On Chowla’'s conjecture for class numbers

of real quadratic fields

by

Tsuneo Arakawa

Max-Planck-Institut and Department of Mathematics
fiir Mathematik Rikkyo University
Gottfried-Claren-Strasse 26 Nishi-Ikebukuro

D-5300 Bonn 3 Tokyo 171 Japan

MPIL/89-62



On Chowla’s conjecture for class numbers of real

guadratic flelds

Tsuneo Aralkawa

§ 0. Introduction

The class number problem of obtaining an effective estimate for
class numbers of imaginary quadratic fields was a classical but
fundamental problem and has recently been settled by Goldfeld [Gol, 2]
and Gross-Zagier [G-Z] with the use of an extremely ingenious method.

Class number problems for real quadratic fields with some
additional condition on discriminants can be considered. It seems
that along this line a typical interesting problem is a conjecture of
S. Chowla [(Ch}, [C-F]. In the sequel let D always denote a square
free positive integer and h(D) the class number of the real guadratic

field Q(/ D). Chowla’s conjecture predicts that

h{(D)=1 and D= q2+4 {(resp. 4q2+1) with q € N if and only if

b= 5, 13, 29, 53, 173, 293 (resp. D= 5, 17, 37, 101, 197, 677).

Chowla’s conjecture has been proved by Mollin ([Mo]) and Lachaud {Lal

under the generalized Riemann hypothesis. Kim-Leu-Ono [K-L-0] proved

that if D=q2+4 or 4q2+1 (g € N), then there exists at most one Dze16



with h(D})=1.

Let E be an elliptic curve over @ with conductor N and L(E,s)=

T za.nn-S the L-function associated with E. The Taniyama-Weil

n=1

conjecture predicts that

[-<] ¥
{0.1) the function f(z)= I aneznlnz is a new form of weight two
n=l

with respect to the congruence subgroup FO(N} of SLy (Z) .

In this case the L-function L{(E,s)= L(f,s) is analytically continued

to an entire function of s which satisfies the functional equaticn

* X .
L (E12—3)= GEL (E,S) with €E= tl,

where LY(E,s)= (/' N/2n)%r(s)L(E,s). Denote by r(E) the Mordell-Weil
rank of E. We moreover assume that the Birch and Swinnerton-Deyer

conjecture holds for the elliptic curve E;
(0.2) L(E,s) has a zero at s=1 of order r(E).

Let X=Xy be a Dirichlet character associated with the quadratic
extension Q{/ D)/Q. Concerning Chowla’s conjecture, Goldfeld's result

[Gol, Theorem 1) implies the following.

THEOREM (Goldfeld). Let E be an elliptic curve over Q satisfying
(0.1), (0.2). Let D ba of the form D=q°+4 or 4g°+1 (q € N) with
h(D)=1. Then for any positive number €, there erists a cartatin

positive constant Cl{g,E) depending only on € and E such that
(0.3) (1ogD)T* A2 ¢ C(g,E) (logD)E,

where n=1 or 2 so that x(N)=(-1)T &,



The aim of this note is to obtain a better estimate for logD than
that of {0.3). We follow the method of Goldfeld (or more precisely

its modified version due to Oesterlé {Oe]). We obtain

THEOREM 1. Assume that an elliptic curve E over @ satisfies the
conditions (0.1), (0.2). Lat D be a square free positive integer

with D= q2+4 or 4q2+1 (q € N) satisfying the conditions
h(D)= 1 and (D,N)=1.
Define a positive integer & by

r{E)+1 ‘e if xn(N)= -g
(0.4) g = [ D E

r{E) R if xD(N): €

Horeover assume that g£24. Then there exist positive constants Cl'

A and real constants CZ' ey Cg_1 depending only on E such that,
if q > 4,
g-2 g-1 g-1-j
Cq {logD)™ — P> C‘j (1ogD) . } — a
(g-2)! Jj=2 (g-1-3)!
3/2,8-4
N 2 4 5/4,2(g~-4) 67
¢ N2 joge -(1+ 4 1oge ) + N5/4 (18+ )
3 0 /D 0 pl/d

2
N3/2 ' (10880)
v D
2

where M= N/(4n")} and gy (s the fundamental unit of Q(/ D) with

+ 2877 (4Max(2,logM)+9),

80>1 which (s given in this casa by

/ / 2
€p°~ (Q+ q2+4)/2 {(resp. 2q+ 4q2+1 ) if D= q“+4 (resp. 4q2+1).



The comstants Cy, 2, and 1Cyt, ..., ICg_ll are effectively
computable and the precise definition ts given by (2.6), (2.8) (mn

this paper.

By this theorem, Goldfeld’s estimate (0.3) is improved as follows:
(0.5) (logD) T # 1 ¢ c(E)

with~a certain positive constant C(E) depending only on E (note that
As a corollary of Theorem 1, one can obtain a resgsult in the case

of E over @) with r(E)=3 {(and accordingly, eE=—1).

COROLLARY. Let E satisfy the conditions (0.1), (0.2) with r(E}=3
and eE=-1. Write the conductor N as a product of distinet prime
€1 ®

factors: N= p, "'Pk{' Assume that e+ .. +e, = 0 mod 2. Let D be a

square free positive i(nteger with h{(D)=1 and D=q2+4 or 4q2+1 (q € N).

Assume moreover that q > Max(4,p1,...,pk). Then,

IC4 1 2 28°7%10geg 4logs,
CllogD < 201(|02|+ ) + + .(1+ v )
logD logD 3logD J D
5/4 (loge,) 2
+ —35———-(18+ a ) + N3/2 277707 4Max(2,1logM)+9),
logD D 4/ D

whare Cy, Coy C3, A and gy are the same as in THEOREM 1.

REMARK. It is known that, if D=q2+4 or 4q2+1 (q ¢ N, g>2) and

h(D) =1, then, D is a prime integer congruent to one modulo 4 and

moreover xn(p): -1 for any prime p less than q ([Yo, Theorem 1,



Proposition 2]},

A key to the proof is the inequality (2.9) and moreover to employ
some convenient expression due to Zagier [Za] for the Dedekind zeta

function of Q{(./ D).

The author would like to thank Max-Planck-Institut fir Mathematik

in Bonn for supporting him financially in 1989 and thank Professor

D. Zagier for his kind advice.

§ 1. Real quadratic fields and continued fractiomns

Let D be a square free positive integer and set F=Q(/ D). Let h(D)

denote the class number of F. For any x of F, x’ denotes the
conjugate of x. A number x of F is called reduced if x>1 and

0>x’>-1. Any number x of F can be expanded in a unique way as a

continued fraction:

(1.1) x= B+ 1 (a. € Z, B.21 if i22).
1 1 1

Then the sequence {al,az,...} becomes periocdic. Let m be the period
of x. Then, x is reduced, if and only if the continued fraction
expansion of x is pure periodiec, i.e., a., =a. {izl). In this case

i+m™ "1
we write for simplicity

{(1.2) x:[al,....am] instead of (1.1).



Now we recall a theorem of Zagier [Za] concerning partial zeta

functions of real quadratic fields. A partial zeta function gF(s,B)

associated with a narrow ideal class B of F=Q(,/ D) is given by

s

tp(s,B)= T N(b) (Re(s)>1),
b

where b runs over all integral ideals of B. A number z of F is

called reduced in the sense of [Za], if =2z>1>2’>0. Let B be & narrow
ideal class of F. There exists a reduced number w in the sense of [Za]

for which {1,w} gives a basis of some ideal b in B. Then, w has a

purely periodic continued fraction expansion with period r of the form

with bj+r=bj for any j € N ([Za, p. 162]). We write simply
w= [[bl'...’br]]

for the continued fraction expansion (1.3). The period r depends only

on the clasg B and is denoted by {{B). Set, for each j (l1gj<l(B})),

w.,= [[b.,b

J j J'+1""'b

j+e(By-111
Then each continued fraction wj is reduced in the sense of [Za] and

{l,wj} also gives a basis of the ideal h. It is known that

(1.4) Y1t Yy T &

€ being the totally positive fundamental unit of F with g>l. For each

J (1£j<t(B)), we define a binary quadratic form Qj(x,y) by

{(1.5) Qj(x,y)z (y+ij)(y+xw3) {([Za, (6.7)1),

w.-w’
J J



which is an indefinite binary quadratic form with positive

coefficients and discriminant 1. Zagier obtained the following

decomposition for ;F(S,B-l).

THEOREM (Zagier [Za, p.166]). Let Dy denote the discriminant of
F. Then,
_ t(B)
g/ %ep(s,8 = T zg (s) (Re(s)>1),
Jj=1 J

where

Z _ - -] [--3 1

Q.(s)= T T ——.

J p=1 q=0  Q,(p,q)

For the later use we quote some results due to Yokoi. Assume that

D=1 mod 4. Let E—%—)* be the extended Legendre symbol which coincides

with (—%—] for any odd prime integers p and is defined at p=2 by

( D )*_ { 1 ... D=l mod 8
P -1 ... Ds5 mod 8.
LEMMA 1 (Yokoi (Yo, Theorem 1, Proposition 2]). Let D be a

square free positive integer of the form D= q2+4 or 4q2+1 with q €
N, q>2. Assume moreover that hi{D}=1. Thenr, D, q are odd primes and
D

(_5—J*=-1 for all prime integers p less than q.

8§ 2. An astimate for logD

Let E be an elliptic curve over @ with conductor N. The L-function



L(E,s}= Z annms has an expression as Euler products:
n=1
L(E,s)=z m (l-a p-l?')'—1 n (l-a p-s+p1-25)—1 (Re(s)>1),
pIN P PN P

where a =0 if P2 N, ay=tl if pIN, pZiN, and lay 12/ 5 if piN.

Assume that E satisfies the conditions (0.1}, (0.2) in the

introduction. In this case the function

< ) ]
f(z)= I a e“TNZ
n=1

on the upper half plane § is a new form of weight two with respect to

FO(N), and

f(- N%): -egNz?t(z).

For a square free positive integer D, let X=Xy denote a Dirichlet
character associated with the quadratic extension Q(./ D)/Q. Assume

for simplicity that
D=zl mod 4 and (N,D)=1.

We denote by f®&¢ the twist of f with x which is & new form of

weight two with respect to FO(NDz). Then,
a (fex)= a x(n) (n € N),
where an(f@x) is the n-th Fourier coefficient of f@x. It is

known that

(fox) (- gz)= -ettex)np?2?(fex)(z)  with e(t@x)=x(-N)eg

(see for instance [QOe, 2.2]).

Let ax be the Liouville function which is a multiplicative function



from N to {£1} characterized by a(p)=-1 for any prime p. Let
L{(f®x,s) be the twisted L-function of L{f,s) by x:

anx(n)

1 s 7

L{f@/\’S)= P
= n

n
which is absolutely convergent for Re(s)>»3/2. The L-function

L(Symzf,s) of symmetric square is given by

1~

(2.1) L(Sym?f,s)= n (1-pt %) Y1.L(f,s/2)L(f@r,s/2) (Re(s)>2)

ptN

It is known that L(Symzf,g) can be continued to an entire function

of 8 and moreover that

3
9
(2.2)  L(sym®f,2)= 220 yiif(z) 1?2 G (rog).
N To NI\ & ¥
We set
P({s)= L(‘fyS>L(f9119)7
G(s)= L(f@x,s)L((ﬁax,s)_l
The Dirichlet series W(s) (resp. G(s)) is absolutely convergent for
Re(s)>1 (resp. Re{(s)>3/2), and ¥(s) has a simple zero at s=1.
For two Dirichlet series
@ b @ C
b(s)z I —g— , els)z T —O—,
n=1 n n=l n

we write b<<c if |bnls c for any nzl. The following fact is known

n
by Oesterlé [Oe, p.314, p.3191).

£ (s-1/2)12
(2.3) Y(s)<<t(2s-1)% and G(s)<<(Ji___~__) , where F=@(/D).
£(2s-1)

Now following the method of Oesterlé [Qe], we give a proof of

THEOREM 1 in the introduction.



Proof of THEOCREM 1.

Let an elliptic curve E over @ and a square free positive integer

D satisfy the assumptions of THEOREM 1. Define a positive integer g
by (0.4). We set

2

v(s)= M°r(s) with M= N/(4n2).

We consider the following integral J for o>1:

+iw
{2.4) J= Io Dsﬂlr(s)wts)(s—l)—g _ds .
g-jew 2nid

We note that the integral J is absolutely convergent. Since e&e(f@x)=

x(—N)eE, by the assumption for E, the function
Y(s)G(s)= L(f,s)L{f®x,s)
has a zero at s=1 of order at least g. Therefore using the functional

equations of L(f,s), L{f®x,s) and shifting the integral path to

g — ~«o, we get

+im
{2.5) Io Ds_ly(s)w(s)G(s)(s—l)_g _ds _ 0 (o>3/2).
g-iw 2xi
We set
b4 tie s-1 -g ds
J = Ia D ris)¥Y{s)(G(s)-1)(s-1) {e>3/2),
o-liw 2ri
Then, (2.4), {2.5) imply that
J¥= -0,

The function v(s)¥{s)/(s3-1}) has the Taylor expansion at s=1:

yi(s)¥(s) _ - L _1y8-2, . ..
(2.6) rae) - Cl(l+02(s 1)+ 4Cy_1(s-1)8724 ]



with Cl' Cz, . vy cg-l € R. By virtue of (2.1), (2.2), the first

constant C1 is given by

Cy= 4x M (1-p” I£(z)|%dxdy > 0.

1’_1'I
pIN Fo(N)\$

Choose any positive numbers p, '’ with px<l1/4. Let A be the

oriented integral path given in the figure.

O;‘
Q

Shifting the integral path in the integral {(2.4) to A, we have

(logp)57% | 821 . (logn)¥797!

(2-2)! jz2 v (g-j-1)!

2.7y 3= ¢y )+ 9y,
where J1 is the integral with the integral path Re(s)=zo¢ replaced
by A on the right side of (2.4).

Then, J1 hags the trivial estimate

A 27

On the other hand we have to estimate the absolute value IJ*l from

the above. Replacing s with 3s+1/2 yields

+ie
J¥s Jp p35 1/ 2y (s41/2)9(s+1/2) (G(s+1/2)-1)(s-1/2) 8 93

o-jiw 2ri

{o>1).

We see from the property (2.3) of the Dirichlet series W(s), G{(s)

that



P(s+1/2)(G(s+1/2)-1) << tg(s)2-g(25)%.
Set, for each n € N,

otie
o = | D87 1/2,(s+1/2)n 8 (s-1/2)78 98 (031,

n o-iw 2ni
Then it is known by Lemma 1 of {Oe, 3.3] that an>0. Similarly as in

(3.4.2) of [Oe],

+iw
(z.9) 1951 < [0 0% M 2par1/2) (gp()2-(28) %) (s-1/2) 8 95
o-iw 2ni

In this step what we have to do is to get a useful expression of

;F(s) with the help of THEOREM of Zagier. Let P denote the
principal ideal class of F. Since h(D)=1 and €9 is with norm -1,

P is the unique ideal class of F which coincides with the narrow

principal ideal class of F. We set

¥= £g (resp. x= (2q—1+¢4q2+1)/2) if D= q2+4 (resp. D= 4q2+1)-

Then, X is reduced and the lattice Z+Zx coincides with the ring of

integers of F. The number w=l+x 1is reduced in the sense of [Za]l. The
relation between the continued fraction expansion of x of the form
(1.1) and that of w of the form (1.3} is given explicitly by [Za,

{8.13)]1, Since x has a continued fraction expansion
x= [ql (resp. x= {2gq-1,1,1))

with the notation (1.2), we have, by [Za, (8.13)), if D=q2+4 {resp.

D=4q%+1),
ws [[q+2,2,...,2]] (resp. w= [[2g+1,3,2,...,2,31)).
1 2q-2
q- q-



and consequently
t(P)= q (resp. £(P)= 2q+1).
2 2
We set, for D= q +4 (resp. D= 4q +1),

=2, .ty bq_1=2, bq:q+2

(resp. b1=2, s+ b =2, b =3, b, _=2g+1, b =3),

2q 2q+1

Extending the numbers bj to all j ¢ N by bj,:bj if j'sj mod ¢{(P),
we define continued fractions wj as follows:

NJ.: [[bj'b,j+1'...'b,j+-£(P)"1]] (l<i<ct(P)).

Attached to these numbers w5 {1cict(P)), let QJ(x.Y) be the

indefinite quadratic forms given by (1.5). We write
Q.(x,¥y)= A x2 + B.xy + C 2 {1<j<l(P))
j YY) = Jj J Yy J’y J
with Aj’ Bj’ Cj>0' Using the recursion formula

1
Wiz b.- =
J Jo o Fie1 '

we can calculate explicitly the numbers wj and hence AJ {1<j<t(P)).

If D:q2+4, then we obtain

Aj= (—j2+(q+2)J-q)/J D for lgj<q.

If D=4q°+1, then,

A= (-32+|2q+1)j—q)// D for 1<js2q and Ap.,y= 1//D.

In virtue of THEOREM of Zagier we get a decomposition for gt (s):

I I L(P) = ;
(2.10) Ds/ng(s)= £(28) T A°+ T Q.(mn) %,
j=1 9 j=t m,n=1 Y

For each j (1<j<t{(P)), let M be the measure on R, given by



5% pTne1 SQj(mm)

where $a {a>0) denotes the Dirac measure at the point a.

LEMMA 2. Let 1<j<t(P). If t<l, then, uj([O.t])=0. If ©>1, then,

t )
ﬂj([ort])‘ EJ—OE(WJ'/WJ')°

Proof. We note that

(2.11) u;(10,£1)= #((m,n) € N°| Q (m,n)st,
where #(S) denotes the cardinality of a finite set 8. Since
Aj+Bj+Cj>1’ the first equality is clear. Suppose t>1. It is easy to

see from (2.11) that

uj10,£)) < | 2 dxdy.
{{x,y) € IR,.,I QJ'(XPY)-‘t}

An elementary calculation shows that the integral on the right side

coincides with

B.+1
L log J =t log(w./w!) g.e.d.
2 Bj—l 2

We define a measure v on R+ to be the sum of the Dirac measure
&1 at the point 1 and the Lebesgue measure on the interval [1,=).

Set, for each j (l<j<t(P)),

1o 1 .),
A il log(wj/wj v,

which gives a measure on R+. LEMMA 2 shows that

{2.12) uj([O,t]) < u3([0,t]) for any t>0.



For any positive measure a on R,, let 7 be the Mellin transform

of u:

als)= Im ™% u,
+

if the integral on the right side exists. Then if Re(s)>1,

Ny -1 ( ,)‘ s
and uj(s)- > log Wj/wj ;jT .

(2.13) A (s)z T , thm,n)'s

(2.10), (2.12), (21.13) enable

Thus Lemma 3 of {Oe, 3.3] and (2.9),

us to get the following estimate for IJ*|:
_ +im {(P) _ 2
g% < p71/2 fo vis+1/2)[s28) 24z A3%) - D%} +
o-iw j=1 J
P) oy tP) A t(P) A 2 _
y Y - g ds
z;<zs>(j§1 'y )(j§1 Wis)) + [351 wy(s)) ] (s-1/2) 2

Let & be the same as in (1.4}. In our case, g= eg. We set, if

D:q2+4 (resp. D=4q2+1).
2q o s
(resp. A(s)=.21 (*J“+(2q+1)J*Q) ).
J:

A(s)= (—j2+(q+2)j—q]_s

"Mo
X

J

P -8 s/2

Since T Aj =D {(1+A{(s)), it is easy to see from (1.4) and
Jj=1

(2.13) that

2.14) J* I,4I,+1

(2.14) 17| < 1+2 3,

where
ds
2ri

g+im
n'l/zf _ v(s+1/2)£(23)%0% (A(s)%42Aa(8) ) (5-1/2) 78

I,=
1 -l



+ie
I,= 2D_1/21035-I0 y(s+1/2)t(28)D% %(1+a(s)) 2. (s-172)°% 48 |
g-im s-1 2mi

+iw
I,= n‘1/2(10g8>2j” r<s+1/z>(;5-)2:s-1/2>‘3 -ds
g-1e -1 2xi
(o>1).

We note that the value of the integral I, is positive and that the

1
values of 12’ 13 are real numbers ([OCe, Lemma 1 of 3.3)). Take any
positive number p with 0<p<l/2. Shifting the integral path Re(s)=zo

to Re(s)=1/2+p yields

1/2+p+iw
y(s+1/2)t(2s)2D%(A(s)2+24(s) ) (s-1/2)"8 98

1,= 0T M2
1/24p-ie 2xi

Y D”v<1+p);<1+2p>2<A<1/2+o>2+zA<1/2+p>)j (p2+t2)"8/2 dt

2m
Hence,
T
(2.15) I,< Dp?(1+p)§(1+2p)2(A(1/2+p)2+2A(1/2+p))-E;%ETT ,

where we put
ez [ (14c?) 78/ 2g¢,
g —

Similarly as in (3.4.8) of [Oe], a residue calculation implies that

+im
Ig x5.-5 .(s-172)"8 _ds _ 28, (x>0, o>1).
o-iw s-1 2ni
Therefore,
(2.16) I, < loge-v(3/2)8(2)25  (1+a(1)).

Shifting the integral path of the integral 13 to Re(s)=1+p, we have



o 2,2
1131 < D71/ % (1loge) Pv(as24p) [ LREe)l 2L, 1 .4t

524t2  ((o+1/2)2402)8/2 2m

The integral on the right side is dominated by

_l( (1+2p)28x . Tg )
2n p (p+1/2)87"

which is less than 23“3[ % + 9), since t8514$n/2. Taking p=

(Max(Z,logM))-l ags in [Oe, Proposition 1, ¢)], we have the estimate

3/2

(2.17)  I,< D 1/%(logey)? p84

e -(4Max(2,logM)+9).
b1

Now we have to estimate A(1/2+p) (0<pgl/2) from the above.

LEMMA 3. Suppose that
—1-2p if  0<p<1/2
. v @ 1 p ’
(2.18) q > 4/ pli-p)
4 e if p=1/2.
Then,
(a/pyP . L/2-p) /R gcpcty2
A(1/2+p) < ri1-p)
4
—— loge .. p=1l/2,
D 0
REMARK. If D= q2+4, the above estimate for A{1/2+p) holds

without the assumption (2.18) for gq.

Proof. First let D= q2+4. Set, for simplicity, «=1/2+p. Then

is immediate to see that

it



a// D 2,

(1-t%) %dt,

q+1 _
Alers [ (-xP+(qr2)x-q) %ax = (4/D)°.

1 -q// D
from which the estimate easily follws. Suppose D=4qz+1. Then,

2q
(2.19) Ala)s 29" % + fl (-x2+(2q+1)x-q) " %dx.
We put 8= (2q+1-/ D)/2. Note that O0<g<1/2 and g'=(2q+1+/D)/2 >
2q+1/2. If 0O<p<l/2,
1 1

j (-x24(2q+1)x-q) Fdx= (4/D)°-f (1-t2) %4t
4 (2q-1)/./D

Replacing the integrand (l-tz)_a with t(l-tz)_a, we have

1 1-
2 - q
(2.20) (-x“+(2q+1)x~q) “dx = '
IB (1/2-p)/ D

where the value on the right hand side is larger than q % if
2
qz> (1-2p)
16p(1-p)
In the case of p=1/2, it is not difficult to see that, if q>4,
! 2 -1
(2.21) f (-x%+(2q+1)x-q) ldx > 1/q.
1/2
Thus by (2.19), (2.20), (2.21), the value A(1/2+p) with 0<p<1/2
(resp. A(l1)) is dominated by the integral
2gq+1/2
1/2

g’ _ -
I (—x2+(2q+1)x—q) X3 x (resp. I (-x2+(2q+l)x~q) 1dx).

g
An elementary calculaticn of these integrals leads us to the

agssertion for D:4q2+1. q.e.d.

We set



1
r(1/4>2/(z./‘2"n):j' (1-x%)"1/244,

n

(]

Then, ©w=2.62205... . The following inequality is based on (2.15),
LEMMA 3 applied to p=1/4 , an obvious estimate §(1+2p)<1+ 2% , and

the inequality < swt/2:

g
3/2,2 2 2,2 3
5/4,2(g-4)( 2 3" 2737w
(2.22) I, <N 2 +

1 ( xz D1/4n2 )

5/4,2(g~-4) 67 )
< N 2 18+ —1771)
( D

The inequality (2.16) and LEMMA 3 applied to p=1/2 imply that

g-3
(2.23) I, < N3/2 27 logso-(1+ A 1ogeo).

3 D
Taking a trivial estimate e/n3<2-3 into account in (2.17), we

conclude from (2.7), (2.8), (2.14), (2.17), (2.22) and (2.23) that

THEOREM 1 in the introduction holds. q.e.d.

Qur final task is to derive COROLLARY from THEOREM 1 in the

introduction.

Proof of COROLLARY. L.et the assumption be the same as in the

assertion of COROLLARY. Each pj (l<jsk), a divisor of N, is less than

v

q. Therefore, with the help . . of Lemma 1, xD(pj): (_%7)*: -1.
J
Since el+...+ek50 mod 2,
k e . e, +...+e
1 k
xn(N)= 1 x (p.) 7= (-1) = 1= -¢
D j=1 D'*J E’

from which g=r(E)+1=4 . Thus CORILLARY follows from THECOREM 1.



q.e.d.
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