On Chowla's conjecture for class numbers
 of real quadratic fields

by

Tsuneo Aralkawa

```
Max-Planck-Institut
für Mathematik
Gottfried-Claren-Strasse 26
D-5300 Bonn 3
and Department of Mathematics
Rikkyo University
Nishi-Ikebukuro
Tokyo 171 Japan
```


On Chowla's conjecture for class numbers of real quadratic fields

Tsuneo Arakawa

§ 0. Introduction

The class number problem of obtaining an effective estimate for class numbers of imaginary quadratic fields was a classical but fundamental problem and has recently been settled by Goldfeld [Go1, 2] and Gross-Zagier [G-Z] with the use of an extremely ingenious method.

Class number problems for real quadratic fields with some additional condition on discriminants can be considered. It seems that along this line a typical interesting problem is a conjecture of S. Chowla [Ch], [C-F]. In the sequel let D always denote a square free positive integer and $h(D)$ the class number of the real quadratic field $\mathbb{Q}(\sqrt{D})$. Chowla's conjecture predicts that

```
\(h(D)=1\) and \(D=q^{2}+4\) (resp. \(4 q^{2}+1\) ) with \(q \in \mathbb{N}\) if and only if
    \(D=5,13,29,53,173,293\) (resp. \(D=5,17,37,101,197,677\) ).
```

Chowla's conjecture has been proved by Mollin ([Mo]) and Lachaud [La] under the generalized Riemann hypothesis. Kim-Leu-Ono [K-L-O] proved that if $D=q^{2}+4$ or $4 q^{2}+1(q \in \mathbb{N})$, then there exists at most one $D \geq e^{16}$
with $h(D)=1$.
Let E be an elliptic curve over \mathbb{Q} with conductor N and $L(E, s)=$ $\sum_{n=1}^{\infty} a_{n} n^{-s}$ the L-function associated with E. The Taniyama-Weil conjecture predicts that
(0.1) the function $f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}$ is a new form of weight two with respect to the congruence subgroup $\Gamma_{0}(N)$ of $S L_{2}(\mathbf{Z})$.

In this case the L-function $L(E, s)=L(f, s)$ is analytically continued to an entire function of s which satisfies the functional equation

$$
L^{*}(E, 2-s)=\epsilon_{E} L^{*}(E, s) \quad \text { with } \quad \epsilon_{E}= \pm 1
$$

where $L^{*}(E, s)=(\sqrt{N} / 2 \pi)^{s} \Gamma(s) L(E, s)$. Denote by $r(E)$ the Mordell-Weil rank of E. We moreover assume that the Birch and Swinnerton-Deyer conjecture holds for the elliptic curve E;
(0.2) $L(E, s)$ has a zero at $s=1$ of order $r(E)$.

Let $x=x_{D}$ be a Dirichlet character associated with the quadratic extension $\mathbb{Q}(\sqrt{D}) / \mathbb{Q}$. Concerning Chowla's conjecture, Goldfeld's result [Go1, Theorem 1] implies the following.

THEOREM (Goldfeld). Let E be an elliptic curve over \mathbb{Q} satisfylng (0.1), (0.2). Let D be of the form $D=q^{2}+4$ or $4 q^{2}+1 \quad(q \in \mathbb{N})$ w $t h$ $h(D)=1$. Then for any positive number ε, there exists a certafn positue constant $C(\varepsilon, E)$ depending only on ε and E such that

$$
\begin{equation*}
(\log D)^{r-\mu-2}<C(\varepsilon, E)(\log D)^{\varepsilon} \tag{0.3}
\end{equation*}
$$

where $\mu=1$ or 2 so that $x(N)=(-1)^{r-\mu}$.

The aim of this note is to obtain a better estimate for logD than that of (0.3). We follow the method of Goldfeld (or more precisely its modified version due to Oesterlé [Oe]). We obtain

THEOREM 1. Assume that an elliptic curve E over Q satisfies the condltions (0.1), (0.2). Let D be a square free positive integer with $D=q^{2}+4$ or $4 q^{2}+1(q \in \mathbb{N})$ satisfying the conditions

$$
h(D)=1 \quad \text { and } \quad(D, N)=1
$$

Define a positive integer g by

$$
g=\left(\begin{array}{llll}
r(E)+1 & \cdots & \text { if } \quad x_{D}(N)=-\varepsilon_{E} \tag{0.4}\\
r(E) & \cdots & \text { if } \quad x_{D}(N)=\varepsilon_{E}
\end{array}\right.
$$

Horeover assume that $\mathbf{g} 24$. Then there exist positive constants C_{1}, λ and real constants $\mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{g}-1}$ depending only on E such that, $i f \mathrm{q}>4$,

$$
\begin{aligned}
& C_{1}\left(\frac{(\log D)^{g-2}}{(g-2)!}+\sum_{j=2}^{g-1} C_{j} \frac{(\log D)^{g-1-j}}{(g-1-j)!}\right)-\lambda \\
& <\frac{N^{3 / 2} 2^{g-4}}{3} \log \varepsilon_{0} \cdot\left(1+\frac{4}{\sqrt{D}} \log \varepsilon_{0}\right)+N^{5 / 4} 2^{2(g-4)}\left(18+\frac{67}{D^{1 / 4}}\right) \\
& \quad+N^{3 / 2} \cdot \frac{\left(\log \varepsilon_{0}\right)^{2}}{\sqrt{D}} \cdot 2^{g-7} \cdot(4 \operatorname{Max}(2, \log M)+9),
\end{aligned}
$$

where $M=N /\left(4 \pi^{2}\right)$ and ε_{0} is the fundamental unit of $\operatorname{D}(\sqrt{D})$ with $\varepsilon_{0}>1$ which is given in this case by $\varepsilon_{0}=\left(q+\sqrt{q^{2}+4}\right) / 2$ (resp. $2 q+\sqrt{4 q^{2}+1}$) if $D=q^{2}+4$ (resp. $4 q^{2}+1$).

The constants C_{1}, λ, and $\left|C_{2}\right|, \ldots,\left|C_{g-1}\right|$ are effectively computable and the precise definition is given by (2.6), (2.8) in thts paper.

By this theorem, Goldfeld's estimate (0.3) is improved as follows:

$$
\begin{equation*}
(\log D)^{r-\mu-1}<C(E) \tag{0.5}
\end{equation*}
$$

with a certain positive constant $C(E)$ depending only on E (note that $\epsilon_{E}=(-1)^{r}$ and $\left.g=r+2-\mu\right)$.

As a corollary of Theorem 1 , one can obtain a result in the case of E over \mathbb{Q} with $r(E)=3$ (and accordingly, $\epsilon_{E}=-1$).

COROLLARY. Let E satisfy the conditions (0.1), (0.2) with $\mathrm{r}(\mathrm{E})=3$ and $\epsilon_{\mathrm{E}}=-1$. Write the conductor N as a product of distinct prime factors: $\mathrm{N}=\mathrm{p}_{1}^{\mathrm{e}_{1}} \cdots \mathrm{p}_{\mathrm{k}}^{\mathrm{e}_{\mathrm{k}}}$. Assume that $\mathrm{e}_{1}+\cdots+\mathrm{e}_{\mathrm{k}} \equiv 0 \bmod 2$. Let D be a square fres positive integer with $h(D)=1$ and $D=q^{2}+4$ or $4 q^{2}+1$ ($q \in \mathbb{N}$). Assume moreover that $\mathrm{q}>\operatorname{Max}\left(4, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}\right)$. Then,

$$
\begin{aligned}
C_{1} \log D & <2 C_{1}\left(1 C_{2} 1+\frac{\left|C_{3}\right|}{\log D}\right)+\frac{2 \lambda}{\log D}+\frac{2 N^{3 / 2} \log \varepsilon_{0}}{3 \log D} \cdot\left(1+\frac{4 \log \varepsilon_{0}}{\sqrt{D}}\right) \\
& +\frac{2 N^{5 / 4}}{\log D} \cdot\left(18+\frac{67}{D^{1 / 4}}\right)+N^{3 / 2} \cdot \frac{\left(\log \varepsilon_{0}\right)^{2}}{4 \sqrt{D}} \cdot(4 \operatorname{Max}(2, \log M)+9),
\end{aligned}
$$

where $C_{1}, C_{2}, C_{3}, \lambda$ and ε_{0} are the same as in THEOREM 1.

REMARK. It is known that, if $D=q^{2}+4$ or $4 q^{2}+1(q \in \mathbb{N}, q>2)$ and $h(D)=1$, then, D is a prime integer congruent to one modulo 4 and moreover $x_{D}(p)=-1$ for any prime p less than q ([Yo, Theorem 1 ,

Proposition 2]).

A ley to the proof is the inequality (2.9) and moreover to employ some convenient expression due to Zagier [Za] for the Dedekind zeta function of (\sqrt{D}).

The author would like to thank Max-Planck-Institut für Mathematik in Bonn for supporting him financially in 1989 and thank Professor D. Zagier for his kind advice.
§ 1. Real quadratic fields and continued fractions

Let D be a square free positive integer and set $F=\mathbb{G}(\sqrt{D})$. Let $h(D)$ denote the class number of F. For any x of F, x^{\prime} denotes the conjugate of x. A number x of F is called reduced if $x>1$ and $0>x^{\prime}>-1$. Any number x of F can be expanded in a unique way as a continued fraction:

$$
\begin{equation*}
\left(a_{i} \in \mathbb{Z}, a_{i} \geq 1 \text { if } i \geq 2\right) \tag{1.1}
\end{equation*}
$$

Then the sequence $\left\{a_{1}, a_{2}, \ldots\right\}$ becomes periodic. Let m be the period of x. Then, x is reduced, if and only if the continued fraction expansion of x is pure periodic, i.e., $a_{i+m}=a_{i}(i \geq 1)$. In this case we write for simplicity

$$
\begin{equation*}
x=\left[a_{1}, \ldots, a_{m}\right] \quad \text { instead of }(1,1) \tag{1.2}
\end{equation*}
$$

Now we recall a theorem of Zagier [Za] concerning partial zeta functions of real quadratic fields. A partial zeta function $\xi_{F}(s, B)$ associated with a narrow ideal class B of $F=\mathbb{Q}(\sqrt{D})$ is given by

$$
\xi_{F}(s, B)=\sum_{b} N(b)^{-s} \quad(\operatorname{Re}(s)>1)
$$

where b runs over all integral ideals of B. A number z of F is called reduced in the sense of [Za], if $z>1>z>0$. Let B be a narrow ideal class of F. There exists a reduced number w in the sense of [Za] for which $\{1, w\}$ gives a basis of some ideal b in B. Then, w has a purely periodic continued fraction expansion with period r of the form (1.3)

$$
w=b_{1}-\frac{1}{b_{2}-\frac{1}{\cdot!}}
$$

$$
\left(b_{j} \in \mathbb{Z}, \quad b_{j} 22\right)
$$

with $b_{j+r}=b_{j}$ for any $j \in \mathbb{N}([z a, p .162])$. We write simply

$$
w=\left[\left[b_{1}, \ldots, b_{r}\right]\right]
$$

for the continued fraction expansion (1.3). The period r depends only on the class B and is denoted by $\ell(B)$. Set, for each $j(1 \leq j \leq \ell(B))$,

$$
w_{j}=\left[\left[b_{j}, b_{j+1}, \ldots, b_{j+\ell(B)-1}\right]\right] .
$$

Then each continued fraction w_{j} is reduced in the sense of $[\mathrm{Za}]$ and $\left\{1, W_{j}\right\}$ also gives a basis of the ideal b. It is known that

$$
\begin{equation*}
w_{1} \cdots w_{i(B)}=\varepsilon \tag{1.4}
\end{equation*}
$$

ε being the totally positive fundamental unit of F with $\varepsilon>1$. For each j ($1 \leq j \leq \ell(B))$, we define a binary quadratic form $Q_{j}(x, y)$ by

$$
\begin{equation*}
Q_{j}(x, y)=\frac{1}{w_{j}-w_{j}^{\prime}}\left(y+x w_{j}\right)\left(y+x w_{j}^{\prime}\right) \quad([z a,(6.7)]) \tag{1.5}
\end{equation*}
$$

which is an indefinite binary quadratic form with positive coefficients and discriminant 1. Zagier obtained the following decomposition for $s_{F}\left(s, B^{-1}\right)$.

THEOREM (Zagier [Za, p.166]). Let D_{F} denote the discriminant of F. Then,

$$
\mathrm{D}_{\mathrm{F}}^{\mathrm{s} / 2} \zeta_{\mathrm{F}}\left(\mathrm{~s}, \mathrm{~B}^{-1}\right)=\sum_{j=1}^{\ell(B)} Z_{Q_{j}}(s) \quad(\operatorname{Re}(s)>1),
$$

where

$$
Z_{Q_{j}}(s)=\sum_{p=1}^{\infty} \sum_{q=0}^{\infty} \frac{1}{Q_{j}(p, q)^{\delta}} .
$$

For the later use we quote some results due to Yokoi. Assume that $D \equiv 1 \bmod 4$. Let $\left(\frac{D}{p}\right)^{*}$ be the extended Legendre symbol which coincides with $\left(\frac{D}{p}\right)$ for any odd prime integers p and is defined at $p=2$ by

$$
\left(\frac{\mathrm{D}}{\mathrm{p}}\right)^{*}=\left(\begin{array}{rll}
1 & \cdots & \mathrm{D} \equiv 1 \\
-1 & \cdots & \bmod 8 \\
-5 & \bmod 8 .
\end{array}\right.
$$

LEMMA 1 (Yokoi [Yo, Theorem 1, Proposition 2]). Let D be a square free positive integer of the form $D=q^{2}+4$ or $4 q^{2}+1$ with $q \in$ $\mathbb{N}, \mathrm{q}>2$. Assume moreover that $\mathrm{h}(\mathrm{D})=1$. Then, D, q are odd primes and $\left(\frac{\mathrm{D}}{\mathrm{p}}\right)^{*}=-1$ for all prime integers p less than q.
§ 2. An estimate for logD

Let E be an elliptic curve over with conductor N. The L-function
$L(E, s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ has an expression as Euler products:

$$
L(E, s)={ }_{p \mid N}^{\pi}\left(1-a_{p} p^{-s}\right)^{-1} \prod_{p+N}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1} \quad(\operatorname{Re}(s)>1),
$$

where $a_{p}=0$ if $p^{2} \mid N, a_{p}= \pm 1$ if $p \mid N, p^{2}+N$, and $\left|a_{p}\right| \leq 2 \sqrt{p}$ if $p \nmid N$. Assume that E satisfies the conditions (0.1), (0.2) in the introduction. In this case the function

$$
f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}
$$

on the upper half plane 8 is a new form of weight two with respect to $\Gamma_{0}(N)$, and

$$
f\left(-\frac{1}{N z}\right)=-\epsilon_{E^{N z}} z^{2} f(z)
$$

For a square free positive integer D, let $x=x_{D}$ denote a Dirichlet character associated with the quadratic extension $\mathbb{Q}(\sqrt{\mathrm{D}}) / \mathbb{Q}$. Assume for simplicity that

$$
D \equiv 1 \bmod 4 \quad \text { and }(N, D)=1
$$

We denote by $f \otimes x$ the twist of f with x which is a new form of weight two with respect to $\Gamma_{0}\left(\mathrm{ND}^{2}\right)$. Then,

$$
a_{n}(f \otimes x)=a_{n} x(n) \quad(n \in \mathbb{N}),
$$

where $a_{n}(f \otimes x)$ is the n-th Fourier coefficient of $f \otimes x$. It is known that

$$
(f \otimes x)\left(-\frac{1}{N z}\right)=-\epsilon(f \otimes x) N D^{2} z^{2}(f \otimes x)(z) \quad \text { with } \quad \epsilon(f \otimes x)=x(-N) \epsilon_{E}
$$

(see for instance [Oe, 2.2]).
Let λ be the Liouville function which is a multiplicative function
from \mathbb{N} to $\{ \pm 1\}$ characterized by $\lambda(p)=-1$ for any prime p. Let $L(f \otimes \lambda, s)$ be the twisted $L-f u n c t i o n$ of $L(f, s)$ by λ :

$$
L(f \otimes \lambda, s)=\sum_{n=1}^{\infty} \frac{a_{n} \lambda(n)}{n^{s}},
$$

which is absolutely convergent for $\operatorname{Re}(s)>3 / 2$. The L-function L(Sym $\left.{ }^{2} f, s\right)$ of symmetric square is given by

$$
\begin{equation*}
L\left(\operatorname{Sym}^{2} f, s\right)=\prod_{p+N}\left(1-p^{1-s}\right)^{-1} \cdot L(f, s / 2) L\left(f \otimes_{\lambda}, s / 2\right) \quad(\operatorname{Re}(s)>2) \tag{2.1}
\end{equation*}
$$

It is known that $L\left(\operatorname{Sym}^{2} f, s\right)$ can be continued to an entire function of s and moreover that

$$
\begin{equation*}
L\left(\operatorname{Sym}^{2} f, 2\right)=\frac{(2 \pi)^{3}}{N} \int_{\Gamma_{0}(N) \backslash g} y^{2}|f(z)|^{2} \frac{d x d y}{y^{2}} \quad([O g]) \tag{2.2}
\end{equation*}
$$

We set

$$
\begin{aligned}
& \Psi(s)=L((f, s) L(f \otimes \lambda, s), \\
& G(s)=L(f \otimes x, s) L\left((f \otimes \lambda, s)^{-1} .\right.
\end{aligned}
$$

The Dirichlet series $\mu(s)(r e s p . G(s))$ is absolutely convergent for $\operatorname{Re}(s)>1$ (resp. $\operatorname{Re}(s)>3 / 2)$, and $\Psi(s)$ has a simple zero at $s=1$. For two Dirichlet series

$$
b(s)=\sum_{n=1}^{\infty} \frac{b_{n}}{n^{s}}, \quad c(s)=\sum_{n=1}^{\infty} \frac{c_{n}}{n^{s}},
$$

we write $b \ll c$ if $\left|b_{n}\right| \leq c_{n}$ for any $n \geq 1$. The following fact is known by Oesterlé [Oe, p.314, p.319]).
(2.3) $\quad \Psi(s) \ll \zeta(2 s-1)^{2} \quad$ and $\quad G(s) \ll\left(\frac{\zeta_{F}(s-1 / 2)}{\xi(2 s-1)}\right)^{2}$, where $F=\mathbb{Q}(\sqrt{D})$.

Now following the method of Oesterlé [Oe], we give a proof of
THEOREM 1 in the introduction.

Proof of THEOREM 1.

Let an elliptic curve E over and a square free positive integer D satisfy the assumptions of THEOREM 1. Define a positive integer g by (0.4). We set

$$
\gamma(s)=M^{s} \Gamma(s)^{2} \quad \text { with } \quad M=N /\left(4 \pi^{2}\right)
$$

We consider the following integral J for $\sigma>1$:
(2.4) $J=\int_{\sigma-i \infty}^{\sigma+i \infty} D^{s-1} \gamma(s) \Psi(s)(s-1)^{-g} \frac{d s}{2 \pi i}$.

We note that the integral J is absolutely convergent. Since $\in(f(x)=$ $x(-N) \epsilon_{E}$, by the assumption for E, the function

$$
\Psi(s) G(s)=L(f, s) L(f \otimes x, s)
$$

has a zero at $s=1$ of order at least g. Therefore using the functional equations of $L(f, s), L(f \otimes x, s)$ and shifting the integral path to $\sigma \rightarrow-\infty$, we get

$$
\begin{equation*}
\int_{\sigma-i \infty}^{\sigma+i \infty} D^{s-1} \gamma(s) \psi(s) G(s)(s-1)^{-g} \frac{d s}{2 \pi i}=0 \quad(\sigma>3 / 2) \tag{2.5}
\end{equation*}
$$

We set

$$
J^{*}=\int_{\sigma-i \infty}^{\sigma+i \infty} D^{s-1} \gamma(s) \Psi(s)(G(s)-1)(s-1)^{-g} \frac{d s}{2 \pi i} \quad(\sigma>3 / 2)
$$

Then, (2.4), (2.5) imply that

$$
J^{*}=-J .
$$

The function $\gamma(s) \Psi(s) /(s-1)$ has the Taylor expansion at $s=1$:
(2.6) $\quad \frac{\gamma(s) \Psi(s)}{s-1}=C_{1}\left(1+C_{2}(s-1)+\cdots+C_{g-1}(s-1)^{g-2}+\cdots\right)$
with $C_{1}, C_{2}, \ldots, C_{g-1} \in \mathbb{R}$. By virtue of (2.1), (2.2), the first constant C_{1} is given by

$$
C_{1}=4 \pi \pi_{p \mid N}\left(1-p^{-1}\right)^{-1} \cdot \int_{\Gamma_{0}}(N) \backslash \frac{p}{\left.1 f(z)\right|^{2} d x d y>0}
$$

Choose any positive numbers π, π^{\prime} with $\eta \leq 1 / 4$. Let Δ be the oriented integral path given in the figure.

Shifting the integral path in the integral (2.4) to Δ, we have (2.7) $J=C_{1}\left(\frac{(\log D)^{g-2}}{(g-2)!}+\sum_{j=2}^{g-1} C_{j} \frac{(\log D)^{g-j-1}}{(g-j-1)!}\right)+J_{1}$,
where J_{1} is the integral with the integral path $\operatorname{Re}(s)=\sigma$ replaced by Δ on the right side of (2.4).
Then, J_{1} has the trivial estimate
(2.8) $\quad\left|J_{1}\right| \leq \lambda, \quad \lambda=\int_{\Delta}\left|\gamma(s) \Psi(s)(s-1)^{-g}\right| \frac{|d s|}{2 \pi}$.

On the other hand we have to estimate the absolute value $\left|J^{*}\right|$ from the above. Replacing s with $s+1 / 2$ yields

$$
J^{*}=\int_{\sigma-i \infty}^{\sigma+i \infty} D^{s-1 / 2} \gamma(s+1 / 2) \psi(s+1 / 2)(G(s+1 / 2)-1)(s-1 / 2)^{-g} \frac{d s}{2 \pi i}(\sigma>1)
$$

We see from the property (2.3) of the Dirichlet series $\Psi(s), G(s)$ that

$$
\Psi(s+1 / 2)(G(s+1 / 2)-1) \ll \zeta_{F}(s)^{2}-\zeta(2 s)^{2}
$$

Set, for each $n \in \mathbb{N}$,

$$
\alpha_{n}=\int_{\sigma-i \infty}^{\sigma+i \infty} D^{s-1 / 2} \gamma(s+1 / 2) n^{-s}(s-1 / 2)^{-g} \frac{d s}{2 \pi i} \quad(\sigma>1)
$$

Then it is known by Lemma 1 of [Oe, 3.3] that $\alpha_{n}>0$. Similarly as in (3.4.2) of [Oe],

$$
\left|J^{*}\right| \leq \int_{\sigma-i \infty}^{\sigma+i \infty} D^{s-1 / 2} r(s+1 / 2)\left(\xi_{F}(s)^{2}-\zeta(2 s)^{2}\right)(s-1 / 2)^{-g} \frac{d s}{2 \pi i}
$$

In this step what we have to do is to get a useful expression of $\zeta_{F}(s)$ with the help of THEOREM of Zagier. Let p denote the principal ideal class of F. Since $h(D)=1$ and ε_{0} is with norm -1 , P is the unique ideal class of F which coincides with the narrow principal ideal class of F. We set

$$
\dot{x}=\varepsilon_{0} \quad\left(\text { resp. } x=\left(2 q-1+\sqrt{4 q^{2}+1}\right) / 2\right) \quad \text { if } D=q^{2}+4 \quad\left(\text { resp. } D=4 q^{2}+1\right)
$$

Then, x is reduced and the lattice $\mathbb{Z}+\mathbb{Z x}$ coincides with the ring of integers of F. The number $w=1+x$ is reduced in the sense of [Za]. The relation between the continued fraction expansion of x of the form (1.1) and that of w of the form (1.3) is given explicitly by [Za, (8.13)]. Since x has a continued fraction expansion

$$
x=[q] \quad(\text { resp. } x=[2 q-1,1,1])
$$

with the notation (1.2), we have, by $[\mathrm{Za},(8.13)]$, if $\mathrm{D}=\mathrm{q}^{2}+4$ (resp. $\mathrm{D}=4 \mathrm{q}^{2}+1$),

$$
w=[[q+2, \underbrace{2, \ldots, 2}_{q-1}]] \quad(r e s p . w=[[2 q+1,3, \underbrace{2, \ldots, 2}_{2 q-2}, 3]]) .
$$

and consequently

$$
\ell(P)=q \quad(\text { resp } \quad \ell(P)=2 q+1)
$$

We set, for $D=q^{2}+4$ (resp. $D=4 q^{2}+1$),

$$
\begin{aligned}
& b_{1}=2, \ldots, b_{q-1}=2, b_{q}=q+2 \\
& \left(\text { resp. } \quad b_{1}=2, \ldots, b_{2 q-2}=2, b_{2 q-1}=3, b_{2 q}=2 q+1, b_{2 q+1}=3\right)
\end{aligned}
$$

Extending the numbers b_{j} to all $j \in \mathbb{N}$ by $b_{j},=b_{j}$ if $j^{\prime} \equiv j \bmod \ell(P)$, we define continued fractions w_{j} as follows:

$$
w_{j}=\left[\left[b_{j}, b_{j+1}, \cdots, b_{j+\ell(P)-1}\right]\right] \quad(1 \leq j \leq \ell(P))
$$

Attached to these numbers $\mathrm{F}_{j}(1 \leq j \leq \ell(P))$, let $Q_{j}(x, y)$ be the indefinite quadratic forms given by (1.5). We write

$$
Q_{j}(x, y)=A_{j} x^{2}+B_{j} x y+C_{j} y^{2} \quad(1 \leq j \leq \ell(P))
$$

with $A_{j}, B_{j}, C_{j}>0$. Using the recursion formula

$$
w_{j}=b_{j}-\frac{1}{w_{j+1}}
$$

we can calculate explicitly the numbers w_{j} and hence $A_{j}(1 \leq j \leq \ell(P))$. If $D=q^{2}+4$, then we obtain

$$
A_{j}=\left(-j^{2}+(q+2) j-q\right) / \sqrt{D} \text { for } 1 \leq j \leq q
$$

If $D=4 q^{2}+1$, then,

$$
A_{j}=\left(-j^{2}+(2 q+1) j-q\right) / \sqrt{D} \quad \text { for } 1 \leq j \leq 2 q \text { and } \quad A_{2 q+1}=1 / \sqrt{D}
$$

In virtue of THEOREM of Zagier we get a decomposition for $\boldsymbol{\zeta}_{\mathrm{F}}(\mathrm{s})$:

$$
\begin{equation*}
D^{s / 2} \zeta_{F}(s)=\zeta(2 s) \sum_{j=1}^{\ell(P)} A_{j}^{-s}+\sum_{j=1}^{\ell(P)} \sum_{m, n=1}^{\infty} Q_{j}(m, n)^{-s} \tag{2.10}
\end{equation*}
$$

For each $j(1 \leq j \leq \ell(P))$, let μ_{j} be the measure on \mathbb{R}_{+}given by

$$
\mu_{j}=\sum_{m, n=1}^{\infty} s_{Q_{j}}(m, n),
$$

where $\delta_{a}(a>0)$ denotes the Dirac measure at the point a.

LEMMA 2. Let $1 \leq j \leq \ell(\mathrm{P})$. If $\mathrm{t} \leq 1$, then, $\mu_{j}([0, \mathrm{t}])=0$. If $\mathrm{t}>1$, then,

$$
\mu_{j}([0, t]) \leq \frac{t}{2} \log \left(w_{j} / w_{j}^{\prime}\right) .
$$

Proof. We note that

$$
\begin{equation*}
\mu_{j}([0, t])=\#\left\{(m, n) \in \mathbb{N}^{2} \mid Q_{j}(m, n) \leq t\right\} \tag{2.11}
\end{equation*}
$$

where \#(S) denotes the cardinality of a finite set S. Since $A_{j}+B_{j}+C_{j}>1$, the first equality is clear. Suppose $t>1$. It is easy to see from (2.11) that

$$
\mu_{j}([0, t]) \leq \int_{\left\{(x, y) \in \mathbb{R}_{+}^{2} \mid Q_{j}(x, y) \leq t\right\}} d x d y
$$

An elementary calculation shows that the integral on the right side coincides with

$$
\frac{t}{2} \log \frac{B_{j}+1}{B_{j}-1}=\frac{t}{2} \log \left(W_{j} / w_{j}\right)
$$

We define a measure ν on \mathbb{R}_{+}to be the sum of the Dirac measure δ_{1} at the point 1 and the Lebesgue measure on the interval $[1, \infty)$. Set, for each j ($1 \leq j \leq \ell(P))$,

$$
\mu_{j}^{\prime}=\frac{1}{2} \log \left(w_{j} / w_{j}^{\prime}\right) \cdot \nu,
$$

which gives a measure on \mathbb{R}_{+}. LEMMA 2 shows that

$$
\begin{equation*}
\mu_{j}([0, t])<\mu_{j}^{\prime}([0, t]) \quad \text { for any } t>0 \tag{2.12}
\end{equation*}
$$

For any positive measure μ on \mathbb{R}_{+}, let $\hat{\mu}$ be the Mellin transform of μ :

$$
\mu(s)=\int_{\mathbb{R}_{+}} t^{-s} \mu
$$

if the integral on the right side exists. Then if $\operatorname{Re}(s)>1$,
(2.13) $\quad \widehat{\mu}_{j}(s)=\sum_{m, n=1}^{\infty} Q_{j}(m, n)^{-s} \quad$ and $\quad \widehat{\mu}_{j}(s)=\frac{1}{2} \log \left(w_{j} / w_{j}^{\prime}\right) \cdot \frac{s}{s-1}$.

Thus Lemma 3 of [Oe, 3.3] and (2.9), (2.10), (2.12), (21.13) enable us to get the following estimate for $\left|J^{*}\right|$:

$$
\begin{aligned}
& \left|J^{*}\right| \leq D^{-1 / 2} \int_{\sigma-i \infty}^{\sigma+i \infty} \gamma(s+1 / 2)\left[\xi(2 s)^{2}\left\{\left(\sum_{j=1}^{\ell(P)} A_{j}^{-s}\right)^{2}-D^{s}\right)+\right. \\
& \left.\quad 2 \xi(2 s)\left(\sum_{j=1}^{\ell(P)} A_{j}^{-s}\right)\left(\sum_{j=1}^{\ell(P)} \widehat{\mu}_{j}^{\prime}(s)\right)+\left(\sum_{j=1}^{\ell(P)} \widehat{\mu}_{j}^{\prime}(s)\right)^{2}\right](s-1 / 2)^{-g} \frac{\mathrm{ds}}{2 \pi i} .
\end{aligned}
$$

Let ε be the same as in (1.4). In our case, $\varepsilon=\varepsilon_{0}^{2}$. We set, if $D=q^{2}+4 \quad$ (resp. $D=4 q^{2}+1$),

$$
A(s)=\sum_{j=2}^{q}\left(-j^{2}+(q+2) j-q\right)^{-s} \quad\left(\text { resp. } A(s)=\sum_{j=1}^{2 q}\left(-j^{2}+(2 q+1) j-q\right)^{-s}\right)
$$

Since $\sum_{j=1}^{\ell(P)} A_{j}^{-s}=D^{s / 2}(1+A(s))$, it is easy to see from (1.4) and (2.13) that

$$
\begin{equation*}
\left|J^{*}\right| \leq I_{1}+I_{2}+I_{3} \tag{2.14}
\end{equation*}
$$

where

$$
I_{1}=D^{-1 / 2} \int_{\sigma-i \infty}^{\sigma+i \infty} \gamma(s+1 / 2) \xi(2 s)^{2} D^{s}\left(A(s)^{2}+2 A(s)\right)(s-1 / 2)^{-g} \frac{d s}{2 \pi i},
$$

$$
\begin{aligned}
& I_{2}=2 D^{-1 / 2} \log \varepsilon \cdot \int_{\sigma-i \infty}^{\sigma+i \infty} \gamma(s+1 / 2) \xi(2 s) D^{s / 2}(1+A(s)) \cdot \frac{s}{s-1} \cdot(s-1 / 2)^{-g} \frac{d s}{2 \pi i} \\
& I_{3}=D^{-1 / 2}(\log \varepsilon)^{2} \int_{\sigma-i \infty}^{\sigma+i \infty} \gamma(s+1 / 2)\left(\frac{s}{s-1}\right)^{2}(s-1 / 2)^{-g} \frac{d s}{2 \pi i} \\
& (\sigma>1) .
\end{aligned}
$$

We note that the value of the integral I_{1} is positive and that the values of I_{2}, I_{3} are real numbers ([Oe, Lemma 1 of 3.3]). Take any positive number ρ with $0<\rho \leq 1 / 2$. Shifting the integral path Re(s)=o to $\operatorname{Re}(s)=1 / 2+\rho$ yields

$$
\begin{aligned}
I_{1} & =D^{-1 / 2} \int_{1 / 2+\rho-i \infty}^{1 / 2+\rho+i \infty} r(s+1 / 2) \xi(2 s)^{2} D^{s}\left(A(s)^{2}+2 A(s)\right)(s-1 / 2)^{-g} \frac{d s}{2 \pi i} \\
& \leq D^{\rho} r(1+\rho) \xi(1+2 \rho)^{2}\left(A(1 / 2+\rho)^{2}+2 A(1 / 2+\rho)\right) \int_{-\infty}^{\infty}\left(\rho^{2}+t^{2}\right)^{-g / 2} \cdot \frac{d t}{2 \pi}
\end{aligned}
$$

Hence,
(2.15) $\quad I_{1} \leq D^{\rho} \gamma(1+\rho) \xi(1+2 \rho)^{2}\left(A(1 / 2+\rho)^{2}+2 A(1 / 2+\rho)\right) \cdot \frac{\tau_{g}}{2 \pi \rho^{g-I}}$,
where we put

$$
\tau_{g}=\int_{-\infty}^{\infty}\left(1+t^{2}\right)^{-g / 2} d t
$$

Similarly as in (3.4.8) of [Oe], a residue calculation implies that

$$
\int_{\sigma-i \infty}^{\sigma+i \infty} x^{s} \cdot \frac{s}{s-1} \cdot(s-1 / 2)^{-g} \frac{d s}{2 \pi i} \leq 2^{g} x \quad(x>0, \sigma>1)
$$

Therefore,
$(2.16) \quad I_{2} \leq \log \varepsilon \cdot \gamma(3 / 2) \zeta(2) 2^{g+1}(1+A(1))$.
Shifting the integral path of the integral I_{3} to $R e(s)=1+\rho$, we have

$$
\left|I_{3}\right| \leq D^{-1 / 2}(\log \varepsilon)^{2} \gamma(3 / 2+\rho) \int_{-\infty}^{\infty} \frac{(1+\rho)^{2}+t^{2}}{\rho^{2}+t^{2}} \cdot \frac{1}{\left((\rho+1 / 2)^{2}+t^{2}\right)^{g / 2}} \cdot \frac{d t}{2 \pi}
$$

The integral on the right side is dominated by

$$
\frac{1}{2 \pi}\left(\frac{(1+2 \rho) 2^{g} \pi}{\rho}+\frac{\tau_{g}}{(\rho+1 / 2)^{g-1}}\right)
$$

which is less than $2^{g-3}\left(\frac{4}{\rho}+9\right)$, since $\tau_{g} \leq \tau_{4} \leq \pi / 2$. Taking $\rho=$
 (2.17) $\quad I_{3} \leq D^{-1 / 2}\left(\log \varepsilon_{0}\right)^{2} \frac{N^{3 / 2}}{\pi^{3}} \cdot 2^{g-4} e \cdot(4 \operatorname{Max}(2, \log M)+9)$. Now we have to estimate $A(1 / 2+\rho)(0<\rho \leq 1 / 2)$ from the above.

LEMMA 3. Suppose that
(2.18)

$$
q>\left\{\begin{array}{cccc}
\frac{1-2 \rho}{4 \sqrt{\rho(1-\rho)}} & \cdots & \text { if } & 0<\rho<1 / 2 \\
4 & \cdots & \text { if } & \rho=1 / 2
\end{array}\right.
$$

Then,

$$
A(1 / 2+\rho) \leq\left\{\begin{array}{ccc}
(4 / D)^{\rho} \cdot \frac{\Gamma(1 / 2-\rho) \sqrt{\pi}}{\Gamma(1-\rho)} & \cdots & 0<\rho<1 / 2 \\
\frac{4}{\sqrt{D}} \log \varepsilon_{0} & \cdots & \rho=1 / 2
\end{array}\right.
$$

REMARK. If $D=q^{2}+4$, the above estimate for $A(1 / 2+\rho)$ holds without the assumption (2.18) for q.

Proof. First let $D=q^{2}+4$. Set, for simplicity, $\alpha=1 / 2+\rho$. Then it is immediate to see that

$$
A(\alpha) \leq \int_{1}^{q+1}\left(-x^{2}+(q+2) x-q\right)^{-\alpha} d x=(4 / D)^{\rho} \cdot \int_{-q / \sqrt{D}}^{q / \sqrt{D}}\left(1-t^{2}\right)^{-\alpha} d t
$$

from which the estimate easily follws. Suppose $D=4 q^{2}+1$. Then,
(2.19) $\quad A(\alpha) \leq 2 q^{-\alpha}+\int_{1}^{2 q}\left(-x^{2}+(2 q+1) x-q\right)^{-\alpha} d x$.

We put $B=(2 \mathrm{q}+1-\sqrt{\mathrm{D}}) / 2$. Note that $0<\beta<1 / 2$ and $\beta^{\prime}=(2 \mathrm{q}+1+\sqrt{\mathrm{D}}) / 2>$ $2 q+1 / 2$. If $0<\rho<1 / 2$,

$$
\int_{B}^{1}\left(-x^{2}+(2 q+1) x-q\right)^{-\alpha} d x=(4 / D)^{\rho} \cdot \int_{(2 q-1) / \sqrt{D}}^{1}\left(1-t^{2}\right)^{-\alpha} d t
$$

Replacing the integrand $\left(1-t^{2}\right)^{-\alpha}$ with $t\left(1-t^{2}\right)^{-\alpha}$, we have
(2.20)

$$
\int_{\beta}^{1}\left(-x^{2}+(2 q+1) x-q\right)^{-\alpha} d x \geq \frac{q^{1-\alpha}}{(1 / 2-\rho) \sqrt{D}}
$$

where the value on the right hand side is larger than $q^{-\alpha}$ if

$$
q^{2}>\frac{(1-2 \rho)^{2}}{16 p(1-\rho)}
$$

In the case of $\rho=1 / 2$, it is not difficult to see that, if $q>4$,

$$
\begin{equation*}
\int_{1 / 2}^{1}\left(-x^{2}+(2 q+1) x-q\right)^{-1} d x>1 / q \tag{2.21}
\end{equation*}
$$

Thus by (2.19), (2.20), (2.21), the value $A(1 / 2+\rho)$ with $0<p<1 / 2$ (resp. A(1)) is dominated by the integral

$$
\int_{\beta}^{\beta}\left(-x^{2}+(2 q+1) x-q\right)^{-\alpha} d x \quad\left(\text { resp. } \quad \int_{1 / 2}^{2 q+1 / 2}\left(-x^{2}+(2 q+1) x-q\right)^{-1} d x\right) .
$$

An elementary calculation of these integrals leads us to the assertion for $D=4 q^{2}+1$.
q.e.d.

We set

$$
\omega=\Gamma(1 / 4)^{2} /(2 \sqrt{2 \pi})=\int_{-1}^{1}\left(1-x^{4}\right)^{-1 / 2} d x
$$

Then, $\omega=2.62205 \ldots$. The following inequality is based on (2.15), LEMMA 3 applied to $\rho=1 / 4$, an obvious estimate $5(1+2 \rho)<1+\frac{1}{2 \rho}$, and the inequality $\tau_{g} \leq \pi / 2$:
(2.22)

$$
\begin{aligned}
& I_{1}<N^{5 / 4} 2^{2(g-4)}\left(\frac{2^{3 / 2} 3^{2} \omega^{2}}{\pi^{2}}+\frac{2^{2} 3^{2} \omega^{3}}{D^{1 / 4} \pi^{2}}\right) \\
&<N^{5 / 4} 2^{2(g-4)}\left(18+\frac{67}{D^{1 / 4}}\right) .
\end{aligned}
$$

The inequality (2.16) and LEMMA 3 applied to $\rho=1 / 2$ imply that

$$
\begin{equation*}
I_{2}<N^{3 / 2} \frac{2^{g-3}}{3} \log \varepsilon_{0} \cdot\left(1+\frac{4}{\sqrt{D}} \log \varepsilon_{0}\right) \tag{2.23}
\end{equation*}
$$

Taking a trivial estimate $e / \pi^{3}<2^{-3}$ into account in (2.17), we conclude from $(2.7),(2.8),(2.14),(2.17),(2.22)$ and (2.23) that THEOREM 1 in the introduction holds. q.e.d.

Our final task is to derive COROLLARY from THEOREM 1 in the introduction.

Proof of COROLLARY. Let the assumption be the same as in the assertion of COROLLARY. Each $p_{j}(1 \leq j \leq k)$, a divisor of N, is less than q. Therefore, with the help. . of Lemma $1, x_{D}\left(p_{j}\right)=\left(\frac{D}{p_{j}}\right)^{*}=-1$. Since $e_{1}+\ldots+e_{k} \equiv 0 \bmod 2$,

$$
x_{D}(N)=\prod_{j=1}^{k} x_{D}\left(p_{j}\right)^{e_{j}}=(-1)^{e_{1}+\ldots+e_{k}}=1=-\epsilon_{E}
$$

from which $g=r(E)+1=4$. Thus CORILLARY follows from THEOREM 1.

References

[Ch] S. Chowla, L-series and elliptic curves, Number Theory Day, Lecture Notes in Math. 626. Berlin Heidelberg New York: Springer 1977.
[C-F] S. Chowla and J. B. Friedlander, Some remarks on L-functions and class numbers, Acta Arith. 28(1976), 414-417.
[Gol] D. Goldfeld, The class numbers of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Sc. Norm. Super. Pisa 3(1976), 623-663.
[Go2] D. Goldfeld, Gauss' class number problem for imaginary quadratic fields, Bull. AMS 13(1985) 23-37.
[G-Z] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84(1986) 225-320.
[K-L-O] H. K. Kim, M. Leu and T. Ono, On two conjectures on real quadratic fields, Proc. Japan Acad. 63, Ser. A(1987) 222-224.
[La] G. Lachaud, On real quadratic fields, Bull. AMS 17(1987) 307-311.
[Mo] R. A. Mollin, Class number one criteria for real quadratic fields, Proc. Japan Acad. 63, Ser. A(1987) 121-125.
[Oe] J. Oesterlé, Nombres de classes des corps quadratiques imaginaires, Seminaire Bourbaki No. 631(1983-1984).
[Og] A. P. Ogg, On a convolution of L-series, Invent. Math. 7 (1969) 297-312.
[Yo] H. Yokoi, Class-number one problem for certain kind of real
quadratic fields, Proc. International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields, 1986, Katata, Japan, pp. 125-137.
[Za] D. Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann. 213(1975) 153-184.

Tsuneo Arakawa

Department of Mathematics	and
Rikkyo University	
Nishi-Ikebukuro	für Mathematik
Tokyo 171 Japan	Gottfried-Claren-Strasse 26
	$0-5300$ Bonn 3

