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Abstract. Twisted ind-Grassmannians are ind-varieties G obtained as direct limits of Grass-
mannians G(rm, V rm), for m ∈ Z>0, under embeddings ϕm : G(rm, V rm) → G(rm+1, V

rm+1)
of degree greater than one. It has been conjectured in [PT] and [DP] that any vector bundle of
finite rank on a twisted ind-Grassmannian is trivial. We prove this conjecture under the assump-
tion that the ind-Grassmannian G is sufficiently twisted, i.e. that limm→∞

rm

deg ϕ1...deg ϕm

= 0.

2000 Mathematics Subject Classification, Primary 14M15, (Secondary 14J60, 32L05).

1. Introduction

Ind-Grassmannians are ind-varieties defined by chains of embeddings

(1) G(r1, V
n1)

ϕ1

↪→ G(r2, V
n2)

ϕ2

↪→ · · ·
ϕm−1

↪→ G(rm, V
nm)

ϕm

↪→ . . . ,

where G(r, V ) denotes the Grassmanian of r-planes in a finite dimensional vector space V . Any
of the embeddings ϕm has a well defined degree degϕm, and the ind-Grassmannian defined by
(1) is twisted if degϕm > m for infinitely many indices. In the special case when rm = 1 and
degϕm = 1 for all m, the study of finite rank vector bundles on ind-Grassmannians goes back
to W.Barth, A.Van de Ven and A.N.Tyurin, [BV], [T]. In this case the ind-Grassmannian is
just the infinite projective space P∞, and the remarkable Barth-Van de Ven-Tyurin Theorem
claims that any vector bundle of finite rank on P

∞ is isomorphic to a direct sum of line bundles.
Historically, this is the first manifestation of a general phenomenon that seems to take place
for ind-varieties defined via sequences of embeddings similar to (1) with G(rm, Vm) replaced by
arbitrary compact homogeneous spaces: in all cases known, the restriction of any finite rank
vector bundle on the ind-variety to a large enough finite dimensional homogeneous subspace
is equivariant. Around the same time this phenomenon occured also in the important work
of E. Sato who gave an independent proof of the Barth-Van de Ven-Tyurin Theorem, [S1].
Shortly after that Sato established a more general result which applies in particular to the
ind-Grassmannian G(r, V ) of r-planes in a countable dimensional vector space V , [S2].

More recently the subject has been revisited in the papers [DP], [CT] and [PT]. In par-
ticular, in [PT] a general conjecture about finite rank vector bundles on ind-Grassmannians
has been stated. In fact, as we show in [PT], if the ind-Grassmannian is not twisted (which
is easily seen to be equivalent to assuming that degϕm = 1 for all m), this conjecture is a
relatively straightforward corollary of Sato’s result. This leaves open the case of a twisted
ind-Grassmannian, in which case the conjecture claims simply that finite rank vector bundle on
such an ind-Grassmannian is trivial. So far this latter conjecture is established in the following
three cases: for a rank two bundle on any twisted ind-Grassmannian [PT], for any finite rank
bundle on any twisted projective ind-space (a twisted projective ind-space can be defined via
the sequence (1) where rm = 1 and degϕm > 1 for all m) [DP] and for an arbitrary finite rank
bundle on some special twisted ind-Grassmannians (here ϕm are twisted extensions as defined
in [DP]).

In the present paper we consider the case of arbitrary finite rank vector bundle on arbirary
twisted ind-Grassmannians satisfying the condition dim rm = const for all m. In fact, we work
with a more general class of twisted ind-Grassmannians which we call sufficiently twisted. They
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are defined via the condition

(2) lim
m→∞

rm
degϕ1... degϕm−1

= 0.

Our main idea is that the relatively simple proof of the conjecture in the case of a twisted
ind-projective space, [DP], admits an interesting generalization. More precisely, the original
method is based on the study of certain morphisms of P1×P1 into larger and larger projective
spaces. Under the assumption that a twisted infinite projective space admits a non-trivial
vector bundle, one pulls it back to P1×P1, and for a sufficiently large projective space the pull-
back is forced to have numerical invariants which yield a contradiction. The main technical
achievement of the present paper is the introduction of an appropriate class of maps of P1×P1

into a twisted ind-Grassmannian (defined in terms of a construction of a certain vector bundles
on P1 × P1, see Section 5 below) and the corresponding extension of certain estimates in [DP]
concerning lines in Pn to Segre curves of degree 2r in G(r, V ). The only limitation of this more
general method has to do with fact that it is still based on the specific properties of the surface
P1 × P1. This explains the condition (2).

Acknowledgement. We acknowledge the support and hospitality of the Max Planck Insti-
tute for Mathematics in Bonn where the present paper was conceived. A. S. T. also acknowl-
edges partial support from Jacobs University Bremen.

2. Notation and Conventions

Our notation is mostly standard. The ground field is C. All vector bundles considered
are assumed to have finite rank. We do not make a distinction between locally free sheaves
of finite rank and vector bundles. If F is a sheaf of OX -modules on an algebraic variety X,
Fn denotes the direct sum of n copies of F , H i(F) denotes the ith cohomology group of F ,
hi(F) := dimH i(F), and F∨ stands for the dual bundle, i. e. F∨ := HomOX

(F ,OX). If
Z ⊂ X is a subvariety, IZ,X denotes the sheaf of ideals corresponding to Z.

By G(r, V ) we denote the Grassmannian of r-dimensional subspaces of a vector space V ;
unless the contrary is stated explicitly, we assume that dim V <∞, r 6= 1, r 6= dimV − 1.

By a rational curve we always mean a curve isomorphic to P
1, i. e. for convenience we

assume a rational curve to be smooth. If C is a rational curve, OC(i) stands for a line bundle
on C with first Chern class equal to i ∈ Z. A line in G(r, V ) is a rational curve of degree 1 and
is determined by a flag of V1 ⊂ V2 of subspaces in V with dimV1 = r − 1, dimV2 = r + 1.

If C ⊂ X is a rational curve in an algebraic variety X and E is a vector bundle on X, then
by a classical theorem of Grothendieck, E|C is isomorphic to

⊕
iOC(di) for some d1 ≥ d2 ≥

· · · ≥ drkE . We call the ordered rkE-tuple (d1, . . . , drkE) the splitting type of E|C and denote it
by dE(C).

We call a curve C =
r
∪
i=1
Ci, where Ci are rational curves, a chain of rational curves, if, for

each i < r, the intersection Ci ∩ Ci+1 is a transversal intersection at a single point and there
are no other intersections of the curves Ci. If C is a chain of rational curves, OC(n1, ..., nr)
denotes a line bundle on C such that OC(n1, ..., nr)|Ci

' OCi
(ni).

Finally, under a partition of n ∈ Z>0 (respectively, a strict partition of n) we understand a

k-tuple (n1, . . . , nk) ∈ Zk
≥0 (respectively, (n1, . . . , nk) ∈ Zk

>0) with
∑k

i=1 ni = n.

3. An estimate for DE(C)

For a vector bundle EC on a rational curve C with splitting type d(EC) =
(d1(EC), . . . ,drkE(EC)), set D(EC) := d1(EC) − drkE(EC). Our objective in this section is
to prove the following theorem.
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Theorem 3.1. Let π : X → B be a flat family whose fibers are chains of rational curves and
whose generic fiber is a rational curve. Assume that, for a point 0 ∈ B, C0 := π−1(0) is a chain
of rational curves C1 ∪ ... ∪ Cr, r ≥ 1. Let E be a vector bundle on X. Then there exists a
neighbourhood U of the point 0 in B such that for any t ∈ U for which Ct = π−1(t) is a rational
curve, one has

(3) D(E|Ct
) ≤

r∑

i=1

D(E|Ci
).

Proof. The proof is based on two auxiliary results, namely Corollary 3.4 and Lemma 3.5, which
we prove later on in this section. First, Corollary 3.4 implies that for any integers n1, ..., nr
there exists a neighbourhood U ′ ⊂ B of the point 0 and a line bundle L on π−1(U ′) such that
L|C0

' OC0
(n1, ..., nr). Hence E|C0

⊗L ' E|C0
(n1, ..., nr) and E|Ct

⊗L ' E|Ct
(n1 + ...+ nr) for

any t ∈ U ′ for which Ct = π−1(t) is a rational curve. By semicontinuity,

(4) h0((E|C0
)(n1, ..., nr)) ≥ h0((E|Ct

)(n1 + ...+ nr)).

Therefore, for ni = −d1(E|Ci
)−δi, where δi are as in Lemma 3.5, the inequality (4) and Lemma

3.5 imply

(5) h0(E|Ct
(−

r∑

i=1

d1(E|Ci
)−

r∑

i=1

δi)) = 0.

In particular, (5) holds for the following r choices of δ1, ..., δr: δi0 = 1, ..., δj = 0 for j 6= i0, i0
running from 1 to r. Therefore, for t in the intersection U of the corresponding r neighbourhoods
U ′ we have

(6) d1(E|Ct
) ≤

r∑

i=1

d1(E|Ci
).

Since drkE(E) = −d1(E
∨), inequality (6) applied to E∨ instead of E yields

(7) drkE(E|Ct
) ≥

r∑

i=1

drkE(E|Ci
)

for t ∈ U . The desired inequality (3) follows from (6) and (7). �

We now proceed to the auxiliary statements used above. Given a strict partition (n1, . . . , nr)
of n ∈ Z>0, we define a polarized chain (of rational cruves) as a pair (C,OC(n1, . . . , nr)), where
C = C1 ∪ ... ∪ Cr is a chain of rational curves.

Lemma 3.2. For any strict partition (n1, ..., nr) of n ∈ Z>0 and any polarized chain
(C, OC(n1, ..., nr)) there exists a linearly normal 1 embedding i : C ↪→ Pn such that
OC(n1, ..., nr)) ' i∗OPn(1).

Proof. We use induction on r. For r = 1 the desired embedding i : C ↪→ Pn is clearly given
by the complete linear series |OP1(n1)|. Assume now that the claim is true for r − 1. If we
decompose C as C = C ′ ∪ Cr, where C ′ := C1 ∪ ... ∪ Cr−1, and set n′ := n − nr, then by
the induction assumption there exists a linearly normal embedding i′ : C ′ ↪→ Pn

′
such that

OC(n1, ..., nr−1)) = i′∗O
Pn′ (1). Next, consider the linearly normal embedding ir : Cr ↪→ Pr

by the complete linear series |OP1(nr)| and embed the spaces P
n′

= Span(i′(C ′)) and P
r =

Span(ir(Cr)) into the projective space Pn in such a way that their intersection Pn
′
∩ Pr in Pn

is a point. We may assume, after possible projective linear transformations of P
n′

and P
r, that

this point equals i′(C ′) ∩ ir(Cr). Thus we obtain an embedding i : C ↪→ Pn such that i|C′ = i′,
i|Cr

= ir and, by the construction, OC(n1, ..., nr)) = i∗OPn(1). �

1Recall that i is linearly normal if Span(i(C)) = Pn.
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Next, we recall that a k-pointed chain (of rational curves) is a datum (C,B1, ..., Bk) consisting
of: (i) a chain C = C1 ∪ ... ∪ Cr of rational curves, (ii) a set of k distinct points B1, ..., Bk ∈ C
which for r > 1 are also distinct from the points Ai = Ci ∩ Ci+1, i = 1, ..., r − 1. For any
k-pointed chain (C,B1, ..., Bk) we denote its isomorphism class by [(C,B1, ..., Bk)]. The set
M0,k of isomorphism classes of k-pointed chains is the well known moduli space of k-pointed
chains (of rational curves).

Denote by Hilbn+1
Pn the Hilbert scheme of subschemes of Pn with Hilbert polynomial n+1.

Fix n + 2 points B1, ..., Bn+2 ∈ Pn in general position, i.e. such that no n + 1 points lie in
a hyperplane of Pn. Consider the set V (B1, ..., Bn+2) := {C ∈ Hilbn+1

Pn|(C,B1, ..., Bk) is a
k-pointed chain in Pn} and the morphism

θ : V (B1, ..., Bn+2)→M0,n+2, C 7→ [(C,B1, ..., Bn+2)].

In addition, put Γ(B1, ..., Bn+2) := {(x, C) ∈ Pn × V (B1, ..., Bn+2)| x ∈ C}.
Now we invoke results of Kapranov [K] concerning k-pointed chains. Together with Lemma

3.2 these results yield the following proposition.

Proposition 3.3.

1) The morphism θ is an isomorphism, hence it induces an embedding iΓ : Γ(B1, ..., Bn+2) ↪→
Pn ×M0,n+2.

2) For any strict partition (n1, ..., nr) of n ∈ Z>0 and any polarized chain (C0,OC0
(n1, ..., nr)),

there exist points B1, ..., Bn+2 ∈ C0 such that the point c0 = [(C0, B1, ..., Bn+2)] ∈ M0,n+2

satisfies the condition OC0
(n1, ..., nr) ' i∗Γ(OPn(1) �OM0,n+2

)|C0×{c0}).

3) The family of curves πΓ : Γ(B1, ..., Bn+2)
iΓ
↪→ Pn ×M0,n+2

pr2
→ M0,n+2 is a semiuniversal

deformation of the curve C0, i.e., for any flat family π : X → B of chains of rational curves
such that C0 = π−1(0) for some point 0 ∈ B, there exists a neighbourhood U 3 0 in B and a
morphism f : U →M0,n+2 with f(0) = c0 and π−1(U) = Γ(B1, ..., Bn+2)×M0,n+2

U.

4) The line bundle L := Φ∗i∗Γ(OPn(1) �OM0,n+2
), where Φ : π−1(U)→ Γ(B1, ..., Bn+2) is the

induced morphism, satisfies the property L|C0
' OC0

(n1, ..., nr).

Corollary 3.4. Let π : X → B be a flat family of chains of rational curves. Let 0 ∈ B be a
fixed point. For any line bundle L0 on the fiber C0 = π−1(0) there exists a neighbourhood U 3 0
in B and a line bundle L on π−1(U) such that L|C0

' L0.

Proof. If L0 is ample, its restrictions to each irreducible component of the fiber C0 define
a strict partition (n1, ..., nr), and our statement is an immediate consequence of Proposition
3.3,2). Since any line bundle L0 on C0 can be represented as L′

0 ⊗ L
′′∨
0 for some ample bundles

L′
0, L

′′
0, the Corollary follows. �

Lemma 3.5. Let C = C1 ∪ ... ∪ Cr, be a chain of rational curves and let E be a vector bundle

on C. Then, for any δ1, ..., δr ∈ Z≥0 with
r∑
i=1

δi > 0, one has

h0(E(−d1(E|C1
)− δ1, ...,−d1(E|Cr

)− δr)) = 0.

Proof. We use induction on r. For r = 1 the statement is clear from the definition of d1(E).
For the step of induction we just consider the case r = 2, since for arbitrary r the argument
goes through without changes. Let r = 2 and δ1 > 0. Then clearly h0(E(−d1(E|C1

)− δ1)) = 0.
Hence the natural exact triple

0→ (E|C2
)(−d1(E|C2

)− δ2 − 1)→ E(−d1(E|C1
)− δ1,−d1(E|C2

)− δ2)→

→ (E|C1
)(−d1(E|C1

)− δ1)→ 0

implies the equality h0(E(−d1(E|C1
)− δ1,−d1(E|C2

)− δ2)) = 0. �
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4. Construction of special rational curves in G(r, V )

Let E be a rank k vector bundle on G = G(r, V ). Denote

D(E) := max{D(E|l)| l is a line in G}.

Our aim in this section is to prove that, for any point y0 ∈ G, the inequality D(E|C) ≤ 2rD(E)
holds on a dense open subset of a suitably defined subscheme of the Hilbert scheme H2r(y0) of
rational curves C of degree 2r on G passing through the point y0.

We start with the following construction. Under the assumption that dimV ≥ 3r, let
V ′, V ′′, V ′′′ be three r-dimensional subspaces of V such that

(8) V ′ ∩ V ′′ = V ′ ∩ V ′′′ = V ′′ ∩ V ′′′ = {0}, V ′′′ ⊂ V ′ ⊕ V ′′.

In addition, fix r linearly independent one-dimensional subspaces V ′
i , i = 1, ..., r, in V ′. This

datum defines linearly independent one-dimensional subspaces V ′′
i := V ′′ ∩ (V ′′′⊕ V ′

i ) in V ′′, as
well as linearly independent one- dimensional subspaces V ′′′

i := V ′′′ ∩ (V ′
i ⊕ V

′′
i ). We obtain r

projective lines P1
i := P (V ′

i ⊕V
′′
i ), with points V ′

i , V
′′
i , V

′′′
i , i = 1, ..., r, on them. On each of the

lines P1
i there is an affine coordinate ti uniquely determined by the condition

V ′
i = {ti = 0}, V ′′

i = {ti =∞}, V ′′′
i = {ti = 1}, i = 1, ..., r.

Let Vti ∈ P1
i be the point with affine coordinate t. By construction, the points Vt1, ..., Vtr,

considered as one-dimensional subspaces of V , are linearly independent in V and their span
V r
t := Vt1 ⊕ ...⊕ Vtr is an r-dimensional subspace of V . Thus we have an embedding

ϕ1 : P
1 ↪→ G, t 7→ V r

t

such that ϕ1(0) = V ′, ϕ1(∞) = V ′′, ϕ1(1) = V ′′′, ϕ∗
1OG(1) = OP1(r). Note that the

degree r curve Cr
1 = imϕ1 depends only on the choice of the triple of r-dimensional spaces

V ′, V ′′, V ′′′. We call the curve Cr
1 the Segre curve associated to V ′, V ′′, V ′′′. Moreover, the

subspaces V ′, V ′′, V ′′′ define an embedding

s = s(V ′, V ′′, V ′′′) : P
1 × P

r−1
s1,1

↪→ P
2r−1 j

↪→ P (V ),

where s1,1 is the Segre embedding and j is an embedding with imj = P (V ′⊕V ′′). By construc-
tion, ϕ1(t) = s(V ′, V ′′, V ′′′)({t} × Pr−1). We call s(V ′, V ′′, V ′′′) the extended Segre embedding
associated to V ′, V ′′, V ′′′.

More generally, for any (t2, ..., tr) ∈ (k∗)r−1 the triple of spaces V ′, V ′′, V (t2,...,tr), where

V (t2,...,tr) := V11 ⊕ Vt22 ⊕ ...⊕ Vtrr,

satisfies condition (8) with V ′′′ replaced by V (t2 ,...,tr) and hence yields a Segre curve

(9) Cr
(t2,...,tr)

:= im s(V ′, V ′′, V (t2,...,tr))

in G. In particular, Cr
(1,...,1) coincides with the Segre curve Cr

1 = imϕ1. In addition,

y0 := {V ′} ∈ Cr
(t2,...,tr).

Let l1 be the line in G determined by the flag (V ′
2 ⊕ .. ⊕ V ′

r ⊂ V ′′
1 ⊕ V ′

1 ⊕ .. ⊕ V ′
r ) and let

li, for i = 2, ..., r, be the line in G determined by the flag (V ′′
1 ⊕ ... ⊕ V

′′
i−1 ⊕ V

′
i+1 ⊕ ... ⊕ V

′
r ⊂

V ′′
1 ⊕ ...⊕ V

′′
i ⊕ V

′
i ⊕ ...⊕ V

′
r ). These lines constitute a chain of rational curves

Cr
0 = l1 ∪ ... ∪ lr

in G. Moreover, setting (t2, t3, ..., tr) = (t, t2, ..., tr−1), one easily proves the following lemma.
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Lemma 4.1. Let G = G(r, V ), with dim V ≥ 3r. Consider the surface S× := {(x, t) ∈
G× k×| x ∈ Cr

t := Cr
(t,t2...,tr−1)} with projection π× : S× → k×, (x, t) 7→ t. Then the following

statements hold.
(i) The fibers Cr

t = (π×)−1(t) are rational curves passing through the point y0 ∈ G.
(ii) Let k× ↪→ k = A1 be the standard inclusion and let S be the closure of S× in G × k.

The extended projection π : S → A1 is a flat morphism and the natural morphism ν : S → G,
(x, t) 7→ x is birational and gives an isomorphism ν : π−1(0)

∼
→ Cr

0 .

We note next that the condition dimV ≥ 3r in Lemma 4.1 can be removed. In fact, let
dimV < 3r. By our assumption (see Section 2), r + 2 ≤ dim V . Fix a 3r-dimensional vector

space Ṽ and let V ′, V ′′, V ′′′ be three r-dimensional subspaces of Ṽ satisfying the conditions (8).
By performing the above constructions for this datum we obtain a surface S̃ with projections

A1 π̃
← S̃

ν̃
→ G̃ := G(r, Ṽ ) as in Lemma 4.1. For y ∈ S̃, let Vy be the r-dimensional subspace

of Ṽ corresponding to the point ν̃(y) in G̃. Since dimS = 2, it follows from the inequality

r + 2 ≤ dim V that there exists a subspace L of dimension 3r − dimV in Ṽ such that

(10) L ∩ ( ∪
y∈S̃

Vy) = {0}.

Fix an isomorphism h : Ṽ /L
∼
→ V and consider the rational morphism f̃ : G̃ 99K G,

V r 7→ h((V r + L) mod L)). Then (10) implies that the morphism f : S̃ → G × A
1, (x, t) 7→

(f̃(x), t) is an embedding, i.e. that there exists an isomorphism g : S := f(S̃)
∼
→ S̃ such that

f◦g = idS . Hence the surface S with its projections π := π̃◦g : S → A1 and ν := f◦ν̃◦g : S → G
satisfies the assertion of Lemma 4.1.

Theorem 3.1, Lemma 4.1 and this latest argument directly imply the following corollary.

Corollary 4.2. Let E be a rank k vector bundle on the Grassmannian G. There exists an open
subset U(E) of k∗ such that, in the notation of Lemma 4.1, the inequality

(11) D(E|Cr
t
) ≤ rD(E)

holds for any t ∈ U(E).

Fix t ∈ U(E). According to (9), the extended Segre embedding st := s(V ′, V ′′, V (t,t2 ,...,tr−1)) :
P1 × Pr−1 ↪→ P (V ) induces an embedding ψt : P1 → G, u 7→ st({u} × Pr−1), such that

(12) imψt = π−1(t) = Cr
t

is the Segre curve from Lemma 4.1. We will now construct another Segre curve C ′r
t in G such

that Cr
t ∪ C

′r
t is a chain of rational curves (see (17) below).

For this, assume again temporarily that dimV ≥ 3r. Set W ′′ := V ′′, W ′′
i := V ′′

i , i = 1, ..., r,
and choose two r-dimensional subspaces W ′,W ′′′ in V satisfying the conditions similar to (8)

(13) W ′ ∩W ′′ = W ′ ∩W ′′′ = W ′′ ∩W ′′′ = {0}, W ′′′ ⊂ W ′ ⊕W ′′,

and the condition

(14) W ′ ∩ (V ′ ⊕ V ′′) = {0}.

We repeat the above construction for the datum (W ′,W ′′,W ′′′) instead of (V ′, V ′′, V ′′′). First,
there are uniquely defined linearly independent one-dimensional subspaces W ′

i := W ′ ∩ (W ′′′⊕
W ′′

i ) in W ′, as well as linearly independent one- dimensional subspaces W ′′′
i := W ′′′∩(W ′⊕W ′′

i )
in W ′′′. Furthermore, for i = 1, ..., r there is a uniquely defined affine coordinate ti on the
projective line P (W ′

i ⊕W
′′
i ) such that W ′

i = {t = 0}, W ′′
i = {t =∞}, W ′′′

i = {t = 1}. Denote
by Wti the point on P (W ′

i ⊕W
′′
i ) with coordinate ti. Finally, set W (t2 ,...,tr) := W11 ⊕Wt22 ⊕

...⊕Wtrr, (t2, ..., tr) ∈ (k∗)r−1.
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Next, for any t ∈ k∗ consider the extended Segre embedding s′t := s(W ′,W ′′,W (t,t2,...,tr−1)) :
P1′ × Pr−1 ↪→ P (V ), where P1′ is a copy of P1. This yields a map ψ′

t : P1′ → G, u 7→
s′t({u} × Pr−1), such that

(15) C ′r
t = imψ′

t

is a degree-r Segre curve and, as in Corollary 4.2, there exists an open subset U ′(E) of k∗ such
that

(16) D(E|C′r
t
) ≤ rD(E), t ∈ U ′(E).

Moreover, for t ∈ U0(E) := U(E) ∩ U ′(E) we have Cr
t ∩ C

′r
t = {V ′′}, i.e.

(17) Cr
t ∪ C

′r
t , t ∈ U0(E),

is a chain of rational curves in G passing through the point y0 = {V ′}.
Note that the assumption dimV ≥ 3r can again be removed. Indeed, consider a 3r-

dimensional space Ṽ containing the r-dimensional subspaces V ′, V ′′ = W ′′, V ′′′,W ′,W ′′′ sat-
isfying (8), (13) and (14). Set G̃ := G(r, Ṽ ) and let S̃ ′ be a surface in G̃ × A1 defined by
W ′,W ′′,W ′′′ in the same way as S̃ was defined by V ′, V ′′, V ′′′. Consider the subspace L ⊂ Ṽ
of dimension 3r − dim V satisfying the following condition similar to (10):

L ∩ ( ∪
y∈S̃∪S̃′

Vy) = {0}.

Then the argument following Lemma 4.1 goes through without change, in particular respective
morphisms f ′ : S̃ ∪ S̃ ′ ↪→ G×A

1, π′ : S ∪ S ′ := imf → A
1 and ν ′ : S ∪S ′ → G are defined and

the chain (17) is the image in G of the chain (π′)−1(0) under ν ′.
As a next step we construct rational curves C2r of degree 2r in G by deforming the chain

(17).

Proposition 4.3. Let E be a rank k vector bundle on G and y0 ∈ G be an arbitrary point.
There exists a rational degree 2r curve C in G passing through the point y0 such that:

(i) D(E|C) ≤ 2rD(E),
(ii) Q|C ' (OC(2))r, where Q is the antitautological bundle, i.e. the bundle dual to the

tautological bundle on G.

Proof. Fix t ∈ U0(E). Assume first that dimV ≥ 3r. Since V ′′ = W ′′, the embeddings st
and s′t define an embedding Y × Pr−1 → P (V ) where Y = P1 ∪ P1′ as a reducible conic with
singular point w0 = P1 ∩ P1′ and a marked point z0 ∈ P1 ⊂ Y such that s̃t({w0} × Pr−1) =
P (V ′′), s̃t({z0}×Pr−1) = P (V ′). Note that, as a consequence of (14), there exists an embedding
of g : Y ↪→ P

2 such that s̃t fits in the composition of maps

(18) s̃t : Y × P
r−1 g×id

↪→ P
2 × P

r−1
s1,1

↪→ P
3r−1 j

↪→ P (V ),

where s1,1 is the Segre embedding by the linear series |OP2(1)�OPr−1(1)| and j is an embedding.
Now consider a pencil of conics {Yτ}τ∈P1 in P

2 satisfying the conditions: (i) Y0 = Y , (ii) all
conics of the pencil pass through the point z0 and (iii) the generic conic in the pencil is smooth
(i. e. a rational curve). Set U ′ = {τ ∈ P1 r {0} | Yτ is smooth} (this is a dense open subset
of P1). In view of (18) there exists a dense open subset U ∗ of U ′ such that, for any τ ∈ U ∗

the composition s̃t : P
1 × P

r−1 ' Yτ × P
r−1 ↪→ P

2 × P
r−1

s1,1

↪→ P
3r−1 j

↪→ P (V ), coincides with
the embedding ft,τ : P1 × Pr−1 ↪→ P (V ) by a subseries of the linear series |OP1(2) �OPr−1(1)|.
This implies that the induced map

(19) ϕt,τ : P
1 → G, u 7→ ft,τ ({u} × P

r−1)

satisfies the property

(20) ϕ∗
t,τQ ' (OP1(2))r, τ ∈ U∗.
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Put U := U∗ ∪ {0} and consider the total space Πt := {(x, τ) ∈ P2 × U| x ∈ Yτ} of the above

pencil of conics, together with the projections P2 σ
← Πt

ρ
→ U . We obtain a morphism

ϕt : Πt → G, (x, τ) 7→ s1,1({x} × P
r−1).

By construction, ρ−1(τ) = Yτ and for τ ∈ U∗ the map ϕt|Yτ
coincides with ϕt,τ from (19).

Moreover, by (12) and (15) we have an isomorphism

(21) ϕt|Y0
: Y0

∼
→ C2r

t,0 := Cr
t ∪ C

′r
t .

This means that ϕt|Yτ
is an embedding near τ = 0, i.e. the set U0 = {τ ∈ U| Yτ is smooth and

ϕt|Yτ
is an embedding} is dense in U . We thus obtain isomorphisms

(22) ϕt,τ : P
1 ∼
→ C2r

t,τ = imϕt,τ ⊂ G, τ ∈ U0.

The isomorphisms (21) and (22) show that {C2r
t,τ}τ∈U0∪{0} is a flat family of curves in G whose

fiber at 0 is a chain of rational curves of the form C2r
t,0 = Cr

t ∪ C
′r
t and whose other fibers

are rational curves C2r
t,τ . Hence, applying Theorem 3.1 to ϕt,r we obtain that U(E) := {τ ∈

U0 ∪ {0}| D(E|C2r
t,τ

) ≤ D(E|Cr
t
) + D(E|C′r

t
)} is a dense open subset of U0 ∪ {0}. Combining this

with (11) and (16), and using (20), we obtain the assertion of the Proposition for any curve
C := C2r

t,τ , (t, τ) ∈ U0(E)× U0(E).

Finally, it remains to remove the assumption dimV ≥ 3r. Let dimV < 3r. Take a space Ṽ
of dimension 3r and choose its subspace L of dimension 3r − dimV satisfying the condition

P (L) ∩ s1,1(P
2 × P

r−1) = ∅,

where s1,1 is the Segre embedding defined in (18) and where the intersection is taken in the

space P3r−1 which is identified with P (Ṽ ) in view of the condition (14). (Note that L always
exists as dimV ≥ r + 2.) The rest of the argument goes through as in the remark preceeding
the Proposition. �

We are now ready to discuss Hilbert schemes. Recall that any rational curve of given degree
k in G can be considered as a point in the Hilbert scheme Hilbkt+1G. Set

(23) Hk := {C ∈ Hilbkt+1G | C is a rational curve of degree k in G},

Rk = {ϕ : P
1 → G | ϕ is an embedding}.

It is well known (see, e.g., [St, Theorem 2.1]) that Hk is a smooth irreducible open subset of
Hilbkt+1G and that the natural morphism

(24) gk : Rk → Hk, ϕ 7→ imϕ

is a principal PGL(2)-bundle. Next, consider the vector space Hom(V ∨,kr ⊗H0(OP1(2))) and
its dense open subset

(25) W := {e ∈ Hom(V ∨,kr ⊗H0(OP1(2))) | the composition

ẽ : V ∨ ⊗OP1

e⊗id
→ kr ⊗H0(OP1(2))⊗OP1

ev
→ kr ⊗OP1(2) is an epimorphism},

where ev is the evaluation map. Let γ : V ∨ ⊗ OG → Q be the natural epimorphism. By the
universality of the Grassmannian G any element e ∈ W defines a pair

(26) ( ϕe : P
1 → G, χe : ϕ∗

eQ
∼
→ kr ⊗OP1(2) )

such that

(27) χe ◦ ϕ
∗
eγ = ẽ,

where ẽ is defined in (25). Conversely, the element e is recovered by the pair (ϕe, χe) since
clearly e is obtained from ẽ by passing to sections:

(28) e = H0(ẽ).
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Now put k = 2r in (23) and consider the set

H∗
2r := {C ∈ H2r | DQ(C) = 0, i.e. Q|C ' kr ⊗OP1(2)}.

By semicontinuity, H∗
2r is an open subset of H2r. Moreover, H∗

2r is nonempty (and hence dense
in H2r) since it contains all curves C2r

t,τ from Proposition 4.3.

Theorem 4.4. Fix a point y0 ∈ G and put

(29) H∗
2r(y0) := {C ∈ H∗

2r|y0 ∈ C}.

For any vector bundle E on G, B(E, y0) := {C ∈ H∗
2r(y0) | D(EC) ≤ 2rD(E)} is a dense open

subset of the irreducible variety H∗
2r(y0).

Proof. Since H∗
2r is smooth and irreducible, and the group PGL(V ∨) acts transitively on G, it

follows that H∗
2r(y0) is an irreducible (and smooth) subvariety of H∗

2r which contains the curve
C = C2r

t,τ from Proposition 4.3. Moreover, since the condition D(EC) ≤ 2rD(E) is open on
C ∈ H∗

2r(y0) by semicontinuity, Proposition 4.3 immediately implies the Theorem. �

Now take an arbitrary curve C ∈ H∗
2r and pick an embedding ϕC : P1 ↪→ G such that

imϕC = C. In addition, pick an isomorphism χC : ϕ∗
CQ

∼
→ kr ⊗ OP1(2). These data define an

element e = H0(χC ◦ϕ
∗
Cγ) ∈ W (cf. (27) and (28)) such that ϕe = ϕC . Moreover, e belongs to

the subset

(30) W ∗ := {e ∈ W | ϕe : P
1 → G is an embedding}

of W . This nonempty subset is clearly open in W , hence it is dense in W . Moreover, setting
R∗

2r := g−1
2r (H∗

2r) (see (24)), we obtain a principal GL(r)-bundle θ2r : W ∗ → R∗
2r, e 7→ ϕe. Since

(24) is a principal PGL(2)-bundle, the composition

w2r := g2r ◦ θ2r : W ∗ → H∗
2r

is a smooth surjective morphism.
Fix a point y0 ∈ G and consider the set

(31) W ∗(E, y0) := w−1
2r (B(E, y0)).

By (26), (30) and (29) any point e ∈ W ∗(E, y0) defines an embedding ϕe : P
1 ↪→ G with

y0 ∈ imϕe. Let z := ϕ−1
e (y0). We have an exact triple 0 → kr ⊗ OP1(1) → kr ⊗ OP1(2) →

kr ⊗ k(z) → 0. By applying Hom(V ∨ ⊗ OP1,−) and passing to sections we obtain an exact
triple

0→ Hom(V ∨,kr ⊗H0(OP1(1)))→ Hom(V ∨,kr ⊗H0(OP1(2)))
resz→ Hom(V ∨,kr ⊗ k(z))→ 0.

By construction, the set

W (E, y0) := res−1
z (resz(e)) ' Hom(V ∨,kr ⊗H0(OP1(1)))

depends only on E and y0 and contains W ∗(E, y0) as a dense open subset. We thus obtain the
following corollary.

Corollary 4.5. W ∗(E, y0) = w−1
2r (B(E, y0)) is a dense open subset of W (E, y0) '

Hom(V ∨,kr ⊗H0(OP1(1))).
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5. Construction of a special vector bundle on P1 × P1

A key ingredient in the proof of our main result, Theorem 7.1, is a specific morphism of
P1×P1 into G = G(r, V ). It defines a vector bundle of rank r on P1×P1 as the pullback of the
antitautological bundle Q on G. We construct this morphism in two steps. We first construct
a suitable vector bundle on P

1×P
1 and then prove that this bundle arises from an appropriate

morphism of P1 × P1 to G.
We now proceed to the construction of a special vector bundle on X := P1 × P1. Let

pri : X → P1, i = 1, 2, be the natural projections, and let 0 and ∞ be two fixed points on P1.
Set P := pr−1

1 (0), P ′ := pr−1
1 (∞).

Fix a partition (a1, a2, ..., ar) of d ∈ Z≥0 such that a1 ≥ a2 ≥ ... ≥ ar, and consider a set Z ′

of d− a1 distinct points on P1 of the form

Z ′ =
r
t
i=2
Z ′
i, Z ′

i =
ai

t
j=1
xij

(Z ′
i 6= ∅ for ai = 0). The set Z ′ determines the set

Z := P ′ ∩ pr−1
2 (Z ′) =

r
t
i=2
Zi, Zi := P ′ ∩ pr−1

2 (Z ′
i) =

ai

t
j=1

(∞, xij).

In what follows we think of Zi as reduced 0-dimensional subschemes of X.
Setting

(32) E1 := OX(0, a1)

we will recursively construct sheaves Ek for 2 ≤ k ≤ r via the exact triples

(33) 0→ Ek−1 → Ek → IZk,X(0, ak)→ 0, 2 ≤ k ≤ r.

Proposition 5.1. Assume that for 2 ≤ k ≤ r the sheaf Ek−1 is locally free of rank k − 1 and
satisfies the conditions

(34) h2(Ek−1(0,−ai)) = 0, k ≤ i ≤ r,

(35) h2(Ek−1(0,−1)) = 0,

(36) h1(Ek−1) = h1(Ek−1(0,−1)) = h1(Ek−1(1, 0)) = 0,

(37) h1(Ek−1(1,−1)) = 0,

(38) h0(Ek−1(0,−1)) = a1, h0(Ek−1(1,−1)) = 2a1 + a2 + ...+ ak−1, h0(Ek−1) = a1 + k − 1,

(39)
h0(Ek−1(1, 0)) = 2a1+a2+ ...+ak−1+2(k−1), h0(Ek−1(2, 0)) = 3a1+2a2+ ...+2ak−1+3(k−1),

(40) Ek−1|pr−1

2
(x) ' (OP1)k−1, x 6∈ Z ′

2 t ... t Z
′
k−1, k ≥ 3,

(41) Ek−1|pr−1

2
(x) ' (OP1)k−3 ⊕OP1(1)⊕OP1(−1), x ∈ Z ′

2 t ... t Z
′
k−1, k ≥ 3,

(42) Ek−1|P ' OP1(a1)⊕ ...⊕OP1(ak−1),

(43) Ek−1|P ′ ' OP1(a1 + ...+ ak−1)⊕ (OP1)k−2.

Then
(i) there is an epimorphism

(44) Ext1(IZk,X(0, ak), Ek−1)
β
� H0(Ext1(IZk,X(0, ak), Ek−1)),
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and moreover

(45) H0(Ext1(IZk,X(0, ak), Ek−1)) ' H0(Ok−1
Zk

) ' ⊕
x∈Zk

k(x)k−1;

(ii) there exists an element ξ ∈ Ext1(IZk,X(0, ak), Ek−1) such that the sheaf Ek defined by the
corresponding exact triple (33) is locally free of rank k and satisfies the conditions (34)-(43)
with k substituted for k − 1; we label the so modified conditions as (34’)-(43’).

Proof. (i) The existence of the epimorphism (44) follows from the standard exact sequence of
local and global Ext’s

0→ H1(Hom(IZk,X(0, ak), Ek−1))→ Ext1(IZk,X(0, ak), Ek−1)→ H0(Ext1(IZk,X(0, ak), Ek−1))→

→ H2(Hom(IZk,X(0, ak), Ek−1))

and from (34) in view of the canonical isomorphism Hom(IZk,X(0, ak), Ek−1) = Ek−1(0,−ak).
The isomorphisms in (45) are standard.

(ii) Pick an element ξ ∈ Ext1(IZk,X(0, ak), Ek−1) and consider the extension (33) defined by
ξ. Put Sx := pr−1

2 (x). If x 6∈ Z ′
2 t ...tZ

′
k−1, then in view of (40) the restriction of (33) onto Sx

is 0→ (OP1)k−1 → Ek|Sx
→ OP1 → 0, i.e. Ek|Sx

' (OP1)k. This implies (40′).
If x ∈ Z ′

2 t ... t Z
′
k−1, then in view of (41) the restriction of (33) onto Sx is 0→ (OP1)k−3 ⊕

OP1(1)⊕OP1(−1)→ Ek|Sx
→ OP1 → 0, i.e. Ek|Sx

' (OP1)k−2⊕OP1(1)⊕OP1(−1), and we obtain
(41′) for x ∈ Z ′

2 t ... t Z
′
k−1.

For x ∈ Z ′
k, one has IZk,X(0, ak)|Sx

' k(x̄) ⊕ OP1(−1), where x̄ := (∞, x). Therefore (40)
yields an exact sequence

(46) 0→ (OP1)k−1 → Ek|Sx
→ k(x̄)⊕OP1(−1)→ 0.

Here the extension (46) is given by an element

(47) ξ1
x ∈ Ext1(IZk ,X(0, ak)|Sx

, Ek−1|Sx
) ' Ext1(k(x̄)⊕OP1(−1), (OP1)k−1) '

' H0(Ext1(k(x̄)⊕OP1(−1), (OP1)k−1)) ' k(x̄)k−1.

Note that a sufficient condition for (41′) is that ξ1
x 6= 0 for x ∈ Z ′

k. Note in addition that the
restriction of (33) onto Sx defines a natural restriction map

ψx : Ext1(IZk,X(0, ak), Ek−1)→ Ext1(IZk,X(0, ak)|Sx
, Ek−1|Sx

)

such that
ξ1
x = ψx(ξ).

The map ψx together with (44) and (47) fits in the diagram

(48) Ext1(IZk,X(0, ak), Ek−1)

β
��
��

ψx
// Ext1(IZk,X(0, ak)|Sx

, Ek−1|Sx
)

'

��

H0(Ok−1
Zk

)
resx

// // k(x̄)k−1,

where resx is the restriction epimorphism defined by the inclusion x̄ ↪→ Zk.
Next, (33) and (42) give

0→ OP1(a1)⊕ ...⊕OP1(ak−1)→ Ek|P → OP1(ak)→ 0

Since a1 ≥ a2 ≥ ... ≥ ak, this extension splits and yields (42′). Furthermore, by (33) and (43)
we have

(49) 0→ OP1(a1 + ...+ ak−1)⊕ (OP1)k−2 → Ek|P ′ → OZk
⊕OP1 → 0.

The extension (49) is given by an element

(50) ξ′ ∈ Ext1(IZk,X(0, ak)|P ′, Ek−1|P ′) ' Ext1(OZk
⊕OP1 ,OP1(a1 + ...+ ak−1)⊕ (OP1)k−2) '
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' H0(Ok−1
Zk

).

Since a1 + ... + ak−1 ≥ 0, there is a distinguished injection

gk = ⊕
x∈Zk

gk(x) : ⊕
x∈Zk

k(x) ' Ext1(OZk
⊕OP1 ,OP1(a1+...+ak−1)) ↪→ Ext1(IZk,X(0, ak)|P ′, Ek−1|P ′)

' ⊕
x∈Zk

k(x)k−1.

Furthermore, in view of (44) and (50), we have a diagram of morphisms similar to (48)

(51) Ext1(IZk,X(0, ak), Ek−1)

β
��
��

ψP ′
// // Ext1(IZk,X(0, ak)|P ′, Ek−1|P ′)

'
��

H0(Ok−1
Zk

) H0(Ok−1
Zk

).

The diagrams (48) and (51) immediately imply that the element ξ ∈ Ext1(IZk,X(0, ak), Ek−1)
can be chosen so that:

1) (resx ◦ β)(ξ) 6= 0 for any x ∈ Zk,
2) the element ξ′ in (50) satisfies the condition ξ ′ = ψP ′(ξ) ∈ imgk.

It follows from these conditions that (41′) holds and the extension (49) implies (43′).
To prove the remaining equalities (34′)-(39′) for the vector bundle Ek defined by ξ as the

extension (33), we consider the standard Koszul resolution

(52) 0→ OX(−1, 0)→ OX ⊕OX(−1, ak)→ IZk,X(0, ak)→ 0.

Twisting (52) by OX(a, b) for appropriate a, b and keeping in mind that ak ≥ 0, we obtain

(53) h2(IZk,X(0, ak − ai)) = 0, k + 1 ≤ i ≤ r,

(54) h2(IZk,X(0, ak − 1)) = 0,

(55) h1(IZk,X(0, ak)) = h1(IZk ,X(1, ak)) = 0,

(56) h1(IZk,X(1, ak − 1)) = 0,

(57) h0(IZk,X(0, ak − 1)) = 0, h0(IZk,X(1, ak − 1)) = ak, h0(IZk,X(0, ak)) = 1,

(58) h0(IZk,X(1, ak)) = ak + 2, h0(IZk,X(1, ak)) = 2ak + 3.

Furthermore, twisting (33) by OX(a, b) we quickly see that: (34) and (53) imply (34′); (35)
and (54) imply (35′); (36) and (55) imply (36′); (37) and (56) imply (37′); (38) and (57) imply
(38′); (39) and (58) imply (39′). The Proposition is proved. �

As a corollary of Proposition 5.1 one obtains the following theorem.

Theorem 5.2. For any r ∈ Z>0, r ≥ 2, there exists a rank r vector bundle F on the surface
X = P1 × P1 with the following properties:

(59) F|pr−1

2
(x) = (OP1(2))r, x 6∈ Z ′,

(60) F|pr−1

2
(x) = (OP1(2))r−2 ⊕OP1(3)⊕OP1(1), x ∈ Z ′,

(61) F|P = OP1(a1)⊕ ...⊕OP1(ar),

(62) F|P ′ = OP1(d)⊕ (OP1)r−1,

(63) h1(F(−1,−1)) = h1(F(−2, 0)) = h1(F(−2,−1)) = h1(F(−1, 0)) = 0,
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(64) h2(F(−2,−1)) = 0,

(65) h0(F(−1,−1)) = a1 + d, h0(F(−1, 0)) = a1 + d+ 2r, h0(F) = a1 + 2d+ 3r.

Proof. We define F as Er(2, 0). The equalities (59)-(65) follow directly from the equalities (32)
and (34′)-(43′) for k = r and from the observation that a1 + ...+ ar = d. �

6. Construction of a special morphism f : P1 × P1 → G(r, V )

We are now ready to proceed with the construction of the desired morphism f : X → G. Fix
a line l0 in G, a point y0 ∈ l0 and a degree d morphism ψ′ : P1 → l0, and let

ψ : P
1 ψ′

→ l0 ↪→ G

be the composition. The restriction of the canonical epimorphism γ : V ∨ ⊗OG → Q to l0 has
the form g : V ∨ ⊗OP1 → OP1(1)⊕ (OP1)r−1. Hence the epimorphism ψ∗g has the form

ψ∗g : V ∨ ⊗OP1 � OP1(d)⊕ (OP1)r−1.

Passing to sections we obtain an element

(66) gψ ∈ Hom(V ∨, H0(OP1(d)⊕ (OP1)r−1)).

Note that, similarly to (26), ψ is determined by the element gψ.
Next, we put k = d in (23) and we fix a curve C0 ∈ Hd together with an isomorphism

θ : P
1 ∼
→ C0. The composition ϕC0

: P
1

θ
∼
→ C0 ↪→ G defines an epimorphism ϕ∗

C0
γ : V ∨⊗OP1 �

ϕ∗
C0
Q. Moreover,

ϕ∗
C0
Q ' OP1(a1)⊕ ...⊕OP1(ar)

for some partition (a1, ..., ar) of d. (The nonnegativity of the integers ai follows from the

surjectivity of ϕ∗
C0
γ.) Pick an isomorphism χC0

: ϕ∗
C0
Q

∼
→ OP1(a1)⊕ ...⊕OP1(ar). The datum

(ϕC0
, χC0

) defines an element

e(C0) = H0(χC0
◦ ϕ∗

C0
γ) ∈ W (C0) := Hom(V ∨, H0(OP1(a1)⊕ ...⊕OP1(ar)))

(cf. (27) and (28)).

The set W (C0)
epi := {e ∈ W (C0) | the composition V ∨ ⊗ OP1

e⊗id
→ H0(OP1(a1) ⊕ ... ⊕

OP1(ar))⊗OP1

ev
→ OP1(a1)⊕ ...⊕OP1(ar) is an epimorphism} is a dense open subset of W (C0)

containing e(C0), and (by the universality property of G) any element e ∈ W (C0)
epi determines

a morphism

ϕe : P
1 → G

(cf. (26)). For any vector bundle E on G we put

(67) BP (E,C0) := {C ∈ Hd | D(E|C) ≤ D(E|C0
)}.

By construction C0 ∈ BP (E,C0), and moreover by semicontinuity, BP (E,C0) is an open subset
of Hd. Since e(C0) ∈ W (C0)

epi it follows that

(68) WP (E,C0) := {e ∈ W (C0)
epi | imϕe ∈ BP (E,C0)}

is a dense open subset in W (C0)
epi, respectively, in W (C0), and we obtain a natural surjection

WP (E,C0) � BP (E,C0), e 7→ im(ϕe).
We put also

π := (pr2|P )−1 : P
1 ∼
→ P, π′ := (pr2|P ′)−1 : P

1 ∼
→ P ′, ρ := (pr1|S)

−1 : P
1 ∼
→ S.
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Theorem 6.1. Let y0 ∈ l0 and w ∈ ψ−1(y0) be fixed points. Then, for any vector bundle E on
G there exists a morphism f : X → G such that:

(i) f ∗Q ' F , where F is defined in Theorem 5.2;
(ii) f ◦ π′ = ψ;
(iii) f ◦π : P1 ↪→ G is an embedding such that (f ◦π)∗Q ' OP1(a1)⊕...⊕OP1 (ar), respectively,

f ◦ ρ : P
1 ↪→ G is an embedding such that (f ◦ ρ)∗Q ' (OP1(2))r;

(iv) D(E|f(P )) ≤ D(E|C0
) and D(E|f(S)) ≤ 2rD(E).

s

s

s

s

�

-

-

s

ss

6

?

s

s

X = P1 × P1

π′

π

pr2

Sd

S2

S1

S

...

zd

z2

z1

z0 = π′(w)
w

P1
P P ′

?

pr1 ρ

P
1

0 ∞

f

f(X)

f(Sd)
f(z1) = ... = f(zd)

y0 = f(z0)

f(S2)

f(S1)

...

C2r = f(S)

...

Cd = f(P ) l0 = f(P ′)

Proof. Recall (Theorem 5.2) that

(69) F|P ' OP1(a1)⊕ ...⊕OP1(ar), F|P ′ ' OP1(d)⊕ (OP1)r−1, F|S ' (OP1(2))r.
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Furthermore, let us introduce the following notation:

z0 := P ′ ∩ S, W0 := Hom(V ∨, H0(F)), W−1 := Hom(V ∨, H0(F(−1, 0))),

(70) WP := Hom(V ∨, H0(F|P )), W−1,P := Hom(V ∨, H0(F(−1, 0)|P )) ' WP ,

W0,PS := Hom(V ∨, H0(F|P∪S)), W−1,PS := Hom(V ∨, H0(F(−1, 0)|P∪S)),

(71) W−1,S := Hom(V ∨, H0(F(−1, 0)|S)) ' Hom(V ∨, H0((OP1(1))r)),

(72) WP ′ := Hom(V ∨, H0(F|P ′)) ' Hom(V ∨, H0(OP1(d)⊕ (OP1)r−1)).

(The right-hand isomorphisms in (71) and (72) follow from (69)).
By using (69), we see that the functor HomOX

(V ∨ ⊗ OX ,−) applied to the exact sequence
0→ F(−1, 0)→ F → F|P ′ → 0 yields and exact sequence 0→ HomOX

(V ∨⊗OX ,F(−1, 0))→
HomOX

(V ∨ ⊗ OX ,F) → HomOP ′ (V
∨ ⊗ OP1 ,OP1(d) ⊕ (OP1)r−1) → 0. Passing to cohomology

and using (63), we obtain the exact sequence

(73) 0→W−1
iW→ W0

resP ′
→ WP ′ → 0.

Next, for any s ∈ W−1 we consider the composition morphism es : V ∨⊗OX
s⊗id
→ H0(F(−1, 0))⊗

OX
ev
→ F(−1, 0), and, for any z ∈ X r P ′, we consider the composition

es(z) : V ∨ ⊗OX
es→ F(−1, 0)

resz

� F(−1, 0)⊗ k(z) ' k(z)r.

Passing to sections in the exact sequence 0 → F(−2,−1) → F(−2, 0) ⊕ F(−1,−1) →

F(−1, 0)
resz→ F(−1, 0) ⊗ k(z) → 0 and using (63) and (64), we obtain an epimorphism

H0(F(−1, 0))
resz

� H0(F(−1, 0)⊗ k(z)) ' kr, and hence an induced epimorphism

(74) r(z) : W−1 � Hom(V ∨, H0(F(−1, 0)⊗ k(z))) ' Hom(V ∨,k(z)r) =: Wz.

Put Y (z) := {s ∈ W−1 | es(z) is not surjective} and Y0(z) := {u ∈ Wz| u : V ∨ →
k(z)r is not surjective}. By definition Y (z) = r(z)−1(Y0(z)), and one easily checks that
codimWz

Y0(z) = dimV − r + 1. Therefore the surjectivity of r(z) yields

(75) codimW−1
Y (z) = codimWz

Y0(z) = dimV − r + 1.

If Y := ∪
z∈XrP ′

Y (z), (75) implies

(76) codimW−1
Y ≥ dimV − r − 1 > 0.

(Note that dimV − r − 1 > 0 according to our assumption from Section 2.)
For each z ∈ X\P ′ the exact sequence (73) and the map (74) fit in the diagram

0→W−1

r(z)
��
��

iW
// W0

r(z)
��
��

resP ′
// WP ′ → 0

Wz Hom(V ∨, H0(F ⊗ k(z))),

the right vertical map r(z) being the natural restriction map. This diagram together with (72)
and the inequality (76) shows that, for the element

gψ ∈ Hom(V ∨, H0(OP1(d)⊕ (OP1)r−1)) = WP ′

given in (66) and for a generic element

ε ∈ res−1
P ′ (gψ) ' W−1,

the composition ε(z) : V ∨⊗OX
ε⊗id
→ H0(F)⊗OX

ev
→ F

resz→ F⊗k(z) is an epimorphism for any
z ∈ X rP ′. Moreover, since we can consider gψ as an epimorphism : V ∨⊗OX � F|P ′, ε(z) is
also an epimorphism for any z ∈ P ′. This means that ε(z) is an epimorphism for any z ∈ X,
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i.e. that the morphism ε : V ∨ ⊗ OX → F is an epimorphism. By the universality property of
G this means that there exists a morphism f = fε : X → G such that ε = f ∗

ε γ, F ' f ∗
εQ,

where γ : V ∨ ⊗OG → Q is the canonical epimorphism. This together with (69) yields (iii). In
addition, since ψ is determined by gψ, the equality gψ = resP ′(ε) directly implies (ii).

Next, we apply the functor HomOX
(V ∨ ⊗OX ,−) to the commutative diagram

0

��

0

��

0

��

0 // F(−2,−1) //

��

F(−1,−1) //

��

F(−1,−1)|P ′ //

��

0

0 // F(−1, 0) //

��

F //

��

F|P ′ //

��

0

0 // F(−1, 0)|P∪S
//

��

F|P∪S
//

��

F ⊗ k(z0) //

��

0

0 0 0 .

Using (63), (64), (70)-(72), we obtain the commutative diagram

(77) 0 // W−1
//

resPS
��
��

W0
//

��
��

WP ′ //

r(z0)
��
��

0

0 // W−1,PS
// W0,PS

resz0
// Wz0

// 0 .

Moreover, setting εz0 := r(z0)(gψ), we have

res−1
z0

(εz0) ' W−1,PS.

Similarly to (77), using Theorem 5.2 and (70)-(71), we obtain the surjective restriction maps

(78) resPWP

resP

� W−1,PS

resS

� W−1,S ' Hom(V ∨, H0((OP1(1))r)).

Now (77) and (78) together with Corollary 4.5 show that

U := res−1
PS((resP )−1(WP (E,C0)) ∩ (resS)

−1(W ∗(E, y0)))

is a dense open subset of W−1. Hence, for a generic element ε ∈ U the corresponding morphism
f = fε : X → G satisfies the conditions (a) eπ := resP (resPS(ε)) ∈ WP (E,C0) and (b) eρ :=
resS(resPS(ε)) ∈ W

∗(E, y0). Here, by construction, we have ϕeπ
= f◦π and, respectively, ϕeρ

=
f ◦ ρ. Now (a) together with (67) and (68) means that f(P ) = imf ◦ π = imϕeπ

∈ BP (E,C0),
i.e. that D(E|f(P )) ≤ D(E|C0

); respectively, (b) together with (31) and Corollary 4.4 means
that D(E|f(S)) ≤ 2rD(E). This yields (iv). The claim (i) is clear from the construction. �

7. Main result

We now proceed to the main construction. Consider a twisted ind-Grassmannian G defined
by (1), together with a vector bundle on G, i.e. with vector bundles Em on Gm := G(rm, V

nm)
of fixed rank such that ϕ∗

mEm+1 = Em for m ≥ 1. We assume that Gm is not isomorphic to a
projective space for any m. Set

Φm := ϕm−1 ◦ ... ◦ ϕ1 : G1 ↪→ Gm.
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The basic assumption (2) that G is sufficiently twisted can be rewritten as

(79) lim
m→∞

rm
deg Φm

= 0.

Note that (79) is always satisfied if rm doesn’t depend on m.
For a given integer m > 1, fix a line l0 in Gm such that

(80) D(Em|l0) = max
lines l⊂Gm

D(Em|l) =: Dm.

Let also l1 be any line in G1 such that

(81) D(E1|l1) = max
lines l⊂G1

D(E1|l) =: D1.

(Clearly, such lines l0 and l1 exist by semicontinuity).
Put C0 := Φm(l1), d := degC0 = deg Φm. Fix a point y0 ∈ l0 and a curve C ∈ B(E, y0)

(see Theorem 4.4) and fix a degree d morphism ψ : P1 → l0 ↪→ Gm . Consider the surface
X = P1 × P1 together with the distinguished fibers P, P ′ of the projection pr1 : X → P1 and S
of the projection pr1 : X → P1. Applying Theorem 6.1 to this datum, we obtain a morphism
f : X → Gm such that, for EX := f ∗Em, we have:

(i) the morphism P1
(pr2|P ′ )−1

−→
∼

P ′ f
→ Gm coincides with ψ, hence by (80) and (81) the vector

bundle EX satisfies the equality

(82) D(EX |P ′) = deg(f|P ′)D(Em|l0) = (deg Φm)Dm;

(ii) f|P and f|S are embeddings such that

(83) D(EX |P ) = D(Em|f(P )) ≤ D(Em|C0
) = D(Em|Φm(l1)) = D(E1|l1) = D1,

(84) D(EX |S) = D(Em|f(S)) ≤ 2rmDm.

Now applying the inequality (3.11) from [DP] to (82)-(84) we obtain

(deg Φm)Dm = dDm ≤ 4rkEX(D1 + 2)(2rmDm + 1)− 2rkEX .

But this inequality clearly contradicts to (79) for large enough m if Dm 6= 0. Hence Dm = 0.
Therefore, by [PT, Proposition 4.1] Em is trivial. We thus have proved our main result.

Theorem 7.1. There are no nontrivial vector bundles of finite rank on a sufficiently twisted
ind-Grassmannian G.

We conclude this paper by a class of natural examples of twisted ind-Grassmannians (1)
with rm = r = const. Recall that any embedding of Pn to Pn

′
is given by a subsystem

of a complete linear system, i.e. by a composition of a Veronese embedding of Pn into
Pn

′′
, n′′ ≥ n′, and subsequent projection of Pn

′′
to Pn

′
. In fact, this procedure extends to

Grassmannians of r-dimensional subspaces, r being fixed. More precisely, for each m ≥ 1 fix
an integer km > 1 and construct the Grassmannians Gm = G(r, Vm) and their successive em-
beddings ϕm : Gm ↪→ Gm+1 inductively by the following procedure. Consider the flag variety
Γm = F l(1, r;Vm) together with the natural embedding Γm ↪→ P (Vm) × Gm and the sheaf
OΓ(1, km) := (OP (Vm)(1) � OGm

(km))|Γm
. Set Wm+1 := H0(OΓm

(1, km))∨. The embedding
θm : Γm ↪→ P (Wm+1) by the complete linear series |OΓm

(1, km)| is (by construction) induced by
a homogeneous embedding (in the sense of [DP, Sect. 4]) ψm : Gm ↪→ G(r,Wm+1). By compos-
ing ψm with a possible rational projection of the form π : G(r,Wm+1) 99K Gm+1 = G(r, Vm+1),
where Vm+1 is an appropriate quotient of Wm+1, we obtain an embedding ϕm : Gm ↪→ Gm+1.

Note that Theorem 7.1 was proved in [DP] for ind-Grassmannians (1) defined via certain
homogeneous morphisms ϕm called twisted extensions, see [DP, Sect. 4.2]. It is not difficult
to check that the above contructed embeddings ϕm are not twisted extensions, hence Theorem
7.1 is new for the corresponding ind-Grassmannians G.
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