊥)∨ ]
)
.

For θ sufficiently generic, the only subschemes of Xθ are dual to closed T -orbits and
to all points of one-dimensional torus orbits [23, §6.2]. To better understand this point,
notice that if J is any ideal of the algebra Cθ[σ] for σ ∈ Σ, the intersection,

⋂
t∈T t ⊲ J , of

the T -orbit of J is the largest torus invariant ideal of Cθ[σ] contained in J . In particular,
it is a T -invariant prime ideal for every J ∈ Spec(Cθ[σ]). The T -strata partition the space
of prime ideals Spec(Cθ[σ]) into a disjoint union over T -invariant prime ideals.

Proposition 4.14. For each cone σ ∈ Σ and for every T -invariant prime ideal I in
Cθ[σ], the T -stratum {J ∈ Spec(Cθ[σ]) |

⋂
t∈T t ⊲ J = I} is a single T -orbit.
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Proof: This follows by Lemma 4.1 and [22, Thm. 6.8], which imply that the torus T acts
transitively on the T -strata of prime ideals in Cθ[σ]. �

Proposition 4.15. There is a natural bijection between the sets of T -equivariant ideal
sheaves on Open(Xθ), satisfying the conditions of Theorem 4.10, and L∗-graded sub-
schemes of Xθ[Σ].

Proof: Let Yθ be a closed subscheme of Xθ, defined by an ideal sheaf I according to
Theorem 4.10. Then Yθ is invariant under the torus action if and only if the action of
T on the category coh(Xθ) induces an action on Yθ. Suppose first that Xθ[Σ] = Uθ[σ] is
affine. Then this invariance is equivalent to the requirement that there is a commutative
diagram

Cθ[σ]× T
Φ //

��

Cθ[σ]

��
Iσ × T

Φ|Iσ×T

// Iσ

where Φ is the right covariant action of T on Cθ[σ] constructed in Proposition 3.6, Iσ is a
two-sided ideal in Cθ[σ], and the vertical morphisms are restrictions. This is true if and
only if Φτ (Iσ) ⊂ Iσ, for all τ = (τ1, . . . , τn) ∈ T . It follows that if

∑
a αa t

ma is in Iσ, with

ma ∈ σ∨ ∩L∗ ⊂ L∗ for a = 1, . . . , l, then
∑

a αa
(
t
(ma)1
1 τ1, . . . , t

(ma)n
n τn

)
is also in Iσ, and

so αa t
ma ∈ Iσ for every a = 1, . . . , l. Thus Iσ is an L∗-graded ideal of Cθ[σ]. If we now

write Iσ =
⊕

p∈S Cχp for some subset S ⊂ σ∨ ∩ L∗, then the condition for Iσ to be an

ideal in Cθ[σ] is equivalent to the requirement that for all ma ∈ σ∨ ∩ L∗ and p ∈ S, one
has ma + p ∈ S. Hence Iσ is T -equivariant. The global statement for general Xθ[Σ] now
follows by gluing these equivalences together. �

Remark 4.16. For σ ∈ Σ, the T -invariant ideal Iσ of the algebra Cθ[σ] appearing in the
proof of Proposition 4.15 is generated by elements of the form tma for ma ∈ σ∨∩L∗, i.e. Iσ
is a monomial ideal. Moreover, Iσ is prime if and only if (σ∨∩L∗)\S is a sub-semigroup
of σ∨ ∩ L∗. It follows that the irreducible invariant subschemes of Uθ[σ] are in bijective
correspondence with the faces τ of σ, such that the corresponding monomial ideal is given
by (4.11).

For fixed σ ∈ Σ, let Lσ = L ∩ σ and let p : L → L(σ) := L/Lσ be the canonical
projection. Then L(σ)∗ = L∗ ∩ σ⊥. The homomorphism Θ : L∗ → T naturally restricts
to the sublattice L(σ)∗ ⊂ L∗. Let pR = p ⊗ R. Then the collection of cones pR(τ),
where τ ∈ Σ is a cone for which σ is a face of τ , form a fan Σ(σ) in L(σ) ⊗Z R. Set
Vθ(σ) = Xθ[Σ(σ)]. By Theorem 4.10, the projection Σ → Σ(σ) shows that Vθ(σ) defines
a closed subscheme of Xθ = Xθ[Σ].

Example 4.17. Suppose that σ is the maximal cone of Σ generated by the basis e1, . . . , en
of the lattice L ∼= Zn, with dual basis e∗1, . . . , e

∗
n. Then the corresponding noncommutative

affine variety is the algebraic Moyal plane Uθ[σ] ∼= Cnθ , i.e. Cθ[σ] = Cθ[t1, . . . , tn] where
ti = te

∗
i . Let τ be a face of σ generated by {ei}i∈N for some subset N ⊂ {1, . . . , n}. Then

Vθ(τ) is defined by the monomial ideal 〈 ti 〉i∈N in Cθ[t1, . . . , tn].
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4.4. Kähler differential forms. We will now construct sheaves of noncommutative dif-
ferential forms. We start by recalling some definitions and properties of Kähler differen-
tials. We then show how the general construction behaves under a Drinfel’d twist using
the braided monoidal category theory of §1.2. This formalism may be used to define
sheaves of Kähler differentials over generic noncommutative toric varieties Xθ = Xθ[Σ].

The general framework we need from the theory of Kähler differentials describes deriva-
tions of a unital C-algebra (A, µ) into an A-bimodule M , i.e. C-linear maps D : A → M
obeying the Leibniz rule D(a b) = (Da) b+ a (Db) for every a, b ∈ A.

The universal algebra of derivations over A is realized by the A-bimodule

Ω1
A,un = IA := ker(µ : A⊗A→ A)

which is a two-sided ideal of the algebra A⊗A generated by elements of the form a⊗1−1⊗a
with a ∈ A, and differential given by da := a⊗1−1⊗a. The universal property means that
every derivation D : A→ M factors through Ω1

A,un by a unique morphism of A-bimodules

φD : Ω1
A,un →M with D = φD ◦ d. The morphism φD is defined by

φD
(
a1 (da) a2

)
:= a1D(a) a2 .(4.18)

The construction of Ω1
A,un respects the inclusion of subalgebras, i.e. Ω1

A′,un = ker(µ|A′⊗A′) =
ker(µ) ∩ (A′ ⊗A′ ) for any subalgebra A′ ⊂ A.

For the Kähler differential forms one is interested (see e.g. [30, §1.3]) in derivations with
values in a symmetric A-bimodule M (i.e. am = ma for all a ∈ A and m ∈ M). Since
for all a, a1 ∈ A one has

a1 (da)− (da) a1 = (a1 ⊗ 1− 1⊗ a1) (a⊗ 1− 1⊗ a) ∈ I2A ,(4.19)

the A-bimodule of symmetric differential forms is IA/I
2
A =: Ω1

A, which can be shown to
be universal.

We will begin by defining bimodules Ω1
θ[σ] of noncommutative Kähler differentials on

noncommutative affine varieties for each cone σ ∈ Σ, and then show that the assignment
σ 7→ Ω1

θ[σ] defines a sheaf on Open(Xθ). Each affine open set Uθ[σ] of a noncommutative
toric variety Xθ[Σ] has noncommutative coordinate algebra Cθ[σ] which is a Drinfel’d
twist deformation of the classical coordinate algebra, coming from the algebraic torus
action. The construction of Kähler differential forms on noncommutative affine toric
varieties follows from the general theory of Kähler differentials for twisted Hopf-module
algebras, and the natural setting for the construction is the functorial framework of §1.2.
When the noncommutative algebra is a deformation of a commutative algebra induced
by a Drinfel’d twist, we can functorially interpret each step in the general construction
described above as a deformation of the corresponding commutative construction.

Indeed, if A is an object in the braided monoidal category HM , the A-bimodule of
universal one-forms Ω1

A,un is naturally an H-module algebra with H-action

h ⊲ da := d(h ⊲ a) .

This is the universal covariant differential calculus, in the sense of Woronowicz [37], and
it has a natural noncommutative deformation in the category HF

M of twisted Hopf-
module algebras. If AF is a twisted Hopf-module algebra defined by a Drinfel’d twist
element F ∈ H ⊗ H as in Theorem 1.4, then the bimodule Ω1

AF ,un
is defined as before

to be the kernel of the multiplication map µF = µ ◦
(
F−1 ⊲

)
: AF ⊗ AF → AF . Higher
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degree differential forms may be introduced via the N0-graded braided exterior algebra of
one-forms

Ω•
AF ,un

=
∧•
F Ω1

AF ,un
:= T

(
Ω1
AF ,un

) / 〈
ω ⊗ η +ΨF (ω ⊗ η)

〉
ω,η∈Ω1

AF ,un

,

where T (Ω1
AF ,un

) =
⊕

n≥0 (Ω
1
AF ,un

)⊗AF
n is the tensor algebra of covariant twisted diffe-

rential one-forms with (Ω1
AF ,un

)0 := AF , and ΨF is the braiding morphism on the category

HF
M defined as in Proposition 1.18 with the twist deformed R-matrix RF . This algebra

coincides with the twist deformation of the Hopf-module algebra Ω•
A,un, with the action

of the twist F extended to the whole of T (Ω1
A,un) by

F ⊲ (ω1 ⊗ · · · ⊗ ωn) =
(
F (1) ⊲ (ω1 ⊗ · · · ⊗ ωk)

)
⊗

(
F (2) ⊲ (ωk+1 ⊗ · · · ⊗ ωn)

)
.

The choice of k here is irrelevant thanks to the associativity of the tensor product, and F (1)

and F (2) act by iterating the formula (1.2) for covariant actions on H-module algebras.

The AF -bimodule structure of Ω1
AF ,un

is then deformed according to the deformation
of the associative product in AF as

a1 ◮F (da) ◭F a2 := a1 ⋆F (a⊗ 1− 1⊗ a) ⋆F a2 .

It agrees with the usual deformation induced in the category,

a1 ◮F (da) = α
(
F−1 ⊲ (a1 ⊗ da)

)
, (da) ◭F a2 = α

(
F−1 ⊲ (da⊗ a2)

)
,

where α : A ⊗ Ω1
A,un ⊗ A → A denotes the action of A on Ω1

A,un. Then the differential
d of the untwisted differential calculus is still a derivation of the deformed product ⋆F ,
as expected by general twisting theory [33]. It naturally extends to the braided exterior
algebra Ω•

AF ,un
as a graded derivation of degree one by defining

d(γ1 ⊗ γ2) := (dγ1)⊗ γ2 + (−1)deg(γ1) γ1 ⊗ (dγ2)

for homogeneous differential forms γ1, γ2 ∈ Ω•
AF ,un

.

The notion of symmetric bimodule has a braided analog by demanding that the left
and right module morphisms λF : AF ⊗ Ω1

AF ,un
→ Ω1

AF
and ρF : Ω1

AF ,un
⊗ AF → Ω1

AF
are

related by the braiding morphism of HF
M .

Definition 4.20. Let AF be an HF -module algebra, and let Ψ = ΨF be the braiding
morphism of Proposition 1.18. An AF -bimodule M in the category HF

M is said to be
braided symmetric if one of the following two conditions is satisfied:

(1) λF = ρF ◦ΨAF ,M ; or
(2) ρF = λF ◦ΨM,AF

.

The two conditions in Definition 4.20 are not equivalent unless the category itself is
symmetric, i.e. Ψ2 = id. This is the case, for example, for Drinfel’d twists of triangular
Hopf algebras such as the ones we are dealing with in this paper. In the non-symmetric
case they are not compatible with each other, so there are two distinct and inequivalent
notions of braided symmetric bimodule structure that one can choose from.

We want to show that a natural quotient IAF
/I2AF

is the universal braided symmet-
ric AF -bimodule for braided commutative algebras in (twisted) braided monoidal cate-
gories HF

M , with universality understood in the same sense as the untwisted A-bimodule
Ω1
A. Then we can define noncommutative differential forms via the usual deformation in

the category of Hopf-module algebras, and this definition is compatible with the construc-
tion of universal differential forms in braided monoidal categories.
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Proposition 4.21. Let A be a commutative H-module algebra, and F a Drinfel’d twist
element for a triangular Hopf algebra H. Let IAF

= ker(µF : AF ⊗ AF → AF ), and con-
sider the quotient Ω1

AF
= IAF

/I2AF
. Then (Ω1

AF
, d) is the universal algebra of derivations

over AF with values in a braided symmetric AF -bimodule.

Proof: We will prove this by direct computation for the twisted Hopf algebra of §2.2.
The general result is just another example of the generic functorial equivalence between

HM and HF
M discussed in §1.2. We will denote Aθ := AFθ

, etc. Given a simple tensor
a⊗ ω ∈ Aθ ⊗Ω1

Aθ
with a ∈ Aθ and ω the class of w⊗ 1− 1⊗w, w ∈ Aθ, we will compare

the quantity (λθ − ρθ ◦ΨAθ,Ω
1
Aθ

)(a⊗ ω) with (a⊗ 1− 1⊗ a) ⋆θ (w ⊗ 1− 1⊗ w) ∈ I2Aθ
.

On the one hand, one computes

(a⊗ 1− 1⊗ a) ⋆θ (w ⊗ 1− 1⊗ w) = a ⋆θ w ⊗ 1− a⊗ w + 1⊗ a ⋆θ w

−
∞∑

n=0

i n

n!
θi1j1 · · · θinjn

(
Hj1 · · ·Hjn ⊲ w

)
⊗

(
Hi1 · · ·Hin ⊲ a

)
.

On the other hand, one has

λθ(a⊗ ω) = a ⋆θ (w ⊗ 1− 1⊗ w) = a ⋆θ w ⊗ 1− a⊗ w ,

while

ρθ ◦ΨAθ,Ω
1
Aθ

(a⊗ ω) =
∞∑

n=0

i n

n!
θi1j1 · · · θinjn

((
Hj1 · · ·Hjn ⊲ w

)
⊗
(
Hi1 · · ·Hin ⊲ a

)

− 1⊗
(
Hj1 · · ·Hjn ⊲ w

)
⋆θ

(
Hi1 · · ·Hin ⊲ a

))
.

It remains to show that the second formal power series in this last equation is equal to
1⊗ a ⋆θ w. This follows from the equality a1 ⋆θ a2 = µ(Fθ ⊲ (a2 ⊗ a1)) [11, Lem. 1.16].

Universality follows by the same argument of the undeformed case, i.e. by the formula
(4.18) now understood in the twisted setting. �

We can now apply this construction of Kähler differentials for noncommutative alge-
bras with product induced by a Drinfel’d twist to each affine open set in a toric variety
X [Σ]. Starting from a strongly convex rational polyhedral cone σ ∈ Σ, we form the
noncommutative coordinate algebra Cθ[σ] as in §3.1 and define the Cθ[σ]-bimodule of
Kähler differentials Ω1

θ[σ] = Ω1
Cθ [σ]

as above. To show that this construction defines a
sheaf of noncommutative differential forms on a generic noncommutative toric variety Xθ,
as we did for the structure sheaf OXθ

in Proposition 4.2, we have to show that these local
definitions glue together in such a way that they satisfy the sheaf axioms.

Proposition 4.22. The noncommutative differential forms σ 7→ Ω1
θ[σ] define a coherent

sheaf of OXθ
-bimodule algebras Ω1

Xθ
on Open(Xθ).

Proof: We will show that for each affine covering (σi →֒ σ)i∈I there is an exact sequence

(4.23) 0 −→ Ω1
θ[σ] −→

∏

i∈I

Ω1
θ[σi] −→

∏

i,j∈I

Ω1
θ[σi ∩ σj ] .
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Exactness of (4.23) is proved by using the exactness of the corresponding sequence (4.3)
of coordinate algebras. For brevity, we use the shorthand notation

Ai = Cθ[σi] , A = Cθ[σ] =
⋂

i∈I

Ai , Aij = Cθ[σi ∩ σj ] ,

and let µA denote the product map of A. Let IA = ker(µA) with canonical inclusion
denoted by ıA : IA → A⊗A.

Consider the commutative diagram of sequences

0 // A
p //

∏
i∈I

Ai q //
∏
i,j∈I

Aij

0 // A⊗ A

µA

OO

p1 //
∏
i∈I

Ai ⊗ Ai

µAi

OO

q1 //
∏
i,j∈I

Aij ⊗ Aij

µAij

OO

0 // IA

ıA

OO

p2 //
∏
i∈I

IAi

ıAi

OO

q2 //
∏
i,j∈I

IAij

ıAij

OO

0

OO

0

OO

0

OO

where p1 = p⊗p, p2 = p1|IA and similarly for q1, q2. All columns are exact. The exactness
of the middle row thus follows from the exactness of the top row. Then the exactness of
the bottom row is proven with standard homological algebra. The map p2 is injective due
to the injectivity of the maps ıA, p1 and ıAi

, because if there exists 0 6= ω ∈ IA such that
p2(ω) = 0 then p1(ıA(ω)) 6= 0 but p1(ıA(ω)) = ıAi

(p2(ω)) = 0. The composition q2 ◦ p2 is
zero, since if there exists ω ∈ IA such that q2(p2(ω)) 6= 0 then further composing with ıAij

gives a non-zero element in
∏

i,j∈I Aij ⊗ Aij , while q1(p1(ıA(ω))) = 0. Finally, we show

that im(p2) = ker(q2). Let β ∈ ker(q2) and consider its lift b = ıAi
(β). One has q1(b) = 0

since ıAij
(q2(β)) = 0, so there exists b′ ∈ A⊗ A such that p1(b

′ ) = b. But p(µA(b
′ )) = 0

since µAi
(b) = 0, so there exists β ′ ∈ IA such that ıA(β

′ ) = b′ and p2(β
′ ) = β. This

completes the proof for universal differential forms (the third row).
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For braided-symmetric differential forms, we further consider the commutative diagram

0

��

0

��

0

��

0 // I2A
p̄2 //

A

��

∏
i∈I

I2Ai

q̄2 //

Ai

��

∏
i,j∈I

I2Aij

Aij

��

0 // IA
p2 //

πA

��

∏
i∈I

IAi
q2 //

πAi

��

∏
i,j∈I

IAij

πAij

��

0 // Ω1
A

p̃2 //

��

∏
i∈I

Ω1
Ai

q̃2 //

��

∏
i,j∈I

Ω1
Aij

��
0 0 0

where A is the inclusion I2A →֒ IA and πA is the projection IA → IA/I
2
A, while we set

p̄2 = p2|I2
A
, p̃2 = p2|IA/I2A and similarly for q̄2, q̃2. Again all columns are exact, and the

exactness of the bottom row follows from the exactness of the top and middle rows, as one
can check directly by using the same homological algebra we employed above. It follows
that the noncommutative differential forms define a sheaf Ω1

Xθ
on Open(Xθ).

The fact that this sheaf is coherent follows from the construction of Ω1
Xθ
. Since the

construction of Kähler differentials commutes with the localization functors j•σ of §4.1 (see
e.g. [14, §3] and [31, Thm. 1.2.1]), for each affine open set Uθ[σ] there is an isomorphism of
sheaves j•σ

(
Ω1
Xθ

)
∼= Ω1

θ[σ] over Uθ[σ]. For any finitely generated algebra A the A-bimodule
of Kähler differentials Ω1

A is a finitely generated module over A, since if a1, . . . , an are the
generators of A then Ω1

A is generated by da1, . . . , dan as an A-bimodule. �

5. Noncommutative projective varieties

In this section we will specialize to the noncommutative projective spaces Xθ = CP
n
θ .

The example n = 2 was treated in detail in §3.3. These classes of examples admit a
more “global” description of their noncommutative toric geometry which reduces after
Ore localization to the local description of CPnθ provided by the noncommutative affine
open sets Uθ[σ]. Moreover, they may be used to define noncommutative deformations of
projective varieties via restriction from CPnθ . In the remainder of this paper we will omit
the star product symbols ⋆θ for brevity.

5.1. Noncommutative projective spaces CPnθ . The construction in §3.3 for CP2 gen-
eralizes straightforwardly to the higher-dimensional projective spaces CPn, n > 2, re-
garded as a toric variety X [Σ] generated by a fan Σ of the lattice L ∼= Zn of characters of
the torus T = L⊗ZC

× ∼= (C×)n. Choose a basis e1, . . . , en of L. Set vi = ei for i = 1, . . . , n
and vn+1 = −e1−· · ·−en, which generate the one-dimensional cones τi = R

+vi of Σ. The
n+ 1 maximal cones of Σ are labelled by the missing generator and are given by

σi = R
+vi+1 ⊕ · · · ⊕ R+vi+n , i = 1, . . . , n+ 1 ,
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with indices understood mod n + 1 and σi ∩ σi+k = R
+vi+k+1 ⊕ · · · ⊕ R+vi+n a maximal

cone of CPn−k →֒ CPn. There are of course many other overlaps, and hence cones, in this
instance.

Again there are no relations and C[σ] = C[x1, . . . , xn] for each maximal cone.

(1) The generators of the semigroup σ∨
n+1 ∩ L∗ are mi = e∗i for i = 1, . . . , n. The

subalgebra Cθ[σn+1] ⊂ Cθ(t1, . . . , tn) is generated by the elements xi = tmi = ti
subject to the relations

xi xj = q2ij xj xi , i < j ,(5.1)

and hence Uθ[σn+1] ∼= C
n
θ .

(2) For 1 ≤ k ≤ n, the semigroup σ∨
k ∩ L∗ is generated by mi = e∗i − e∗k for i 6= k and

mk = −e∗k. The subalgebra Cθ[σk] in this case is generated by elements xi = ti t
−1
k ,

i 6= k and xk = t−1
k with relations

xi xk = q2ki xk xi , i 6= k ,

xi xj = q2ij q
2
ik q

2
jk xj xi , k 6= i < j .(5.2)

The faces can be treated analogously to the n = 2 case.

5.2. Homogeneous coordinate algebras. We will now show that there is a noncom-
mutative homogeneous coordinate algebra for the noncommutative projective spaces CPnθ ,
with a local description given by noncommutative Ore localization which is equivalent to
that of the noncommutative affine open sets Uθ[σ]. For this, we consider an embedding

(C×
θ )

n →֒ (C×

θ̃
)ñ, ñ > n, where the ñ × ñ skew-symmetric complex matrix θ̃ depends on

both the n × n skew-symmetric complex matrix θ and the embedding as follows. Given
isomorphisms (C×)n ∼= L⊗Z C

× and (C×)ñ ∼= L̃⊗Z C
×, an embedding of an n-torus into

an ñ-torus is given by an injective group homomorphism ψ : L → L̃, which upon fixing
bases for the lattices L ∼= Zn and L̃ ∼= Zñ is represented by an ñ × n matrix ψ = (ψij)
with entries in Z and rank n. The k-th column of ψ gives the components of the image
of the k-th basis element ek ∈ L with respect to the basis ẽ1, . . . , ẽñ of the lattice L̃.
Given t =

∑
i ei ⊗ ti in (C×)n and w =

∑
j ẽj ⊗ wj in (C×)ñ, the generic embedding is

thus a map ti 7→
∏

j (wj)
ψji . We define θ̃ = ψ θ ψ⊤, which is a skew-symmetric matrix

of rank n that describes a noncommutative deformation (C×

θ̃
)ñ induced by the embedded

noncommutative algebraic torus (C×
θ )

n.

For explicit computations it is convenient to choose specific bases for the lattices L and
L̃ in which the embedding ψ is induced by the diagonal embedding of (C×)n in GL(ñ).

This corresponds to block forms of the matrices ψ and θ̃ ∈ Mat(ñ,C) given by

ψ =

(
11n×n
0

)
, θ̃ =

(
θ 0
0 0

)
.

For the problem at hand, we take ñ = n+1. Then the corresponding algebraic Moyal plane
Cn+1

θ̃
is defined by the graded polynomial algebra Cθ̃[w1, . . . , wn+1] in n+1 generators wi,

i = 1, . . . , n+ 1 of degree 1 with the quadratic relations

wn+1wi = wiwn+1 , i = 1, . . . , n ,

wiwj = q2ij wj wi , i, j = 1, . . . , n .(5.3)
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This algebra is called the homogeneous coordinate algebra A = A(CPnθ ) of the non-
commutative toric variety CPnθ . It is a special instance of the noncommutative weighted
projective spaces defined in [5, §2.2]. For n = 2, it is the same as the noncommutative
variety P2

q,~=0 defined in [25, §9], which is an Artin–Schelter regular algebra of global ho-
mological dimension three [1] in the classification of noncommutative deformations of the
projective plane. The grading on A is by the usual polynomial degree and one has

A =

∞⊕

k=0

Ak ,

with A0 = C and Ak =
⊕

i1+···+in+1=k
Cwi11 · · ·w

in+1

n+1 for k > 0. There is a natural action of

the torus T = (C×)n defined via the embedding above by Hi⊲wj = δij wi for i, j = 1, . . . , n
and Hi ⊲wn+1 = 0. The toric automorphisms can be viewed as C-algebra automorphisms

A → A⊗Fθ̃n+1 when A is made into a right comodule algebra over the Hopf algebra Fθ̃n+1.
Indeed, on A there is a natural action of GL(n + 1) and the (C×)n torus action can be
recovered as the restriction of this GL(n + 1)-action with respect to the embedding of
(C×)n in (C×)n+1 described above.

It is straightforward to verify that each monomial wi generates a left (and right) de-
nominator set in A. Let A[w−1

i ] be the left Ore localization of A with respect to wi. Since
wi is homogeneous of degree 1, the algebra A[w−1

i ] is also N0-graded. Elements of degree 0
in A[w−1

i ] form a subalgebra which we denote by A[w−1
i ]0.

Theorem 5.4. For each maximal cone σi ∈ Σ, i = 1, . . . , n + 1, there is a natural
T -equivariant isomorphism of noncommutative algebras Cθ[σi] ∼= A

[
w−1
i

]
0
.

Proof: From §5.1 it follows that the noncommutative affine variety Uθ[σi] = C
n
θ̌
is dual to

the noncommutative polynomial algebra Cθ[σi] = Cθ̌[x1, . . . , xn], with the relations (5.1)
and (5.2). On the other hand, the degree 0 subalgebra of A[w−1

i ] is generated by the
elements yk = w−1

i wk for k = 1, . . . , n + 1, k 6= i. An elementary calculation using the
relations (5.3) in A and the multiplication rule (1.26) in the localized algebra then shows
that the desired isomorphism is defined by sending xk 7→ yk for k 6= i and xi 7→ yn+1.
The action of T on A naturally extends to an action by C-algebra automorphisms on the
localizations A[w−1

i ], which is consistent with the action defined in Proposition 3.6 in this
case. �

Theorem 5.4 identifies Uθ[σi] with the open subset {wi 6= 0} in Cn+1

θ̃
. It includes the

self-dual cone σn+1 = σ∨
n+1, for which θ̌ = θ and the localization is made with respect

to the central element wn+1 of A. If I ⊂ A is a graded two-sided ideal generated by a
set of homogeneous polynomials f1, . . . , fm ∈ Cθ̃[w1, . . . , wn+1], then the quotient algebra
AI := A/I is identified as the coordinate algebra of a noncommutative projective variety.
The projection πI : A → AI can be regarded as the dual of a closed embedding given
by Xθ(I) →֒ CPnθ , identified with the common zero locus in Cn+1

θ̃
given by the set of

relations {f1 = 0, . . . , fm = 0}. Its homogeneous coordinate algebra πI(Cθ̃[w1, . . . , wn+1])
has relations (5.3) and f1 = 0, . . . , fm = 0. It is also graded, AI =

⊕
k≥0 (AI)k, with

(AI)0 = C and dimC(AI)k < ∞ for all k ≥ 0. The torus action on A naturally restricts
to AI .
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In the remainder of this section we will look at some explicit examples, which among
other things will illustrate that in general certain additional algebraic constraints must
be imposed on the noncommutative ambient space CPnθ .

5.3. Noncommutative grassmannians Grθ(d;n). Using our noncommutative defor-
mation of the general linear group GL(n) from §2.3, we will now construct a noncommu-
tative deformation of the Grassmann variety Gr(d;n) ∼= Gr(d;V ), d ≤ n of d-dimensional
subspaces of an n-dimensional complex vector space V . For this, we will derive a suitable
noncommutative version of Plücker equations in A(CPNΘ ) for N =

(
n
d

)
− 1, yielding a

noncommutative projective variety Grθ(d;n) whose homogeneous coordinate algebra is
a graded quadratic algebra with (2.22) as the space of generators. The Drinfel’d twist
via the n × n skew-symmetric complex matrix θ induces constraints on the form of the
N ×N matrix Θ which realizes the noncommutativity relations in the projective space in
which we embed the grassmannian. We will find these constraints, whence showing that
in general it is not possible to go in the opposite direction, i.e. there are noncommutative
projective spaces CPNΘ which do not admit any such embedding due to the form of their
deformation matrix Θ.

There is a rich literature on quantum or noncommutative deformations of grassman-
nians (see e.g. [28, 36, 21, 19, 25]), mostly relying on q-deformations of matrices, so our
noncommutative relations are somewhat different and easier to deal with. This is because
in our construction the minors of a noncommutative matrix still close to a noncommutative
algebra and in §2.4 we have explicitly computed their noncommutativity relations; these
will be the noncommutativity relations of the homogeneous coordinate algebra generators
of the noncommutative projective space CPNΘ . Here we shall follow [28] to define the
noncommutative deformation of Plücker equations, or Young symmetry relations, which
is an approach to noncommutative grassmannians based on quasideterminants [21].

Classically, the Plücker embedding Pl : Gr(d;n) ∼= Gr(d;V ) → P(
∧d V ) ∼= CPN , with

dimC(V ) = n and N =
(
n
d

)
− 1, is defined as follows: a d× n matrix Λ of maximal rank,

representing an element in Gr(d, n) by associating to Λ the subspace of V spanned by the
rows of Λ, is mapped into the

(
n
d

)
-tuple (. . . ,ΛJ , . . .) where each component is a d × d

minor of Λ. In the notation of §2.4, the row multi-index is always I = (1 2 · · ·d) so we
label minors by the column multi-index J alone. Plücker equations in CPN express the
condition on points of the projective space to belong to the image of this embedding.
Each Plücker coordinate can be viewed as a section of a certain ample line bundle over
Gr(d;n), and the collection of such sections defines an embedding of Gr(d;n) into CPN .

Let us fix some notation. For 1 ≤ r ≤ d, denote with I = (i1 · · · id+r) a (d + r) multi-
index, with J a (d− r) multi-index, and with Ξ = (iξ1 · · · iξr) an r multi-index. Then by

I \ Ξ we mean the multi-index (i1 · · · îξ1 · · · îξr · · · id+r) with the hats indicating omitted
indices, and by A ∪ B the multi-index (a1 · · · ak b1 · · · bs) when |A| = k and |B| = s.
Finally, we will use the short-hand notation ǫA = ǫa1···ak . One way to express the Plücker
equations is through the following result [28].

Proposition 5.5. A point x ∈ CPN ∼= P(
∧d V ) belongs to the image of the Plücker map

Pl(Gr(d;V )) if and only if for all 1 ≤ r ≤ d, and for all choices of multi-indices I and J ,
the homogeneous coordinates of x, expressed as d×d minors ΛK of d×n matrices, satisfy

(5.6)
∑

Ξ⊂I : |Ξ|=r

ǫ(I\Ξ)∪Ξ ΛI\Ξ ΛΞ∪J = 0 .
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Note that each equation (5.6) is quadratic in the homogeneous coordinates of the projec-
tive space and has as many terms as the number of submulti-indices of I with cardinality r.
The total number of equations is quite large as there is one for each choice of the integer r,
and of the multi-indices I and J . One shows [28, Prop. 13] that all relations with r ≥ 1
are generated from those at r = 1.

Let us now turn to the noncommutative setting. In §2.4 we have defined minors for
matrices in the homogeneous coordinate algebra of GLθ(n) ∼= GLθ(V ), where V is an
Hn
θ -module of dimension n. An element of the homogeneous coordinate algebra of the

noncommutative grassmannian Grθ(d;n) ∼= Grθ(d;V ) is defined as an element in P(
∧d
θ V ),

obtained by taking the θ-deformed exterior product of d rows of a matrix in A(GLθ(V ))
(and quotienting by the appropriate equivalence relation). The Plücker maps still make
sense. We take a noncommutative d × n matrix representing an element of A(Grθ(d;n))
and send it into the

(
n
d

)
-tuple of its minors. Then we need to find the noncommutativity

relations between the minors, seen now as homogeneous coordinates in A(CPNΘ ) with
N =

(
n
d

)
− 1, as well as noncommutative Plücker relations between them.

From (2.26) with |J | = |J ′ | = d representing two different minors we have

(5.7) ΛJ ΛJ
′

=
( d∏

α,β=1

q2jαj′β

)
ΛJ

′

ΛJ .

This implies that the N × N noncommutativity matrix Θ of the projective space con-
taining the embedding of Grθ(d;n) is completely determined (mod 2π) from the n × n
noncommutativity matrix θ of the grassmannian as

(5.8) ΘJJ ′

=
d∑

α,β=1

θjαj
′

β .

These relations mean that while given θ there is always one and only one noncommutative
projective space CPNΘ in which the grassmannian Grθ(d;n) embeds, the converse is in
general not true. One can always find a noncommutative projective space for which there
is no compatible noncommutativity matrix θ parametrizing a grassmannian Grθ(d;n)
which would embed into it. The necessary and sufficient conditions for such an embedding
to exist are given by (5.8). Note that if we instead chose to use ordered column multi-
indices, we would again obtain noncommutative relations among the minors which agree
with those in CPNΘ , now with a minus sign on the right-hand side of (5.8).

Given the noncommutative relations between generators of the projective space, the
next step is to exhibit noncommutative Plücker relations. They generate an ideal in the
homogeneous coordinate algebra A(CPNΘ ) of the projective space, and we will define the
noncommutative quotient algebra to be the homogeneous coordinate algebra A(Grθ(d;n))
of the (embedding of the) noncommutative grassmannian. The natural noncommutative
version of (5.6) is obtained by taking into account the braided antisymmetry of the minors,
so that using the same notation as before the Plücker relations now read

(5.9)
∑

Ξ⊂I : |Ξ|=r

ǫ
(I\Ξ)∪Ξ (c)
θ ΛI\Ξ ΛΞ∪J = 0 .

By these definitions, one has Grθ(1;n) = (CPn−1
θ )∗. Since dimC(Gr(d;n)) = d (n− d), the

n×n matrix θ, which deforms the maximal torus of GL(n), should be expressed in terms
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of the (C×)d (n−d)-action on the grassmannian through a suitable embedding, analogous
to those described in §5.2. We will return to this point in §6.4.

Remark 5.10. We have not found a complete and general proof that the noncommutative
Plücker equations (5.9) can be reduced to the case r = 1, as in the undeformed situation,
though it is true for every example we have worked out. For q-deformations, this is implied
by [28, Prop. 13].

The classical Plücker relations (5.6) contain trivial identities when I ∩ J 6= ∅, together
with “true” Plücker equations. The same situation arises in the noncommutative case,
but now the “trivial” identities encode the noncommutativity and alternating relations of
the noncommutative minors. In fact, in certain instances it seems that starting from (5.9),
one can derive all relations necessary to describe the noncommutative Grassmann variety,
i.e. the “true” Plücker equations as well as the noncommutativity relations between the
generators of A(CPNΘ ) in (5.7) and the alternating property (2.27). Again we will return
to this point in more generality below.

5.4. Noncommutative flag varieties Flθ(d1, . . . , dr;n). We will now generalize the con-
structions of §5.3 to flag varieties. Classically, given an n-dimensional complex vector
space V and a sequence of positive integers γ = (γ1, . . . , γr+1) with 1 ≤ r ≤ n− 1 which
is a partition of n, i.e. a Young diagram, we consider an increasing chain of nested vector
subspaces of V ,

0 = V0  V1  V2  · · ·  Vr+1 = V ,

such that γi = dimC(Vi) − dimC(Vi−1) for i = 1, . . . , r + 1. The corresponding flag
variety Fl(γ;V )∼= Fl(γ;n) is the moduli space of chains (or “flags”) associated to the
sequence γ = (γ1, . . . , γr+1). Two typical examples are the complete flag varieties with
partition γ = (1, . . . , 1) (n times), i.e. the sequences of subspaces where dimC(Vi) = i for
i = 1, . . . , n, and the grassmannians Gr(d;n) which are here recovered from the two-term
partitions γ = (d, n− d).

By choosing a basis in V , the flag varieties Fl(γ;V ) can also be represented as spaces
of equivalence classes of matrices in the reductive algebraic group GL(n). We represent
a chain of subspaces by a matrix whose rows are the basis vectors of each subspace, and
notice that the part of GL(n) which acts trivially on such a representation is given by block
upper (or lower) triangular matrices, with r+1 diagonal blocks of dimensions γ1, . . . , γr+1.
These matrices form a subgroup of GL(n) denoted Pγ. It is a parabolic group, and the flag
variety may be realized as the homogeneous space Fl(γ;n) = GL(n)/Pγ with associated
principal bundle

Pγ →֒ GL(n) −→ Fl(γ;n) .(5.11)

The Borel subgroup of GL(n) is the parabolic group Pγ associated with γ = (1, . . . , 1)
representing the complete flag, i.e. the group of upper (or lower) triangular matrices, and
we will denote it by Bn. Since Bn is the minimal parabolic subgroup of GL(n), each flag
variety Fl(γ;n) is the total space of a canonical fibration over the corresponding complete
flag variety with fibre Pγ/Bn given by

Pγ
/
Bn →֒ GL(n)

/
Pγ

π
−→ GL(n)

/
Bn .

We shall describe the Plücker embedding of flag varieties into projective spaces, in a
similar way as in the case of grassmannians. This involves the minors of the n×n matrix
representing each flag. Set di =

∑
a≤i γa = dimC(Vi) for i = 1, . . . , r+1. Given a point in



40 LUCIO CIRIO, GIOVANNI LANDI, AND RICHARD J. SZABO

Fl(γ;n) represented by an equivalence class [A] in GL(n)/Pγ, there is a natural Plücker
map Pli : Fl(γ;n) → CPNi, with Ni =

(
n
di

)
−1 for each i, where the image is the

(
n
di

)
-tuple

of all minors of A obtained from the first di rows. Hence each minor is labelled by a
multi-index representing the di columns involved while the rows are always given by the
standard ordered multi-index (1 2 · · ·di). Assembling all of these maps together we get a
Plücker embedding

(5.12) Pl : Fl(γ;n) −→ CP(γ;n) := CPN1 × · · · × CPNr ,

where the last factor corresponding to i = r + 1 gives a trivial contribution since Nr+1 =(
n
n

)
−1 = 0. The image of the Plücker map Pl in CP(γ;n) is described by a set of quadratic

equations called the Young symmetry relations. With the same notation, a generalization
of Proposition 5.5 to flag varieties is given by the following result [29].

Proposition 5.13. Given a partition γ of n and the Plücker map Pl in (5.12), a point x
in CP(γ;n) belongs to the image Pl(Fl(γ;n)) if and only if for all choices of multi-indices
given by I = (i1 · · · id−s) and J = (j1 · · · jd′+s), as subsets of (1 2 · · ·n) for all s ≥ 1 and
for all d, d′ ∈ {di}i=1,...,r+1 with d ≤ d′, the homogeneous coordinates of x, expressed as
di×di minors of n×n matrices now of variable size, satisfy the Young symmetry relations

(5.14)
∑

Ξ⊆J : |Ξ|=s

ǫΞ∪(J\Ξ) ΛI∪ΞΛJ\Ξ = 0 .

We are now ready to construct a noncommutative deformation of flag varieties, general-
izing what we did in §5.3 for noncommutative grassmannians. The definition of minors of
matrices with noncommuting entries is the same as in (2.23). We now need to handle non-
commutative minors of different size, with each size describing a projective space in the
cartesian product CP(γ;n), and apply a noncommutative version of the Young symme-
try relations (5.14) instead of (5.6). The relations (5.6) essentially describe the relations
among minors of fixed size, so they describe the image of the Plücker embedding in each
projective space copy (with appropriate dimension) inside CP(γ;n). What (5.14) adds is
to express relations between minors of different size, i.e. relations between coordinates of
different factors in CP(γ;n).

In this case we use the more general noncommutative relations (2.26) between d×d and
d′×d′ minors of different size, i.e. with multi-indices of different lengths |I| = |J | = d and
|I ′ | = |J ′ | = d′. The noncommutative Young symmetry relations are expressed by taking
into account the braided antisymmetry of the indices representing columns in the minors,

i.e. by substituting the Levi–Civita symbol ǫ in (5.14) with the braided symbol ǫ
(c)
θ of

(2.16). Recall that additional symbols ǫθ are hidden inside the noncommutative minors
entering the equations. In this setting the coordinate algebra of the noncommutative flag
variety Flθ(γ;n) = Flθ(d1, . . . , dr;n) is the quotient of the homogeneous coordinate algebra
of CPΘ(γ;n) by the ideal generated by the noncommutative Young symmetry relations.
As we did for noncommutative grassmannians, it is useful to distinguish between the
different kinds of equations that are generated by the noncommutative Young symmetry
relations. We will divide them into three classes, called alternating equations, structure
equations, and Plücker equations.

By alternating equations we mean relations like (2.27), i.e. the behaviour of a minor
under interchange of two indices inside the multi-index which parametrizes it. These equa-
tions are in principle contained in the definition of noncommutative minors, and once we
have decided to parametrize coordinates in the projective spaces which are targets for our
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Plücker map by ordered multi-indices, they are not to be interpreted as relations between
coordinates of these projective spaces. However, in Proposition 5.13 it is convenient to
consider unordered multi-indices I and J , since even when I and Ξ are ordered the multi-
index I ∪ Ξ is in general not ordered, so the Young symmetry relations automatically
generate equations with unordered multi-indices. This increases the number of equations
in the Young symmetry relations, as it increases the number of ways in which one can
choose I and J , exactly by adding relations of alternating type. These are the ones in
which I ∪ Ξ and J \ Ξ differ only by permutations. This can only happen when d = d′,
and the alternating relations are a particular class of equations where only two terms in
the sum over Ξ survive. Thus by including unordered multi-indices, alternating relations
arise as a subset of the Young symmetry relations.

By structure equations we mean the class of equations where only two terms repre-
senting distinct noncommuting coordinates in A(CPΘ(γ;n)) survive. They specify the
noncommutativity of the target space of the Plücker embedding. In §5.3 we showed that
not every noncommutative projective space (of the appropriate dimension) can contain
a Plücker embedding of a noncommutative grassmannian, since the noncommutativity
matrix Θ of CPNΘ has to satisfy the constraints (5.8). It is natural to now ask if these
structure equations could have been completely deduced from the noncommutative Young
symmetry relations, or if they have to be put in by hand when defining the noncommu-
tative projective space of the Plücker embedding. Some straightforward combinatorial
considerations show that only a small part of the structure equations for CPΘ(γ;n) are a
subset of the Young symmetry relations, and all other noncommutativity relations must
be introduced independently.

Proposition 5.15. The only structure equations contained in the noncommutative Young
symmetry relations are those within a single factor of the algebra A(CPΘ(γ;n)) involving
minors whose multi-indices differ in only one index.

Proof: We look at the conditions needed for an equation of the Young symmetry rela-
tions (5.14) to reduce to a two-term equation. For generic s ≥ 1, one has |I| = d − s

and |J | = d′ + s. Each equation of the Young symmetry relations has
(
d′+s
s

)
terms, the

number of choices of Ξ contained in J . To reduce this number to 2 and get a structure
equation, I and J must contain some common indices so that when I takes indices from
J via Ξ we get a repetition of indices in I ∪Ξ, and the corresponding term in the equation
vanishes. Denote by k the number of shared indices, i.e. |I ∩ J | = k. The constraints
are k ≤ d − s and d ≤ d′. Under these conditions the number of surviving terms in each
equation is given by the number of choices of s indices (those of Ξ) among d′ + s − k

indices of J (those not shared with I). This number is
(
d′+s−k

s

)
, and hence the condition

we want is
(
d′+s−k

s

)
= 2. This implies that we must have d′ + s− k = 2 and s = 1. Now

the constraint k ≤ d − s becomes d′ − 1 ≤ d − 1, which together with the constraint
d ≤ d′ forces d = d′. Thus structure equations only arise for noncommutative minors
of equal size d = d′ (i.e. inside a single factor of A(CPΘ(γ;n))), and it is not possible
to recover any of the structure equations between minors of different size (i.e. between
coordinates of different noncommutative projective space factors in CPΘ(γ;n)). For fixed
d = d′, these constraints also show that |J | = d′ + s = d + 1, |I| = d − s = d − 1 and
k = d′ − 1 = d − 1. So to obtain structure equations, I must be a subset of J (since
|I| = k = d − 1), and J is obtained by adding two more indices to those of I. Thus
all terms in the corresponding equation are of the form ΛI∪(i) ΛJ\(i), i.e. the two minors
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involved differ only by one index. �

The remaining relations involving more than two terms are called Plücker equations.
They are quadratic in the coordinate algebra generators of the noncommutative projective
spaces, and are the ones which genuinely describe the image of the Plücker embedding,
i.e. the projection given by A(CPΘ(γ;n)) → A(Flθ(γ;n)) which realizes Flθ(γ;n) as a
noncommutative quadric in CPΘ(γ;n). By (2.26) and Proposition 5.13, there are canonical
inclusions of homogeneous coordinate algebras

pi : A
(
Flθ(d1, . . . , d̂i, . . . , dr;n)

)
−→ A

(
Flθ(d1, . . . , dr;n)

)

of noncommutative flag varieties for each i = 1, . . . , r. For generic n, this leads to a
web of multiple noncommutative fibrations, which are classically obtained by truncat-
ing flags in the obvious way. Furthermore, the additional relations coming from (2.26)
are naturally compatible with the structure of the braided tensor product of algebras
A(Grθ(d1;n)) ⊗̂θ · · · ⊗̂θ A(Grθ(dr;n)) induced by the braiding morphism Ψθ on the cate-
gory Hn

θ
M ofHn

θ -module algebras as explained in §1.2. By definition and Proposition 5.13,
the algebra A(Flθ(d1, . . . , dr;n)) may be realized as the quotient algebra of this braided
tensor product by the additional relations arising from (5.14), and there is a natural
algebra surjection

A
(
Grθ(d1;n)

)
⊗̂θ · · · ⊗̂θ A

(
Grθ(dr;n)

)
−→ A

(
Flθ(d1, . . . , dr;n)

)
.

6. Geometry of noncommutative projective varieties

We will now develop a more thorough noncommutative sheaf theory and, with the alter-
native description of §5 in hand, apply it in particular to noncommutative deformations
of projective varieties. In this way noncommutative projective varieties inherit many al-
gebraic and geometric properties from CPnθ by restriction. These properties are described
below.

6.1. Cohomology of CPnθ . We start by summarizing the pertinent cohomological prop-
erties of the homogeneous coordinate algebras A. We write mod(A) for the category of
all finitely-generated right A-modules.

Proposition 6.1. The algebra A = A(CPnθ ) is a quadratic algebra whose Koszul dual A!

is generated by elements w̌i, i = 1, . . . , n+ 1 with the relations

w̌2
i = 0 , i = 1, . . . , n+ 1 ,

w̌i w̌n+1 + w̌n+1 w̌i = 0 , i = 1, . . . , n ,

w̌i w̌j + q2ij w̌j w̌i = 0 , i, j = 1, . . . , n .(6.2)

Proof: The graded algebra A =
⊕

k≥0 Ak can be identified as A = T (A1)/〈R〉, where
T (A1) is the free tensor algebra generated by the n+ 1-dimensional vector space A1 and
〈R〉 is the two-sided ideal generated by the n

2
(n+ 1)-dimensional subspace R of A1 ⊗A1

spanned by the quadratic relations (5.3). Thus A is a quadratic algebra. Its Koszul dual
is the algebra A! = T (A∗

1)/〈R
⊥〉 defined by taking the basis w̌i of A

∗ dual to wi and
quotienting by the annihilator of the relations R ⊂ A1 ⊗A1, i.e. the subspace R⊥ of the
tensor product A∗

1 ⊗A∗
1 = (A1 ⊗A1)

∗ consisting of elements q such that q(r) = 0 for any
r ∈ R. A direct calculation using (5.3) then gives the relations (6.2). �
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The dual algebra A
! =

⊕
k≥0 A

!
k is a deformation of the exterior algebra of A∗, graded

again by polynomial degree. It is a special case of the graded DG-algebras defined in [5,
§2.6]. In the category H

θ̃
M of Hθ̃-modules, there are isomorphisms

A
!
k

∼=
∧k
θ̃ A

∗
1 .

There is a canonical identification (A!)! = A. With R ⊂ A1 ⊗ A1 the space of quadratic
relations (5.3), the dual vector spaces (A!

k)
∗ of A!

k are given by
(
A

!
0

)∗
= A0 = C ,

(
A

!
1

)∗
= A1 ,

(
A

!
k

)∗
=

k−2⋂

l=0

A
⊗l
1 ⊗ R⊗A

⊗(k−2−l)
1 , k ≥ 2 .

It follows that (A!
k)

∗ ⊂ A
⊗k
1 for all k ∈ N0.

By considering A as a right A-module, one defines the (right) Koszul complex K•(A)
as the sequence of homomorphisms of (free) right A-modules given by [34, 9]

· · ·
d

−→
(
A

!
k+1

)∗
⊗A

d
−→

(
A

!
k

)∗
⊗A

d
−→ · · ·

d
−→

(
A

!
1

)∗
⊗A

d
−→ A −→ 0 ,

where the differential d :
(
A!
k+1

)∗
⊗A →

(
A!
k

)∗
⊗A is induced by the map

(a1 ⊗ · · · ⊗ ak+1)⊗ a 7−→ (a1 ⊗ · · · ⊗ ak)⊗ ak+1 a

on A
⊗(k+1)
1 ⊗ A → A

⊗k
1 ⊗ A. Since (A!

k)
∗ ⊂ A

⊗(k−2)
1 ⊗ R for k ≥ 2, one has d2 = 0, and

hence K•(A) is a differential chain complex. It is a special case of the complex defined
in [5, eq. (2.8)]. By considering A as a left A-module and exchanging factors, one also
defines a left Koszul complex of (free) left A-modules. Exactness of the right Koszul
complex is equivalent to exactness of the left Koszul complex.

One use we will make of the Koszul complex is in establishing some crucial “smooth-
ness” properties of our algebras. The presentation of A by generators and relations is
equivalent [1] to exactness of the sequence of right A-modules given by

R⊗A −→ A1 ⊗A
µA−→ A

ε
−→ A0 −→ 0 ,

where µA : A⊗A → A is the product of A, ε is the projection onto A0 = C (which defines
a counit on A), and the first arrow is multiplication (in A) by the matrix of relations in
A1. This exact sequence extends as a minimal free resolution of the trivial right A-module
A0 = C given by

0 −→ Ed ⊗A −→ · · · −→ E1 ⊗A −→ A −→ A0 −→ 0(6.3)

with E1 = A1 and E2 = R. The integer d is the “global homological dimension” gl-dim(A)
of the algebra A [4], and is computed explicitly below (and shown to be finite) for the
case at hand.

By applying the functor Hommod(A)(A,−) to the chain complex of (free) rightA-modules
defined by (6.3), one obtains a cochain complex of left A-modules whose cohomology is
denoted by Ext•mod(A)(A0,A). We will show below that Extkmod(A)(A0,A) = δk,d C. This
means that the algebra A is “Gorenstein” and that the cochain complex defines a minimal
projective resolution of the trivial left A-module A0. Together with (6.3) this implies the
isomorphisms

E∗
k = Extkmod(A)(A0,A0) ∼= Ed−k



44 LUCIO CIRIO, GIOVANNI LANDI, AND RICHARD J. SZABO

of vector spaces for k = 0, 1, . . . , d. Thus the Gorenstein property is a variant of Poincaré
duality for the noncommutative toric variety CPnθ .

Recall that a graded algebra A =
⊕

k≥0 Ak is a Frobenious algebra of index m if:
(i) Ak = 0 in all degrees k > m; (ii) Am

∼= A0 = C; and (iii) the multiplication map
Ak ⊗ Am−k → Am gives a non-degenerate pairing for each k = 0, 1, . . . , m. Furthermore,
a quadratic algebra A is a Koszul algebra if its (right) Koszul complex K•(A) is acyclic
in positive degrees, i.e. Hp(K•(A)) = 0 for all p ≥ 1.

Proposition 6.4. The homogeneous coordinate algebra A = A(CPnθ ) enjoys the following
properties:

(1) A! is a Frobenius algebra of index n + 1;
(2) A is a noetherian domain; and
(3) A is a Koszul algebra.

Proof: (1) The first two properties of a Frobenius algebra of index n + 1 are immediate
from the defining relations (6.2). The third property is essentially a consequence of the
functorial equivalence of §1.2. We note first that the result is easily seen to be true for
θ = 0 (wherein A

! = A(CPn)! is the exterior algebra of an ordinary polynomial algebra).
We can view the pairing

A(CPnθ )
!
k ⊗A(CPnθ )

!
n+1−k −→ A(CPnθ )

!
n+1

as a family (parametrized by θ = (θij)) of pairings A(CPn)!k⊗A(CPn)!n+1−k → A(CPn)!n+1.
Thus the result is true for θ sufficiently close to the zero matrix. Since the algebras
A(CPnθ )

! and A(CPng·θ)
! are isomorphic for any g ∈ GL(n), it follows that A(CPnθ )

! is a
Frobenius algebra for any θ.

(2) This follows as in the proof of Lemma 4.1.

(3) To show that the quadratic algebra A is Koszul, we compute the Hilbert–Poincaré
series of A which from the definition of the grading in §5.2 is given by the formal power
series

HA(s) :=
∞∑

k=0

dimC(Ak) s
k =

∞∑

k=0

∞∑

i1,...,in+1=0

δk,i1+···+in+1 s
k =

(
1

1− s

)n+1

,

independently of the noncommutativity parameter matrix θ. On the other hand, using
the Frobenius property and the relations (6.2) we can compute the series

HA!(−s) =
∞∑

k=0

dimC

(
A

!
k

)
(−s)k =

n+1∑

k=0

(
n+ 1

k

)
(−s)k = (1− s)n+1 ,

hence HA(s)HA!(−s) = 1 in Z[[s]] and the result now follows by [7, Thm. 2.11.1]. �

Algebras of finite global homological dimension with the Gorenstein property are called
regular [17]. The following result is a corollary of [5, Prop. 2.6].

Corollary 6.5. The quadratic algebra A is a regular algebra of global homological dimen-
sion d = gl-dim(A) = n+ 1.

Proof: This follows similarly to [6, Prop. 7.2.3]. The global homological dimension of
A equals the length of the minimal projective resolution for A0 = C. Since by point (3)
of Proposition 6.4 the Koszul complex is exact, it provides such a minimal resolution,
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and the global homological dimension coincides with the number of non-trivial graded
components of the algebra A!, each of which can be identified as

A
!
k
∼= Extkmod(A)(A0,A0) .

By point (1) of Proposition 6.4 the dual algebra A! provides a Frobenius resolution, since
as an A0-bimodule one has A!

k
∼= A!

n+1 ⊗ (A!
n+1−k)

∗ and hence Ext•mod(A)(A0,A) coincides

with the cohomology of the complex A!
n+1⊗K•(A) truncated at the rightmost term. Thus

the only non-trivial cohomology group is

Extn+1
mod(A)(A0,A) ∼= A

!
n+1 ⊗A ,

and the Gorenstein property follows. �

For an algebra A of polynomial growth (which is the case for the homogeneous coordi-
nate algebra A = A(CPnθ )), one has also the notion of Gel’fand–Kirillov dimension

GK-dim(A) := lim inf
k→∞

{
α ∈ R

∣∣∣ dimC

( k⊕
l=0

Al

)
≤ kα

}
.

When it is finite, combining it with the Gorenstein properties leads to the notion of
Artin–Schelter regularity [1].

Proposition 6.6. The quadratic algebra A = A(CPnθ ) is an Artin–Schelter regular algebra
of Gel’fand–Kirillov dimension GK-dim(A) = n + 1.

Proof: From the definition of the grading on A =
⊕

k≥0 Ak in §5.2, dimC(Ak) = pn+1(k)
is the number of partitions of k into n+1 parts. It is a classic result [18] that the function
pn+1(k) grows asymptotically like 1

(n+1)!

(
k−1
n

)
. Then the Stirling expansion shows that

the dimension of Ak grows like kn for k ≫ 0, and the result for the dimension follows. In
Corollary 6.5 we established the Gorenstein properties; hence the result follows. �

6.2. Sheaves on CPnθ . By Propositions 4.2 and 4.6, and Theorem 5.4, it follows that
quasi-coherent sheaves on Open(CPnθ ) can be identified with objects of the module category
mod(A), with A = A(CPnθ ). Let gr(A) be the category of finitely-generated graded
right A-modules M =

⊕
k≥0 Mk and degree zero morphisms, and let tor(A) be the full

Serre subcategory of gr(A) consisting of finite-dimensional graded A-modules M , i.e.
Mk = 0 for k ≫ 0. Henceforth, we will identify the category of coherent sheaves on
Open(CPnθ ) with the abelian quotient category gr(A)/tor(A), and denote it by coh(CPnθ ).
Let π : gr(A) → coh(CPnθ ) be the canonical projection functor. Under this correspondence,
the structure sheaf OCPnθ is the image π(A) of the homogeneous coordinate algebra itself,
regarded as a free right A-module of rank one. If E = π(M) where M ∈ gr(A) is a
graded right A-module, then M [w−1

i ]0 = (M ⊗A A[w−1
i ])0 is a right Cθ[σi]-module for

each i = 1, . . . , n+ 1.

On the category gr(A) there is a natural autoequivalence defined by the degree shift
functor M 7→ M(1), where M(l) is the l-th shift of the graded module M =

⊕
k≥0 Mk

with degree k component M(l)k =Ml+k. For each k ∈ Z we define the sheaf

OCPnθ (k) := π
(
A(k)

)
.
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For any sheaf E = π(M) we write E(k) for the sheaf π(M(k)) in coh(CPnθ ). Conversely,
given a sheaf E ∈ coh(CPnθ ), the vector space

M = Γ(E) :=
∞⊕

k=0

Hom
(
OCPnθ

(−k) , E
)

is a graded right A-module with π(M) = E (with the A-module structure given in general
by [2, eq. (4.0.3)]).

As in [5, §2.3], sheaves on Open(CPnθ ) have the following basic cohomological properties.

Proposition 6.7. Every sheaf E ∈ coh(CPnθ ) enjoys the following properties:

(1) Ampleness: There exists an epimorphism

s⊕

i=1

OCPnθ (−ki) −→ E −→ 0

for some positive integers k1, . . . , ks, and there exists a positive integer k0 such
that Hp(CPnθ , E(k)) = 0 for all k ≥ k0 and p > 0;

(2) χ-condition: dimC(H
p(CPnθ , E)) <∞ for all p ≥ 0; and

(3) Serre duality: There are natural isomorphisms of complex vector spaces

Hp
(
CPnθ , E

)
∼= Extn−p

(
E , OCPnθ (−n− 1)

)∗

where (−)∗ denotes the C-dual.

Proof: This follows from the regularity properties of the algebra A derived in §6.1, to-
gether with [2, Thm. 8.1] (for points (1) and (2)) and [38, Thm. 2.3] (for point (3)). �

The following result is a special case of [5, Prop. 2.7].

Proposition 6.8. (1) There are isomorphisms

Hp
(
CPnθ , OCPnθ (k)

)
=





Ak for p = 0 , k ≥ 0 ,
A∗

−k−n−1 for p = n , k ≤ −n− 1 ,
0 otherwise .

(2) The cohomological dimension of the category coh(CPnθ ) is equal to n, i.e. one has
Hp(CPnθ , E) = 0 for all E ∈ coh(CPnθ ) and p > n.

Proof: This follows from the regularity properties of the homogeneous coordinate algebra
A derived in §6.1, together with the Serre duality of Proposition 6.7 and [2, Thm. 8.1]. �

Let grL(A) be the abelian category of finitely-generated graded left A-modules. We
will denote by πL : grL(A) → cohL(CP

n
θ ) := grL(A) / torL(A) the corresponding quotient

projection. For any sheaf E ∈ coh(CPnθ ), the graded space

Hom
(
E , OCPnθ

)
= πL

( ∞⊕
k=0

Hom
(
E , OCPnθ (k)

) )

has a natural left A-module structure (see [25, §5.3] and [6, §1.1]), and is thus a well-
defined object of the abelian category cohL(CP

n
θ ). It is called the dual sheaf of E and
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is denoted E∨. The internal Hom-functor Hom (−,OCPnθ ) is left exact on coh(CPnθ ) →
cohL(CP

n
θ ) and has corresponding right derived functors Extp(−,OCPnθ ) given by

Extp
(
E , OCPnθ

)
= πL

( ∞⊕
k=0

Extp
(
E , OCPnθ (k)

) )

for p ≥ 0. Since A is a noetherian regular algebra, the functor Extp(−,OCPnθ ) gives an
anti-equivalence between the derived categories of coh(CPnθ ) and cohL(CP

n
θ ) (see [38, §4]

and [25, §5.3]). It follows that there are isomorphisms

Extp(E, F ) ∼= ExtpL(F
∨, E∨ ) := Extp

cohL(CP
n
θ )
(F∨, E∨ )

for any p ≥ 0 and for any pair of torsion-free sheaves E, F ∈ coh(CPnθ ).

For a sheaf F ∈ coh(CPnθ ), there is a functorial isomorphism

H0
L

(
CPnθ , Hom (F,OCPnθ )

)
∼= Hom

(
F , OCPnθ

)
,

and also a functorial spectral sequence

Ep,q
2 = Hp

L

(
CPnθ , Ext

q(F,OCPnθ )
)

=⇒ Ext•
(
F , OCPnθ

)
.

The sheaves OCPnθ (k), k ∈ Z are locally free, with Hom (OCPnθ (k),OCPnθ (l)) = OCPnθ (l−k) as
sheaves of bimodules. More generally, bundles over noncommutative projective varieties
may be characterized as follows.

Proposition 6.9. Let E ∈ coh(CPnθ ) and M = Γ(E) ∈ gr(A). Then the following state-
ments are equivalent:

(1) E is a locally free sheaf;
(2) Extp(E,OCPnθ ) = 0 for all p > 0; and

(3) M [w−1
i ]0 is projective in coh(σi) for each i = 1, . . . , n+ 1.

Proof: This is a consequence of Proposition 4.6 and Definition 4.7, together with the
functorial equivalence of §1.2, and the fact that the result holds in the commutative case
θ = 0 [25]. If E is locally free, then its restrictions Eσi are direct sums of shifts of Cθ[σi],
with

Cθ[σi](k) :=
(
A(k)⊗A A[w−1

i ]
)
0
.

Since Extp
gr(A)(A(l),A(k)) = 0 for k > l and p > 0, it follows from the χ-condition

of Proposition 6.7 that
⊕

k≥0 Extp(E,OCPnθ (k)) is finite-dimensional, and hence one has
Extp(E,OCPnθ ) = 0 for all p > 0. Conversely, by Serre duality of Proposition 6.7 one has

Extp(E,OCPnθ )
∼= πL

( ∞⊕
k=0

Hn−p
(
CPnθ , E(−k − n− 1)

)∗ )
,

where the group Hn−p(CPnθ ,E(−k − n − 1)) coincides with Extn−p(OCPnθ (k + n + 1),E).
Hence if Extp(E,OCPnθ ) = 0 for p > 0, then by the χ-condition Exts(OCPnθ (k+n+1),E) = 0
for all 0 ≤ s < n and k ≫ 0. That E is locally free now follows again by localization and
the corresponding result in the category gr(A). Finally, if M is projective, then the func-
tor Homgr(A)(M,−) is exact, and hence Extp

gr(A)(M,A(k)) = 0 for all p > 0 and k ≥ 0. �

Example 6.10. For noncommutative projective varieties we can provide an equivalent
global description of the sheaves of differential forms, constructed in §4.4 using Kähler
differentials, in terms of Koszul complexes, since by Proposition 6.4 their homogeneous
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coordinate algebras are Koszul algebras. Affine open subsets Uθ[σ] correspond to localiza-
tions of the homogeneous coordinate algebra A = Cθ̃[w1, . . . , wn+1] of CP

n
θ according to

Theorem 5.4, and the construction of Kähler differentials commutes with Ore localization
(see e.g. [14, §3] and [31, Thm. 1.2.1]). The bimodule of Kähler differentials Ω1

A
= IA/I

2
A

is defined as in §4.4 via the kernel of the multiplication map µA : A ⊗ A → A. Using
the constructions of §4.4, it is easy to see that Ω1

A
is isomorphic to the free A-bimodule

A⊕(n+1). On the other hand, since A is a Koszul algebra one can define the left (resp.
right) A-module Kp(A) as the cohomology of the left (resp. right) Koszul complex of A
in §6.1 truncated at the p-th term [25, Def. 4.8]. For p = 1, the module K1(A) sits in the
exact sequence

0 −→ K1(A) −→
(
A

!
1

)∗
⊗A

d
−→ A

ε
−→ C −→ 0

so that K1(A) = ker(d). But here the differential d is exactly µA. It follows that there is
a natural identification Ωp

A,un
∼= Kp(A), and so the Koszul description of the sheaves of

differential forms coincides with that in terms of Kähler differentials in these cases.

6.3. Tautological bundles on Grθ(d;n). We give some explicit examples of locally
free sheaves on the noncommutative Grassmann varieties of §5.3, which further admit
straightforward extensions to the general noncommutative flag varieties of §5.4. Recall
that in the commutative case the tautological hyperplane bundle (or universal sub-bundle)
S is the vector bundle over Gr(d;V ) such that the fibre over each point [Λ] ∈ Gr(d;V ) is
the d-plane VΛ ⊂ V defined by Λ itself. It sits inside the Euler sequence

0 −→ S −→ Gr(d;V )× V −→ Q −→ 0 ,(6.11)

where Q is the quotient sub-bundle. To describe the embedding of S in the trivial bundle
Gr(d;V ) × V , we note that, when dimC(V ) = n, a section of Gr(d;V ) × V is an n-
dimensional vector

w =
n∑

i=1

wi(Λ)⊗ vi ∈ A
(
Gr(d;V )

)
⊗ V(6.12)

of functions wi(Λ) on Gr(d;V ), where {vi}
n
i=1 is any basis for V . This defines a section

of S if and only if for each Λ the vector (6.12) belongs to VΛ.

In that case, if we add the vector w to the d× n matrix Λ as the (d + 1)-th row, thus
generating a (d + 1) × n matrix, then all the minors of order d + 1 are zero. Denote by
J = (j1 · · · jd+1) an ordered (d + 1) multi-index with j1 < j2 < · · · < jd+1, and by J \ jd
the order d multi-index with jd removed. Then, as before, ΛJ\jd is the minor of order d
in Λ obtained from the columns labelled by J \ jd. By expanding the minors with respect
to the (d+ 1)-th row w, the requisite condition can be expressed as the equations

(6.13) ǫjd∪(J\jd) wjd Λ
J\jd = 0

for every ordered (d+1) multi-index J . A section of the trivial bundle (6.12) is a section
of S if and only if it satisfies (6.13). This is a local description since we have to choose a
d× n matrix Λ to represent a point in Gr(d;V ), and our condition (6.13) is written using
the data of this local representative.

To pass to the noncommutative coordinate algebra A(Grθ(d;n)), we insert into (6.13)
the θ-deformed Levi–Civita symbol. Then Sθ is defined to be the subsheaf of elements
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of the free module (w1(Λ), . . . , wn(Λ)) ∈ A(Grθ(d;n))
⊕n over the noncommutative grass-

mannian which satisfy the equations

(6.14) ǫ
jd∪(J\jd) (c)
θ wjd Λ

J\jd = 0

for every ordered (d+1) multi-index J , where the minors of order d obey the relations (5.7).
We can use the Plücker map to regard the noncommutative minors ΛJ\jd as homogeneous
coordinates in P(

∧d
θ V ). Then the quotient by the graded two-sided ideal generated

by the set of homogeneous relations (6.14) defines the projection from the free module

P(
∧d
θ V ) ⊗ V → Sθ. In this case we have to consider the restriction of (6.14) to those

elements Λ which also satisfy the Young symmetry relations (5.9). This gives the sheaf
Sθ the natural structure of a graded A(Grθ(d;n))-bimodule.

Proposition 6.15. The sheaf Sθ is locally free on Open(Grθ(d;n)).

Proof: The geometric description of the embedding of S in Gr(d;V )× V by a projector
amounts to taking a section (6.12) and projecting the vector w over the d-plane VΛ for each
[Λ] ∈ Gr(d;V ). To obtain a well-defined projector, we choose an inner product 〈−,−〉Λ on
the complex vector space V such that the vectors v1, . . . , vd which span VΛ are orthonor-
mal. Then the projection of a vector w ∈ V over VΛ is given by pΛ(w) =

∑
i 〈w, vi〉Λ vi.

This yields a unique idempotent p : A(Gr(d;V )) ⊗ V → A(Gr(d;V )) ⊗ V which maps
w(Λ) in (6.12) to pΛ(w(Λ)), with p2 = p, trace equal to d, and im(p) = S. The matrix
representation of pΛ is given by the n × n matrix Λ⊤Λ, where for Λ we choose a ma-
trix representative whose d rows are the orthonormal generators of the plane VΛ so that
ΛΛ⊤ = 1 and (Λ⊤Λ) (Λ⊤Λ) = Λ⊤Λ. The extension to the noncommutative setting only
requires using noncommuting entries in Λ with noncommutative relations in the coordi-
nate algebra Fθn of GLθ(n), given in §2.3, in a way which is compatible with the projector
constraints. The statement now follows by point (3) of Proposition 6.9. �

Example 6.16. For d = 1, it is easy to see that the equations (6.14) are solved by
taking wj(Λ) = Λj to be the generators of the homogeneous coordinate algebra A(CPn−1

θ ),
and one has a canonical isomorphism of bimodules Sθ

∼= OCPn−1
θ

(1). Alternatively, use

Proposition 6.15 to get im(p) ∼= A(CPn−1
θ ).

6.4. Differential forms on Grθ(d;n). There is also a useful alternative description of
the bundle of Kähler differentials Ω1

Grθ(d;n)
. In the classical case, the tangent bundle over

Gr(d;V ) is represented in terms of the Euler sequence (6.11) as the morphism bundle
Hom(S,Q) ∼= S∨ ⊗ Q, whose fibre spaces are given by T[Λ]Gr(d;V ) = HomC(VΛ, V/VΛ).
This description can be transported to the noncommutative setting via the following
characterization.

Lemma 6.17. The total space of the cotangent bundle over the grassmannian Gr(d;n) is
the base of the principal fibration

Ld,n−d := GL(d)×GL(n− d) →֒ GL(n) −→ T ∗Gr(d;n) .

Proof: Let E denote the principal Pd,n−d-bundle given in (5.11) for γ = (d, n − d).
Let g and p be the Lie algebras of GL(n) and Pd,n−d, respectively. Then the cotangent
bundle can be represented by T ∗Gr(d;n) = E ×Ad∗(Pd,n−d) (g/p)

∗. If Pd,n−d is embedded
in GL(n) as the subgroup of upper triangular matrices, then a ∈ g/p is represented by
a (strictly) block upper triangular matrix. Embed Ld,n−d in GL(n) as the subgroup of
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block diagonal matrices. Then Ld,n−d is the reductive Levi subgroup of Pd,n−d and there
is a Levi decomposition Pd,n−d = Rd,n−d ⋉Ad(Ld,n−d) Ld,n−d, where Rd,n−d is the unipotent
radical of the parabolic group Pd,n−d which is the additive subgroup of GL(n) represented
by block upper d × (n − d) matrices with respect to this embedding. On GL(n)/Ld,n−d
there is still the proper and free left action of Rd,n−d, and the quotient is our grassmannian

Rd,n−d

∖
GL(n)

/
Ld,n−d = GL(n)

/
Pd,n−d = Gr(d;n) .

We claim that this principal Rd,n−d-bundle F → Gr(d;n) is isomorphic to the cotangent
bundle. For this, we define a bundle map T ∗Gr(d;n) → F , such that on the fibre over
the equivalence class of the identity of GL(n) in GL(n)/Pd,n−d there is an isomorphism
Pd,n−d ×Ad∗(Pd,n−d) (g/p)

∗ → Rd,n−d. With respect to the block embeddings described
above, this is given by

( (
M A
0 N

)
, a

)
7−→

(
1 M aN−1

0 1

)
.

Since the two fibrations have the same base space, the bundle map reduces to a morphism
between the fibre spaces. Since the base space is homogeneous with respect to the action
of GL(n), the isomorphism on a generic fibre is the conjugation by GL(n) of the isomor-
phism over the identity constructed above. �

We will use Lemma 6.17 to provide a purely algebraic description of the cotangent
bundle in terms of coinvariant elements in the Hopf algebra Fn of GL(n) with respect to the
coaction induced from the subgroup Ld,n−d. Then we will deform this construction using
a Drinfel’d twist, obtaining an alternative description of the bundle of noncommutative
Kähler differentials Ω1

Grθ(d;n)
. The algebraic version of the inclusion Ld,n−d →֒ GL(n) is a

surjective algebra homomorphism π(Ld,n) from Fn to the Hopf subalgebra Ld,n dual to the
subgroup Ld,n−d. As in §2.3, we denote the generators of Fn = Fun(GL(n)) by gij with
i, j = 1, . . . , n. The generators of Ld,n = Fun(Ld,n−d) are denoted lij with 1 ≤ i, j ≤ d
and d+ 1 ≤ i, j ≤ n. Then the projection homomorphism π(Ld,n) : Fn → Ld,n is given by

(6.18) π(Ld,n)(gij) =

{
lij , 1 ≤ i, j ≤ d and d+ 1 ≤ i, j ≤ n ,
0 , otherwise .

The left coaction Ld,nΦ : Fn → Ld,n⊗Fn dual to the right multiplicative action of Ld,n−d
on GL(n) is the unital algebra morphism given by Ld,nΦ :=

(
π(Ld,n) ⊗ 1

)
∆∨, or explicitly

(6.19) Ld,nΦ(g) =
(
π(Ld,n) ⊗ 1

)
∆∨(g) = π(Ld,n)(g(1))⊗ g(2) .

The subalgebra of left coinvariants, defined in the usual way by

co−Ld,nFn =
{
g ∈ Fn

∣∣ Ld,nΦ(g) = 1⊗ g
}
,

gives the algebraic description of the base of the fibration GL(n)/Ld,n−d, i.e. the cotangent
bundle T ∗Gr(d;n). We use the general strategy to find coinvariants through projector
maps [27, Ch. 13].

Proposition 6.20. A set of generators for co−Ld,nFn is given by elements

(6.21) ηij :=

d∑

k=1

S∨(gik) gkj , 1 ≤ i, j ≤ n
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and

(6.22) η⊥ij :=
n∑

k=d+1

S∨(gik) gkj , 1 ≤ i, j ≤ n .

Proof: By direct computation one has

Ld,nΦ
( d∑

k=1

S∨(gik) gkj

)
=

(
π(Ld,n) ⊗ 1

) ( d∑

k=1

n∑

m,p=1

(
S∨(gpk) gkm

)
⊗

(
S∨(gip) gmj

) )

=
d∑

k,m,p=1

(
S∨(lpk) lkm

)
⊗
(
S∨(gip) gmj

)

=

d∑

m,p=1

δpm ⊗
(
S∨(gip) gmj

)
= 1⊗

( d∑

p=1

S∨(gip) gpj

)
.

The coinvariance of the second set of generators follows easily from
n∑

k=1

S∨(gik) gkj = δij ,

since the coinvariants generate a vector space. �

The generators ηij and η
⊥
ij = δij − ηij are not independent, but are characterized by a

set of relations. They can be regarded as entries of n× n matrices, yielding an algebraic
description of the vector bundle with associated principal bundle given in Lemma 6.17.

Proposition 6.23. The generators ηij (resp. η
⊥
ij) for i, j = 1, . . . , n are the entries of an

idempotent matrix η (resp. η⊥) with trace equal to d (resp. n− d).

Proof: Again by direct computation one has

n∑

m=1

ηim ηmj =

n∑

m=1

d∑

k,p=1

S∨(gik) gkm S∨(gmp) gpj

=
d∑

k,p=1

S∨(gik) δkp gpj

=

d∑

k=1

S∨(gik) gkj = ηij .

The trace condition is easily computed as

n∑

m=1

ηmm =

n∑

m=1

d∑

k=1

S∨(gmk) gkm =

d∑

k=1

δkk = d .

The corresponding results for η⊥ = 11n×n − η now easily follow. �

Comparing with Proposition 6.15 and Lemma 6.17, it follows that we can interpret
η as the matrix describing the finitely-generated projective A(Gr(d;n))-module S ∼=
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η
(
A(Gr(d;n))⊕n

)
. Recall that there is a canonical isomorphism Gr(d;V )

≈
−→ Gr(n−d;V ∗)

of grassmannians given by VΛ 7→ (V/VΛ)
∗. Under this isomorphism, the universal quotient

bundle Q on Gr(d;V ) corresponds to the dual of the tautological bundle S⊥ of rank n− d
on the variety Gr(n − d;V ∗). We may then identify S

⊥ = η⊥
(
A(Gr(d;n))⊕n

)
, and one

has the anticipated isomorphism co−Ld,nFn
∼= S⊗A(Gr(d;n)) S

⊥ of A(Gr(d;n))-modules.

We now consider the Drinfel’d twist deformation Fθn of the coordinate algebra of GL(n),
given in Definition 2.13. This deformation applies to the Hopf subalgebra Ld,n as well.
Since we are interested in toric (C×)d (n−d) deformations of the variety Gr(d;n), we con-

sider a deformation F
θ(d)
d ⊗ F

θ(n−d)

n−d of the Hopf algebra Fun(Ld,n−d) and use the subgroup
inclusion described by the algebra homomorphism (6.18). Then, as explained in §5.2, the
n×n matrix θ is given by θij = θ(d)

ij for the block 1 ≤ i, j ≤ d, θij = θ(n−d)
ij for the block

d+ 1 ≤ i, j ≤ n, and θij = 0 otherwise. Hence the noncommutative Hopf algebra L
θ
d,n is

also well-defined. The left coaction of Lθ
d,n on Fθn is the same as that of (6.19), since the

twist does not change the coproduct. In analogy with the undeformed case, we interpret

the algebra co−Lθ
d,nF

θ
n of left coinvariants as the algebra of the (C×)d (n−d) deformation of

the cotangent manifold T ∗Gr(d;n) = GL(n)/Ld,n. This identification will be justified

below. The algebra co−Lθ
d,nF

θ
n is generated by elements ηij introduced in (6.21) and by

elements η⊥ij given in (6.22).

Theorem 6.24. The noncommutative product in co−Lθ
d,nFθn is described by commutation

relations among generators ηij and η
⊥
ij given by

ηij ×θ ηi′j′ = K2
ij ; i′j′ ηi′j′ ×θ ηij ,

η⊥ij ×θ η
⊥
i′j′ = K2

ij ; i′j′ η
⊥
i′j′ ×θ η

⊥
ij ,

ηij ×θ η
⊥
i′j′ = K2

ij ; i′j′ η
⊥
i′j′ ×θ ηij ,(6.25)

where

Kij ; i′j′ = qii′ qj′i qi′j qjj′ .(6.26)

Proof: We compute the twisted relations between ηij directly from the definition (1.12).

For this, we need the quantity (id⊗∆∨)∆∨(ηij) = η
(1)
ij ⊗ η

(2)
ij ⊗ η

(3)
ij . Beginning with

∆∨(ηij) =
d∑

k=1

n∑

m,p=1

(
S∨(gpk)⊗ S∨(gip)

)
·
(
gkm ⊗ gmj

)

=
d∑

k=1

n∑

m,p=1

(
S∨(gpk) gkm

)
⊗
(
S∨(gip) gmj

)
,

we expand the second factor at the end to get

η
(1)
ij ⊗ η

(2)
ij ⊗ η

(3)
ij =

d∑

k=1

n∑

m,p,r,s=1

(
S∨(gpk) gkm

)
⊗

(
S∨(grp) gms

)
⊗
(
S∨(gir) gsj

)

and similarly

η
(1)
i′j′ ⊗ η

(2)
i′j′ ⊗ η

(3)
i′j′ =

d∑

k′=1

n∑

m′,p′,r′,s′=1

(
S∨(gp′k′) gk′m′

)
⊗
(
S∨(gr′p′) gm′s′

)
⊗

(
S∨(gi′r′) gs′j′

)
.
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Using these expressions we compute the three terms of the deformed product in (1.12).
Starting with

F θ
(
η
(1)
ij ⊗ η

(1)
i′j′

)
=

〈
Fθ , η

(1)
ij ⊗ η

(1)
i′j′

〉
=

〈
exp

(
− i

2
θabHa ⊗Hb

)
, η

(1)
ij ⊗ η

(1)
i′j′

〉

and looking at the first order term in θ we compute separately

〈
Ha , η

(1)
ij

〉
=

d∑

k=1

〈
Ha , S∨(gpk) gkm

〉

=
d∑

k=1

〈
Ha ⊗ 1 + 1⊗Ha , S∨(gpk)⊗ gkm

〉

=
d∑

k=1

(
− 〈Ha, gpk〉 ε∨(gkm) + ε∨

(
S∨(gpk)

)
〈Ha, gkm〉

)

=

d∑

k=1

(
− δap δak δkm + δpk δak δam

)
= 0 ,

where we have used duality to transfer the antipode S∨ from Fθn to the enveloping algebra

Hn
θ in the pairing. An identical calculation shows that 〈Hb, η

(1)
i′j′〉 = 0. Only the zeroth

order term gives a contribution, so that

F θ
(
η
(1)
ij ⊗ η

(1)
i′j′

)
=

〈
1⊗ 1 , η

(1)
ij ⊗ η

(1)
i′j′

〉

=
d∑

k,k′=1

ε∨
(
S∨(gpk) gkm

)
ε∨
(
S∨(gp′k′) gk′m′

)
=

d∑

k,k′=1

δpk δmk δp′k′ δm′k′ .

The third factor in (1.12) is given by

F θ −1
(
η
(3)
ij ⊗ η

(3)
i′j′

)
=

〈
F−1
θ , η

(3)
ij ⊗ η

(3)
i′j′

〉
=

〈
exp

(
i
2
θbcHb ⊗Hc

)
, η

(3)
ij ⊗ η

(3)
i′j′

〉
.

Looking at the first order term in θ, we compute separately

〈
Hb , η

(3)
ij

〉
=

〈
Hb , S∨(gir) gsj

〉

=
〈
Hb ⊗ 1 + 1⊗Hb , S∨(gir)⊗ gsj

〉

= −〈Hb, gir〉 ε∨(gsj) + ε∨
(
S∨(gir)

)
〈Hb, gsj〉 = − δbi δri δsj + δbj δri δsj .

An identical calculation shows that 〈Hc, η
(3)
i′j′〉 = − δci′ δr′i′ δs′j′ + δcj′ δr′i′ δs′j′. So the first

order term is given by

i
2
θbc (− δbi δri δsj + δbj δri δsj) (− δci′ δr′i′ δs′j′ + δcj′ δr′i′ δs′j′)

and summing over all orders we finally arrive at

F θ −1
(
η
(3)
ij ⊗ η

(3)
i′j′

)
= qii′ qj′i qi′j qjj′ δri δsj δr′i′ δs′j′ .
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We are now ready to write the deformed product between generators ηij as

ηij ×θ ηi′j′ = F θ
(
η
(1)
ij ⊗ η

(1)
i′j′

) (
η
(2)
ij · η

(2)
i′j′

)
F θ −1

(
η
(3)
ij ⊗ η

(3)
i′j′

)

=

n∑

m,p,r,s=1

n∑

m′,p′,r′,s′=1

( d∑

k,k′=1

δpk δmk δp′k′ δm′k′

)

×
(
S∨(grp) gms S∨(gr′p′) gm′s′

) (
qii′ qj′i qi′j qjj′ δri δsj δr′i′ δs′j′

)

= qii′ qj′i qi′j qjj′ ηij ηi′j′ .

Computing in exactly the same way the deformed product ηi′j′ ×θ ηij and comparing the
two expressions, we find the first set of relations in (6.25). The remaining relations follow
from η⊥ij = δij − ηij. �

The noncommutative relations (6.25) are not compatible with the constraints of Propo-
sition 6.23. However, the new generators

η̂ij = q−1
ij ηij , η̂⊥ij = q−1

ij η⊥ij

enjoy the same commutation relations (6.25) as well as the orthogonal projector rela-
tions of Proposition 6.23. By Proposition 6.15, there is a natural isomorphism Sθ

∼=
η̂
(
A(Grθ(d;n))

⊕n
)
of bundles on Open(Grθ(d;n)), and we define the orthogonal comple-

ment of the tautological bundle S⊥
θ := η̂⊥

(
A(Grθ(d;n))

⊕n
)
. Note that the duality between

the bundles Sθ and S⊥
θ now also involves interchange of the block matrices θ(d) and θ(n−d)

above. Denoting by Vθ the trivial bimodule A(Grθ(d;n))⊗V , the noncommutative version
of the exact sequence (6.11) of bundles is then given by

0 −→
(
S
⊥
θ

)∨ (η̂⊥)∗

−−−→ Vθ
η̂
−→ Sθ −→ 0 ,(6.27)

and it follows from Theorem 6.24 that the sheaf of noncommutative differential forms is
isomorphic to the braided tensor product

co−Lθ
d,nF

θ
n

∼= Sθ ⊗̂θ S
⊥
θ(6.28)

as a bimodule algebra over A(Grθ(d;n)) in the category Hn
θ
M .

The geometric meaning of the generators ηij and η⊥ij can be better understood by

computing their transformation properties under the action of the torus T = (C×)d (n−d).

Proposition 6.29. The noncommutative fibration co−Lθ
d,nFθn is a T -equivariant bundle

with eigenbasis generated by ηij.

Proof: We show that the generators ηij are T -eigenvectors with respect to the left
action of (C×)d (n−d) induced by the algebra homomorphism (6.18) and the right coaction
ΦLd,n : Fθn → Fθn ⊗ Lθ

d,n given by

ΦLd,n(gij) =
(
1⊗ π(Ld,n)

)
∆∨(gij) = g

(1)
ij ⊗ π(Ld,n)

(
g
(2)
ij

)
.(6.30)

Let Ha (resp. ha), a = 1, . . . , n be the toric generators in the enveloping algebra of GL(n)
(resp. Ld,n−d). Dual to π(Ld,n), there is an injective algebra homomorphism ι(Ld,n) between
the corresponding enveloping algebras such that ι(Ld,n)(ha) = Ha. Using results of §2.3,
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the image under ι(Ld,n) of the left action (1.9) of the enveloping algebra of T dually induced
by the the right coaction (6.30) of Lθ

d,n on Fθn is then given by

Ha ⊲ gij = g
(1)
ij

〈
ha , π

(Ld,n)
(
g
(2)
ij

)〉

=

n∑

k=1

gik
〈
ι(Ld,n)(ha) , gkj

〉

=

n∑

k=1

gik 〈Ha, gkj〉 = δaj gij ,(6.31)

where we have used the duality between π(Ld,n) and ι(Ld,n). Similarly, one computes

Ha ⊲ S∨(gij) =
〈
ha , π

(Ld,n)
(
S∨(gij)(2)

)〉
S∨(gij)(1)

=
〈
ι(Ld,n)(ha) , S∨(gij)(2)

〉
S∨(gij)(1)

=
n∑

k=1

〈
Ha , S∨(gik)

〉
S∨(gkj)

= −
n∑

k=1

〈Ha, gik〉S∨(gkj) = − δai S∨(gij) .(6.32)

Using (6.31) and (6.32), the left action of Ha on the left coinvariant generators ηij is thus
computed to be

Ha ⊲ ηij =
d∑

k=1

((
Ha ⊲ S∨(gik)

)
gkj + S∨(gik) (Ha ⊲ gkj)

)
= (δaj − δai) ηij ,(6.33)

as required. �

By (6.33), we notice that the diagonal elements of the matrices η and η⊥ are T -invariant.
However, in contrast to the deformed products obtained by Drinfel’d twists of Hopf-
module algebras (such as those defined in §2.2), they do not span a commutative ideal
but rather only a commutative subalgebra, as one easily checks from the relations (6.25).

Example 6.34. For d = 1, one has Grθ(1;n) = (CPn−1
θ )∗ with θ = θ(n−1), and the

Ore localization with respect to the embeddings above identifies the generators ηik with the
elements

1
n
yk =

1
n
w−1
i wk

generating the degree 0 localized subalgebras of Theorem 5.4, as one readily checks using
(6.25). The noncommutative affine subvarieties Uθ[σi], i = 1, . . . , n constructed from
each maximal cone σi in the fan Σ of CPn−1 are thus generated exactly by each row of
the matrix η. By Example 6.16 one has a natural isomorphism Sθ

∼= OCPn−1
θ

(1), and in

a similar vein S⊥
θ
∼= OCPn−1

θ
(−1). By tensoring the exact sequence (6.27) from the right

with the locally free sheaf S∨
θ
∼= OCPn−1

θ
(−1), and by using (6.28) and dualizing, one finds

the Euler sequence

0 −→ co−Lθ
1,nF

θ
n −→ V

∨
θ (−1) −→ OCPn−1

θ
−→ 0 ,

analogous to that of [25, §8.11]. In the commutative case, this sequence is dual to the
description of the tangent bundle in terms of the surjective bundle map OCPn−1 ⊗ V →
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OCPn−1 which evaluates global sections of the hyperplane bundle. The construction above
provides a geometrical interpretation for the sequence of Example 6.10 which describes the
bundle of Kähler differentials Ω1

CPn−1
θ

.

References

[1] M. Artin, W. Schelter: Graded algebras of global dimension 3, Adv. Math. 66 (1987), 171–216.
[2] M. Artin, J. J. Zhang: Noncommutative projective schemes, Adv. Math. 109 (1994), 228–287.
[3] M. Artin, W. Schelter, J. Tate: Quantum deformations of GL(n), Commun. Pure Appl. Math. 44

(1991), 879–895.
[4] M. Artin, J. Tate, M. Van den Bergh: Some algebras associated to automorphisms of elliptic curves,

Progr. Math. 86 (1990), 33–85.
[5] D. Auroux, L. Katzarkov, D. Orlov: Mirror symmetry for weighted projective planes and their

noncommutative deformations, Ann. Math. 167 (2008), 867–943.
[6] V. Baranovsky, V. Ginzburg, A. Kuznetsov: Quiver varieties and a noncommutative P2, Compos.

Math. 134 (2002), 283–318.
[7] A. Beilinson, V. Ginzburg, W. Soergel: Koszul duality patterns in representation theory, J. Amer.

Math. Soc. 9 (1996), 473–527.
[8] M. Bennai, E. H. Saidi: Toric varieties with NC toric actions: NC type IIA geometry, Nucl. Phys.

B 667 (2004), 587–613.
[9] R. Berger, M. Dubois-Violette, M. Wambst: Homogeneous algebras, J. Algebra 261 (2003), 172–185.

[10] M. Cirafici, A. Sinkovics, R. J. Szabo: Cohomological gauge theory, quiver matrix models and
Donaldson–Thomas theory, Nucl. Phys. B 809 (2009), 452–518.

[11] L. Cirio: Twisted noncommutative equivariant cohomology: Weil and Cartan models, preprint
arXiv:0706.3602 [math.QA].

[12] L. Cirio, G. Landi, R. J. Szabo: Algebraic deformations of toric varieties II. Noncommutative in-
stantons, in preparation.

[13] A. Connes, G. Landi: Noncommutative manifolds, the instanton algebra and isospectral deformations,
Commun. Math. Phys. 221 (2001), 141–159.

[14] D. A. Cox: The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 17–50.
[15] D. A. Cox: Toric varieties and toric resolutions, Progr. Math. 181 (2000), 259–284; What is a toric

variety?, Contemp. Math. 334 (2003), 203–223.
[16] R. Dijkgraaf, L. Hollands, P. Sulkowski: Quantum curves and D-modules, J. High Energy Phys.

0911 (2009), 047.
[17] M. Dubois-Violette: Noncommutative coordinate algebras, preprint arXiv:0810.1114 [math.QA].
[18] P. Erdös, J. Lehner: The distribution of the number of summands in the partitions of a positive

integer, Duke Math. J. 8 (1941), 335–345.
[19] R. Fioresi: Quantum deformation of the grassmannian manifold, J. Algebra 214 (1999), 418–447.
[20] W. Fulton, Introduction to Toric Varieties (Princeton University Press, 1993).
[21] I. Gel’fand, S. Gel’fand, V. Retakh, R. L. Wilson: Quasideterminants, Adv. Math. 193 (2005),

56–141.
[22] K. R. Goodearl, E. S. Letzter: The Dixmier–Moeglin equivalence in quantum coordinate rings and

quantized Weyl algebras, Trans. Amer. Math. Soc. 352 (1999), 1381–1403.
[23] C. Ingalls: Quantum toric varieties, preprint available at

http://kappa.math.unb.ca/~colin/research/nctoric.pdf

[24] A. Iqbal, N. A. Nekrasov, A. Okounkov, C. Vafa: Quantum foam and topological strings, J. High
Energy Phys. 0804 (2008), 011.

[25] A. Kapustin, A. Kuznetsov, D. Orlov: Noncommutative instantons and twistor transform, Commun.
Math. Phys. 221 (2001), 385–432.

[26] C. Kassel: Quantum groups, Graduate Texts in Mathematics 155, (Springer–Verlag, 1995).
[27] A. Klimyk, K. Schmudgen: Quantum Groups and their Representations (Springer–Verlag, 1997).
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