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§ O. Introduction

Let S be a smooth surface in pn and m be an integer with n 2: m 2: 2. For any m

different points on S l if they are linearly dependent we say this set is special. Let M be
the collection of all these special sets, then M is a scheme with a natural algebro-geometric

structure. We can show that, when n = 3m - 2 and S is in general position, M is a finite
scheme. We denote the degree of M by v(09) which is intuitively the number of the points

in M possibly with multiplicities.

S.K. Donaldson posed a conjecture about this case in [2]:

"Conjecture 5. There is a universal fonnula for expressing v(09) in terms of m, the Chern
numbers of S, the degree of S in p3m-:-2, and the intersection number of the canonical

dass S with the restriction of the hyperplane dass."

He pointed out this enumerative problem has something to do with Yang-Mills invariants.

In this paper we give an affinnative answer for the conjecture. But the fonnula for expressing
v(09) is complicated for writing down explicitly though there is an algorithm for computing it

In § 1 we explain the meaning abaut "general position" in the present case and give the basic

construction for computing v(09) . In § 2 all of the objects considered in § 1 are lifted to
some projective vector bundle where it is comparatively easier for computation. In § 3 we

prove the main theorem by computing some Segre dasses.

Author thanks K.C. Mong for showing hirn this problem and thanks R. Piene for the profitable

discussion with her.

§ 1. Preliminaries

In sequels we assurne the ground field is algebraically dosed with characteristics =j:. 2 .

Let m ~ 2 be an integer and n = 3m - 2 .

Let pn = P(VV) be the n- projective space, where V is a vector space of dimension

n + lover the ground field, and we chose a basis eo, ... , en for V once for ever. Let
y = (pn)m, the m- cross product of pn , and let X = (S)m , where S is a smooth

surface in pn which is in general position in a sense as folIows.

Definition. S is in general position if, execpt for a finite number of the sets consisting of
m points on S, every other such set is linearly independent, including the case when k of
m points are replaced by a (k - 1)- plane which tangents to S at a point of S .

We call the exceptional set a special set. For m = 2 l every smooth surface in p4 is

autornatically in general position.

For m ~ 3 we have the following proposition:

Proposition 1.1. Let i : S ~ pn be a non-degenerate embedding, then there exists a re­
embedding j : S ~ pn by a generic projeetion from pn+l to pn such that j (09) is in

general position.

Proof: Let i* Opn (1) = 0 (1) l then i is determined by a linear system beIanging to 0 (1) .

First we shall show tha!., there exists an integer No such that for every N 2:: No, on the
image of the embedding cp determined by· O(N) every m points are linearly independent.



In fact, let Z be a subscheme of m points on S with reduced stucture and Jz be the sheaf

of ideal defining Z in S. We have an exact sequence

o--t HO(S, Jz(N)) --t HO(S, O(N)) ~ HO(S, Oz(N))

--t H I (S, Jz(N)) --t H I (S, O(N)) --t 0 .

Since dimHO(S,Oz(N)) is the number of the points in Z, we see from the sequence that,

if H1 (S, Jz (N)) = 0 dirn HO (S, Jz (N)) is the dimension of the smallest subspace which
contains Z. Therefore, if H1(S, Jz, (N)) = 0 for every (reduced) subscheme Z' C Z ,
then the points of Z are linearly independent

By Cartan-Serre Theorem B [4], there exists No such that whenever N 2:: No we have

HI(S,z' (N)) = 0 for all Z' C Z. Now we have to prove that No depends only on m

rather than on the position of Z. As a standard method we take Z as a subscheme of pn
and let the ideal defining Z in pn be 1z and the ideal defining S in pn be 1s, then

we have an exact sequence

o--t 15 -+ 1z --t 1z --t 0 .

In the long exact sequence ofthe above sequence we see that, the vanishing of HI(S, Jz(N))
is a consequence of the vanishing of BI (pn , 1z(N) ) and H2 (pn , Js(N)). But on

pn, H 1(pn, 1Z(N)) = 0 for N sufficiently large depends only on #Z (by the homogenety
of pn or simply by induction on #Z).

We continue to prove our proposition.

Let r + 1 = dirn HO(S, O(No)) and 'lj; : S --t pr be the embedding determined by O(No).
We show that, for r ~ n+2 = 3m a generic projection from pr to pr-l gives an embedding

of S in pr-I and preserves the independence of any m points on S. Indeed, the subscheme

consisting of all the (m - 1) - planes in pr spanned by any m points on S (including the

case when k of m points is a (k - 1)- plane which tangents to S) has dimension 3m -1.
Therefore a projection with a generic point as center meets our need. We proceed like this till
we arrive at p3m-l. Then taking a generic point of p3m-l as center we have a projection

which preserves the independence of m points on S except for a finite number of these sets,

and in this case anyone of these exceptional sets spans a (7n - 2) - plane.

Hereafter we always assume the surface S is in general position in the above sense.

Our main idea for solving the conjecture is as folIaws. Let j : X --t Y, j = i x ... x i, P =
(PI, ... , Pm) EX, and Pi = (~iO,"" ~in) be the homogeneous coordinates of Pi in pn
with respect to the fixed basis of V . Then, Pl, ... Pm being in special position means

rk(~ij) ~ m -1. We would like to construct a morphism <p between two locally free sheaves

such that <p can be expressed locally by the matrix (~ij), then in the (m - 1)- degeneracy

of <p the finite part is what we need

Let qi : X -+ S be the ith projection and denate qtO(l) by Hi. Then the fiber of Hi-
1 aver

P is the I-subspace of V representing the point Pi. From the following exact sequence

0---7 Hi-
1 ~ V (?)qi Ox ---7 qin:n(Hi-l) --t 0

we have a morphism

H - 1 $~i V 0 E V 0<p : EB i --t EB (?)qj X ---7 (?)k X·
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<p is expressed locally by the matrix (eij) with respeet to the basis of V . We shall study
the degeneraey D = Dm-1(<p) [5]. By Proposition 1.1, D is divided into two parts, Da
and D1 , where Da is a finite subscheme eorresponding to the special sets of S and DI is
a subscheme of X with positive dimension, supporting on the various diagonals of X . Let

v denote the number of the special sets on S, then deg Da = m!v .

Fonnally, at present we may compute v by Exeess Formula [5] § 9.1, but it seems diffieult
teehnieally. So we lift <p to the desingularization of D [1]. Let Sit ...ilc with i 1 < ... < ik
be the (il,"" ik)- diagonal of X , Le. the image of 6.i1 ... ilc x id : sm-k+l --.. sm, where

.6.it ...ilc is the diagonal morphism from S to the iIth, ... , ikth faetor of X .

Let Q = P(HJ1 ES ... ffi H;l)(= P(H1 ES ... ES Hm )), p: Q --.. X be the strueture
projeetion and O( -1) be the universal subbundle on Q. We have a morphism on Q :

O( -1) --4 p*HI 1 ffi ... ES p*H;;/ .

The eomposition of the morphism and p*<p gives

'lj; : O( -1) --.. V ® OQ ~ on+l .

Generally we could not assert that p*[Da1/'] = [Dm (<p)] sinee 'P does not bave "eorrect"
dimension [1] eh. 11. But by the assumption of" S being in general position", out of

p-I (U Sit ...ilc ) we have P* [Da(1/')] = [D( 'P)] where the dimension is correet [1]. There-
k~2 .

fare, D(1/') is divided into two pans: Va and VI , where Va is a finite seheme witb degree
m!v and VI is a seheme supporting on p-l (USit ...ilc)' defined by the Fitting ideal F n ( 'l/J)
[5]. 'ljJ induees a seetion r : Q --Jo 0 (1)n+ I then, if letting Ta be the zero seetion, we have
the following diagram :

--Jo Q
! ,0

--Jo 0(1 )n+l .

By the definition of interseetion in [5], § 6.1,

where s(V1l Q) is the Segre class of VI in Q and Ci is the notation of the ith ehern operator.
By an easy computation we have deg [Q2] = dm .

§ 2. Birational transformation

The next step is the eomputation of s(Vl, Q). Since Segre dass is birationally invariant [5],

we shall construct a scheme being birationally isomorphie to Q and making the computation
easier.

Let am : X m --Jo X be the blowing-up of X with respect to Sl. ..m, and ßm :
P (a:n HI 1 ES ... ES a:n H;;1) -+ X m be the pull-baek of Q by am . Qm is birationally
isomorphie to Q.
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Let X rn-I be the blowing-Up of X m with respect to Ust .. .i
m

-
1

where Si
1

••• i
m

-
1

is

the strict transfonn of Si1 ...im_1 with respect to a m and {SL ...im_l} for i l < ... <
i m - l are disjoint each other. We denote the composition of these two blowing-ups by

am-l : X m- l ~ X and the puH-back of Q with respect 10 am-l by ßm-l : Qm-l =

P (a::n-I HI I EB ... EB a:n-l H;1) -+ X rn-I . In this case the strict transforms of all of
Si1 ...im-~ with respect to O'm-I are disjoint each other and we do the same thing as above
until we arrive at

0'2 : X = X2 -+ X

ß2 : Q = Q2 -+ X2 ,

where Q = P (D:2H]I EB ... EB D:iH;I) .

Let , : Q~ Q be the composition of all of these pull-backs, which is a birational morphism.
By the elementary property of Fitting ideal, ,-I(D(,p)) is defined locally by the 1-minors

of the matrix representing ,*1jJ : QQ( -1) ~ O'iH]I EB ... EB D:iH;1 -+ VQ. Since , is an

isomorphic out of ß:;la'21(u Si1 ...i,,), ,-I(VI) is the scheme defined by the nth Fitting
k~2

ideal Fn (,*1jJ) near ß:;Ia'2I(USil ...i,,)' Now we should know the sttuclure of ,-I(Vd
explicitly. For simplicity we denote l1'iHi-I by 11:;1, D:2" I Si1 ... i" by Si 1 ... i k and ,*'IjJ by
.(j;. Let k be an integer with 2 ~ k ::; m. We are going to study the structure of ,-I (VI)

near ß:;I (81. ..k) .
We begin with studying the local structure.

Taking a point P E 81. ..k \ U 5'1. ..k1 with a2(P) = (PI, .. . ,Pm), and Pi = (~iO, . .. , ~im) ,
I

where I is an index set and {(ij} , 0::; j ~ n, is the homogeneous coordinate of Pi in
pn with respect to the basis given in § 1.

Near P (precisely, in the homogeneous Iocal ring of Q over P ) we have

;J;(e) = (aI~IO +... + am(mO )eo + + (al~In +... + am(mn)en ,

where e is the base for 0 (-1) over P, (a], , arn ) is the coordinate of e in 11.";1 EB
... EB 11-;/ . Therefore ,-1 (lt}) is defined by ideal a where

(1)

(2)

From the assumption of U S being in general position" we see that ak+I = ... = a m = 0 .
In fact, since Pk, ... , Pm are different points on S and k 2:: 2, the vectors representing
these points in V are Iinearly independent; otherwise we would have an infinite number of

special sets. Hence the degeneracy D (~) over P is defined by

(al(lO + ... + akekO, ... ,aIeIn +... +akekn, ak+}"'" am) .

Since PI = ... = Pk , near P we may assurne eIO = ... = ~kO = 1 without loss of

generality, and then we may write aleli +... +akeki as (al +... +ak)eli +a2(e2i +eId +
... + ak((ki - (li). Therefore a is reduced to

(al + ... +ak, ak+I,···, am , a2(e21 - eu) +... + ak(ekl - eu), ... ,

a2(~2n - eIn) + ... + ak(ekn - eIn))
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or by emphasizing the symmetry we write (aI +... + ak, ak+l,' .. , a m ) as

time to time. Denoting the zero locus of an ideal I by V(I) 1 then

where 0' is generated by those last n elements in the above expressing for a. We write

the above argument as a proposition but in its global form.

Proposition 2.1. Over Sil ...i" wich 2 ~ k ~ m 1 D (~) has a component Wit .. .i" which

is a projective bundle P(Eil ...i,J over Sil ...i" , where Eit .. .iJc is the kerneI 0/ the surjective

morphism: rf;;l ffi ... ffi 'H"41
-+ Hi~1 with 'Hi" = ... = 'HiJc = 'H .

Proof: We still work with S1. ..k without loss of generality. By the above local argument

;j; is splitted into two parts:

/' 'Hl l ffi ... ffi 'Hk1
,

O( -1) -+ ffi'Hi1 ffi VQ ,
, 'Hk~1 ffi ... ffi 'H;1 /'

and D ( {i;) = D ( .(fil) , where .(fil is the top arrow in the diagram.

The local assumption of" eiO f:. 0 for 1 ~ i ~ k " globally means that, in VV =
HO(pn,O(l)) we have chosen the sections which has non-zero coordinate eo at Pi. Therefore

all of these sections generate 0 (1) 1 Le.

HO (pn , 0 (1)) 0 Opn -+ 0 (1) -+ 0 .

Pulling back the morphism to Q by anyone of these projection, restricting it over S1. ..k and

taking the duality we have an exact sequence

o-+ 'H-1 -+ Va -+ Tpn ('H-1 )a -+ 0

where Tpn = n~n. In thiscase DO(.(fil) = Do(O(-l) -+ fi- l )nDo(O(-l) -+ Tpn('H-1)Q)'
On the other hand, the ideal (e21 - eu, ... ,e2n - eln, ... ,ekl - eu, ... ,ekn - eln) defines
the diagonal 81. ..1. in X . Then on X we have a principal factor for defining SI ... /; from

the ideal. Denoting the factor by S1. ..k, then at a generic point of 81. ..k we have

, "o = SI ...k . a .

This implies that

V( a) = V(al +... +ak, ak+ll"" am , S1. ..k)

UV(al + ... +ab ak+ll ... , am ) n V(Off) .

Since Sl ...k is irreducible then by taking c10sure we see that the first component in the

expression is what we expect.

For the structure of 0" we have the following proposition.
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Proposition 2.2 Over S12...1. with k 2:: 3 , a" is the first Fitting ideal 0/ 0 (-1) --+

(ßzC'iz)*TtJ 0 11.-1 ® Sr/..k ' and it defines a suhscheme 0/ l'V1Z... k consisting 0/ U S1. ..kJ
I

and a component 0/ codimension 2.

Pr00f: Let p,,1 (1) denote the sheaf of the first principal part of Os (1) , then we have a

diagram as follows [4] [7].

0

1
0 !1,,(1)

1 1
0 NY Vs

at
psI (1) 0--+ --+ --+ --+

1 11 1
0 n~ll s v"

ao
O!J(l) 0--+ --+ --+ --+

1
Ü!J(l)

1
0

The two rows in the diagram is exact because Os(l) is very ample, and the column
on the left is exact by using Five Lemma. Obviously NY is the sheaf of conormal
of S in pn. From the definition of p1(1) we see that the Iocal seetions of f2pn(l)
has its Taylor expansion with order 2:: 1 at any point on S. We claim that the local
sections of f2pn(l) has its power expansion at any point of S exact1y with order 1,

i.e. Ts ('H.- 1
) = S1. ..kTtJ(11.-1 0 S~.~k)' N(1-l- 1

) = S;...kN(1-l- 1 0 S~~k) , where

T!J (1-l- 1 r&> S~.~k) and N(1-l- 1 r&> S~.~k) is regular.

In fact, taking any smooth curve c on S (for example a section of 0(1) ) then by [8]

we see that the first two gap numbers in the gap sequence of c with respect to Vc is 0, 1
since the ground field has characteristics '# 2. This means the power series of one section
of ~ has the form at + ... with a =f:. 0 and where t is the local parameter of C and
hence the claim is true.

In the proof of Proposition 2.1 we saw that over S1. .. k a" is the (n - l)t h Fitting
ideal of 0(-1) --+ Tpn I s (11.-1) , now we have a splitting for Tpn (1-l- 1 ) (shown in
the above diagram). Therefore the Fitting ideal is the product of the first Fitting ideal

of O( -1) --+ T" (11- 1) and the (n - 3)th Fitting ideal of O( -1) --+ N!J (11.- 1). Since

N (11.-1 r&> S~~k) is generated locally by some seetions of symiTs (11.-1 ® S~.~k) with

i 2:: 2, [7], then over B1...k the (n - 1)th Fitting ideal of O(-1) --+ Tpn (1-l- I ) is the same

as pI ( O( -1) --+ Sl ...kTs (1-l- 1 ® S~.\)) .
As for the last assertion in this proposition we note that, when we write down

Fn - 1 (O( -1) --+ Tpn (1-l- 1)) explicitly we have by (2)

81 ... k TI Sl. ..kJ( aZxZl +... + akxkb ... ,aZXZn +... + akXkn)

#J?:.l
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where Xij = (~ij - ~ij)' (Sl. ..k n SI ...kl) -1 and (X21,"" X2n, ...,~, ... , xk1,'" Xkn)
#I?1

is the ideal for defining the strict transfonn of SI ...J...k with respect to 0k+I' {S~...L.k}
are disjoint each other for i = 1, , k and k 2:: 3, therefore the rank of (Xij)

does not zero on an open set of W1 k, and then the Fitting ideal defines L: Sl. ..kI
#1>1

and a subscheme of Wl. ..k with codimension 2 which is the zero locus of 2-bundle

T~ ('H- I
® S~.\ ® n S~~.k1 ® 0(1)) on Wl. ..k·

#1?1

§ 3. Main Theorem

From Proposition 2.1 and 2.2 we see that ')' -1 (VI) is defined by an ideal with the fonn

(Sl. ..mO,al +... + am ) over an open set containing ß:;1 (S't ...m) and hence on Q by taking

closure. By the definition of the Segre dass s (,-1 (VI), Q) we should blow up Q with

respect to the ideal (S 1...m 0 ,a1 +... +am ). In order to make the following statement simplier

we fix some tenns.

Definition. Let Y, Y be two schemes, J be an ideal shealon Y. The morphism 7r : Y ~ Y
is said to be an effective resolution 01 Y with respect to J il 7r is a composition 01 7rI, ... , 7rl ,

where 7ri : Yi --t Yi-l is abirational morphism with Yo = Y, Yl = Y such that

(1) 7r -1 ( J) is an invertible sheaj,

(2) each 7ri is a blowing up 0/ }i-I with respect to a locally free sheaf

What we shall show in this section is that, Q has an effective resolution with respect to ideal

(Sl. ..mO,aI +... + am ) and, for each 'Jri the Chern class of the locally free sheaf involved

is expressed by the Chern classes of S, 'H and 81. ..k with k 2:: 2 .

Theorem. v(s) is expressed by apolynomial o/the ehern numbers 0/ S, the degree 0/ S
in p3m-2 and the intersection number 0/ the canonical class 01 S with the restriction 01 the
hyperplane section; the coefficients and the degree 0/ the polynomial depend only on m.

Proof: First we show that there exists an affective resolution of Q with respect to the

nth Fitting ideal of (j; over U Sij and the Chern classes of all of the nonnal bundles
l.'Si<j.'Sm

involved are expressed by the Chern classes of n.!Il cl(O(l)), H and Sij, SijI with #12::1.

In fact, in this case the nt h Fitting ideal of ;j; is the product of (s ij 0" , ai + a j, ... , al +... + am )

since {Sij} are disjoint by Proposition 2.1. Locally Oij is written as

n SijI(ai(~jl-~il)t, ... ,aj(~jn -~in)'), but (~jl-~il,... ,~jn -~in) is the ideal for
#1?I
defining Sij in X and hence, after the blowing-ups in § 1, ((~il - ~il)' l ••• , (~jn - ~in)') =
1. Indeed, tbis shows that near 812, Fn (;j;) is simply W12 described in Proposition 2.1.

The nonnal bundle of W12 in Q is

{812 E9 O( -1)'H2"1 ® E9 ... E9 O( -1) ® O( -1) ® 'H~1 } ® rr Sn}'
#1?,1
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Inductively assuming there exists an effective resolution of Q with respect to F n (;j;)
near 51...k-l and the nonnal bundles of each blowing-up is expressed by 31. .. 1,;1 with
#1 ~ 0, !1", 11.. and 0(1), we shall construct an effective resolution of Q
with respect to F n (~) near 81. ..k . We saw in the beginning of § 2 Fn ({J) =

(81. ..k o", al + ... + ab .. . , al + ... + am) near 81. ..k. By induction we have had an ef­

fective resolution with respect to Fn (;jJ) near US"l ... i k_l , denoted by W , then

(SI2 k n/l,al + +Gk,· •. ,al + ... + Gm)
= W(SI2 k ollf ,(al + + ak)', ... , (al + ... a m )')

and SI2 ...k , (al + ... + ak)', . .. ,(al + ... + am)' have no any common fac-
tor. The reason of this assertion 1S from the local expression (1), (2) in §

2. In fact, the intersection (w, Sl. ..k, 0", al +... + al,;, ... ,al +... + am) is the

same as (w, Sl. ..b al + ... + al,;, . .. ,GI + ... + am). On the other hand, what we
just did means {allf

,(al + ... + ak)', ... , (al + ... + am)') is the residue ideal of

(0" ,al + + ak, al + + am) with respect to W , and then

(a lll
,(al + + ak)', ,(al +... +am )') defines a subscheme which is supported over

5'12...k. Therefore, if we blow up q (tbe effective resolution of Q with respect to W )
along Wn5'12...1,; and denote the exceptional divisor by .2'12 ... ,1;; we see from Proposition 2.2,

(n
llf

,(al + ... + al,;)', , (al + + am)')

= ZI2 ...k ( TI SI ... ,I;;1 a
llf

, (al + + aJ.)/I, , (al + ... + am)/I)
#1"2:. 1

where (nllf
,(al + ... + ak)", ... , (al + ... + am)") is the locally free sheaf

T" (Ti- 1 ® 0(1) (9 TI 81..\1) over 5'12... ,1;;. Blowing Up 71' (tbe blowing-up of 71 with
#/"2:.0

respect to W n S12...k ) witb respect to the locally free sheaf and denoting the exceptional

divisor by Gl ... ,I;; we have

(so",a1 + ... + a,l;;, ... ,al + ... + am)

= wzg ( TI 81. ..101, (al +... + a,l;;)", ... , (al + ... +am)")
#/"2:.0

Finally we blow Up q" with respect to ( TI S1. ..kh (al +... +a,l;)", (al + ... +am)")
#/"2:.0

and denate the exceptional divisor by 1'1...,1;;. As for the nonna! bundles involved are as

follows.

NwQ is given by induction hypothesis.

Nzq is 0 (Ur) ffi 0 (5\ ... 10 )

Neq' is T" (11.-1 00(1) 0 TI 5'1..\/) EB 5'12...k EB EB 'Hk~i 0 0(1) 0 ,i-I
#1"2:.0 i "2:.°
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-=111 ( ...) 1 ... 1NTQ is L: 81...kI EB EB rt};+l 0 0(1) ® .i-I 0 G- .
#I~O i~O

Therefore there exists an effective resolution of Q with respect to the ideal Fo (~) near

USi1 ...ill: , and the total exceptional divisor is

W+EZ' . +EG' . +Et· .11 ...111: 11 ••• 111: 11 ...1 ,1; •

The last step we need to do is to show (ß2* (1 +Cl (0(1) )n+1 . s(V1, Q))0 can be expressed

by C2(0,,), K 2, KH, d, where 1{ = C1(!1~), H is the hyperplane section of pn, d = H;.

But on Q, ß2* (Cl (0(1 n(m-1)+i . ßia) = (l-hd..~(l-hm)i . a, where a is a cycle on X .
By the above argument, (ß2* (1 + c1(0(I))n+1 . s(Vl, Q))) is a polynomial in terms of

Sit .. .ill:, Hi, C2(!1,,) , C1(!1s ). We push down (ß2* (1 + c1(0(1))n+1 . S(V1, Q))) by (}:2* ,
... 0

the tenns involved with Sil...ill: give us the tenns involved with C2(!1,,), Cl (0,,). The theorem
is proved.

Example 1 m = 2. In this case S is a surface in p4 and v = O. Theorem teIls llS

2v = d2 - IOd - 5H1( + C2(S) - 1(2 = 0

This is the well-known condition for a smooth surface embedded in p4 [4].

Example 2 [6] m = 3. In this case, S is a surface in p7 and v is the number of trisecants

of S. The total exceptional divisor is

L lVij + L Zij + 6123 + T123 ,
1$i<j$3 1$i<i$3

where W12 is the projective bundle P(E12 ) over 5'12 with Cl (E12 ) = C111.,

f
~12] . [Sl23] , Gl23 = the ~ro loc~s of a generic seetion of T. ® (?i- I ® Si2~)

8123] . [0(1) ® H-1 ® (EZij1) ®'Gi"l3] . We have the following formula

6v = d3
- 3d(IOd + 51(H + 1(2 - C2) + 224d + 1921(H + 561(2 - 40C2

References

[1] E. Arbarello, M. Cornalba, P. Griffith and J. Harris, Geometry of algebraic curves,
Springer-Verlag, 1985.

[2] S.K. Donaldson, Instantons in Yang-Mills theory, in Interface between particle physics

and mathematics, Oxford 1990, 59-75.

[3] A. Grothendieck, EGAlI, IHES, 1961.

[4] R. Hartshome, Aigebraic Geoemtry, Springer-Verlag, 1977.

[5] W. Fulton, Intersecrlon Theory, Springer~Verlag, 1984.

[6] P. Le Ban, Formules pour les trisecantes des surfaces algebriques, L'Ens. Math. t. 33,
1987, 1-66.

[7] R. Piene, Numerical characters of a curve in projective n space, in Real aod complex

singularities, Oslo, 1976, 475-495.

[8] D. Laksov, Weierstrass points on curves, Aster. 87-88, 1981, 221-247.

9


