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0.1

Introduction

In this paper we give three new proofs of the fact that
the geometric realization |K| of the Kilhnel triangulation
K defined in § 1 is homeomorphic to the complex projective

plane EPZ.

The oridinal proof is due . to W. Kihnel and
T. F. Banchoff and can be found in (K~-B].

o ,
It compares an explicit map from |K| - IA|l to the sphere s?

with the Hopf map (l::l?2 - B —> EEJ s SZ. (Here A 1is any
4-simplex in K and B 1is the complement of a closed tubular
neighborhood of a complex line in EE@ .} In fact, using the
same idea, there exists also an unpublished but completely
straightforward combihatorial arguﬁent (sée end of § 2, where
we reproduce A. Marin's version of it). Moreover Freedman's
classification of simply connected closed 4-manifolds tells

us that there are only two topological manifolds having

the homotopy type of CI:JE'2 , one of which admits no PL-structure.

Therefore it suffices to show that K has the homotopy type

of mmﬂ and has a PL-structure (see § 2 Power hammer proof).

The first of our three proofs (referredto in § 4 as the

direct proof) was presented in Oberwolfach in 1981 and notes .

of this talk have been circulated by K. Jdnich, whom we thank
for having drawn the wonderful pictures they contain.
This proof uses the fact that QPZ maps naturally onto the

2-simplex Az: this map is compared with a simplicial mapping



from‘a subdivision K of K to a subdivision Kz of

b, constructed in § 3. The second proof (referred to in
§ 9 as the crystallographic proof) is by showing that the
Kihnel triangulation K is in féct the quotient of a
rectilinear triangqulation K of EZ by the action of
complex crystallographic group r (defined in § 7)

2 is then

preserving K. an explicit mapping Y:E2 —> CP
defined (see § 9) which factorizes through |K| = EZ/F.

The last proof- (referred to in § 12 as the ontological proof)

is a very efficient attack on the problem that-was developed
by Alexis Marin after reading drafts of the present work.

We include it here as an appendix under his signature,

to which we will;ocasionally refer in the course of the paper.
Other contributions by Marin will be mentioned as we
encounter them, so that this paper should be considered as

a dialogue between the authors and him.

A gquestion naturally arises: "Why three new proofs
when at least two satisfactory ones already exist 2"
Answer: Many mathematicians asked for a spatial represen-
tation of the phenomenon discovered by Kihnel. In order to
respond to this demand, we thought that as many view points
as possible should be given. Each proof (including the one
in [K~B]) does indeed throw a different light from a
different angle of vision, on a simple but tricky four
dimensional fact.‘Tﬁe trickiness comes from the constraint
that human vision has been divised to grasp only three

dimensional happening. We have tried our best to make the



four dimensional world - at least one corner of it -

as palatable as possible to the reader.

In § 1 wé recall that what is the Kilhnel triangulation
K (a simplicial complex of dimenéion”4 with 9 vertices,
the star of all vertices being isomofphic to each other).
In § 2 we recall that the link M at a given vertex is
homeomorphic to the 3-s§here which implies that [K| 1is
a topological 4-manifold. We show that K is PL, which
allows Freedman's Power hammer proof to work, and we cite
Marin's version of the straightforward combinatorial proof.
§ 3 defines a piecewise linear projection p:|K|l —> A,
and studies their topological prﬁperties. § 4 introduces
a map w:mn>2 ~—>‘A2 and compares it with p thus
showing |K| =CEP2 and making the triangulation explicit.
§ 5 shows that K contains a combinatorial torus T with
remarkable properties. This fact enables one to connect
Kiihnel's result with complex crystallography. § 6 constructs
a 6 fold branched cover N of M which will turn out to
be isomorphic to the link of any vertex of X. In order to
explain the crystallographic proof , § 7 introduces lattices
and various crystallographic ingredients needed later, in
particular, the vertices of X and the groups [ and I".
The construction of X 4is completed in § 8. In § 9, a
-invariant holomorphic mapping Y:{B2 — EI’Z is
constructed by using Weierstrass functions,producing a second

explicit homeomorphism K| —> QE’Z. As a dessert § 10



constructs a highly symmetric Dirichlet domain for the
action of I in ¢2 and uses it to exhibits a fundamental
domain for ¥X. It also prepares the construction of § 12

by embedding in ¥ the fundamental domain discovered by

A. Marin . In § 11 one sees how the real projective plane

IRII?2 c CI:IP2 fits insider our picture.

In § 12 (the appendix), it is shown how, by considering a
fundamental domain of |K| which is isomorphic to the
product of A, with a hexagon, and by using a priori
requi;ements, A. Marin forces the Kihnel triangulation

to exisf. This provides a way for the hurried mathematician,
not interested in visualizing things, to avoid most of the
effort imposed on him in the present article. § 13 will
study the quotient of the lattice LIf] of vertices of ¥
by a sublattice of index 81 which should provide the reader
with a global understanding of the whole scenery. § 14

will explain how to.obtain 3-dimensional paper models of

various- constructions used in the course of the article.

The pictures of K. Jénich, already cited, were of
invaluable help in Ebmmunicating our idears, and are
reproduced here with the logo {the Katakana sign
pronounced és the Engl£sh word "Yea"). We also include
four drawings made for us by George K. Francis which

we attribute to him as they occur.

We would like to acknowlege the importance to us of

the contribution of Jdnich, numerous discussions with



Kithnel (who.gave us much useful information and made
many helpful suggestions)and the deep interest shown

by A. Marin, in particular his stern checking, his
rigorous criticisms and the solidity of his contribution.
We are grateful to Alex Flegmann who tried his best

to make our Franco-Japanese English book less clumsyi
Without the facilities offered both by the IRMA ( ULP
Strasbourg, France) and by the MPI fiir Mathematik (Bonn,
West Germany), the authors could not thank each other

for their mutual collaboration. A special mention should
be made of Marie-~Claire Grima, who showed great paptience
in tabulating a huge quantity of tedious diagrams. Some
of these appear below while the remainder will, we hope,
serve as the basis for a computerised audiovisual

animation of the picutes we have in mind.






Chapter I The Kihnel complex viewed as a PL-manifold

§ 1 Kihnel's simplicial complex K

Let the vertices 1,2,...,9 of the 8-simplex AS

be arranged in an array as follows:

1 4 7
2 5 8
3 6 )

In the course of this paper we like to keep in mind the
idea that the three columns of this matrix are respectively
blue, white and‘red, so that for instance 1 belongs to the

blue family 5 to the white family and 9 to the red family.

Let G be the subgroup of the symmetric group Sq {acting
on AB) be generated by o,8 and Yy , where a and =8
cyclicly permute respectively the columns and the rows

of the above matrix, while Yy is B on the first column,

8-1 on the second and the identity on the third:
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1.2

Thus we have
= an _ -1 _
af=fa , By=yB, o ‘yay =B ,

showing that the order of G 1is 27. Moreover G acts
transitively on the vertices of Aa. For later use, let

.us also define § and € :

1 4 2
8 2 5 8j=|1 € 2 = 2 .
6 9 3

As an alternative possibility, let us write a sub-simplex
of Ag just by making the places of its vertices in the

3 x 3-matrix (Braille notation), for instance,

(12.459)=BE{ ,(12456)=EE

The type of a sub-simplex of AB is the collection of
non-zero occupation numbers of its vertices in the columns,
for instance, (1 2 4 5 9) is of type 2—2—1 and

(1 2 45 6) 1s of type 3 —2. The marked vertex of

. a 2—-2:—1 simplex is the vertex which lives alone in its
column. For example 9 is the marked vertex in the example
above. The color of a 2—2—1 simplex is the color of its
marked vertex; thus (1 2 45 9) 1is red. The color of a
3—2 simplex is the color of the missing column; thus

(1 2 45 6) 1is red. Obviously the type is invariant under

the five actions defined above, while o and € permute



the colors which are B8,y and 6 - invariant.

Let K! énd K" be the sub-complexes of AB
respectively generated by the G-orbits of (1 2 4 5 9)
and (1 2 4 5 6) and let X be the G-invariant complex
K' U K". Notice that K contains the 2-skelton of 68
and that it has. 36 4-simplices. Figure 1-1 shows the
G-orbit of (1 2 4 5 9), which consists of 27 4-simplices
of type 2-2-1. The segments indicate that the joined simplices
shire a common hyperface. Note that the figure actually
contains 30 simplices, but of course the opposite corners
of the hexagon must be identified in order to produce a
toridal arrangement. Note also that o acts on the diagram
as an anticlockwise rotation of 2n/3 about the center of
the figure and that B and <y are respectively the four
step eastward and the two step southeastward translations on
the torus. The intersection of K' with the star of K
at vertex .9 is represented on the diagram bf the central
northwest-southeast ship of width three. Figure 1-2 shows
the G-orbit of (1 2 4 5 6), which consists of 9 4-simplices

of type 3-2.
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1.5

§ 2 shows that the topological realization I|K|
of K is a PL-manifold and recalls two procfs of the
fact that |KI = €P . § 3 studies the topology of IK']
and |K"l, and § 4 presents the first of our new
demonstrations showing that |[KI| = CP 2,
Note The present definitions of B8 and Yy have been
intérchanged compared with those in [K-B]. It is
essentially due to the_fact hat, as we will see in § 12,
our Yy (that is to‘say Kiilhnel and Banchoff's 8) 1is
some how less important thanm our B8 , although «a ana ¥

generate G.






§ 2 The Griinbaum-Brickner link M

In this section we show that {K| 1is a toplogical
and also a PL-manifold. We study the stars of vertices of
K .(cf. [G]). Since G is transitive on these verticeé, all stars
are combinatorially isomorphic. The link in K of
vertex 9 (i.e. the boundary of the star at this vertéx)

is the complex generated by the following twenty 3-simplices:
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Figure 2-1

(We remark that (b) and {c) are obtained by
respectively applying Yy and 72 to (a), while the

two simplices in boxes (d+) and (d°) are vy-invariant.)



The union of the topological realizations of the
six simplices displayed in each ot the boxes (a), (b) and
(c) is a 3-ball. Now (a) U (b) U (c) and (d7)u (d") are
two 3-balls glued along their common boundary, showing
that the link of vertex 9 in K 1is a 3-sphere (and hence

that (K| 1is a topological manifold).

The complex displayed in Figure 2-1 (denoted M in
[G] ) is one of the four ways described by M. Briickner
(1909) and B. Griinbaum (1967) to triangulate the 3-~sphere

3

S with 8 vertices, 28 edges, 40 triangles and 20

tetrahedrons.

Description of M In order to have a good grasp on M

one can describe it as follows.

(1) Notice first that the union of the three simplices
appearing on the right of boxes (a),(b) and (c) can be

non—recfilinearly arranged into a quilted annules as shown

on Figure 2-2.



The gquilted annulus formed by three 3-simplices (1635),(2514)

and‘(3426)

Figure 2-2
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(2) On the axis of symmetfy of Figure 2-2 let us
place vertex 7 and vertex 8 respectively below and above
the.plane of the picture. The simplicées appearing on the
left of boxes (a),(b) and (c) are obtained by joining

7 to 8 and then (78) respectively to (56), (45) and (64) .

(3) Notice now that the collection of simplices

respectively listed on lines (') and (e”) can be
interpreted as representating the visual cone when one
loocks to the quilted annulus respectively from 8 and

7. From 8 you see the top part of the annulus namely the

six triangles:

. (316), (615), (125), (524), (234), (436).

From 7 you see the bottom part of the annulus namely the

six triangles:

{(135),:(536), (214), (415), (326), (624).

See Figure 2-2.



2.5

(4) The union of the 18 tetrahedra already constructed
is a ball whose complement in S3 can be decomposed into the
two tetrahedra in (d") and (d”) which share the face (123)

(a triangle having the point at infinity as its center).

The combinatorial manifeld K. There are several

reasons why the topological manifold K 1is in fact PL.
Firstly because s3 has a unique PL-structure (see [Moil]);
secondly because the way we described the triangﬁlation is
obviously C' in‘ the sense of J.H.C. Whitehead (see [Wh 2]);
and lastly because,by adding the three midpoints {%, f%

and 5Zbof respective edges (16), (25) and (34) as new
vertices, one.easily gets a subdivision of M with

eleven vertices and twenty nine 3-simplices.

For instance, the ball considered above consisting of six
non-rectilinear tetrahedra now decomposes into the nine

following rectilinear simplices:

A A A

(1 2 8 25) (2 4 8 25) (4 5 8 25)
' A A A

(5 1 8 25) (1 4 5 25) (t 2 4 25)

(v 2. 4 7) (1 4 5 7) (4 5 7 8)




Claim 0: |K| s ¢P?

Power hammer proof {(mentioned by W. Kilhnel). Since K
contains the 2-skelton of A8,IKI is simply connected;

its Euler characteristic is 3: Hence I1K! has the homotopy
type of cp? (c.f. [E-K]). Using éhe Freedman
classification of simply connected 4—manifolds (c.f. [s8]),

one sees that the combinatorial manifold K is homeomorphic

to EPz.

Nevertheless in § 3 - § 12 we intend to present three
new proofs of this fact. Before doing this, we conclude
the present section by giving the straiéht-forward
combinatorial afgument following the idea of Kiihnel and
Banchoff mentioned in the introduction and as explained

by A. Marin.

The straightforward combinatorial proof of claim 0 (A. Marin}

Let A be. any one of the 4-simplicies of K. The
subcomplex I generated by the vertices outside 4 is

a 2+sphere.

Let r:K —>» [0,1] be the simplicial mapping which

sends A to 1 and t to 0 .

Consider the decomposition:

IKI =x '({0,1/21) U " 111/2,11) = TUu B .
1 1/2)



The second ferm B of this decomposition is a regular
neighbourhood of 4 in the 4-manifold |[XIl (cf. [Wh 1]

or [{R-S, chap 3]) and hence it is a 4~ball. The first

éerm T 1s a regular neighbourhood of the sphere <L in

| KI. Therefore by claims 1 and 2 below, T 1is PL-isomorphic
to a disc bundle over L. Since the boundary of this bundle
is the 3-sphere 4B , the Euler class of the bundle is *1.
With a suitable orientation, T is PL~-isomorphic to a

tube around a complex line in EPZ , i.e. the complement

of a 4 ball in CP?. By the Alexander trick there is
essentially one way to glue 93T to 8B , so [Kl= T U B

3
is PL-isomorphic to EPZ .

Claim 1 The sphere [ is locally flat in the manifold IK|.

Proof Notice that I 1is combinatorially the boundary of a
3-simplex not contained in K. In order to prove Claim 1, it
suffices to check that the boundary of each 2-simplex in I
is unknotted in the link in K of the remaining vertex of
L. Now it sufficés to look at Figure 2-2 to observe that any

closed curve formed by three edges is unknotted in M .

Claim 2 A regular neighbourhood of a locally flat 2-sphere
‘S in a'PL-4—manifold V 1is PL-isomorphic to a 2-disc

bundle over S.

Proof A regular neighbourhood in the manifold pair (V,S)

(cf. [R-S] chap 4) of a point interior to a triangle of §
is an unknotted ball pair (B1,D1). |



2.8

Q

The dlosed disc D2 =S =- D1

o
manifold V - B1. Hence a regular neighbourhoocd of this

Q
disc in (V - B1,D2) is also an unknotted ball pair

is locally flat in the

(BZ'D2)°

The pair (B4UB,, D lJDz) is then a regular neigh-

1
bourhood of S in V. It is the union of two unknotted
ball pairs which are glued along regular neighbourhoods of
the circles bounding the 2-balls in the 3-spheres bounding
the 4-balls (thérefore along unknotted .solid tori), the

pair (B1lJB2,D1lJD2) is a disc bundle.



§ 3 A topological insight into [K|

This section introduces a piecewise linear mapping
Kl — a, in order to give:. in § 4 an intuitive approach
to Claim 0 of § 2 which is completely different to the

attack adopted in [K-Bl.

As suggested by Figure 1-2 the complex K" decomposes

into three complexes called Ka,Kb and Kc

3(456) = (789),

Ka =
Kb = 3(789) * (123),
Kc = 3(123) » (456),

where 3 denotes the boundary of a simplex and * the join
operator between complexes. Thus |K"| appears as a union
of three 4-balls touching each.other along a great circle
of their boundaries; the boundary of each ball being
thought of as the join of the two circles of eontact which
it contains. If we let 10,11 and 12 denote the barycenter
of the simplices (789), (123) and (456) then we can
interprete Ka,Kb and kc as cones with vertices 10,11

and 12 and bases

3(456) * 23(789)

3Ka =
3Kb = 3(789) * 3(123)
and 3Ke = 3(123) % 5{456) .



Let us deno£e by K1O,K11 and K12 the subdivision of
Ka,Kb and Kc so defined and by K the coﬁplex
K'UKmUK”UK12 which is a subdivision of K.
Continuing the suggestion in § 1, we like to think of
10,11 and 12 as respectively Belong to-the blue, the
white and the red family. Accordingly Ka,Kb and Kc

as well as their subdivisions K1O,K11 and K will

12
be respectively thought of as a combinatorial decomposition

" of a blue, a white and a red 4-ball.

Define:

a : 10 > 11, 11 > 12, 12 > 10
8,Y,6: 10 +> 10, 11 > 11, 12 > 12

€ : 10 10, 11+ 12, 12 > 11

so that now a,B8,v,8,¢ and in particular the group G acts

on K.

In order to understand the topology of the entire

space |K|, we construct a combinatorial map

p:K — &,

2

where Z; is the subdivision of the 2-simplex abc using
middles a',b' and c¢' of the sides and the central

triangle

1 = ' '
&2 a'b'c

as shown on the following figure.



c
bl
pp— a a'
A2 < Az
o
b
Keep in mind that the vertices a and a' , sides

bc and b'c' as well as the corner triangle (ac'b’)
must be thought of as being blue. Accordingly vertices

b and c , vertices b' and c¢' as well as their
opposite sides and the corresponding corner triangles

must be respectively considered as being white and red.
Check that the map between vertices shown in the following
table does indeed extend to a G-invariant combinatorial

map p:K —> K; , where G act$ in an obvious manner on

Az.
1 4 7 10 11 12
2 5 8
P: 3 6 9
R
a' b' ¢c' a b c
Then
=1 (ac'b') =X
P 10 *
-1 _
P (ba'c') = K11 ’
=1 (eb'a') =X
p 12 I

P (Aé) K'



Let us think of Aé as an equilateral triangle in
the euclidian plane 2E2 with its barycenter at the origin.
Furthermore let H be the regular hexagon with vertices

a1,c2,b1,a2,c1 and b2 where

- - = '
a, = -a, 3a'/4 ,
b2 = -b1 = 3b'/4 ,
c, = -C, = 3c'/4 ,

as shown in the picture.

bl

c|

Let H be the torus obtained by identifying opposite sides

of H.

It is the quotient of ZE2 by tha lattice L generated by
a; + b, and b1 + c,. Call Te the canonical projection of
H =IE2/L on IE:Z/f(J‘:']R)'L + L s s! where £ = a',b',c' and

L stands for the orthogonal complement.



Let U be the topological space obtained by factoring

6y x H by the following equivalence relation:

(d,e) ~ (d',e') whenever (d',e') = (d,e) or
d =d' =f and wf(e) = nc(e') where f = a',b' or c'.
Claim: The geometric realization |K'| is homeomorphic
to U

Proof Let S bea 2-2-1 simplex in K and v its
marked vertex (see § 1). We will say S if of class f
if p(v) = £. The column decomposition of S shows the
marked vertex v and two 1-simplices of type 2-0-0

called S and S,. Now S can be thought of as the

1 2
triple join S, « S, » {v} and p:S — Aé as the

canonical projection of the triple join onto its base.

Let us define the standard realization of a 2-2-1

simplex of class f to be the following simplex Sf

(where f = a’,b',c') in Aéx m? » which canonically

projects on Aﬁ Lusing the first projection:

S, = ((b',b,), (b",b))) * ((c',cp), (c',cy)) »l(a', 00} ,
sbl = ((C'yc-l)l(c.:cz)) * ((a'ya1)y(a',a2)) *{(blyo)} 7
S ((a'-,a1),(a',a2)) * ((b',b1).(b',b2)) *{(c',0)}

Notice that all 2-1-1 hyperfaces of the three standard

realizations are linearly isometric by type preserving



isomorphisms.

For any simplex S of class f , there are four
type-preserving identifications § — Sf which also
preserve projections to A,. They can be deduced from

each other by a linear isometry of Sf,

For all dGZAé , let da,db and dc be the projections

of d onto the sides of Aé . Let

P=dd d, d, .,
Por =dd, 4, d
P,, =dd d_, d -

be the three parallelgrams shown on the following figure

bl

Notice that Pf degenerates into a segment when d 1is on
a side of Aé containing f , and into a point when d=¢£.

Notice also that the inverse image of d in S_. (c {d} x R?)

£
projects to the second factor 1R2 as the parallelogram
obtained by translating Pf so that it becomes centered at

the origin.



Now one can readily realize K' by identifying

to S its simplices of class £ (using any type-preserving

£
identification) and by gluing along 2-1-1 hypersurfaces
the copies of the Sf's thus obtained by linear isometries
(commuting with projections to 4, according to the

pattern shown in Figure 1-1.

Now for all dGEAé ’ p-1(d) appears to be a patchwork
made of the 27 parallelograms (some of which may be degenerate)
corresponding to the intersections of p_1(d)' with the
27 2-2-1 simplices of K . For instance the inverse
image of the origin is the torus obtained by identifying
the opposite sides of the hexagon shown in Figure 3-1 where
the paralleograms are now rombi. Notice that this hexagon
is homothetic tol H and cén therefore be canonically
identified with it. When d moves away from the center, the
hexagonal pattern gets continuously distorted assuming for
instance the following dispositions. But after the suitable
identifications are done, the patchwork remains topologically
a torus. The universal cover of the patchedwork..forus p~1(d)

is obtained by letting the latice

Z(dc - da) + Z(db - da)

act on the union of the three parallelograms Pa" Pb' and
PC, . One can also use the triangular fundamental domain
obtained by considering the union of the three half
parallelograms cut along the long diagonals as shown

below and tessellating under the action of the group



generated by rotations of 7w centered at the midpoints

of the sides of the triangle.

d
R

When d arrives to the interior of one of the sides of Aé

dy

18 out of the 27 parallelograms degenerates into segments

but p_1(d) still remains a topological torus (Figure 3-2).
When d finally reaches a vertex £ then 9 of the
parallelograms become points while the 18 others are segements.
So that the torus degenerates to a circle according to
projection e (Figure 3-3). This completes the proof of

the claim.



1 3
a ‘E 14 c
L Al < A
I « A -

Strasbourg 14-07-81

Figure 3-1



In this picture each rhombus shows the marked vertex

of the 2-2-1 simplex it represents. In order to

list all the vertices of the represented simplex, consider

its marked vertex as well as those of the four adjacent

rhombi. For example, the union of the two halves of the

hexagon marked.with a cross 1is the intersection with the

torus of the simplex (1 2 6 7 £).The picture also shows

the blue white red coloring of each.of the 2-2-1

represented simplexes using the Heraldic convention

for colors, namely

for red.

for blue,

for white and



Figure 3-2
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§ 4 The direct proof that Kl = CP [J4]

In this section,we introduce a map 7:CP “ — A2
and show that the decomposition of mE@ induced by
the inverse image under = of the subdivision K; is

isomorpnic to the decomposition

> = ]
IRl = 1K | U IR 1 U IK [ U IKcI U IK'I.

b
This shows that |K| s ¢P2 .

b

Let us now think of 4, as being the standard 2-simplex

in IR3 wlth coordinates to,t1,t2, so that the points

previously introduced now become

a (1,0,0), b e (0,1,0) , c e2=(0,o,1)

1 =
(1/2,0,1/2) , ¢’

€y ~
(0,1/2,1/2) , b

a' (1/2,1/2,0).

~Let us identify the standard 5-sphere $° in ¢3

coordinates yo,y1,y2) to the join S1 « s * S1 which

(with

embeds into C° as the set of points of the form

y = (/Eaexp Zﬂi,so/to,/f; exp 27i 51/t1./E; exp 2mi s,/t,)

where t = (to,t1<t2) € Az and s = (50,51,52) €2R3 . Notice

that the formula makes sense even if some tj's equal zero.

1 1 5

The canonical mapping S1 * S % § —> A2 induces on S

the map

(g r¥qr¥y) F—=> Uy 1%, 1y,1%,1y,1%) .



On 81* 51; S1 the Hopf action of S1 onto S5 induces

the diagonal action of the join defined by (é,y) goes to
(VE, exp i(e-rznso/tof,/E;.exp i(8+2ms,/t,),

/E;exp i(e+2ms,/t,)), where 6€R and y is as above.

Now the quotient EPZ of 55 under the Hopf action

identifies to the quotient of _S1* S1* S1 under the

diagonal action. Let '|rr:Cl::E'2 —_ Az be the quotient under
diagonal action of the canonical mapping of the join so

that we now have the commutative diagram:
5 1
s = S * S * st —— mm

N

Notice that 51* 51* S is the quotient of AZXIm3 under

the equivalence relation defined by (t,s)~ (t',s') if
t=t' and s - S'E.Lt := toz X t1zx t2z

where it is aséumed that 0Z = R . Therefore {I::I?2 appears

to be the quofient of Azx R? under the eguivalence relation

defined by (t,s) ~ (t',s') if
= ' 1 - '
t = ﬁ and s s' € L, + Dt
where Dy is the line in IR3 generated by t = (to,t1,t2)EIA2

In order to study 1 (t) for t€4,, it suffices to

look at the image of L, in the gquotient of the euclidean
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space m; by the greatest vector space Vt contained

2 -

in the subgroup Lt + Dy.
Notice that
[ D, t € the interior of 4, ,
D, + R'ei t € the interior of the side
Vt = opposite to &
L:RB t € the vertices of A

.For each t in the interior of A2 , the Dirichlet domain

of the image of it is given by the following figure, where
070y and ag are the images.of (to,O,O),(0,t1,0),(0,0,t2).
O s 0y and oy generate the image lattice, one has

ag + o * 0, = 0 and all angles aj() . (3 # k) are in.
the interval 1n/2,n[ . When t approaches some interior
point of the side opposite to the vertex ey the angle

a. 00y (i+j+k+1i) tends to m and a; tends‘to 0.

]

%9

[




In the limit, aj and are on the same line but the

%k
dimension of Vt has increased and one has to project
everything orthogonally onto the line ajak. Now m?/vt

is isomorphic to IR in which the image of Lt has to

be a discrete additive subgroup tending‘to R itself

when t remains on the side and tends to a vertex. Notice

that when t 1is at the center of A the Dirichlet

2!
fundamental domain of ﬂ_1(t) is regular hexagon, that Ly

is the cubical lattice and tﬁat D

m3 .

is the diagonal of

t

UL t1,0,0)

(1,00)

(1,01) 01i

(1,1,00F

{0,0,1)
0,0,0)

(0,1,0 .
/ ‘ (0,1,1)

0,1

The previous remarks can be summerized as follows:

n-1(t) is a torus which degenerates into a circle when t

tends to a side and to a point when t tends to a vertex.



There are three ways (analogous to those studied in § 3)
in which the torus can degenerate to the circle, according
to which side t approaches. It therefore should now be

obvious that

7 V((ab'c') U (ca'b') U (bc'a'))

is the union of three smooth 4-balls touching each other
in mrﬂ along linked circles as explained in § 3 while
w-1(a'b'c') appears to be homeomorphic to U (c.f. Claim
in § 3). By the Alexander trick, EPZ is therefore

homeomorphic to IKl.

In order to make this-clearer,_we specify an explicit
triangqulation of ¢P2 , isomorphic to XK. The idea stems
‘from the suggestion by A. Marin simplified and modified in
order to resemble the construction in § 3, which in some sense

it dualises.

The explicit triangulation of cp? by K. Let

<
u

[0,1,w] v, (w,0,1]

1 vy = [1,w,0]
v, = [0,1,m2] Ve = [m2,0,1] vg = [1,w2,0]
vy = [(0,1,11 Ve = [1,0,1] vg = [(1,1,0]
v,o= [1,0,0] v,,= [0,1,0] vy,= [0,0,1]

be the images in CI.'JE’2 of the vertices 1,...,12 in K,
where w = exp 2mi/3. Let %:Az X Q ——> EIJZ be defined by

setting
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Xie, 0 =1/ &MVo, em TV, T2

IWhere t = (tort.lrtz) € Az ’ ‘1’= (¢0r¢1'¢'2) € Q and

3

Q= {(¥gs¥ys¥9,) €ER | Vo*tu v = 0} .

The map X 1s onto and factors through b, % Q/L0 where
L0 is the orthogonal projection of Z3 to Q. Call ¥
the quotient map |
2
x Q/L0 —> CIP™ .

8,

-]

Restricted to A2 x Q/LO, X is an homeomorphism onto the

complement of the three complex lines

Yo © 0, yq = 0, y2 = 0

where [yo,y1,y2] denotes the system of homogeneous

coordinates in EPZ .

In order to describe the triangulation of tI!ZIE'2 in

terms of (t,y)-coordinates, we need to compute the

projections Pr2 onto the second factor of

X-1(Vl) CA-ZXQ/LO _ (l= 1,...'9).

These are circles on the torus Q/LO.



Let us now think of the hexagon H as being the
Dirichlet domain of Q at the origin under the action

of LO'

Using the translations ey and e, , one can color all

the medians and small diagonals in such a way as to obtain

the following diagrams.



1
Projection of (%'.0 'TE)

1 .
('2':0:0)

The following figure represents the circles Pz_.'zx-1 (vi)
(i = 1’...',9). Viewed il‘l Ho T

-1, -1
Przx (V'J-)\ Pr,Xx _ (v5]

3
7 > 5
(v.)
7 6
3
\ 6
/< P::z)("1 tv,)
9

!

1 =1 -1
Pr,Xx (v1) Pr,X (v3)' Pr,X (VZ)



This picture illustrates the fact that these 9 circles.
decompose Q/L0 into 18 triangles. Let us denote by
A({ijk) the triangle with sides labelled 1,j and k
(1s£1i,j,ks9), and assume that vertices opposite to

sides have been given the order ijk. Let C:A, —= A

- 2 2
be the Cremona transformation of the standard 2-simplex

in m? defined by

t

2to,t0t1)/t1t2 + t2t0 + t 1 *

)
This is a one-to-one involution on A2 , which shrinks

each side to the opposite vertex and blows up each vertex
to the opposite side. An ordering of the vertices of two

triangles T1 and T2 defines, in an obvious and unique

manner, reciprocal Cremona transformations T1 - T2

T2 —_— T1. Let 0692 be the Cremona transformation

and

(a'b'c') — A(692)

. ' . .
and define the 17 other Cikj s by composing Cea2 with
rotations of angle 1w centered at the middle of the sides

with 4(692), thus defining

3¢ C

Ce7 934247

and so on using the newly introduced sides. For all

t€ (a'b'c') consider the decomposition of Q/L0 into



27 parallelograms obtained by joining each Cijk(t)==pijk

to the vertices of A(ijk) and then erasing the sides

of A{ijk).




As in § 3 we thus obtain a decomposition of the torus
depending on t but this time the shape of the torus

is fixed, while the angles of the parallelograms vary.
Notiée that some of the parallelograms degenerate when

the pijk's are on the boundaries of A (ijk)'s, namely
when t 1is on the boundary of (é'b'c'). Notice also

that when t 1s at a vertex, the pijk's l;ve on the
corresponding sides with no definite location but
remember that when such is the case, precisely
quotients Q/Lb along circles parallel to these sides.
From this fact one immediately sees that the previous‘
construction defines an explicit homeomorphism from |K'/|
(realized as in § 3) to n-1(a'b'c') sending the |
parallelograms of § 3 to the present one. In order to define
the homeomorphism over all of IK|, notice that each of the
three 3—spheres'bounding n-1(a'b'c‘) is decomposed into
9 3-simplices; extend radially the three considered
decompositions in (IZZIP'2 using VigrVqq and V,, as
origins. This operation is completely well defined since
for inamtance n | (ab'c') is the standard unit 4-ball in the
2-dimensional complex plane CP%- n | (bc) with

coordinates (21/20,21/20).

No doubt the severe reader will decide that the
triangulation presented in this section is self-sufficilent
and that the construction of § 3 is needless. This is indeed
true, but we like § 3 since we got it long ago, while § 4

became clear to us very recently. On the other hand as we



pointed out in the introduction, it is useful to show
mény approaches to the same phenomenon in order to
get a good intuitive grasp of it. That is why we hoped

most readers would also enjoy reading § 3.



Chapter II The Klihnel complex viewed as an orbifold
§ 5 The G~-invariant torus T in K-

The existence of the combinatorial torus T.c K
presented in this section is the basic fact that
enables one to connect Kilhnel's triangulation with

crystallography.

Figure 5-1 represents the union T of the G-orbits
of (269) (positive orbit) and (169) (negative orbit)

where opposite sides should be identified and the erased.

Figure 5-1



The topological space |T| 1is homeomorphic to a torus.
Considered as a sub-torus of sz , 1t is the set of

x(t,Cijk(t)) of § 4 for all possible ijk's as t varies
in (a'b’'c'}. The complex T contains all those simplices

of type 1-1-1 whose link is a triangle.

Notice that the links of the remaining simplices of type
-1=-1- 1. {all belonging to the G-orbit of (147)) are hexagons,
and that those simplices are in one-to-one correspondence
with the hexagons in Figure 1-1. Notice also that the
intersection of T with the link M of vertex 9 is the

combinatorial trefoil knot:
14U 43U 35U520 26U 61

shown in Figure 2-1. Therefore T has 9 combinatorial

cusps.

In § 9, it will be shown that T 1is the combinatorial
model for the embedding in EEQ of a complex curve of genus 1
with 9 cusps (the dual of a non-singular cubic). In § 8
Remark 2, we will show the existence of a 6 fold cover of

iIKI branched over T, which is isomorphic to the 4-torus ,

and on which K induces an improper triangulation:

This means a decomposition into simplices which is not a
triangulation because each simplex is not uniquely determined
by its vertices, such as the case of the decomposition of

the circle S1 by two intervals.



2 the universal éover of this im-

Suitably identified with C
properly triangulated 4-torus will appear fo be the rectilinear
triangulation ® of €° defined in § 8, which is |
invariant under the action of the complex crystallographic
group I" Adefinea in § 7. In X the inverse.image of

T will turn out to be the union A of a family of

complex lines each of which maps onto IT] as its
universal covér (see § 8 Remark 1). Links of all simplices
of type 1-1-1 in K will be hexégons. Associated with a
crystallographic subgroup ' of T", there exists a

map Y:(I:2 —_— CI:JP2 branched along A, which will produce

a new explicit homeomorphism between [KI = 1K/T| and

and EPZ (cf. § 9). 1In order to visualize the
triangulation 4 , we construct in the next section a
combinatorial 6 fold cover M of M branched along the
trefoil knot TN M. The complex M will then be realized

as the boundary of a 4 dimensional polytope N in Ez
namely as the link of the origin in the triangulation XK.

Since TI" is transitive on vertices of X , all links of

vertices in K are isomorphic to M. The realization oN
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is not strict in the sense that the star N (at the
origin in K)' is not convex and some of its faces are
unions of more than one 3-simplex of M (i.e. it has
inward and also flat dihedral angles). The detailed study
of the convex'hull of M (i.e. of N) is the bulk of the

proof of the claim -1 of § 8.

Observe that it would not be difficult to deform the
polytope N so that its boundary becomes a strict
realization of M , in other words, so that it becomes
a convex polytope whose hypersurfaces are 3-simplices
decomposing its boundéry accordingly to the pattern .
Recall that contrary to N, the Griinbaum-Briickner

triéngulation M 1is the only triangulation of S3 with

8 vertices which refuses to be strictly realized in rY
(in the previous sense), essentially because it contains
the combinatorial trefoil knot TnM# , which is the

union of 6 edges. Indeed we have

Proposition In the boundary of a 4 dimensional polytope,

any PL closed curve with not more than 6 edges either is
unknotted or is a trefoil knot with 6 edges contained in

one hyperface of the polytope.



§ 6 The six fold cover M of M

A 6 fold cover M {(with 120 3-simplices and 30 vertices)
of M branched along the trefoil knot M N T can be
described as the union éf 6 copies of a triangulaticn
(with 20 simplices and 11 vertices) of the prism A, x A,.
Three of these copies are glued to each other along their
triangular faces in order to produce a solid torus with
9 square faces. The complement in S3 of such a solid
torus is again a solid torus with 9 square faces. It is in
turn obtained by gluing similarly the 3 remaining copies.
Figure 6-1 shows a prism of one of the tori surounded by

the .3 prisms of the other torus.

-

Figure 6-1



The inverse image of MNT in M is the union of
three linked circles contained in the common boundary of
the two solid tori. Each of these circles is the union of
diagonals of three of the nine square faces and maps
bijectively onto MNT. We first construct the triangulation
ﬂ, that we realize in Ez  and next show that the obvious

projection HM— M is indeed the required branched

covering.

Construction of N We now proceed to describe the

triangulation of the first prism M' = Az x [0,1] where
we call my M, and m4 the vertices of the triangle

8, x {0} ; 2,¢%5 and 2, the vertices of the triangle
8, x {1}; where kgrks and k, are the centers of the

rectangular faces
(mzrm3:21 '23) r (m3,m1 11202-1) ‘ (m1 1m2123r£2}

and where

(in which b stands for the barycenter of 62) so that
k7 and k8 lie on the axis of symmetry of the prism.

Now M' 1is the complex with vertices
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generated by the following twenty 3-simplices.

+ =7
(da) L x
td
e | Lo ke rka ek
(e"') I k‘[k-l( 2 kk ['kk 2 kr -;l(
g k= bk e ok % kol
k- % k k m k k k -k
Fk(a)lk lkk(b)lk [ k (c)m
K- mk k < Lk
) Mk mkk mkk ——k qu k
(e7) _J m j k m m
| -—-l f A ' AI m k-J L.k.]
_ - m——Kk
(d ) . m
m

Figure 6-2



In this figure we introduce for the first time the

colored Baille notation which should be understood as

follows; every létter appearing in a given Braille cell
is assumed to carry the color of the place it occupies

in the cell. For instance,

A
I k I
m k

means (21,m3,k5,k6).

The th:eé simplices appearing on the right of boxes (a),
(b} and (¢) are called notches, while the union of the
three simplices appearing on the left of the same boxes

is called the central core of M'. This central core can

also be traingulated as the union of two 3-simplices

k k k—|
[kJ and [kk
k k- .



Two cohedral (irregular)

G. Francis

one notch has
been removed

Octahedra are formed

by removing 3 notches

from a triangular prism.

[in the model, windows reveal

an illuminated interior with

a ball vertex at the center of each

octahedron. |

Figure 6-3

Now M! minus the union of its three notches, with the

central core re-triangulated as explained, can be

considered as the union of the two octahedra

m k Lk
mk] and Lk]



triangulated as cones on their boundaries with barycenters

k7 and k8

original triangulation of the central core one gets a very

respectively. Thus if one now restrores the

good understanding of the way M'-{notches} is constructed.

In order to build the 5 other prisms, it suffices to
list their vertices according to a chosen order for those

of M'. The following table does this for you.

-~

; k k5,k4 : 22,£3,21

k2,k3,k

MqrMy My

@D
-

6'

-e

Zyrdyed 7 P Mg/Mg,my ; Mg

L

3¢ 1

k1 'kz pk

-
Py

~J
-

-
-

3 grigriy 7 Lg i Mmy,Mmg,my

k1lm2f£'3 ; k_7 H k6'm5'£4; k_BF k2:m3,21

21,k2,m3 ; m 26,k5,m4; m_gi 2,2,k3,m1

|
Ny

m1,£2,k3 P m6,£5,k4; L_gi m2,£3,k1

i
~1
-

Figure 6-4

The logic of the previous table is representedlby the
following pattern showing the vertices on the common
boundary of the two solid tori as well as the vertices

of the core of each torus,and thus displaying all vertices
of M. Please identify opposite sides of the.square to

obtain a torus.
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I'A k ’m !
4 6 5
. * k_g
k l !
2 . § \
my 23 ko .
»x m_7
t
» "
b o '
L 33 m )
Cm_g
|
k F 9.; X |
3 my. ) o !
X %
L =7
[
. " »r [}
2 k - m {
5 4 6
N
\ tog
k1\ p - r '
} f
m2 13 k1_ |
k
x K_
" ' 7
L3 - ” '
L4 kg -mg P
. ] Core of
Core Of —drcKm——vo X mmm e ¥ m e e A m = Y ——— . the second
the first £7 28 k7 kB ﬁa torus

torus

Figure 6-5



Claim 1 The natural projection MW —> M is a

6 fold cover of M branched along T N M, in such a way

that the inverse image of each simplex of M 1is the union

of 6 simplices of the same dimension except for the edges

and vertices of T N M which are covered only thrice.

Proof. By assigning to each of the 30 vertices of M its
color (namely the index attached to it), one readily sees
that each of the 120 3-simplices of M is mapped to a
3-simplex of M .'This defines a natural projection of [
to M . Notice that the restriction of this projection to
each of the six prims, M has been decomposed into, is

a surjective map from the considered prism to M . For
instance observe that M 1s combinatorially equivalent
to the quotient of M' obtained by identifying together
the ki's li's and mirs (i = 1,2,3) of same index. These
identifications force each lateral face to be folded
along one of its diagonals and in addition the following

pairs of triangles are glued together

L.k 2

3kg —> m. k. %

1 37671
13m2k6 <> m3m2k6 .
Similarly for the two other faces. This operation induces
an anti-clockwise twist of the top and the bottom trinagular
faces with respect to each other. In the quotient, the image

of 34, x A1 in M 1is the M8bius strip S formed by the
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union of the six triangles:

(124), (125}, (236), (234), (315), (316)

bounded by MNT. In order to complete the quotienting
procedure do not forget to identify together the simplices
L1%525 and m,m,mq (otherwise the object would not be a
simplicial complex i.e. it would not be properly tfiangulated
in the sense of § 5). The last identification gives you

the Griinbaum-Briickner triangle (123) centered at infinity.

The way the mapping M —> M has been described makes

Claim 1 obvious.

Claim 2 The mapping N —> M is a normal covering with

Galois group the symmetric group 8,. Moreover the alternating
3

group _A3 acts freely on M= S3 so that H/A3 is the lens
3

space L{(3,1) and that the projection H/A3 —_— ﬂ/Sf M =5




is the 2 fold covef of M branched along the right hand

trefoil knot M N T.

Proof Notice that A, acts on each of the two solid tori,
into which WM has been splitted (see Figure 6-1). The-
guotient 6f the first torus under this action can be
described as being the prsim M' with the two triangular
faces (m1,m2,m3) and (21,22;23) identified together.

One is now left with an improperly triangulated solid torus
H1 whose boundary Bﬂa==§ is obtained by doubling the
Mébius strip S . The Deck involution 1:3 — 3, with
respect to the projection § — T fixes the curve

VT o M)~ 2p 4 32

and sends the meridian g

1 - — 2 — — 3 — — 1

to the curve pu' ~ p + 32X
1.702....30.01

where A 1is the chosen longitude indicated in the pircture

below.
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Next consider a second copy ﬂz of ﬂ1 representing
the quotient under the A3—action of the second torus
of Figure 6-1. Now ﬂ/A3 splits into ‘H1 and Hz glued
along their’common boundary using the involution 1 .
Observe that the meridian of ﬂz is mapped to the curve

B' on ﬂ1. According to [Siel,

appears to be the improperly triangulated lens space L(3,1)

whose universal cover has three sheets and identifies : with

3  properly triangulated by ‘% . This ends the proof of

S

Claim 2.

The realization of M in c?

The promised representation of M as the boundary of

a star-polytope N will be completely determined by giving
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coordinates for its 30 vertices in mz. In order to obtain
these coordinates we first represent the torus of all

vectors (z1,zz) € Ez

satisfying 2151 = 2252 =1 as
a square horizontally parameterized by the argument of

z, and vertically by the argument of z, as indicated:

-7 _ m
-1 > arg z,

y.

arg 2,

Place the 18 vertices of Figure 6-5 of colors 1,...,6 in this
square as they appear on the érevious diagram. Now the cores
of the tori should be treated as circles of radius Y3 ' in
each coordinate axis represented in Figure 6-5 as dashed
segements parameterized by the arguments. running from -m

to m from left to right for the first cone and from top to

bottom for the second one.




On these circles, place the 12 remaining vertices of
Figure 6-5 in such a way that each of these 12 points
can be obtained as the sum of two of the 18 points

described above: e.g.

Therefore these 12 points belong to the lattice LI[£f]

(defined in § 7) generated by thé 18 points of Figure 6-5.

In order not to get mixed up while performing this
very tedious exercise,the aid of Figure 7-0 might be
helpful. If you are patient enough to complete this

homework, you will get the following table.



Vertices at distance v2 from 0

e . e
By=lw’ =) ke=(1,-1) me= (w,=1)
| ‘ | k_8=(0,m2-‘|)
k= (-1 ,_wz) m,= (0, 0%) L= (~u? )
- m_7=(0,w2-w)
2= (w? )  kg=(1 ) myElemw
HL8=(0,1—N)
ky=(=1,1) mEfw,) - b=l ) )
2_=(0,1~w?)
2 _2 2 2
Le=(w” ™) - k,=(1,-w") m.=(w,-
5 | 4 6 @) £_8=(0.urw2)
ky=(-1,0) e ot R —
k_=(0,u-1)

(m2-1,0) (w?-w,O) (1-w,0) (1-w2,0) (urwz,O) (w~1,0)

e By sees g oo ky e kg e m, e mg es

vertices at distance v3 from 0

In § 7 and § 8 we will see that this set of 30 points is the
intersection of the lattice L[f] (constructed in § 7) with
the ball of radius 3 centered at the origin of € minus zero.

Now that we know the vertices of N , it is easy to



construct its boundary 9N by taking the convex hulls

in @ of all the vertices of each of the 120 3-simplices
triangulating M . Then N is just the cone on dN with
vertex the origin. In order to obtain the convex hull W

.of N it suffices to fill 6 notches carved in N by

adding 6 new 4-simblices.to the 120 4-simplices into which

N splits when considering the triangulation of its boundary.

Here are the notch 4-simplices to be added:

m— k £—-m k-2 f—m_ m—2_ k—k_
m £ £ k k m k k_ 2 m_ m £_
m— % — k— n— k g —

To derive the triangulation of 3N £from the
triangulation vﬂ , it will be sufficient to replace the

pair of simplices

— m—k
m 2 m
. m—Kk
contained in the boundary of m £ by the three simplices
m—d

1
and similarly for the five pairs of simplices associated

to the other notches.



axially
. to
form

3 edge-adjacent

adjacent

- tetrahedra tet;ahedra

"coaxial"

join a diangle of segments to a given skew segment to obtain
the co-hedral triangulation of the hexahedron -
join a triangle of segmentsto a given skew segment for the
coaxial triangulation
G. Francis
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Although the boundary 3N is naturally triangulated with
126 3-simplices, we will see in § 8 that N is a polytope
with only 18 hyperfaces (called pegs). Each of these is .the
union of seven 3-simplices.of the triangulation. It will
then be clear that both N and N have flat dihedral
angles when considered as polytopes with 126 énd 120

simplicial hyperfaces respectively.






§ 7 Some lattices and crystallographic groups on Ez

In order to understand how the image of N in €2

was obtained, we need the definitions of this section, the

construction of § 8 and the map Y in § 9.
Let '

Li{w) =X + Zo

*
be the hexagonal lattice in C. ?

*) In § 12 the lattice considered will be ZX + Z1t where
v 1s any complex number such that Im 1 > 0, not necessarily
equal to exp 2vi/6, thus losing the symmetry y but still

obtaining a triangulation combinatorially equal to K .
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In mz with standard coordinates (21,22), we define

the following vectors

o
-
|

(1,0}, e,
0 (-1'1); bid

0,1 ,

Hh
]
[}
]

YT i A PR R C e

= f, - £ h, = f

1 - f

e
|

1 27 = f,. - f

(w2 - ©) (1,1)

2 o’
(coz- w)-(w,wz)

0 1

(m2 - w) (wz.m) .

Note that

f0+f1+f2 = h0+h1+h2 = 0.

Let F < mz be the real plane given by

We can define the following latices in m2

Lle] L(w.) e, + L(w) e

2

2 2
] Lfw) £; , LIh] = ) L{w h
j=0 3 j:

L{f]

which have inclusion relations given by the marks attached

below the inclusion notations:

L(h]} = L{f] = L(el
g 3
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Let us consider the following elements and finite
subgroups of the 2 x 2 unitary group U(2). The matrices

act, as usual, on points of Ez considered '‘as columns:

Here <a,b,...> stands for the group generated by a,b,...
Notice that G, acts on the set {fo,f1,f2} as the symmetric
group and Gs’g G18 » that is to say, G6 is a normal subgroup

of G of index 3.

18

We are now in a position to define the following two

dimensional complex c¢rystallographic groups (that is to

say, cocompact discrete subgroups of ¢2 x U (2)), presented

as semi-direct products of their point groups with their

lattices:

-3
1]

L{h] x Ge »

L{f] XM G,g-

—
n

It is known ([Y¥2]) and easy to show that [ 1is generated

by a finite number of complex reflections of order 2, and

that the set of points in m2 fixed by some non-trivial



element of ' is the union A of the following lines

L{f] + @ £ j =0,1,2,

]
which intersect in threes at each element of L[f]. and

intersect nowhere else.

Identifying vectors with corresponding translations,
we define the two following operations:
-

0! - B = (0w~ wz) fOA‘

Then we have
re = <rra‘v.§r"?> (='<Pr'&':;>) .

We hext proceed to assign T[-invariant colors 1,2,...,9
to the points in LI[f)] and 10,11,12 to the points in Lle]
not belonging to L[f] . The quotient L{f]/L[h] (which
identifies with L[f] modulo I' ) consits of the following

9 classes L1,...,L9:

.L4 = 2wf0+ L{h] L7 = {1+ 2w}f0+ L[h] L1= (2 + 2u)fO+L[h]
L, = wfy + L(h] Lg = (1+w)f,+ Llh] Lg=.(2+w) £,+L[h]
Ly = L(h] ' Ly = £q + L[h] Lg = 2f0+;[h]

In addition, let
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Since L,qUL, ULy, = Lle] - L{f] , the coloring is now

completed.
Let us define
6:(21,22} —> (-E;,—ET) (conjugation with respect to F),

E:(z1,zz) f—> (E;,ZT) (conjugation with respect to iF).

Then one can readily chéck that E,E.?rg and € act on the
colors 1,...,12 exactly as o,B,y,8§ and € acted on

vertices in § 1 :

nL, =

i Ln(i) i=1'o--'12

where n=a,8,y,§ and «.

In particular, by sending o +—> a,B k—»B,?~h—b Y , we get

r“/r = g .

In the sequel the colors introduced here will enable
one to speak of the type and the color of simplices with

vertices in 'L[f].

Recall that as decided in § 1 and § 3, these twelve

colors are organized into the following families



{1,2,3,10} , {4,5,6,11} and {7,8,9,12}

respectively considered as blue, white and red. Of one
insists on bearing in mind actual colors, rather than.

numbers, we suggest substituting for the array

1 4 7
2 5 8
3 6 9

the following palette:

sky blue white pink

royal blue gray sparkling red
navy blue black scarlet

green yellow orange






§ 8 The rectilinear triangulation R of m2
In mz consider the real hyperplane
2
I =F + Cf, (F = Z IRfj)
j=0
= {(z z)Eﬂ:lee(z + z,) = 0}
1772 1 2 !

and the collection of hyperplanes

E = I‘"H -
Since

lZl = U y II
yer" -

is TI'"-invariant, the intersection pattern of hyperplanes in
£ is the same at each point of L[f]. Here is the inter-

section pattern at the origin.

A, The 9 hyperplanes of I passing through the origin are-

. J k _
ij'Re((f’ z, *t W zz) =0 j,KkEXZ/3T .

B. In Z/3ZxZ/3E let (j,k)#* (5',k").

(1) If k-3j =k'-3j' then ij n nj',k. is the complex
line mfk_j -
(i1) If k+3j = k'+3' then ij f\Hj,k. is the real

plane wk+jF.

(1ii) If j=3Jj' (or k=k') then ijr1nj,k. is the real

plane H(j;k,k') spanned by pjk and pjk"



(or the real plane VI(j,j',-k) spanned by. ij

and Pj'k) where

Popo Po1 Po2 i ky my
Pig P11 P32 = by k3 omy
Ppo Pz1 P2/ 2y kg omy/) .

The nine vectors appearing in the second array have been

defined in the list concluding § 6 (see also Figure 6-3).

C. Along each of the three complex lines Efj and each of .

the three real planes ijj (j = 0,1,2), three ﬂjk's intersect.

D. Along each of the nine H's and each of the nine V's

defined in (iii) above, only two wjk's intersect.

E. Along each of the six real lines spanned by k7,27,m7,
kK 7,2 4 and m_o respectively (recall that these are
defined at the end of § 6), three njk's intersect.

F. Along each of the nine real spanned by the pjk's

defined in (iii), five njk's intersect.

Claim 1 The connected components of the open set ¢2 - 1zl
are of two types: either d4-simplices or 4-cells with 6 vertices

and 9 simplicial hyperfaces. The latter type will be refered
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to as cells of type 3-3 (the célors of vertices of such
cells will indeed appear later to fill two columns of the
array (; g ;) of § 1).

3 6 9
Proof We first prove the claim neaf the origin, by
studying the convex hull N of the 30 vertices of N
listed in § 6 (See subclaim below). Remember that the
closed points to the origin in L{f] are the 18 points at
distance 2 from the origin listed in § 6. If we take
the convex hull W of the these 18 points( we get a
polytope with 12 octahedral and 18 tetrahedral hyper-
faces. Observe that the barycenters of these octahedra are
the midpoints of the segments jbining k9 to the 12 elements
of L[f] at distance 3 from the -origin, and that the
hyperplanes carried by the ocatahedra are the perpendicular
bisectors of these segments. In order to understand how the
boundary of this polytope is organized, we proceed as follows.
First notice that 6 of the 12(octahedra are glued together
in a hexagonal pattern, in such a way that one octahedron
touches its two neighbors along two of its opposit faces
so-that their union is a solid torus shown in Figure 8-1.
Although it dbes not live in the boundary of the same poly-
top, it is helpful to have in mind that the present picture

is Figure 6-1 with the notches deleted.



Figure 8-1
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Secondly notice that one can think of the union of the
six remaining octahedra as a second solid torus linking

the first one in 53 . Now the complement in S3

of the
union of these two solid tori is the union of 18. tedra-
hedra touching each other along an edge. Each tedrahedron
is connected to 4 other tetrahedra along all of its edges
except two opposite ones. In order to understand this
patchwork of tetrahédra, one.musé think of a tetrahedron

as a very flat object almost equal to its projection to

the square.
The 18 squares thus obtained are matched together in order

to produce a quilted torus as shown in Figure 8-2. We remark

that the group G18 acts transitively on the 18 squares.
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The Quilted Torus
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Figure 8-2



The 18 hyperplanes carrying the tetrahedra are in
L , while the f2 hyperplanes carrying the octahedra are
not. For instance, the tetrahedron k5m1k4£2 is carried

by the hyperplane

Re.(z1 + zz) = 3/2

Which is parallel to I@I=1 and belongs to I. But the

00

octahedron m1m2m3k4k5k6 is carried by the hyperplane

Im(wz

5) f V3/2

which is not in I. Besides the tetrahedron kgmk,2,
the hyperplane Re(z1 + zz) = 3/2 happens also to

contain

This remark proves that N is a polytope with 18 hyper-
faces carfied by those hyperplanes of ‘I belonging to the
G1B-orbit of Re(z,+ zz) = 3/2. All these faces have the
same shape and will be referred to as pegs. Check that
these 18 hyperplanes are the closet hyperplanes of I

to the origin not passing through the origin and that,

up to similaripy, the polytope W (the convex hull of the
18 points in. Figure 6-5) previously considered is dual to
N. We now describe the peg carried by R(ZT+ z,) = 3/2,
which is one of the two hypersurfaces parallél to I . It

is the convex hull



‘which is a polyhedron with 8 vertices, 10 edges and 8 faces.
Four of ﬁhe faces (called lateral faces) are rhombi and the

others (called wedge faces) are isoceles triangles (see below).

Peg

It can be considered as the intersection of a prism based
on the square of side v6/2 with the tetrahedron whose

faces are obtained by producing the four wedge faces of the
peg.

The 8 hyperplanes nij (1,3) # (0,0) meet the peg and

split it into the seven following tetrahedra.
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O e e mfam e = =

Observe that contrary to the lateral faces, the wedge faces
are not intersections of the peg with the Hij's but only
with hyperplanes carrying the neighbouring pegs. So that
five of the seven 3-simplices - the saturated ones - have
all their faces contained in some Hij's , while two of them

(situated on the top and the bottom of the previous picture) =
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the wedge simplices ~ have only two faces satisfying this

property.

Each of the segments -z_%m_a and k- kg
is the intersection of three of the 18 pegs limiting N .
The following pictﬁre indicates how the three pegs meeting

along %_qm_g match together.

Two Pegs Three Pegs from above

- Let us define a cap to be either one of the two unions of

three 3-simplices

x kX k
[kk uL—k_k u[ k
k k Lkl k ~

and
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m—=g_ —%_ m—034

LT Ko 1 Ko

or one of their images under the action of G6 . Notice

that the convex hull k UC (where C 1is any cap)

9
is a 3-3 cell on the boundary of which the cap is. sitting.

The following assertion should now be clear.

Subclaim The collection I splits N  into . 90 4-simplices
of type 2-2-1 (namely all the cones on saturated simplices
of N with vertex at the origin) and 12 cells of type 3-3
(namely the-convex hull of kg and each of the 12 caps just

considered).

In order to finish the proof of Claim 1, apply L[f] to

the 1I| - decomposition of the convex hull N .

Finishing the construction of K The 2-2-1 simplices

of K are the simplices of Ez - |IZl. The 3-2 simplices

of ¥ are obtained by linearly subdividing each 3-3

cell into three 3-2 simplices. Since this must be done in

a '"-invariant fashion, we need only to split a given 3 -3 cell.
The splitting can be achieved in two different ways, so that

a choice must be made. In fact the choice has already been
dictated to us in [K-B] where it has been decreed that K

chould contain ‘ + + . Had they wished, the authors cbuld



|

have chosen[: : . 1is place of l : :.'In order to obey
them, and to cémplete the definition 5f K , it suffices

to set
k k X k k
k,k.k kok k, = kk U k k U [ k
47576777879 I " l K k k k
Observe that' the open set E2 - 1zl is ¥ and E-invariant

but that the necessity we had to triangulate 3 - 3 cells
‘forced us to exhibit a S-invariant but not t-invariant
triangulation. The choice we had to make was infact between
the triangulations K and €K . Note also that all

. 1-simplices of type 1-1 in K are of length v2 while
those of type 2-0-0 are of length v3, and that all
4-simplices of types 2-2-1 and of 3-2 have volume
3/32. |

Claim 2 As an abstruct complex, XK/T is isomorphic

to K. . |

Proof Let Cqre-+4Cqg be the colors of a given simplex in

K . There exists an element g in I'"™ which maps the vertex
of color c¢; to the origin kg. Let g be the image of g in
G = I'"/I'. Now (E(c1),...,§(c5)) is a simplex in K and

therefore also (c1,.,.,c5).



Remarks

1  The inverse image of K" in. K is the union of all
the 3-3 cells in €2 - |Z]. We observe that the set of
barycenters of these cells is L(e] - L[f] and that the
colors correspond to their images 10,11,12 in |K]I.

The inverse image of the subdivision K of K 1is obtained
by considering the.subdivision generated by K and K .
The inverse image of ITI is the union A

of all the axes of reflections in ' . Figure 8-4

shows how the vertices contained in the typical axis of

reflection are colored.

(11) | (m4)

. c _
f0 . pléne

Figure 8-4

*
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2 The quotient |K|[/L{h] is'homeomorphic to the torus
(s')* decomposed into 6'x 36 4-simplices with 9 vertices.
This decomposition is an improper triangulation. This
4-torus is a 6 fold cover of |K| branched over ITI.

In order to get a properly triangulated 4-torus, one has

to consider some 9 fold cover of ¥X/L[h)], for instance

K/3L[f'] where

L{(f'] = L(w) £

ot L[w]fi + L[w]fé

with

2

g2 (1,1, £ = (0w, £ = ()

0 1
(see § 13). The tringulation has 81 vertices and 9 x 6 x 36
= 1944 4-simplices. The 4-torus K/3L[f] would have workeé
equally well but it will turn out in § 13 that the Dirichlet
domain of 3L[f'] at the 6rigin is the convex hull of all
points in L[f] at distance not exceeding 3. This
remark provides a very good grasp on K/3L[£']. In order
to understand ﬁhis quotient, the Kidhnel-Banchoff coloring,
used throuchout this paper s%nce § 1, is no longer satis-
factory. This explains why é 13 sets up a much more logical
system of 81 colors that will prove very efficient. Never-
theless we decided not to use this powerfull tool, devised
by Marin, in the presentation of our material in order to

supply the reader with a smooth transition between [K-B]

and § 13.
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§.9 An explicit triangulation of EPZ by K

Let L be a lattice in € and let @ be an
embedding of the torus €/L into a complex projective
plane MY as a non-singular cubic curve C such that
©(0) 4is a point of inflexion of C. Let M be the

v

complex projective plane dual to M , that is, the

set of lines in M'. Let N be the hyperplane of E3

(with co-ordinates uy 4y and uz) defined by
Uy + uy +u, = 0.
We shall introduce a map

In order that the three points w(uo),w(u1) and w(uz)

be colinear it is necessary and sufficient that (ug,u,,u,)
belongs to N (Abel's theorem). Thus if at least two of

the three points are distinct, one can define Y geometrically
by mapping '(uo,u1,u2) to the line through w\uj) (j = 0,1,2).
Since Y 1is defined up to a set of co-dimension two, Y

extends uniquely to a holomorphic map on the whole plane N.

By this definition, the following claims are clear.

Claim 1 The map Y 1is invariant under translation
by the lattice L ® L @ L N N and under the symmetric group

permuting uo,u1. and u,.



Claim 2 The map Y 1is just the quotient by the
crystallographic groﬁp acting on N generated by the

lattice above and the above symmetric group.

Claim 3 The set of critical points of Y 'is the union -

of lines defined by

(9.1) su, mod L (j,k = 0,1,2, j#k).

uj n
Claim 4 The set of critical values of Y is the dual

curve CVC:M of Cc:MV, where CV is defined as the set of

lines tangent to - C.

Recall that, corresponding to the 9 inflection points
of C (which are the images of the 3-torsion points of

€/L), the curve c¢Y has 9 cusps.

In order to fit into the context of the previous sections,
we let L = L(w) and make everything explicit as follows.
Let p{u) be the Weierstrass function belonging to the

lattice L(w):

1 1

-5

2

p (u) = Jf + ) ( 5
u z€L(w) (u-g) g
C+0

and let E be the positive real number p (1/2). The function
p and its derivative p' are related by the following

well-known formula:



(p")2 - 4p> + 48> = 0.

If we let
EO = 50 (w) = ""p'(U.) + a ,
gy = g4lu) = p'lu) +a,
EZ = Ez(U) = b p(U) r
where

a=p'(1/3) = -2Y3 E/'E, b = YT&3/E ,

then one can easily check that the above formula becomes

3

(9.2) (€)> + (6% + (g,)° = 0.

Let [50,51,52] be homogeneous coordinates on MY and let
ceM’ be the non-singular curve defined by (9.2). Define

the map w:C —» MY by
‘D(u) ='_ [Eo(u)l E1(u)' Ez(u)] .
The map ¢ defines the embedding

E/L(m) —~> Cg M.

Let {yo,y1,y2] be homogeneous coordinates of M. Then the

map Y:N -— M is given explicitly as.follows:



g = det (E1(u1) 52(u1)) . = det (gz(u1) 50(u1))
0 g () £y () 7T £y (u,)  Eq(uy)

Eq(ul)  E.(ug)
y, = det ( o' 1 (U4 ) '
Eg(uy) &4 lu,)

and the dual curve C' is given by

6 6 6 . 3 3.
(yg)” *+ (yq)" + (yp)” = 20ygy )™ + (yq¥) "+ {y, yo) ?)
Notice that the cusps of ¢V are the points ViresesVg defined

at the end of § 4.

With the notations of § 7, identify N with ¢2 by
~ setting
e1 = %(wl1l 2) ’
1
ez F ‘5(&2'1t ) .
We then have
hg = (1,0,~1), hy = (=1,1,0), hy= (0,~1,1)
350 = (1,-2,1), 3#1 = (1,1,=-2), 3f2; (-2,1,1[.
Now one has
2
L(w) 6 L(w) ® L{w) NN = 7§ L(m)hj (= L{h])
j=0

while the critical set of Y (cf. 9.1)) becomes the union

A of all the lines of the form

Efj + (j = 0'1127 Ce L[f])



Using the identification, one concludes from Claim 2
2

that the map Y 1is invariant under the action on €
of the crystallographic group L{h] + Gg (the group
I defined in § 7) and that Y/I identifies €2/T

with €P2.

Furthermore, one has

Y(Li) = Vi i=1,...,12.
Put
0 1 0 1 0
a: 1 g=0 W ?:0 1
0 1 0 0 wl 0 0

' A
and denote by § the complex conjugation map

A A
of M(s ¢P2) and by € the composition of 4§ and the

mapping represented by the matrix below.
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We then have

NoeY =Y on
so that

where n=«ao,B,v,8,c.
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Chapter III Additional material_

§ 10 Two interesting fundamental domains for T in K

The Dirichlet domain P of T- with respect to. e, = k,

Notice that the isotropy group F10 of k10 in '™ 1is the

abelian group generated by the following two elements of

order 3
J49 = e10(-e1) and Yi0 = ETY(‘E1)

while the isotropy group of k10 in I is trivial.

10 and by the two -

involutions

Let T be the group generated by T,

~

?10 = 31‘ “and €10 = @1E(-ey) .

We now construct a P10—invariant polytope P and
show that P 1is the Dirichlet domain of T with respect
10° In the orbit L10 = Fk10
action of T the closet points to k10 are at distance

to k of k10 under the

Y2 . There are nine of them listed below:

(1= w,=1) = Tg50kyg) (1 = w?,=1) = 140k, )
(1 = w,-w) = 15,(k;5) (1 = w?,-w) = Tgg(kqp)
(1 = w,=w?)= 1,50k, ) (1 = w?,~0?)= 1,400,

(0,-1) = T69(k10)

(0,-w) = 1g5q(k,q)

(0,-0%)= 1,40k, ,)
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The 's are 2 fold reflections in ' with the

following axes of reflections:

T67 : : D(1,"f0)

D(2,-f0) T68
. - . il
Tgy @ D(0,-w f1) Tog * D(2,-w f1)
Tgq ¢ D(1_,-mf2) Tag ° D(O,-wfz)
2
Tgg * D(1,-w f1)
where
D(i,z) = Cf; + ¢ (z € LIE]) .

Next we find the following twelve points at distance V3

of ki
(1,0 = 1) = 0,k ) (2= w,00 = o(k,g)
(1, w=1 =02tk,) (20,00 = o (ko)
(1, 1= w =oglk,g)  (-20%,00 = oglky,)
(1,02 = w) = 02lkg) (2 = w2,00= ol(k,)
(1, = w?) = o,(kyy) (2,00 = oglk, )
(1,1 = w?) = cdk,y)  (w,0) = o2 (ky,)

_.where the ci's are the rotations of order 3 in [ given

as follows:

Q
i

= o(=£,) 0, = 0  (w°f, - f

_ 2 - ~1 _ _ .2
o(-w f1) Gg = O ( mf2 w fo)

04 = 0(-wf2) 0g = ©
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By definition, the Dirichlet domain of I relative to

k is contained in the intersection P of half spaces

10
containing 1k10. Furthermore, the hyperplanes bounding
this domain are the perpendicular bisectors of the line
segments joining k10 to the 21 points at distance not

greater than 3. Let

I + Re

1

C£) + F (as in §8) and @' = Ce 5

be the real hyperplanes satisfying

Re(z1 + z

2) =0 -and Im(zz) = Q

regpectively. As indicated in the following table, the 21

hyperblanes considered are ‘the transforms of . I (for the

2

nine first) and of m§ = YtI' (for the twelve last) by

elements of T10..

Tgy * 7100$0 (1) Teg . ?30010 (m)
Tgq ¢ ?fo () Tgg * 030 (1)
T47 ¢ Y90 (m T4g * Y40 D

Teg ° it

Tgg = Ty991q. (H)

T 72 02 (m

49 * Y10%0
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ag * £19010 My 0p ¢ ?30 (ng)
°zé € (Tg) 03 : "730310 (Tg)
o5 ¢ V1010510 (Mg) 9g * Yio  (Hg)
o2 ¢ ?30310 (Tg) og : Y10810 (Mg
g, ° Y10810510 (Tg) 99 * g
02 + Yi9€qo (M) of + %, (WY

In fact as we ﬁow intend to show, P 1is indeed the
Dirichlet domain we are looking for. In order to see this,
considgr P as the convex hull of its vertices, thus
enabling one to compute its volume. The vertices of P .
are the 15 points of L[f] at distance not greater than

VY2 of ko + namely six at distance 1 and nine at distance

Y2 as tabulated below.

k, (453s9), (1s3s3), my, (15353),
% ‘

3 3

' 2
n1 = (2,w), n2 = {2,0"), n3 = (2,1)

(Notice that the indexing is compatible with the coloring

defined in § 1 and § 7). One can check that the set of 15

vertices of . P invariant under the group T The

10 °
boundary of P is the union of the nine octahedra and
the twelve tetrahedra shown below. The table also indicates

how the Tij's and o, 's act on the faces.



10.5

Nine Octahedra

o7 @ (Mympngmyikeiky) o tgg Gongalyet3ny kg ikg)
Ts7 G (Mpmgenpimyrkeiks) T G (ngatpaigimyikg k)
47 & (myunqengemyckgiky) Ty G (ngatyelymgikyike)

Teg & (2q/mymgy,ey,kekg)
Ts9 & (Lp.mymys2y kg k)

Tag G (R3/myimysty.kyikg)

2
The mirror of the reflection
T
kﬁ n 67
— 4 i B
’I _.:_bL \“'v
"N [/ KT
\\ ’
. /
My

(Mote that the axis of phe reflection Tij is the complex

line joining ki and kj for 4sis6, T753s59.)
Twelve Tetrahedra
b ' n—x%L
n l n
m k n

m—%k

n
m l m
2k m
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M —— L ——
Lk k
n——I | Jp—
05 08
L— T —
n k n k
n k— m
m ]
'3 me———X%k
a ag
4 m k-— 9 [}
£ L l
n — L —k
(Note that oy fixes ki 451is89)

The convex hulls of k and each of the hyperfaces

10
-0f the polytope decompose P into nine hyperpyramids of
height +v2/2 with octahedral bases each of volume /2
and twelve hyperpyramids of height v3/2 with tetrahedral

bases each of volume 3/4. The volume of P is therefore

V() =g {9x%§ x VT + 12 x %? x é? }
= 27/8
= v(C2/T) (cf. § 8)

which shows that P is the Dirichlet domain of T with
respect to k10. Using the Poicaré theorem, one readily.
checks from this fact that T is generated by the nine

Tij (45s156,753s9) bound by the relations
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1487475759769 %68
TioTig =~ T1g%i7
T43%53 7 T53763

and

2

Tij = 1 (for 4sisé, 7s53j.59).

Compare this presentation with the one given in [Y2].

The polytope P is rectilinearly triangulated by

the 36 4-simplices each of volume 3/32 1listed below.

Decomposition of the central core:

w:vl
A
N
A
| ~
AR

Teeth:

)
= 1
=

=)
o

3

[~

w
37

~
—
|

~
A xR

n kk I k k k
L k nkk r_k k
k J Lkx 4 n—L
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Bridges:

mkk L — -k— k mk—l nr— k
| k | k £ k k m | Lk n k
nJ %2k k n —I mkk L Lk 4

nkk L — n k- m— k r—k 1 —k
m J 2k k | k | k| m n k k
Lk L__k % k- m—k L'kk n —!
n k Lk nkk m | ]_k_l |  k
m k L — k L k L — x mk k n

) MNotches:
— m— k n— k
2 k m \ n k
t——k m— k n —1
L — n k m k
n kI m i] L k_‘
m k-2 L k. n —

The construction 6f P by adding layers of simplices to
the central core is exactly analogous to the following
sequence of operations. Take a regular dodecahedron and
stellate it in order to obtain the small stared dodecahedron
(due to Kepler). Next, bridge the teeth of the starred solid
to get the great Poinsot dodecahedron and finally fill in
the craters so as to end up with the convex hull of the

starred Kepler polytope, which is a regular icosahedron.
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Dodecahedron Small Dodecahedron

4

Icosahedron Great "Dodecahedron
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In the previous list, the first 33 simplices are in
K but the last three are in € X . In order to get a
fundamental domain P' (which is unfortunately not convex)
for ¥ ; 1t suffices to replace the last three (undesired)

simplices by the three following ones:

r k' nk mk
n k_} -1 £ k-l
m k 2k Lx.

~

where

Kg = 7kg * kg + Kk
ki = Kk, - kg + kg
kl = k4 + ks - k6
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The prismatic Marin fundamental domain MaD

" After carefully reading § 12 below (due to A. Marin),
we feel able to plug the fundamental domain described there
into our display of K and to prove with our techniques
that it is indeed a fundamental domain for the action of

' both in m2 and in K .

2

Claim The set MaD of vectors in C of the form 2z + w

where

m, k2 14 m2)

2 € (kg m, Es) and wE€ (k4 2,2

is a fundamental domain for I both in <m2 and in K .

Dictionary Observe that (kg m, kg), (k9 E4 12),

(k4 Loy M, k2 14 m2) and MaD respectively stapd for

Marin's A,A',H and A x H. Indeed one has

— h =0,1,2),
m - j (3
. L

where the symbols on the left are Marin's notation (see § 12).
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Description of MaD. The polytope MaD has the 21 following

vertices:

kg m, ks
k9 + k4 = k4 m, + k4 = Pg k5'+ k4 = ng
kg * 23 =&y  mp+ Ry =kg kgl =pg
k9 + m, = m4 m, +m, =Mm_g ks * my = Py
kg + k, = k, my + ky, = L kg + ky, = m_,
k9 + 14 = 24 m, + 14 = 28 k5 + 24 = m3
k9 *+m, =m, m, + m, = pg k5 +m, = k7

where P3sPgrP4 and Pg appear here for the first time.

The polytope MaD is invariant under the action of m.o .

1

The action of m,0 on these 21 vertices is given as follows:

k9 s m, m, — kg ks F— k9
ky = m_g Pg > p3 ny k= m,
%, —> Lo ké — m_- Py — k,
m, > g m_g F—> my Py > 2,
ky b= p¢ Lo > ky m_, F—>m,
LyF>pg gk ng my — k,
m, k> k} .pGHp7 ko b— &,

The boundary oMaD of this polytope decomposes

i into six triangular prisms whose union is a solid torus
; with a complementary torus which decomposes into three

hexagonal prisms. These two solid tori are glued to each
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other along their common boundary, which is a hollow

torus T0 , decomposed into 6 x 3 quadrilaterals.

dMaD
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In this picture (displaying a lewed stereographic projection
of S3), the vertex k4 is at infinity and all the edges of.
8MaD are shown except f2.kg and kgk,. Once 9MaD - {kg}
has been identified with s3 - {=} =IR3, thé boundary of the
2-gimplex (k9 m1’k5) becomes the vertical axis of ZR3 '
while (although zigzaging) the core of the hexagonal‘solid
torus (unioﬁ of the'six tringular prisms) works like a

horizonal circle in If3 whose axis is 3(k9 m ks). On the

1
picture the action of m.0 is a rotation through 27/3
around the a(k9 m, k5)-axis combined with a rotation fixing
the core of the torus and moving B(k9 m, ks) through an

angle of 2n/3.

Proof of the claim

Translations of I permute the triangular prisms in

oMaD as indicated now.
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Here we are abusing the Braille notation to indicate the
triangular prisms. On each of the 3 hexagonal prisms in

oMaD , a reflection in T acts as follows,

(palkélm_srzslgslpe) F‘* (palpsllalgslm_slké)
oto” (=14) : (n3.P7,p3,m_7,m3.k7) b— (p3.p7,n3,k-,,m3,m_-,)
(k4r22lm4lk2024lm2) F—+ (m41221k4lm2l24lk2)
2
T-Ww ho : (n3f97lp3lm_7rm3:k7) +— (m3'm_7rp3rp7rn3rk7’
—

6) (palké'm_slzslzalps) (zerzelm_srké'pelps)

Here Marin's notation is given in parentheses.

The mirror of the reflection’ T-wzho

P3

(=)

~H
A

.,
~
\

TR
YOS

-

\
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Since the three translations and the three reflections
just introduced generate the group I (see § 12), one sees

that MaD is a fundamental domain of T in Ez.

The fundamental domain MaD naturally splits into the

six following polytopes - called Marin hyperprisms -

' = . o
A x A (kg,m1,k5 : k4,p8,n3 ; Ez,ké,p7)
] —_ - .
A x A T, = (kg,m.l,k5 P Mgem_g,Pyi zz,ké,p7)
! = . .
A x A_G (kg,m1,k5 : m4,m_8,p3i k2,26,m;7)

-e

' = .
A X A T 6 - (k9'm1 ,k5 24'28,1.“3 ’ k2'26 'm_?)

-
e

1 (-
A X A 6 - (k91m1 'ks 24’1811“3 m2fp6 'k'?)

e

1 -_ .
A x Alty = (kgumyskg 3 KyiPgrRy i My Pgrky)

where the notations T1,5 etc. are explained in § 12.
If we use our colors to paint the Braille cell used by

Marin in § 12 we get the following array,

According to our conventions, the table in § 12 becomes
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The triangtilation of MaD
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One can now easily check that the 36 4-simplices tabulated above
are in X . If we replace letters by dots in the cells of the
previous table we get the Kilhnel list of § 1. This éompiete.

the proof of the claim.

The triangulation induced by K on the boundaries of. the

6 Marin hyperprisms. Note that, because of the symmetry

properties a Marin hyperprism has; the triangulation of such

a prism, using only vertices of the prism, is. determined by

its restriction to.the boundary (i.e. the union of the six
triangular prisms). Each boundary splits into two complementary

solid tori, whose common bouhdary T is the unibn of

1
9 gquadrilaterals. Each solid torus splits in turn into 3
triangular prisms. In order.to determine the triangulation
of the whole boundary of a Marin hyperprism, it suffices to
know what the triangulation does on Ty - Here are the .
splitting of the boundaries of two of the Marin hyperprisms
together with the triangulations induced by, K on the
corresponding T1's. To obtain the boundaries of the four

others, apply first once and then twice the operation m,o.

1
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d(AxAS)

™y IL: iy / My

h). h_t,— M2 Py b“":
kg R, ™ Rg
. b\c, lh\ hw_ 'hq
My {e 16 !
) 0 (A X,A"IHS ) hs \Tn3 ™y k
Qq. " B -
kg 0] - ky Rq

Observe that four hyperfaces of a Marin hyperprism are
visible (i.e. are.contained in BMaD); while each of the two
others is shared by another Marin hyperpriém. Therefore
.inside ©9MaD , one has 6 invisible prisms which can be
thought of as walls separating two adjacent ‘Marin hyperprisms.
The following figure shows the triangulation induced by K

on the torus T0 considered above (see the picture of JdMaD).
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2 4 2 2 4

ke Mg %6 Pg Pg
\

P4 Pq m_ k7 n,
\

2.2 m, k2 m, k4
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§ 11 How. does JRII?2 fit into the picture

Let M]RE ]RZ[E""a be the subset of M = U:P2 fixed

A
by the complex conjugation '8 defined in §9 . In this

section, we exhibit the inverse image Y '(M,) of M

Rr R
2.

in the complex plane N (see §9). On N = C define the

following two complex conjugations which f£ix the real planes

'7and

‘respectively, by setting

(uolu1lu2) F_} (u21u1lu0)
(21122) F*} (ETIE;)

3, -

(u0'u1lu2) F_} (uo,u1,u2)
'(21132) > ("3_2"_5?) .

T.=F

Observe that the Y is covariant with respect not only to
A A
KE and § but also to EF and & . This means that the

following relations hold.

A

Y03E=50Y

Y o EF =3 .v .

In F., let FE and FF be the isotropy subgroups of E
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and F respectively. These are real crystallographic sub-
groups of the complex crystallographic group I . Since

one has

-3
1)

Tr

n
"ljo12
Q

o

{geT | 4%

it follows that T is the semi~direct extension of a two

E
dimensional lattice Z ® @ by a group of order 2 generated

by a real reflection and that FF is the affine Weyl group

of type A, (i.e. the semi~direct extension of a two
dimensional lattice by the symmetric group 33-). Here are

fundamental domains DE and DF of Fﬁ and FF in E and

F ‘respectively, on which colors of points in Lle]l n DE and

-LTe] n D, are shown.

Figure 11-1
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Since 'E/l"E is the M&bius strip obtained by
identifying the vertical and horizontal sides of DE
(following the indicated color code) and since F/I'F is

an equilateral triangle, one can conclude that

E/T U F/T. = RP2.

E 3(936) T

Moreover M splits into Y(E) UY(F) .so that

R

YV RP?) = (U gE) U (U gF).
ger g€l

The following picture shows the intersection of X with E.

. . , R
9 10 78 . 11 9 10 78 11 9
N
6 12 %
10 . 12 0
12 A 12 A
A /45 5
78 _ L}\\7E
: 3.~ 18
1 12 A 112 11
12 12 3
A
9 45 45
, 5 |
10 tk! o 1" 9
78 , 78 /
A
12 12
10 . 10" [
110
N
7AB | 6 12 45 12 45 A
78
A
78 A
1 12 TR 12 G 11
3 12
N 3
9 10 78 11 g 10 78 14 g

Figure 11-2
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A .
Here 12 1is the color attached to the midpoint of a
segment of length +3 whose endpoints are colored by
1 and 2. Similarly for ;3 and 78. Figures 11-1 and
11-2 tell us that the triaﬁgulation. K induces on Mp
the Mdbius decahedral triéngulation of IUPZ obtained
by quotienting the boundary of the regular icosahedron
\by the antipodal map (c£. [M&]). The six vertices of the
M&bius decahedron map to '
A A A
3,6,9,12,45 and 78 .
Notice that the use of the map Y forces us to define
a rectilinear embedding 6f the decahedron in |K| which is
precisely the embedding constructed in {K-B] for quite

different reasons.



12.1

§ 12 The ontological proof forcing CP? to admit

the triangulation K (A. Marin)

The n-dimensional complex projective space is a complex crystal.

Does it have a tight triangulation with (n+ 1)2 vertices?

0. Introduction

To each elliptic curve and each inﬁeger n there is

1)

associated an n-dimensional complex crystal ‘invariant

under the action of a group In+1 isomorphic

to z/(n+1)z ® z/(n+1)z . This crystal is naturally isomorphic,

as a complex space, to the n-dimensional complex projective

space cp” . I£ is also the union of (n+1)! flat prisms A" An,
and the symmetry group In+1 repects this decomposition into
pfimes. All these prisms have the same vertices (they are (n+ 1)2

in number)z).

One is then faced with the following:

Main Problem Find a tringulation of the crystal, having (n+1)2

vertices, invariant under the group In+1 and giving a linear

subdivision of each prism.

In the case n = 2 a systematic search gives essentially
one solution: the Kidhnel triangulation of EE’Z. We were
unfortunately unable to make the same search for other

values of n (except of course for n = 1). We ask the reader
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to work out. the case n= 3, and, why noﬁ, to solve the more
general problem of finding a triangulation of the cp”

crystal with-(nn+1)2 vertices.

Behind the Main Problem is the following:

Question A If the above problem has a solution, does it

define a substantial tight embedding of the comé;ex_projective

space ce” into the boundary of the n2 + 2n dimensicnal
space .

simElex ?

For tightness theory,consultfhe following survey article
by N. Kuiper [K]. Let us just recall that if th‘ is the real
affine space of hermitian forms of trace one in (n+ 1)
variables, then the set V_ consisting of thosé forms which
are the product of a linear form and its conjugate is a
substantial tight submanifold of th . The manifold Vn
" is diffeomorphic to cP” and the affine space th is of

(real) dimension n2+ 2n. 3)

Observe also that Vn lies
on the boundary of the open convex set of.all positive definite

trace one hermitian forms.

Observe also that a triangulation of CP” must have at

least (n-l-1)2 vertices. In fact: If there is a map f £from

a 2n-dimensional complex K. to C¢P” which is non zero on

2
H2n(Kn,x/ZZ) then K2n has at least (n+ 1) vertices .
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[Make the map transversal to a cp™!

disjoint from the

image of a 2n-simplex A of Kn . Deduce that, in the

full subcomplex of Kn generated by the vertices not

lying in A , there is a subcomplex Kn-1 of dimension 2n- 2
which is a mod 2 2n-2 cycle [K__,]1, such that £,([K__,1)

is non zero. Conclude by induction on n 4),] We conjecture

that 1f K _  has exactly (n+ 1)2 vertices .such a map £

is a homotopy equivalence. If this conjecture is true,‘it is

easy to prove (by the same sort of induction as above) that

2
such a complex is a tight subcomplex of A" +2n. This would
provide an affirmative -answer to Question A. (It would in fact

be enough if f gave an isomorphism inhomology mod 2Z).

Recall that Kuiper proved that any smooth substéntial
tight embgdding 6f EP2 into m§ has an image congruent
under a projective transformation'of mﬁ‘ to the "hermitian
form model" v, (The Kiihnel triangulation is a counter

example to the conjecture of Kuiper that you can release

the smoothness hypothesis in this last statement).

We can foolhardily extend a question Kuiper asked in

the above cited survey:

2
Question B Let f:CP" —> ]Rn +2ln be a substantial

topological tight embedding. Is its image

congruent under a projective transformation of :Rn+2n

either to the "hermitian form model" Vn or to the sub-

complex of the n2 + 2n dimensional simplex given by some

solution of the Main Problem ?
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Recall that Kuiper and Pohl answered affirmatively
the analogous question for substantial tight embeddings
of ]R]P2 into ms. (The image is congruent either to
the Veronése surface or to the subcomplex of the boundary
~of the 5 simplex realising the triangulation of IUP2
which is the quotignt by the antipodal map of the

isocahedron).

Let us now leave aside the speculations, clarify the

above statements and give some hints as to how to prove them.
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1) A crystal 1is an orbifold which i1s the quotient of a
flat torus by a finite group of ismetries, quivalently
(by Bierbach's theorem) a crystal is the quotient of a
euclidean space by a discrete uniférm group of isometries
(a crystallographic group) which is called the group of

the crystal .

2) Unlike the natural isomorphism between the crystal

and CIP" this decomposition of the crystal into prisms
depends not only on the elliptic curve, but alsc on a
~splitting of it, as a real Lie group, into a product
R/Z x R/Z (i.e. a choice of basis for the lattice L = ﬁ1(E)).

3) A formual for this Veronese type embedding is

$(lzge .22 1) = (i

4) This sketch of proof gives also: If there is a map from

a_complex K.  to kP" which is non zero on Hdn(Kn;Z/ZZ)
(n+1) (dn+2)
2

then 'K = has at least 1+ (d+ 1)+ ... + (nd+1) =
vertices. Here k 1is one of the fields R ,C or H

(the quaternions) and d its dimension over IR . Observe that
this bound is one more than the dimension over R 'of the

space of trace one hermitian forms over Xk in n+1

-~
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variables, .in which k" embeds as the subset of trace
one forms which split into the product of a linear form
and its conjugate. When d = 4 and n = 2, the minimum.
number of vertices is fifteen; this bound is actually
attained, since W. Kihnel recently produced an explicit

triangulation of HP® with 15 vertices ([B-K]}.
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1 The unique degree n+ 1 embedding of an elliptic curve

in the n-dimensional complex projective space cp” .

) By the Riemann Roch-

Let E be an elliptic curve.*
theorem there exists a degree n+1 embedding ¢ of E
into CP". Abel's theorem asserts that the sum in E of the
n+1 points of a hyperplane section of ¢(E} is independant
of the section. Composing ¢ with a translation in E we
may assume that his sum is zero (the embedding ¢ is then
ungiue up to projective transformations of EEJH . Let En+1
be the subgroup of points of order n+1 in E, it is
isomorphic to x/(n+1)z ® z/(n+1)x and is mapped by o

to the points of hyperinflection of the curve ¢(E).

(*) An elliptic curve E is the quotient of the Gauss plane C
by a lattice L.
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2 The complex crystal structure on ce” .

Consider the abelian variety

-An={(zo,...,zn)€B + ... + Z

z
0 n
holomorphic mapping T from A to the complex projective

0} and the

n+1 l

space fi’n of hyperplanes in cP" which assoclates to
the point (zo,...,zn) of A the hyperplane of cre”
passing through the points Q(zo),...,w(zn). (If k of the
points m(zi) are equal, interpret passing through these k
points as having there a contact of order k with the

curve @(E).) The Riemann-ﬁoch theorem implies that there is

a uniqgue such hyperplane.

We call the abelian variety A symmetric because the

symmetric group Sn+1 acts on A on the right by per-
(*)

mutation of the coordinates. The complex projective

A
space cp” is isomorphic via 1T to be the quotient A/S .
' n+1

The points of A fixed by Sn+1 are the diagonal
points (z,...,z) where 2z 1is in En+1 (because (z,...,2z)
is in A if and only if 0 =2z + ... + 2z = (h-r1}zJ. These
points<form a subgroup In+1 of A. Since the translations

by elements of In+1 commute with the action of 5n+1
they induce an action on the left of the group In+1 on

A .
the crystal ¢P"= A/3 .1

{*) Recall that Bn+1 is the space of mappings from the

set {0,1,...,n} to E and that a permutation ¢ of
{0,1,...,n} acts on each x of En+1 by composition in

the source. This action is given by the formula

(zo,...,zn)- g = (z |

G(0)" " "%5(n)
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3 - The symmetric Abelian variety A splits into the

product Tx T' of two symmetric real tori

(the action of Sn+1 being diagonal).

Let L be a lattice in @€ such that the‘elliptic
éurve E is isomorphic to /L and let (e,e') bhe a
basis of L. Then E splits, as a real Lie group, into
a product Re /Ze X R'e/Ze'le C/L = E). Accordingly A"
splits into a product ™ x T'" where T and T'® are

two copies of the symmetric n~dimensional real torus:

T = ((xgreeeoxy) € (R/Z)™T | xp+ oo = 0).

n

The symmetric group 3 acts on the right on T by

n+1

permutation of the coordinates. The fixed points of that

action form a cyclic subgroup J of order n+1 of T

n+1
which acts on the left on the crystal T/sn+1 . The original
action of Sn+1 on A corresponds to the diégonal action

of Sn+1 on TxT' .,
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4 The real crystal T/Sn+1 .

In the euclidean space m9+1, equipped with its
canonical basis (eo,...,en), consider the hyperplane P

with equation Xgt oot X < 0 ; let M denote the

lattice Prwz“+1. The lattice M 1is generated by the

vectors m1,...,mn where m e in addition,

17 % T G-
- e (in the sequel all indices are to be

let m, = e

0 0
thought of as modulo n+ 1).

The symmetric group 3 acts linearly and isometrically

nfﬂ

on the right on P by permuting the coordinates. For example

the transposition = exchanging the i-th and (i-1}th"

i
coordinates gives the linear reflection which fixes the linear
hyperplane -Hi of P orthogonal to m, . The figure below(*)
depicts the case‘ n =2, Observe that when n =2 ,choosing the
orientation of P given by the basis '(m1,..;,mn), the

circular permutation 5==Tn...T1 acts as a direct (or

‘anticlockwise) rotation through 21/3.

(*) For the time being, mentally erase the as yet undefined
A
elements Hy » Ai and s of that figure. Their meaning

will be explained in due course.
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v
H H,
Figure 12-1

Let G be the crystollographic group generated by

Sn+1 and the translations of the lattice M

. We shall use

the notations P:P —> P/M =T, 7:p —> P/G and

T:T —> T/8, 41 to indicate the quotient maps.

Consider the n-simplex

= {x€P | (xIm,) s 0 for i =1,...,n and (xImy) 51}
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which is bounded by the hyperplanes of symmetry of the
' A
reflections To = ToMgrTqrecerTy - Let AO,A1,...,An

denote the corresponding faces of A ,

Claim 1 .The angle between two "consecutive" faces Ai
and Ai-1 is w/3 , and, in the remaining cases, the

angle between Ai and Aj is w/2.

This is true because m, is orthogonal to Ai , and

= -1

the scalar products of the m, are (m, Im) =2, (milmi—1)
and (milmj) =0 in the other cases.

a
Claim 2 The simplex A 1is a fundamental domain for the
action of G on P.

o

Since the angles between faces of A are submultiples

of m™ , you can prdve, just as in the case of.the Schwarz

(*)

triangle groups, that A is a fundamental domain for the

action on P of the group G generated by the

0
A
reflections TorTqrecerTy « But since ToreeesTy generate the

1

symmetric group $_,, s M, = To?o and m; = § 'm, .6

i=1

where 6='rn...11 is induced by the cyclic permutation of

the coordinates i b— i - 1 , the group G is equal to the

0
group G and the simplex A is a fundamental domain for

the action of G on P .

(*) See for example the account in paragraph 2 (p. 178-181)
of [Mi] . "
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We can-express the last c¢laim in the following commutative
diagram, where the natural maps on the bottom line are

isomorphisms.

P
A &~ P —~—> T = P/M

TR (O LA

] ==

" Claim 2' The polyhedron H = U A-o is the
cE 3
Dirichlet domain at the origin of n+1 the lattice M .

The face of the simplex A-0 which does not contain
the origin is ﬁo - 0. As the angles between this face and
the other faces of A:-0 , being n/3 or =/2 , are less

than or equal to n/2 , the polyhedron H 1s convex and is

A A
equal to N Hy_ - 0. Here Hy_ -0 = {x€P| (xImy - o) s1}
is the half space consisting of points nearer to 0 than to

A

my = O (its boundary is the hyperplane HO - g carrying

the face bg * O of A-+cg). The polyhedron H contains the

Dirichlet domain ‘at 0 of the lattice M . It is in fact
equal to that Dirichlet domain because, by diagram (1) they

have the same volume.
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The pPolyhedron

H in case n = »

&

\
--‘---_'-'.h

Figure 12-2
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Claim 3 The images in the torus T of the vertices of

A4 are the points of Tt

The image of 4 in T is a fundamental domain for
the action of 3n+1 and so the images of the n+ 1 vertices
of A are fixed by 3n+1 . The claim then follows because

the fixed point set J of the action of Sn+1 on T

n+1

also has n+ 1 elements.
[ ]

Let sn be the isotropy subgroup of the last letter n.

Claim 4 The polyhedron K = U A-c is a parallelepiped
: 0 €3n _ -
which is 'a fundamental domain for the lattice M = p 1(Jn+1l,

and whose vertices form a set of generators for the group M .

a

n=1 be the orbit of Mo under the group

Sn (ni has -1 as last (nth) coordinate , 1 as ith

Let no,..,,n

n-1
is also the orbit of - mn under Sn .

coordinates and zeros elsewhere). Since n =-m the

set Ngreee Ny

Clearly K 1is included in
{xep| (xIm -0) $0 and (xImy-0) $1 for all o in $_}

= {xeEP| 05 (xIng) s 1 for i =0,...,n-1}

This is a parallelepiped K . As $, is of index n+ 1



12.14
in Bn+1 (the classes being reéresented by sk for
k = 0,...;n) and the polyhedron H is the non over-
lapping union of the n+ 1 parallelepipeds K. Gk '
it follows that the polyhedron K 1is equal to the
parallelepiped K . since the vertices of this

parallelepiped are in the 3. orbit of the vertices

of A , Claim 3 asserts that the lattice generated by

‘these points is included in M = 0-1(3 A final index

n+1) L]
(or volume) consideration tells us that this is in fact
an equality and K  is thus a fundamental domain for the
lattice ﬁ:, The set of those véftices of K which are

joined to the origin by .an edge of K must then be a basis

for W .

Let us denote by Sy the vertex of A opposite to the

face A, .
i

The polyhedron K in the case n = 2

51. Z,

Figure 12-3
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Claim 5 The image in T of the vertex - 3., -generates
the group J,., and we have s, -s,=s, ., * ¢

for 1 =0,1,...,n.
a

First note that s, +s, = mg (note that Sy * S, is
an eigenvector of the isometry which maps m, to m_; -
As Sy and s, are orthogonal to MoreessM_y and the

plane H! perpendicularly bisecting Om the
0 - o]

eligenvector s, +s  must be m, ),

Now since § cyclically permutes the mi(mi_1- 8 =mi)
and the m; are orfhogonal'to-the faces Ai' of A , the
simplex 4A-§ 1is a translate of 4 . In A-§ the origin is
opposite to the face Aoa which is parallel to A; . the
face opposite to s, in A , so that we must have

A*8§=A - s, . The angle condition of claim 1 gives a cyclic

1
order on the faces and hence on the vertices of A leaving

two possibilities.for 8y T 8y ¢

Either ‘si - s, =8, 4*¢ for i=1,...,n,n+1 which

is ruled out by the relation 3, +s, =my {this relation with
-S, = s378, = s5;° § implies S, = S;° § + mg .contradicting
the fact that distinct points in A are not congruent under

the group G (Claim 2)).

Or the formula of Claim 5
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K :
As the § exhaust the classes of sn in 5n+1

this formula implies that the image of =S, is of order n +1

in the cyclic group Jn+1 proving that -s, hence S, is

a generator of that group.

Claim 5' The cyclic group Jn+1 acts on T/sn+1 viewed

as the simplex A Dby permutation of its vertices. The

generator s, acts by sy — Sjsq

If you prefer to verify the clﬁims of this paragraph by

calculus, the coordinates in If“q of the 1th vertex Sy
of A are:
_ i i -i i
T R S I = )
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5 The prismatic decomposition of T x T'/Sn+1 . Looking

for a triangulation of the crystal cP® with (n+ 1)2

vertices

The first projection Tx T' — T induces a
map p:TxT'/3n+1'—-> T/:Bn+1 s A , which is an orbifold
fibration with generic fiber T' . Over a point x of
the boundary 4 , the fiber T' 1is folded by the subgroup
of Sn+1 generated by the reflections T along the faces

Ai of A which contain x .

The polyhedron A x H' (*) is then a fundamental domain

in P x P' for the action of the group G on the crystal

T x T'/Sn+1 . This fundamental domain is the union of the (n+1)!
' (**)

flat prisms Ax A'eog for ¢ in 3 .

n+{

The Main Theorem is: Find the triangulations of the crystal

T x T'/3n+1 , invariant under the symmetry group In+1

{= Jn+1x J$+1), and which are geed for that decomposition into
flat prisms, in the sense that they induce on each prism

A x A'-g a linear subdivision which does not add any new

vertex.

Since by claim 5 of § 4 a generator of the group J,;q

(*) Recall that T' is a second copy of T so that
P',A',H',K', and J$+1 will be the corresponding copies
Of P’A’H'K and Jn+"[ .

(**) A flat prism in a crystal X = P/G is a subset Y of X
such that there exist in the euclidean space P an affine
prism A4 x A, such that the gquotient m:P — P/G

induces a homeomorphism between A1 x A2 and Y.
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sends the prism A x A'-g to the prism A x A'.§80 (*)
no prish of the crystal T><T'/Sn+1 is conversed by a
non trivial element of J5+1. Therefore we have to find

the simplicial decompositions of the crystal J'n+1\TXT'/5n+1:

invariant under the grouo T+l and good for the

decomposition into prisms A x A'.g, cEISn

A flat fundamental domain for this last crystal is the

polyhedron A x K' (Claim 4 of §§ 4) the main problem reduce

then to find a linearsubdivision S of the decomposition

into prisms of that polyhedron which does not add any new

vertex and satisfies the following:

mpatibi 14 invari dit

1) First Compatibility Condition

The restriction of the subdivision to the facet.A1XK'

is invariant under id x Tqe

2) Second Compatibility Condition

The restriciton of the subdivision 'to the facets AxFiO

and ﬂXFi1 are isomorphic via the translation which

maps one of these facets to the other (Here Fij are

(*) Recall that I+ 1 is the fixed point set of the action
of 8., on T' so that: A'-0-s}=A'-0-s)-0= (A'-s1) -0

= (A'.g).0 = A'-§0.
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the facets of the parallelepiped K':for 3=0,1
and i =90,...,n=-1 the facet Fij is

{xek'| (x1n) =3} ).

3) Invariance Condition

For all ¢ in sn the affine.mapg;ng sending

. : 550 {0) =1
(si,sj g) to (s;_4.s j=(1+ 3 (0)) s agé )

induces an isomorphism between.the restrictions of

the subdivision to the prisms AxA'-0 and AXA'-ﬁﬁc(o)cd-

9055~ 45 in 3

Note that 60(0)0(0) = 0 hence &§ n

(fixes n): the mapping in the third condition is the

generator -s, of J 41 acting on A x A'-0 ., (By claim 5 of

]
§§ 4this generatormaps AXxA'.0 to A-8§ x A'.0 . Use the

1

diagonal action to send this prism to Ax A'-0§ = which is

in A x H' ; then by claim 5 a suitable element of Jn+1

maps it into AxK',)

The first condition is the folding condition over A1:
the folding conditions over the other faces Ai are implied

by the invartrance condition.

The second condition asserts that the subdivision of

A x P invariant under the action of M..

Note that the resulting decomposition into (open) simplices

may not be a triangulation of the crystal X = J;;1\T>‘T'/sn+1

(because in X there are only n+ 1 vertices and dim(X) = 2n>n).
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' A
To get a triangulation of the crystal cF* = TxT'/Sn+1

you have to add.

{(4) The Triangulation Condition:

The M' and G invariant linear subdivision of

PxP' extending S induces a triangulation of

PxP'/G (the G-orbit of a simplex is uniquely

determined by the G-orbits of its vertices.).

6 If n = 2 there is just one solution to the Main Problem:

the KUHNEL triangulation of EEQ .

To solve the Main Problem, a naive approach is, as follows.
a) List all simplicial subdivisions of the polyhedron

4 x K' which do not add any new vertex.

b) Rule out the ones which fail to satisfy the compatibility

and invariance conditions of the above paragraph.

This b;ute force attack works in the case n = 1,
The two subdivisions of the square are solutions and induce:
a triangulation of EPi combinatorially equivalent to the
boundary of a 3—simplex..In the case n=2 this method gives
four solutions,_whose universal covers {(in the orbifold sense)
are cyclically permuted by the quarter turn rotation with
matrix (? -8) acting on P xP'. Furthermore, these solutions

satisfy the triangulation condition.

Let us list the 4-simplices of one of these triangulations.
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Denote -a k-simplex of a prism A x A'+g by 1ts brail;g:
th

k+1 points in a 3 by 3 matrix where a point on the i column
and jth row means that (51,35 + g) 1is a vertex of the
4-simplex.

Figure 12-4 shows the parallelogram KXK' which is the
union of the 2! triangles A' and A'-r1 . In each of these
triangles we write write the brailles of the six 4-simplices

subdividing the corresponding prism.

One of the four solutions of the Main Problem in the case n=2

',
ST

- Figure 12-4
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We leave it as an exercise for the reader to check
that the simplices depicted.-in figure 12-4 give a triangulation -
of the polyhedron 4 x K' which satisfies the compatibility
and invariance conditions. (For example the triangulations

of each prism restrict to the same triangulation
( I [— J ' ! ) of their common face & x A]

and the generator - S, of Jn acts on the simplices

+1
of A x A' and A x A'-1, by a clockwise (respectively
anticlockwise) rotation through %% in each of the triangles

A' and A"T1 of figure 12-4).

The philosophy of chapter XII is: "To make the crystal

% and its triangulation easier to understand, factor by

CP
the biggest symﬁetry group giving a quotient crystal
possessing a nice prism decomposition". However, let us now
lean toward the philosophy of the rest of the paper:" The

more symmetry a fresco has, the more enticing it is". Unfold
the triangulation of the polyhedron A x K' which we
described above into a triangulation of the fundamental domain

A
A x H' of the group G of the crystal T:tT'/33=:EP2 .
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An unfolded solution of the Main Problem for n= 2

Figure 12-5

To recognize the thirty six 4-simplices of the KUHNEL
COMPLEX, our braille must be coloured according to the

following scheme
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Thus our braille has a different meaning from that of

chapter I. (Recall that the braille of chapter I was

~J

coloured 1 ) .

o @

Note that on the present braille the generators of

Jé and J3 act by permuting the rows and columns; they

are 1x8 and §x 6 and correspond to the permutations ap”!

and B of chapter I.

In the case of an elliptic curve associated to a
hexagonal lattice, the crystal Tx 'I"/.3n+1 has one more

symmetry of order three, which in the case n=2 corresponds

to the permutation vy. of chapter I. But as.this %; rotation

of the curve E does not preserve any splitting of E it
cannot preserve the prismatic decomposition. Nevertheless,
choosing the basis (exp (mi/3) ,exp (2wi/3)) for the
hexagonal lattice, this new symmetry acts isometrically

on TxT' via the matrix (_1 -8 ) and, in the case n-=2,
respects the triangulation we deséribed. We obtain
precisely Marin-Yoshida's rectilinear triangulation of the

two dimensional complex vector space mz . )

-1
0

complex conjugation also respects the triangulation (it is

Note that in TxT' the matrix (81 ) which gives
the translation of the ¢ of chapter I). Observe also that
choosing the basis (1, exp (mi/3)) would not give.the

Kiihnel complex, but its image under the € of chapter I
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(the Kihnel compléx of course being given by two of the

three other solutions of the Main Problem).

Remark We do not give the proof of the uniqueness of the
solution of the main problem, because that proof is a
tedious verification (which took us a whole afternoon

the first time we tried it). Furthermore, we do not yet
understand what really makes it work: a nice prodf would
answer the Main Problem in all dimensions. Let us just
mention that in the case n = 2 the invariance condition
splits into two invariance conditions {one on each prism):
you essentially have to consider the prisms one after ﬁhe
other and these invariance‘conditions very soon limit the
number of cases to consider. But for n23 the generator
of-'Jm_1 permutes some of the prisms, so you have to

consider all the prisms at the same time: the incompatibilities
come much later. We hope nevertheless that some reader, more
careful than us, will "catch the tight triangulations" and
solve the Main Problem. Even finding a triangulation of

(I:IP3 with sixteen vertices would be a step forward!

§ 13 and § 14 are in nreparation






[B]

[B-K]

[E-K]
[G1]
[G2]

[G-8]
(J74]
[K]
[K-B]

[R-L]

a®

(Mi]

(M8]
[Moi]

[R-S]
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