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§ 0. Introduction

Let § be a smooth surface in P® and m be an integer with n > m > 2. For any m
different points on S, if they are linearly dependent we say this set is special. Let M be
the collection of all these special sets, then M is a scheme with a natural algebro-geometric
structure. We can show that, when n = 3m — 2 and S is in general position, M is a finite
scheme. We denote the degree of M by v(s) which is intuitively the number of the points
in M possibly with multiplicities.

S.K. Donaldson posed a conjecture about this case in [2]:

“Conjecture 5. There is a universal formula for expressing v(s) in terms of m , the Chern
numbers of S, the degree of S in P3™=2 | and the intersection number of the canonical
class S with the restriction of the hyperplane class.”

He pointed out this enumerative problem has something to do with Yang-Mills invariants.
In this paper we give an affirmative answer for the conjecture. But the formula for expressing
v(s) is complicated for writing down explicitly though there is an algorithm for computing it.
In § 1 we explain the meaning about “‘general position” in the present case and give the basic
construction for computing »(s) . In § 2 all of the objects considered in § 1 are lifted to
some projective vector bundle where it is comparatively easier for computation. In § 3 we
prove the main theorem by computing some Segre classes.

Author thanks K.C. Mong for showing him this problem and thanks R. Piene for the profitable
discussion with her.

§ 1. Preliminaries

In sequels we assume the ground field is algebraically closed with characteristics # 2.
Let m > 2 be an integer and n = 3m — 2.

Let P* = P(VV) be the n— projective space, where V is a vector space of dimension
n + 1 over the ground field, and we chose a basis eg,...,e, for V once for ever. Let
Y = (P")™, the m—cross product of P*, and let X = (S)™, where S is a smooth
surface in P™ which is in general position in a sense as follows.

Definition. & is in general position if, execpt for a finite number of the sets consisting of
m points on S, every other such set is linearly independent, including the case when % of
m points are replaced by a (k — 1)— plane which tangents to S at a point of S .

We call the exceptional set a special set. For m = 2, every smooth surface in P* is
automatically in general position.

For m > 3 we have the following proposition:

Proposition 1.1. Let 7 : S — P™ be a non-degenerate embedding, then there exists a re-
embedding j : S — P” by a generic projection from P"*! to P® such that j(s) is in
general position.

Proof: Let :*Opn(1) = O(1), then ¢ is determined by a linear system belonging to O(1).

First we shall show that, there exists an integer Ny such that for every N > Ny, on the
image of the embedding ¢ determined by O(/N) every m points are linearly independent.



In fact, let Z be a subscheme of m points on S with reduced stucture and Jz be the sheaf
of ideal defining Z in S . We have an exact sequence

0 — H°(S,Jz(N)) = HY(S,0(N)) 3 H*(S,0z(N))
— HY(S,Jz(N)) = HY(S,0(N)) = 0.

Since dim H%(S,0,(N)) is the number of the points in Z, we see from the sequence that,
if HY(S,Jz(N)) = 0 dim H%(S, Jz(N)) is the dimension of the smallest subspace which
contains Z . Therefore, if H(S,Jz,(N)) = 0 for every (reduced) subscheme Z' C Z,
then the points of Z are linearly independent.

By Cartan-Serre Theorem B [4], there exists Ny such that whenever N > N, we have
HY(S,z/(N)) = 0 for all Z' C Z. Now we have to prove that Ny depends only on m
rather than on the position of Z . As a standard method we take Z as a subscheme of P"
and let the ideal defining Z in P® be Iz and the ideal defining S in P™ be Igs, then
we have an exact sequence

0o lg—Iz—o1z—0.

In the long exact sequence of the above sequence we see that, the vanishing of H'(S, Jz(N))
is a consequence of the vanishing of H(P™,Iz(N)) and HZ%(P™,Jg(N)) . But on
pPr, HY(P®,Iz(N)) =0 for N sufficiently large depends only on #Z (by the homogenety
of P" or simply by induction on #2Z ).

We continue to prove our proposition.

Let »+ 1 = dim H°(S5,0(Np)) and % : S — PT be the embedding determined by O(Np).
We show that, for » > n+2 = 3m a generic projection from P to P"~! gives an embedding
of § in P! and preserves the independence of any m points on S. Indeed, the subscheme
consisting of all the (m — 1)— planes in P™ spanned by any m points on S (including the
case when k of m pointsis a (k — 1)— plane which tangents to 5') has dimension 3m —1.
Therefore a projection with a generic point as center meets our need. We proceed like this till
we arrive at P3™~1 Then taking a generic point of P*™~1 as center we have a projection
which preserves the independence of m points on S except for a finite number of these sets,
and in this case anyone of these exceptional sets spans a (m — 2)— plane.

Hereafter we always assume the surface S is in general position in the above sense.

Our main idea for solving the conjecture is as follows. Let j: X - Y, j=12x...x1, P=
(p1,-..,rm) € X, and p; = (€ip,...,&in) be the homogeneous coordinates of p; in P?
with respect to the fixed basis of V . Then, p;,...p, being in special position means
rk(&ij) < m—1. We would like to construct a morphism ¢ between two locally free sheaves
such that ¢ can be expressed locally by the matrix (&;;), then in the (m — 1)— degeneracy
of ¢ the finite part is what we need.

Let gi : X — S be the ith projection and denote ¢fO(1) by H;. Then the fiber of H ! over
P is the 1-subspace of V representing the point p; . From the following exact sequence

0— Ht-_l ka3 V@ 0x — q;-"Q;,"n(H‘-_l) -0
we have a morphism

cp:@H‘-_l B BV ®q, OXE»V®kOx.

2



¢ is expressed locally by the matrix (¢;;) with respect to the basis of V. We shall study
the degeneracy D = Dp,_;3(¢) [5]1. By Proposition 1.1, D is divided into two parts, D
and D;, where Dy is a finite subscheme corresponding to the special sets of § and Dy is
a subscheme of X with positive dimension, supporting on the various diagonals of X . Let
v denote the number of the special sets on S, then deg Dy = mlv.

Formally, at present we may compute v by Excess Formula [5] § 9.1, but it seems difficult
technically. So we lift ¢ to the desingularization of D [1]. Let S; ,;, with ¢; < ... <1}
be the (z1,...,1;)— diagonal of X, i.e. the image of Ay, X id: S™ *+1 — §™  where
A;, i, 1s the diagonal morphism from S to the ijth,... i th factor of X .

Let Q = P(H{'®...0 H;))(=P(H1®...® Hy)), p: Q@ — X be the structure
projection and O(—1) be the universal subbundle on @ . We have a morphism on @ :

O(~1) — p"]::’l"1 ®...®p H.
The composition of the morphism and p*yp gives
¥:0(=1) = V®0g = o™,

Generally we could not assert that p«[Do¥) = [Dm(p)] since ¢ does not have “correct”
dimension [1] Ch. II. But by the assumption of “ S being in general position”, out of
p~ | U Si,..i, | wehave p.[Do(¥)] = [D(p)] where the dimension is correct [1]. There-

k>2
fore, D(v) is divided into two parts: Vp and Vi, where V; is a finite scheme with degree

mly and V; is a scheme supporting on p~1(US;, ;. ), defined by the Fitting ideal F™(4))
[5]. ¥ induces a section r: Q — O(l)"Jr1 then, if letting ro be the zero section, we have
the following diagram:

iulp — Q

1 17
Q@ - o,

By the definition of intersection in [5], § 6.1,

deg Vo = deg [Q] — deg ((1+1(0(1)™ - 5(1,Q)) ,

where s(Vj, Q) is the Segre class of V; in Q and ¢; is the notation of the ith Chern operator.
By an easy computation we have deg [Qz] = d™.

§ 2. Birational transformation

The next step is the computation of s(V4,Q). Since Segre class is birationally invariant [5],
we shall construct a scheme being birationally isomorphic to ¢ and making the computation
easier.

Let o, : X;m — X be the blowing-up of X with respect to S| ,,, and B, :
PlabHT'®...® ol H;') — Xm be the pull-back of Q by am . Qu is birationally
isomorphic to @ .



where S! . is

tm—1 ...lyp=1

Let X,,.1 be the blowing-up of X, with respect to US;]
the strict transform of S;, ;_._, with respect to «, and {.S"— : } for 11 < ... <

1.0 ¢me—1
tm—1 are disjoint each other. We denote the composition of these two blowing-ups by
om-1 : Xm—1 — X and the pull-back of ¢ with respect to am,—1 by Bm—1 : @m-1 =
Pty (HT'®...®al,_1Hy') — Xm_i . In this case the strict transforms of all of
Siy..im_, With Tespect t0 a,,—; are disjoint each other and we do the same thing as above

until we arrive at
ag: X = X —= X
B2:Q=0Q2— Xa,
where Q = P(a3H' @... @ a3HSY) .
Let v : @ — @ be the composition of all of these pull-backs, which is a birational morphism.

By the elementary property of Fitting ideal, y~!(D(y)) is defined locally by the 1-minors
of the matrix representing v*® : QQ(—-I) — ol 1'1 @...0a H — Vg - Since v is an

isomorphic out of ﬂ;]az'l U S,'l,_,;,,) , ¥~ }(V4) is the scheme defined by the nth Fitting
k>2

ideal F™(y*¢) near B;'e;1(US;,. ;). Now we should know the structure of y~1(V4)
explicitly. For simplicity we denote agHi_l by H,-_l , agls.-,,__,-,, by 5‘,-1,,.,-,‘ and ~*iy by
% . Let k be an integer with 2 < k < m . We are going to study the structure of (W)
near ﬁ{l (5'1..1:) .

We begin with studying the local structure.

Taking a point P € 5'1...k\LIJ§1...u with a2(P) = (p1,...,pm), and p; = (&ioy-- -, &m)

where [ is an index set and {{;;}, 0 <j < n, is the homogeneous coordinate of p; in
P"™ with respect to the basis given in § 1.

Near P (precisely, in the homogeneous local ring of Q over P ) we have
¥(e) = (@10 + ..+ amEmo)eo + ... + (a1614 + .. + Gmbmn)en

where e is the base for O(—1) over P, (ai,...,am,) is the coordinate of e in ’H,—'l &
... ® H;! . Therefore y~1(V;) is defined by ideal a where

a=(a1l10+ ...+ ambmo,...,a1fin + ... + améma) 1
From the assumption of “ S being in general position” we see that ap4 1 = ... =a, =0.
In fact, since pg,...,p, are different points on S and k& > 2, the vectors representing

these points in V' are linearly independent; otherwise we would have an infinite number of
special sets. Hence the degeneracy D(z,Z) over P is defined by

(a0 + ... + agbro, ... a16in + ... + aplrn, Akt1,.-,0m) .

Since p; = ... = pg, near P we may assume {9 = ... = £ = 1 without loss of
generality, and then we may write a1y +...+agée; as (ay + ...+ ag)éri +ag(€oi + &1i) +
oo+ ap(€p; — £1:) . Therefore a is reduced to

(a1 4 ...+ ak, ak41,---,am, a2(€21 — &1) + ... + ax(ée1 — &11), - -+,

2
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or by emphasizing the symmetry we write (a1 + ...+ ag, Gk41,.--,am) as
(a1+ ...+ ag, a1+ ...+ ap+ age1,...,01 + ...+ am)

time to time. Denoting the zero locus of an ideal 7 by V(I), then

V(ﬂ) = V(a1 + et ag, Qeglye e, am) N V(ﬂ,) y
where a' is generated by those last n elements in the above expressing for a. We write
the above argument as a proposition but in its global form.
Proposition 2.1. Over S’.-l___,-,, with 2 < k <m, D(&) has a component W;, i, which
is a projective bundle P(E;, ;) over 5';‘1....‘,. , where E;  ; is the kernel of the surjective
morphism: H' & ...@H;' — H;' with My, =...=MHi, =H .
Proof: We still work with §, ; without loss of generality. By the above local argument
¥ is splitted into two parts:

/O H e .eHt N\
O(~1) — &H;! @ Voo
N Hiy ©...0H; /7
and D(z,Z) = D(’(,El) , where v, is the top arrow in the diagram.

The local assumption of “ & # 0 for 1 < ¢ < k “ globally means that, in VYV =
H°(P™,0(1)) we have chosen the sections which has non-zero coordinate £y at p;. Therefore
all of these sections generate O(1) , i.e.

HO(PR,O(I)) ® Opn — O(l) — 0.

Pulling back the morphism to {J by anyone of these projection, restricting it over §; ; and
taking the duality we have an exact sequence

0= H™ = Vg = Tpn(H™ )5 — 0

where Tpn = Q. Inthis case Do(#1) = Do(O(~1) = H~)NDo (O(~1) = Tpa(H")7).
On the other hand, the ideal (€21 — 11,8 — Einy- -5 €61 — &1y -+ - Ekn — E1n) defines
the diagonal 57  in X . Then on X we have a principal factor for defining Sy.x from
the ideal. Denoting the factor by s; _;, then at a generic point of S, we have

o' =gy -0,
This implies that

V(a) =V(a1+...+ ag, Gkg1y- -+, 0m,y 81 k)
UV(a1 + ...+ ag, akq1,-. ., am) NV{a") .

Since S; j is irreducible then by taking closure we see that the first component in the
expression is what we expect.

For the structure of a” we have the following proposition.



Proposition 2.2 Over Sy, i with k > 3, o is the first Fitting ideal of O(—1) —
(Bra2)' Ty @ HT1 ® 5‘1'2{_,: , and it defines a subscheme of Wy, i consisting of | S\ k1
1

and a component of codimension 2.

Proof: Let Pl(1) denote the sheaf of the first principal part of O,(1), then we have a
diagram as follows [4] [7].

0
l
0 0.(1)
1 !
0 - N =V, & Pl - o0
! | !
0 - alls - V. 8 0,1) - 0
!
Q,(1)
i
0

The two rows in the diagram is exact because Os(1) is very ample, and the column
on the left is exact by using Five Lemma. Obviously NV is the sheaf of conormal
of § in P® . From the definition of P!(1) we see that the local sections of Qpn(1)
has its Taylor expansion with order > 1 at any point on S . We claim that the local
sections of (lpn(1) has its power expansion at any point of S exactly with order 1,
ie. T,(H™1) = spaTe(H'@S7Y), NMHY) = 52 NH'®S;%), where
T,(H'®S57Y,) and N(H™'® S[',) is regular.

In fact, taking any smooth curve ¢ on S (for example a section of O(1) ) then by [8]
we see that the first two gap numbers in the gap sequence of ¢ with respect to V, is , 1
since the ground field has characteristics # 2. This means the power series of one section
of V, has the form at + ... with a # 0 and where ¢ is the local parameter of C' and
hence the claim is true.

In the proof of Proposition 2.1 we saw that over S, a” is the (n — 1)th Fitting
ideal of O(—1) — Tp» | o(H™'), now we have a splitting for Zp~(H™') (shown in
the above diagram). Therefore the Fitting ideal is the product of the first Fitting ideal
of O(=1) — T,(H~') and the (n — 3)th Fitting ideal of O(~1) — N,(H™!). Since
N (H‘l ® 5‘; 2k) is generated locally by some sections of sym'T, ('H“l ® 5’; 1k) with
i > 2, [7], then over S; j the (n — 1)tk Fitting ideal of O(—1) — Tpn (H~!) is the same
as F! (0(—1) = § T (H-l ® 51'..5:)) :

As for the last assertion in this proposition we note that, when we write down
Fr=1O(~1) — Tp=(H"")) explicitly we have by (2)

1.k H s1.kr{@2®a1 + ...+ QpTe1, - -, T2 F oo+ AR Thn)
#1>1



-1
where z; = (&; — &ij)- (81...1: y[ 31...&1) and (21,...,%2n,- - ,mm ey TELy - Thp)
#1221

is the ideal for defining the strict transform of S, . , with respect t0 a4y . {S'. : k}

are disjoint each other for ¢ = 1,...,k and k > 3, therefore the rank of (z;;)

does not zero on an open set of Wy _j , and then the Fitting ideal defines Y. S iz
#I>1
and a subscheme of W; ; with codimension 2 which is the zero locus of 2-bundle

T, (H*l ®57® II 57 ® 0(1)) on Wi k.
#I>1

§ 3. Main Theorem

From Proposition 2.1 and 2.2 we see that v~!(1}) is defined by an ideal with the form
(81..m9,a1 + . .. + a,,) over an open set containing f; ' (5'1...m) and hence on @ by taking
closure. By the definition of the Segre class s(y~1(V1),@) we should blow up @ with

respect to the ideal (81, 9,01 + ...+ ap). Inorder to make the following statement simplier
we fix some terms.

Definition. Let Y, Y be two schemes, J be an ideal sheaf on Y . The morphism = : Y —» Y
is said to be an effective resolution of Y with respectto J if = is a compositionof =1,...,7,
where m; . Y; — Yi_1 is a birational morphism with Yy =Y, Y, =Y such that

(1) ==Y(J) is an invertible sheaf,
(2) each «; is a blowing up of Y;_1 with respect to a locally free sheaf.

What we shall show in this section is that,  has an effective resolution with respect to ideal
(s1..m8,a1+ ...+ an) and, for each =; the Chern class of the locally free sheaf involved
is expressed by the Chern classes of S, H and S; ; with & > 2.

Theorem. v(s) is expressed by a polynomial of the Chern numbers of S, the degree of S
in P>~ and the intersection number of the canonical class of S with the restriction of the
hyperplane section; the coefficients and the degree of the polynomial depend only on m .

Proof: First we show that there exists an affective resolution of @ with respect to the

nth Fitting ideal of ;Z over | 5'.-,- and the Chern classes of all of the normal bundles
1<i<j<m

involved are expressed by the Chemn classes of Q,, ¢;(O(1)), H and S,;, Sij; with #1 > 1.
In fact, in this case the nth Fitting ideal of ¢ is the product of (s;;8",a; + a;,...,a1 + ... + am)
since {gij} are disjoint by Proposition 2.1. Locally a;; is written as

. #E‘[ﬂ sijr{aj(én — &)y yai(Em — En)') , but (€1 = &iry. .., &n — Ein) is the ideal for

defining Si; in X and hence, after the blowing-ups in § 1, (&1 — &a)'y- .., (&jn — &in)') =
1. Indeed, this shows that near 5’12, e (1,[3) is simply Wi, described in Proposition 2.1.
The normal bundle of Wi, in Q is

{Sroo(-1H; ee..00(-1)80(-)e K, } & [] -
#I1>1



Inductively assuming there exists an effective resolution of Q with respect to F™ (J))

near 5’1,,,;;_1 and the normal bundles of each blowing-up is expressed by 5‘1_,_“ with
#I > 0, Q, H; and O(1) , we shall construct an effective resolution of @

-~

with respect to F©" (z,b) near 5; r . We saw in the beginning of § 2 F"(J)) =
(s1.%k0",a1+...+ag,...,a1+... +ay) near §; ;. By induction we have had an ef-
fective resolution with respect to F"( ~) near U.5~',-1,,,,-,‘_1 , denoted by W, then

(312...ka“1a1 +...Fap. a1+ F am)
= w(slz,.,k a’",(a1 4 ...+ ak)', RN (a1 + .. .am)')

and sy2_ % , (a1+...+ak)',...,(a1+...+am)' have no any common fac-
tor. The reason of this assertion is from the local expression (1), (2) in §
2. In fact, the intersection (w,sy ,0",a1+...+ak,...,a1+...+amp) is the
same as (w,sj t,a1+...+@ak,...,a1+...+ay) . On the other hand, what we

just did means (a",(aj+...+ag),...,(a14...+@an)) is the residue ideal of
(a",a1 4 ...+ ax,a1 + ... + ap) with respect to W, and then

(" (a1 +...+a),...,(@a1+...+ am)’) defines a subscheme which is supported over
S12. x . Therefore, if we blow up _Q4 (the effective resolution of @ with respect to W )
along W NSy, 1 and denote the exceptional divisor by Z19.x we see from Proposition 2.2,

(am,(al+.“+ak)"“.,(al+,..+am)p)

= ZlZ...k H 81“.;:10"', (a1 + ...+ ak)", ey (a] + ...+ am)"
#I1>1

where (0" (ay +...4+a)",...,(a1+ ...+ an)") is the locally free sheaf
T, ('H‘l oML e ] 5’1‘1”) over S, x. Blowing up HQ_" (the blowing-up of @' with
#1>0

respect to W N Sjp & ) with respect to the locally free sheaf and denoting the exceptional
divisor by Gy ; we have

(sa",al+...+ak,...,a1+...+am)

= wzg H s1.xl (@ +...+ ak)", cofar oo+ am)"
#1>0

#1>0
and denote the exceptional divisor by 7y ;. As for the normal bundles involved are as
follows.

Finally we blow up O with respect to ( T sikn(ar+...+ax)" (a1 +... + am)")

Nw@ is given by induction hypothesis.
NiQ is O(W) @ 0(5:.4)

NG@” is T, | H!'® o) ® I1 5'1—1“') & SlZ...k ® D H;_:.; ®0(1)® z!
#1>0 i>0



NrQ' s ( ) 5”1,,,“) @D H,®0(L)®FIRG.
#1>0 >0

Therefore there exists an effective resolution of Q with respect to the ideal Fy (J;) near
US;,..ix , and the total exceptional divisor is
W+ %7 i, + 5Giy iy + 2T i -

The last step we need to do is to show (ﬂz. (l 4+ (0(1))" . s(Vl,Q))O can be expressed
by c2(Q), K%, KH, d, where K = ¢;(§}Y), H is the hyperplane section of P*, d = H?.
But on Q, Ba. (cl(O(l))(m-l)’H ~ Bga) = Fﬂrl(lfln_m)' .a, where a is a cycle on X .
By the above argument, (ﬁg. (1 + cl(O(l))""”1 . 5(1/1,@))) is a polynomial in terms of
Sivwivr Hiy c2(Q), e1(Q) . We push down (B (1 + (O™ - 5(11,@))), by e,
the terms involved with S;, ;, give us the terms involved with ¢3(£), ¢1(Q). The theorem
is proved.

Example 1 m = 2. In this case S is a surface in P* and v = 0. Theorem tells us
% = d® — 10d ~ 5HK + c3(S) — K% = 0
This is the well-known condition for a smooth surface embedded in P* [4].

Example 2 [6] m = 3. In this case, S is a surface in P7 and v is the number of trisecants
of §. The total exceptional divisor is

Z Wi; + Z Zij + Ghas + Thas
1<i<y<3 1<i<3<3
where Wy, is the projective bundle P(Ej;) over Syp with ¢)(Eiz) = aM, Ziz =
ng - 5’123] , G193 = the Zero locus of a generic section of T, ® (’H“l ® 5‘1'213) Ti23 =
Sim| - [0() @M @ (£2;') ® G| - We have the following formula

6v = d® — 3d(10d + 5K H + K* — ¢3) + 224d + 192K H + 56 K% — 40c,
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