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Abstract

We present a topologieal definition of (compact) torie varieties due
to R. MaePherson and ealeulate explicitly the interseetion form of a
smooth 4-dimensional torie variety X. Using the eharacterisation of
4·manifolds given by Freedman, we conclude that X ia homeomorphie
either to the eomptex projeetive plane Cp'J or to the product of spheres
52 x 52 or to the eonnected surn of Cp'J with a finite number of _CP'J.
Thia result ean also be dedueed from a theorem of Oda ([7], theorem
8.2) which is based on the algebraie definition of toric varieties and
which uses combinatorial properties of regular fans in R'J.

1 Definitions

Let b be a complete d-dimensional fan, Le. a complex of closed convex
polyhedral cones in R d with apex 0, generated by primitive lattice points
V}, ••• , V n E Zd, such that UO"EE (f = R d• Denote the q-skeleton of b by
Eq = {O' E EI dirn 0' = q}. The sets obtained by intersecting each cone
0' E E, 0' f; {O}, with the unit sphere Sd-l c Rd form a spherical complex
C. Let S(C) be the barycentric subdivision of C and for 0' E E, 0' f; {O},
let iT be the union of all simplices of S(C) whose vertices are b.arycenters of
elements of C which contain 0' n Sd-l. For 0' = {O} we set fJ = B d , the unit
ball of R d, and call t = {&I 0' E E} the dual complex of E.

For each cone 0' E L; define an equivalence relation ~ on tbe d-dimensional
torus T d = R d jZd by

t !!w t' <==> t - t' C span 0' + Zd.
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Note that, sinee the subspace span u is generated by lattice points of Zd, the
torus T d is collapsed by the relation ~ to a torus of dimension d - dirn q.

Finally, define an equivalence relation f'V on the produet Bd X Td by

(x, t) f'V (x', t') <==> x = x' and t ~ t' where x E relint er.

Then the quotient space XE = B d X T d / "'" is called the torie variety associ­
ated to the fan E. We denote the projection of XE onto B d by p and will
identify p-l (reHnt er) with relint er x Td / ~.

The proofs of the following properties can be found e.g. in [1].

(i) The torie variety XE is compact and simply-connected (since E is eom­
plete).
(ii) The torie variety XE is a smooth manifold if and only if:E is a simplicial
fan and Idet(ViI' ••• , Vid)1 = 1 whenever ViI"'" Vid E Zd are the spanning
vectors of a d-dimensional cone in E.
(iii) If E and :E' are two d-dimensional fans, and if there ex.ists a unimodular
transformation of R d which maps the generating vectors of:E onto the gener­
ating vectors of:E' and which induces a eombinatorial isomorphism between
E and E', then the associated toric varieties XE and X E' are homeomorphie.

2 CW-cell decomposition and cellular homology

In the following we restrict our attention to a 4-dimensional torie variety
X = XE. Since the underlying fan E ia 2-dimensional, its dual complex t
may be represented as the face camplex of a polygon P.

~ (J p

Figure 1: Example of a 2-dimensional fan and its dual complex

We first describe a CW-cell decomposition of X which arises from the face
strueture of P and the standard CW-cell decomposition ofthe 2-dimensional
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torus T 2 • The latter is given by the cells TO, Tb T2 and TI2 which are the re­
spective images of the subsets {O}, ]0, 1[ X {O}, {O} X ]0, 1[ and ]0, 1[ X ]0, 1[
of R 2 under the canonical projection onto T2. By suitably embedding the
tori ro and Tl into T 2

, the subcomplexes {TO} and {TO, Tl} can be regarded
aB cell decompositions of TO and Tl, respectively. Note that all these ceIls
represent cycles in the ceUular homology of the corresponding tori.

In order to obtain a ceU decomposition of the torus T 2 /:?. which lies over each
of the interior points of the face U of P, we use an explicit homeomorphisID
ha : T 2 /:.. ...... T 2- dimo . For al-dimensional cone (J e E generated by the

vector Vo = (v~, v;) e Z2, such a homeomorphism ha is induced by the map
90: R 2

...... R given by x = (x l ,X2) ~ v~x2 - V~XI. (The image 90(X) is
just the length of the orthogonal projection of x onto (span u)J. multiplied
by the length of Va.) For a 2-dimensional cone (J e E we set ha =0 and for
(J = {O}, hu =idy'l.

For each cone (J e E and each cell T of the torus T2-dimo we can now define
the cell

Note that dirn CO,T' = 2-dirn (J+dim T. As can easily be checked, the cells CO,T'

form a CW-decomposition of X, and if we provide them with appropriate
orientations, then the boundaries of the corresponding cellular chains are
given by

(J e E2 : 8oCu ,'TO = 0

(J e EI : 8t CU,'TO = Ca',To - Ca",To

82 Ca ,Tl = 0

(J = {O} : ~Ca,T'o = LC",To
(1)

{hCU,Tl = E(-v~)c",'T1
{hCO,'T'J = E V~C",1)

84co ,T'1'J = 0

where cl, (JII are the unique 2-dirnensional cones which contain (J e EI and
(} ranges over EI in all the sums. (The multiplicities of the chain c",1) in
the boundaries of the two 3-dimensional chains are the images of the vectors
(1,0) and (0,1) under the map 9" described above.)
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Thus, we finally obtain the following homology groups of X:

{

Z q = 0,4
Hq(X) S! zn /(Zvi +Zv2)~ zn-2 E9 Z/mZ q = 2

o otherwise

where n = card 1;1, Vi 1 V2 E zn are the vectors consisting respectively of
the first and the second coordinates of the vectors Va, (j E E1, and m is
the greatest common divisor of the determinants det(Vq , Va')' (1, (1' E El. In
particular H 2(X) ~ zn-2 if X is smooth.

3 The intersection form

In this section we calculate the intersection form of a smooth 4-dimensional
todc variety X = XE. t Let the generating vectors V}, • •• , Vn of the under­
lying 2-dimensional fan E be numbered counterclockwise and likewise the
corresponding I-dimensional cones (1I, ••• , (1n. By property (ii) we have

(i=l, ... ,n) (2)

(whenever we use indices which exceed n or fall below 1, we cOllsider them
to be taken modulo n), and in view of property (iii) we may assume in
addition that Vn -1 = (1, 0) and Vn = (0, 1). By (1) the group of 2-cycles
of X ia generated by the chains Cai,T} , i = 1, ... , n, and the corresponding
homology classes Zi E H2(X) satisfy the following relations induced by the
boundaries of the two 3-chains:

= 0
= 0

(3)

In order to determine the intersection numbers Zi'Zj, we first observe that
the spheres p-l(Ö'd and p-l(Ö'j), which represent the clasaes Zi and Zj re­
spectively, do not intersect in X if their generating cones (1i and (1j are not
adjacent in E. Therefore

(1 < li - il < n - 1).

tThis ceuld be done by using the algebraic description cf the cohomology ring cf X
given by Danilov (see [1], theorem 10.8), however we use the cell decomposition of X to
compute the intersection numbers of the generating 2-cydes.
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Second, the spheres p-1(Üi) and p-1(Üi+d intersect in the unique point
which lies over the vertex o-i n o-i+1 of P. Since det(Vi, Vi+d = 1, it can be
seen that this intersection is transversal and hence

(i=1, ... ,n)

where the signs are all equal and only depend on the orientation of X. In
the following we fix them to be +1.
Third, by multiplying both relations (3) with Zi and taking a suitable lin­
ear combination of the resulting equations, we obtain the self intersection
numbers

z··z· - - det(v· 1 V·+1)1 1 - 1- , I (i=l, ... ,n)

where we have also used the smoothness condition (2).

4 Characterisation of the intersection form

Having calculated the intersection form of X, we now characterise it up
to equivalence, Le. up to a change of basis of H 2(X). (For a treatment of
symmetric bilinear forms in general see [6].) By (3) the classes Z], ••• , Zn-2

form a basis of H 2(X), and since by Poincare duality the intersection form
is always non-singular, its rank equals n - 2.

In order to determine the signature, we first calculate the principal minors
Dk = det((zi,zih<i,j<k) of the intersection matrix. (Henceforth we will not
distinguish betwoon ihe intersection form and its matrix.) By the reaults of
the previous section we have D1 = det(v2, vn ) and

(k = 2, ... , n - 2),

where we have set Do = 1. By induction one can easily prove, e.g. by using
the Grassmann-Plücker relation in R 2 , that

(k=1, ... ,n-2).

From this equation we now see that if none of the vectors VI. is equal to
-Vn , then all the principal minors are non-zero and have alternating signa,
except for the unique pair (Dk-], Dk) for which the vectors VI. and Vk+1 lie
on different sides of the y-axis. Hence by J acobi's theorem the signature
of the intersection form equals 4 - n. By a rule of Gundenfinger this still
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holds even if there exists a vector Vk = -Vn in which case Dk-I = 0 (see [4],
note 1 on page 304).

If n = 3 then there is only one possible vector VI = (-1, -1) and the
interseetion form of X given by the matrix (1) is positive definite. If n > 3
then the absolute value of the signature of the intersection form of X is less
than Hs rank, hence the form is indefinite. Thus it can be characterised by
finally determining its type.

The even type is only possible if n = 4. t Indeed, if the intersection form of
X is even, then all the determinants det(Vi-I, Vi+I), i = 1, ... , n - 2, have
to be even. Since the vectors Vi are primitive, it follows that they all finst
have one even and one odd coordinate, thus they are contained in the lattice
r = (1,0) + Z(l, 1) + Z(-1,1). Hence by Pick's formula (see e.g. [5]) the
area A(S) of the star-shaped polygon S= Ui::1 conv{O, Vi, Vi+I} is given by

:e~Sf =card(r n relint S) +~ card(r n relbd S) - 1

where det r denotes the determinant of a basis of r. But by condition (2)
the area A(S) equals ~ and S does not contain any points of rother than
its vertices. Therefore the equality can hold only if n =4.

In fact, if n = 4 and VI =(-1,0), V2 = (0, -1) the resulting form is even.
On the other hand, every odd indefinite intersection form of rank n ;:::: 4 can
also be realised, e.g. by setting Vi = (i - 2, -1), i = 1, ... , n - 2. Thus we
have completely characterised the possible intersection forms of X and we
summarize the resuIts in the following

THEOREM. A non-singular integral symmetrie bilinear form B ean be re­
alised as the intersection form of an onented smooth "'-dimensional tone
variety X if and only if either
(i) rank(B) =1 and B = (±1), or
(ii) rank(B) =2 and B is indefinite, or
(iii) rankeR) > 2, Isignature(B)1 = rank(B) - 2 and B is 0/ odd type.

tThis also follows from a theorem of Donaldson (see [2], theorem B) which say8 that if
the intersection form of a smooth simply-connected 4-manifold is indefinite and even and
if the absolute value of its signature is 2 less than its rank, then its rank equals 2.
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Figure 2: Representative fans with 3, 4 and n generators

5 C lassificat ion

In 1982 Freedman charaeterised topologieal 4-manifolds by showing that
every non-singular integral symmetrie bilinear form ean be realised as the
intcrsection form of an oriented closed simply-connccted 4-manifold, and
that any two such manifolds realising the same form are homeomorphic if
the form is even, whcreas if the form is odd there are two homeomorphiam
classes, one with trivial and the other with non-trivial Kirby-Siebenmann
obstruction (see [3], theorem 1.5).

In our ease it is easy to give representatives of 4-manifolds whieh realisc thc
intersection forms described in thc theorem of the previous section. Namely,
let us eansider the oriented eomplex projective plane CP2 whieh has in­
tersection form (+1). Then CP2 with the opposite orientation, which we
denote by - cP2, has interseetion form (-1). Furthcrmorc, if wc take thc
connected surn of CP'2 with a finite number of copies of -Cp2, we obtain
a 4-manifold whose intersection form is the orthogonal sum of (+1) with
a finite number of (-1) and hence satisfies candition (iii) of the theorem.
Finally, the even indefinite form of rank 2 ia thc intersection form of the
product of spheres S'2 x S2. All these manifolds are smooth and heuce have
trivial Kirby-Siebenmann obstruction, and since the same is true for the
torie varieties in question, we ean state the fallowing

COROLLARY. A smooth i-dimensional tone vanety ia homeomorphie either
to the complex projective plane CP'2 or to the product 0/ spheres S2 x S2 or
to the eonnected sum 0/ CP2 with a finite number 0/ eopies 0/ -CP2.

7



References

[1] V.I. Danilov, The Geometry 0/ Tone ·Varieties, Russian Math. Sur­
veys 33 (1978), 97-154

[2] S.K. Donaldson, Connections, Cohomology and the Interseetion Fonns
0/4-Mani/olds, J. Diff. Geom. 24 (1986), 275-341

[3] M.H. Freedman, The Topology 0/ 4-Dimensional Mani/olds, J. Diff.
Geom. 17 (1982), 357-453

[4] F.R. Gantmacher, The Theory 0/ Matriees, Volume One, Chelsea Pub­
lishing Company, 1959

[5] I.G. Macdonald, The Volume 0/ a Lattice Polyhedron, Proc. Camb. Phil.
Soc. 59 (1963), 719-726

[6] J. Milnor, D. Husemoller, Symmetrie Bilinear Forms, Springer 1973

[7] T. Oda, Lectures on Torus Embeddings and Applications, Tata Inst. of
Fund. Research, Springer 1978

8


