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On Chowla's conjecture fOT class numbers of real

quadratlc flelds

Tsuneo Araltawa

§ O. IntroductLon

The class number problem of obtaining an effective estimate for

class numbers of imaginary quadratic fields was a classical but

fundamental problem and has recently been settled by Goldfeld [Gol, 2]

and Gross-Zagier [G-Z] with the use of an extremely ingenious methode

Class number problems for real quadratic fields with some

additional condition on discriminants ean be considered. It seems

that along this line a typical interesting problem is a conjecture of

S. Chowla [Ch], [C-F]. In the sequel let D always denote a square

free positive integer and h(D) the class number of the real quadratic

field ~(~). Chowla's conjecture predicts that

h(D)=l and 2D= q +4 (resp. 4q2+1) with q e ~ if and only if

D= 5,13,29,53, 173,293 (resp. D= 5, 17,37, 101,197,677).

Chowla's conjecture has been proved by Mollin ([Mo]) and Lachaud [La]

under the generalized Riemann hypothesis. Kim-Leu-Ono [K-L-OJ proved

that if D=q2+ 4 or 4q2+1 (q e ~), then there exists at most one D~e16
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with h(D)=I.

Let E be an elliptic curve over ~ with conductor N and L(E,s)=
CD

L
n=1

the L-function associated with E. The Taniyama-Weil

conjecture predicts that

( O. 1 ) the function
CD

f(z)= i:
n=1

a e2TCinz
n is a new form of weight two

with respect to the congruenee subgroup rO(N) of SLZ(Z).

In this ease the L-function L(E,s)= L(f,s) is analytically continued

to an entire function of s which satisfies the functional equation

* *L (E,Z-s)= EEL (E,s)

where * rrr SL (E,s)= (v N/2TC) r(s)L(E,s}. Denote by r(E) the Mordell-Weil

rank of E. We moreover assume that the Bireh and Swinnerton-Deyer

conjecture holds for the elliptic curve E;

(0.2) L(E,s) has a zero at s=1 cf order r(E).

Let x=xO be a Dirichlet character associated with the quadratic

extension ~(j'D}/~. Concerning Chowla's conjecture, Goldfeld's result

[GoI, Theorem 1] implies the following.

THEOREM (Goldfeld). Let E be an eLLLptLc curve ouer ~ satts/yLng

(0.1), (O.Z). Let D be 01 the form D=q2+ 4 or 4q2+1 (q E W) ~Lth

h(D)=1. Then for any posLtive number 8, there exLsts a aertaLn

pos L t Lue constant C (8, E) depend Lng onL"Y on E and E such that

(0.3) (logD)r-~-2 < C(s,E)(logD)E,

~here ~=1 or 2 so that x(N)=(-l)r-~.
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The aim of this note is to obtain a better estimate for logD than

that of (0.3). We follow the method of Goldfeld (or more precisely

its modified version due to Oesterle [Oe]). We obtain

THEOREM 1. Assu~e that an eLLLptLc curve E over ~ sates/Les the

condLtLons (0.1), (0.2). Let D be a square free positive integer
2 2

~ith D= q +4 or 4q +1 (q e ~) satis/yLng the condLtions

h(D)= 1 and (D,N)=l.

De/ine a positive integer g by

( r(E)+1 if Xn(N)= -SE
(0.4) g =

r(E) if Xn(N)= SE'

Horeover assume that g~4. Then there exist positive constants Cl'

A. and rea L cons tan ts C2 I ••• I Cg-l depend Lng on L"y on E such t ha t,

il q > 4,

g-l
+ L

j=2

(logD)g-1-j
C ) - A.

j (g-l-j)!

+

3/2"g-4
< N ; losso' (1 ~ 10S80) + N5/422IS-41(18+ D~~4)

2
N3 / 2 . (logEO) .2S- 7 ·(4Max(2,logM)+9),

/D

~here M= N/(4n 2 } and So is the fundamentaL unLt of ~(~) ~Lth

SO>1 ~hLch Ls gLVen. Ln thLs case b'1I

BO= (q+ j q2+ 4) /2 (resp. 2q+ Aq 2+ 1
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The oonstants Cl' A' and IC 2 1, · .• , ICg_II are effeotLveLy

oomputabLe and the precLse definitLon Ls gLven by (2.6), (2.8) Ln

thLs paper.

By this theorem, Goldfeld's estimate (0.3) is improved as folIows:

( 0 • 5 ) (logD)r-~-1 < C(E)

with a eertain positive eonstant C(E) depending only on E (note that

As a eorollary of Theorem 1, one ean obtain a result in the ease

of E over © with r(E)=3 (and aeeordingly, EE=-l).

COROLLARY. Let E satLsfy the oonditLons (0.1), (0.2) ~ith r(E)=3

and EE=-I. WrLte the oonductor N as a produot 01 distinot prime

e 1 eh:
laotors: N= Pt .. 'Pk · Assume that e 1+ ... +ek = 0 mod 2. Let D be a

square Iree positive integer ~Lth h{D)=l and D=q2+ 4 or 4q2+1 (q e W).

Assume Moreover that q > Max(4,Pl, ... ,Pk). Then,

2
2N 5 / 4 ( 67) 3/2 (laSsO)+ · 18+~ + N· ·(4Max(2,logM)+9),
logD D 4/"D

~here Cl' c 2 ' C3 , A and 80 are the sa~e as Ln THEOREM 1.

REMARK. It is known that, if D=q2+ 4 or 4q2+1 (q E W, q>2) and

h(D) =1, then, D is a prime integer eongruent to one modulo 4 and

moreover XD(P)= -1 for any prime p less than q ([Yo, Theorem 1,
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Proposition 2]).

A ltey to the proof is the inequality (2.9) and moreover to employ

some convenient expression due to Zagier [Za] for the Dedekind zeta

function of ©(~).

The author Hould like to thank Max-Planck-Institut für Mathematik

in Bonn for aupporting him financially in 1989 and thanlr Professor

D. Zagier for his kind advice.

§ 1. Rea L q'Uadra t (.0 f ieLds and oont inued fraot (.ons

Let D be a square free positive integer and set F=~(j'D). Let h(D)

denote the class number of F. For any x of F, x' denotes the

conjugate of x. A number x of F is- called reduced if x>l and

O>x')-l. Any number x of F can be expanded in a unique way as a

continued fraction:

( 1 • 1 ) 1

1
(a. E Z, a.~l if i~2).

1 1

Then the sequence {a 1 ,a2 , ... } becomes periodic. Let m be the period

of x. Then, x is reduced, if and only if the continued fraetion

expansion cf x is pure periodic, i.e., ai+m=a i (i~l). In this ease

we write for simplieity

( 1.2 ) instead of (1.1).
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Now we recall a theqrem of Zagier [Za] concerning partial zeta

functions of real quadratic fields. A partial zeta function ~F(s,B)

associated with a narrow ideal class B of F=~(;-O) is given by

(Re { s } >1 ) ,

where b runs over all integral ideals of B. A number Z of F is

called reduced in the sense of [Za], if z>l>z'>O. Let B be a narrow

ideal class of F. There exists a reduced number w in the sense of [Za]

for which (l,w} gives a basis of some ideal b in B. Then, w has a

purely periodic continued fraction expansion with period r of the form

( 1 .3) 1

1

with b.+ =b. for any j e ~ ([Za, p. 162]). We write simply
J r J

for the continued fraction expansion (1.3). The period r depends onIy

on the class Band is denoted by t{B). Set, for each j (l~j~t(B»),

Then each continued fraction w. is reduced in the sense cf [Za] and
J

{1,w.} also gives a basis of the ideal b. It is knewn that
J

( 1 .4)

8 being the totally positive fundamental unit of F with e>1. For each

j (l~j~t(B», we define a binary quadratic form Qj(x,y) by

( 1.5) Q. (x,y)=
J

1

W.-w'.
J J

(y+xw. ) (y+xw'. )
J J

- 6 -

( [Za, (6. 7 ) ] ) ,



which is an indefinite binary quadratic form with positive

coefficients and discriminant 1. Zagier obtained the following

decomposition far

THEOREM (Zagier [2a, p.166]).

F. Then,

Let DF denote the dLsor4mLnant 0/

lJhere

8/2 -1 t(B)
DF t F ( s , B ) =::E ZQ . ( s )

j=l J
(Re ( s ) >1 ) ,

co co

ZQ . ( 8 ) = 1: 1:
J p=1 q=O

1
sQj(P,q)

Far the later use we quote some results due to Yokoi. Assurne that

D:l mad 4. Let ( ~ )* be the extended Legendre symbol which coincides

with (+) far any add prime integers p and is defined at p=2 by

(+)*= ( 1 DEI mod 8

-1 DE5 mod 8.

LEMMA 1 (Yokoi [Yo, Theorem 1, Proposition 2]). Let D be a

square /ree posLtLve Lnteger 01 the form D= q2+ 4 or 4q2+1 ~Lth q E

~, q>2. Assume moreover that h(D)=I. Then, D, q are odd prLmes and

( ~ )*=-1 for aLL prLme Lntegers p Less than q.

§ 2. An estLmate for logD

Let E be an elliptic curve over ~ with conductor N. The L-function
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L(E,s}= L
n=l

a n- s has an expression as Euler products:
n

( Re ( 8 ) >1 ) ,

where ap=O if p2 1N , a p =±l if pIN, p2 tN , and

Assume that E satisfies the conditions (0.1),

introduction. In this case the function

lapl~2~ if ptN.

(0.2) in the

f(z)= L
n=l

? .a e",1'[1nZ
n

on the upper half plane ~ is a new form of weight two with respect to

ro(N), and

For a square free positive integer D, let X=Xn denote a Dirichlet

character associated with the quadratic extension ~(~)/~. Assume

for aimplicity that

061 mod 4 and (N,D)=l.

We denote by f~ thc twist of f with X which is a new form of

2weight two with respect to rO(ND). Then,

(n eIN),

where an(f~x) is the n-th Fourier coefficient of f@x. It is

known that

with e(f~)=x(-N)eE

(see for instance [Oe, 2.2]).

Let A be the Liouville function which is a multiplicative function
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from W to {±ll characterized by A(p)=-l far any prime p. Let

L(f~A'S) be the twisted L-functian af L(f,s) by A:

co

L ( f ~A , s ) = :l:
n=1

which i8 absalutely eonvergent far Re(s»3/2. The L-funetian

2L(Sym f,s) af symmetrie square is given by

2 1-s -1(2.1) L(Sym f,s)= rr (1-p ) ·L(f,s/2)L(f~A,S/2) (Re(s»2)
ptN

It is known that L(Sym2f,s) can be cantinued to an entire function

af sand moreaver that

( 2 . 2 )

We set

? { 2,t;} 3 J 2 2 d dL(Sym W f,2)= y If(z)1 ~
N rO(N)\~ y

T(e)= L«f,s)L(f~A'S),

( [og] ) •

The Dirichlet series T(s) (resp. G(s)) is absolutely convergent for

Re(s»1 (reep. Re(s»3/2), and T(s) has a simple zero at 8=1.

For two Dirichlet series

b(s)= L
n=1

c(s)=
Q)

L
n=1

we write b«e if Ibnl~ c n for any n~1. The following fact is known

by Oesterle [Oe, p.314, p.319]).

( 2 • 3 ) (
~F( S-1/2)) 2

0(8)«
t(2s-1)

where F=llJ( /0) .

Now following the method of Oesterle [Oe], we give a proof of

THEOREM 1 in the introduction.
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Proof of THEOREM 1.

Let an elliptic curve E over ~ and a square free positive integer

D satisfy the assumptions of THEOREM 1. Define a positive integer g

by (0.4). We set

with 2
M= N/(47t ).

We consider the following integral J for c>l:

( 2 .4)

We note that the integral J is absolutely canvergent. Since e(f@x}=

X(-N)EE' by the assumption far E, the function

~(s)G(s)= L(f,s)L(f~X,s)

has a zero at s=l of order at least g. Therefore using the functional

equations of L(f,s), L(f®x,s) and shifting the integral path to

o ~ -0), we get

( 2 . 5) ds = 0
2:n:i

(0)3/2).

We set

Then, (2.4), (2.5) imply that

*J = -J.

(0)3/2),

The function y(s)ql(s)/(s-l) has the Taylor expansion at 8=1:

( 2 • 6 ) y ( s ) 'I' ( s ) ( g- 2 )= Cl 1+C2 (s-1)+ ... +Cg _ 1 (s-1) + ...
8-1
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with Cl' C2 , •.. , Cg _ 1 e ~. By virtue of (2.1), (2.2), the first

constant Cl is givcn by

Choose any positive numbers n, n' with n~1/4. Let b be the

oriented integral path given in the figure.

l+in'

o
1-

1- i n'
o

Shifting the integral path in the integral (2.4) to A, we have

( 2 .7)
g-2

J= C ( (logO)
1 (g-2)!

g-l
+ L

j=2

(logO)g-j-1 )
C. + J 1 ,

J (g-j-l)!

where J 1 is the integral with the integral path Re{s)=o replaced

by A on the right side cf (2.4).

Then, J
1

has the trivial estimate

( 2 . 8 ) J..= J I 'Y ( a ) q' ( s ) ( s - 1 ) - g I~ ·
~ 2n

:t,
On the other hand we have to estimate the absolute value IJ I from

the above. Replacing s with s+1/2 yields

pO'+ imJ*= J_. ns - 1 / 2y(s+1/2)T(s+1/2)(G(s+1/2)-1)(s-1/2)-g ds
0-1m 2ni

(0) 1) •

We see from the property (2.3) of the Oirichlet series ~1(S), G(s)

that
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2 2
~(s+1/2)(G(s+1/2)-1) « tF(s) -t(2s) •

Set, for each n e ~,

JO'+1.•• CD /2
a = Os-l y(s+1/2)n- s (s-1/2)-g

n
0'-1.(1)

ds

2:rci
(0'>1) •

Then it is known by Lemma 1 of [Oe, 3.3] that an>O. Similarly as in

( 3 . 4 .2) of [Oe],

(2.9) * rP+ iCD 1/2 2 2 dsIJ I ~ J
a

-
iCD

Os- 1'(s+1/2) (tF{s) -t(2s) ) (s-1/2)-g 2:rci

In this step what we have to da is to get a useful expression of

tF(s) with the help of THEOREM of Zagier. Let P denote the

principal ideal elass of F. Since h(D)=l and So is with norm -1,

P i8 the unique ideal elass of F whieh coincides with the narrow

prineipal ideal class of F. We set

(resp. x= (2q-1+~q2+1)/2)

Then, x i8 reduced and the lattice Z+Zx coincides with the ring of

integers of F. The number w=l+x is reduced in the sense of [Za]. The

relation between the continued fraction expansion of x of the form

(1.1) and that of W of the form (1.3) i8 given explicitly by [Za,

(8.13)]. Since x has a continued fraction expansion

x= [q] (resp. x= [2q-1,1,1])

with the notation (1.2), we have, by [Za, (8.13)], if D=q2+ 4 (resp.

2D= 4q +1 ) ,

w= [[q+2,2, ... ,2]]
~

q-l

(resp. w= [[2q+l,3,2, ... ,2,3]]).
'-----v----

2q-2
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and consequently

t{P)= q (resp. t(P)= 2q+1).

2 2We set, for D= q +4 (resp. D= 4q +1),

b 1=2, •.. , b 1=2, b =q+2q- q

Extending the numbera b
J
. to all j E ~ by b.,=b. if j'3j mod t(P),

J J

we define continued fractions w. aa folIows:
J

( l.s::j ~ t ( P) ) •

Attached to these numbers wj (l~j~t(P)), let Qj(x,y) be the

indefinite quadratic forms given by (1.5). We write

2 2Q.(x,y)= A.x + B.xy + CJ.y
J J J

with A., B., C.>O. Using the recursion formula
J J J

1w.= b.- -- ,
J J wj +1

we can calculate explicitly the numbers w. and hence A. (1.s::j.s::l(P)).
J J

2If D=q +4, then we obtain

Aj = (_j2+(q+2)j_q)/j])

2If D:4q +1, then,

far 1/J'/2q and A - 1/ ro
~ ~ 2q+l- '" u.

In virtue of THEOREM af Zagier we get a decomposition far ~F(s):

( 2 .10)
CI)

-8L Q). (m,n) ,
m,n=l '

For each j (l.s::j~l(P)), let ~j be the measure on ~+ given by
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p..=
J !: ~Q . ( m, n) ,

m,n=l J

where ba (a>O) denotes the Dirac measure at the point B.

LEMMA 2. Let l~j~t(P). [/ t~l, then, ~j([O,t])=O. [/ t>l, then,

~.([O,t])~ !log(w./w~).
J 2 J J

Proof.

( 2 . 11)

We note that

where #(8) denotes the cardinality of a finite set S. Since

A.+B.+C.>l, the first equality is clear. 8uppose t>l. It is easy to
J J J

see from (2.11) that

~j([O,t]) ~ J e ~21 dxdy.
{(x,y) ~+ Qj(x,y)~t}

An elementary calculation shows that the integral on the right aide

coincides with

B.+1 ()t log J = t
2

log wj/wj
2 B.-1

J

q.e.d.

We define a measure v on ~+ to be the surn of the Dirac measure

b 1 at the point 1 and the Lebesgue measure on the interval [l,~).

Set, for each j (1~j~t(P»,

~ '. = !. log (w .Iw ,.) . v ,
J 2 J J

which gives a measure on ~+. LEMMA 2 shows that

( 2 . 12)

- 14 -
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For any positive measure ~ on ~+, let ~ be the Mellin transform

of IJ:

IJ(S)= J t-S p.,

lR+

if the integral on the right aide exists. Then if Re(s»l,

( 2 • 13 )
co

1l'.(s)= 1:: QJ.(m,n)-s
J m,n=l

und ~(S)= .!. log(w./w")'~ .
J 2 J J 9-1

Thus Lemma 3 of [Oe, 3.3] and (2.9), (2.10), (2.12), (21.13) enable

us to get the following estimate far IJ*I:

Let 8 be the same as in (1.4). In our ease, s= s~. We set, if

2 2D=q +4 (resp. D=4q +1),

q 'J -s
A(s)= .1: (-j"'+(Q+2)j-Q)

J=2

2q -a
( resp. A ( 8 ) = 1:: (- j 2+( 2q+1 ) j - q) ).

j=1

Sinee
t(P)

1:: A- s - Ds / 2 (1+A(s)), it is easy to see from (1.4) and
j=1 j-

(2.13) that

(2.14)

where

a+ico
1

1
= n-1/ZS . y(s+1/2)t(2s)2ns(A(s)2+ 2A (s))(s-1/2)-g

a-1c:o

- 15 -
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- 1 /2 pU+ im /2 g d
1 2= 20 logS'J_. y(s+1/2)t(2s)DS (l+A(s)) .__S__ '(9-1/2)- 9

er-J.m s-1 27ti

(0'>1).

We note that the value of the integral 1
1

is positive and that the

values of 1 2 , 1 3 are real numbers ([Oe, Lemma 1 of 3.3]). Take any

positive number p with O<p~1/2. Shifting the integral path Re(s)=er

to Re(s)=1/2+p yields

~ DPY(1+P)t(1+2P)2(A(1/2+P)2+2A(1/2+p»J~(p2+ t 2)-g/2.dt .
-e» 2n

Hence,

( 2. 15 ) 11~ nPy(1+p)t(1+2p)2(A(1/2+p)2+ 2A (1/2+p», ~gg-l '
2np

where we put

~ =g
Je» (1+t2 )-g/2dt .

-m

Similarly as in (3.4.8) of [Oe], a residue calculation implies that

f
+i w

x s . __s _.(s-1/2)-g
O'-im 8-1

Therefore,

(x>O, 0'>1).

( 2 .16) g+11Z ~ logS'y(3/2)t(Z)2 (1+A(1».

Shifting the integral path of the integral 1 3 to Re(s)=l+p, we have

- 16 -



The integral on the right side is dominated by

-l- ( (1+Z e) Zgn: + 'g g 1 ),
27t p (p+l/2) -

dt

27t

which is less than 2
g

- 3( %+ 9), since ~g~~4~7t/2. Taking p=
-1(Max(2,logM)) as in [Oe, Proposition 1, c)], we have the estimate

( 2.17 )
N3 / 2 4

.zg- e·(4Max(2,logM)+9).
37t

Now we have to estimate A(I/2+p) (O<p~I/2) from the above.

LEMMA 3.

( 2 .18 )

Then,

Suppose that

[
1-2p if O<p<1/2,

q > 4/ p( I-p)

4 if p=1/2.

Al l/Z+p) ~ [

(4/D)P.r(1/2-p)~

r( I-p)
O<p<1/2

p=1/Z.

REMARK. If D= q2+ 4 , the above estimate for A(1/2+p) holds

without the assumption (2.18) for q.

Proof. First let 2D= q +4. Set, for simplicity, ~=1/2+p. Then it

is immediate to see that
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from which the estimate easily follws. Suppose

(2.19)
2q

A(~)~ 2q-a + SI (-x 2+(2q+l)x-q)-adx.

We put 8= (2q+l-J'D)/2. Note that 0<8<1/2 and 8'=(2q+l+J'D)/2 >

2q+l/2. If 0<p<1/2,

SI (-x2+(2q+l)x-q)-adx= (4/D)P'Sl (1-t2)-~dt
8 (2q-l)/.JD

Replacing the integrand (1_t 2 )-a with t(1-t 2 )-a, we have

(2.20)
1 1-a

S (-x2+(2q+l)x-q)-adx ~ ------q-------
8 (1/2-p)J'D

where the value on the right hand side is larger than q-a if

?

q2) (1-2p)'"
16p( I-p)

In the oase of p=1/2, it is not difficult to see that, if q>4,

( 2 . 21)
1

S (-x2+(2q+l)x-q)-ldx) I/q.
1/2

Thus by (2.19), (2.20), (2.21), the value A(1/2+p) with 0<p<1/2

(resp. A(l» is dominated by the integral

2q+l/2
(resp. S (-x 2 +(2q+l)x-q)-ldx).

1/2

An elementary caloulation of these integrals leads us to the

2assertion for D=4q +1.

We set

- 18 -
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Then, ~=2.62205.... The following inequality is based on (2.15),

LEMMA 3 applied to p=1/4 , an obvious estimate 1
t(1+2p)<1+ 2P ' and

the inequality

(2.22)

"tg $.7t/2 :

N5 / 4 22 (g-4) ( 23/232~2 + 2232~3 )
1 1 < n 2 n174 n2

The inequality (2.16) and LEMMA 3 applied to p=1/2 imply that

3/2 2
g

-
3

(4 )(2.23) 1 2 < N --3-- laSsO· 1+ j'D logSO ·

Taking a trivial estimate eln3 <2- 3 into account in (2.17), we

conclude from (2.7), (2.8), (2.14), (2.17), (2.22) and (2.23) that

THEOREM 1 in the introduction holds.

Our final task is to derive COROLLARY from THEOREM 1 in the

introduction.

q.e.d.

Proof of COROLLARY. Let the assumption be the same as in the

assertion of COROLLARY. Each p. (1~j~{), a divisor of Nt is less than
J

q. Therefore, with the help . of Lemma 1 t :'(D(Pj)= (+)*= -1 .
J

Since e 1+•.. +ek=O mod 2,

k e. e 1+·· .+ek
Xn(N)= n XD(P

J
') J= (-1) = 1= -EE'

j=1

from which g=r(E)+1=4 . Thus COR1LLARY follows from THEOREM 1.
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q.e.d.
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