On short graded algebras

M.P. Cavaliere, M.E. Rossi and G. Valla

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Federal Republic of Germany

On short graded algebras

M.P.Cavaliere, M.E.Rossi and G. Valla

Introduction.

Let (A, m, k) be a local Cohen-Macaulay ring of dimension d. We denote by e the multiplicity of A, by N its embedding dimension and by $h:=N-d$ the codimension of A. The Hilbert function of A is the numerical function defined by $H_{A}(n):=\operatorname{dim}_{k}\left(m^{n} / m^{n+1}\right)$ and the Poincare series is the series $P_{A}(z):=\sum_{n \geq 0} H_{A}(n) z^{n}$. By the theorem of HilbertSerre there exists a polynomial $f(z) \in \mathbf{Z}[z]$ such that $f(1)=e$ and $P_{A}(z)=f(z) /(1-z)^{d}$. From this it follows that there exists a polynomial $h_{A}(x) \in \mathbf{Q}[x]$ such that $H_{A}(n)=h_{A}(n)$ for all $n \gg 0$. This polynomial is called the Hilbert polynomial of A. If we denote by $s=s(A):=\operatorname{deg}(f(z))$ and by $i=i(A):=\max \left\{n \in \mathbf{Z} \mid H_{A}(n) \neq h_{A}(n)\right\}+1$, then it is well known that $i=s-d+1$ (see [EV]). Also we denote by $t=t(A)$ the initial degree of A, which is by definition $t=t(A):=\min \left\{j \mid \dot{H}_{A}(j) \neq\left({ }^{N+j-1}\right)\right\}$. It is clear from the definition that $t \geq 2$. In $[\mathrm{RV}]$ we proved that $e \geq\binom{ h+t-1}{h}$. Also in the same paper we proved that if $e=\binom{h+t-1}{h}$ then $g r_{m}(A):=\oplus\left(m^{n} / m^{n+1}\right)$ is a Cohen-Macaulay graded ring and

$$
P_{A}(z)=\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i} /(1-z)^{d}
$$

If $e=\binom{h+t-1}{h}+1$ then $g r_{m}(A)$ needs not to be Cohen-Macaulay (see [S]) but if the Cohen-Macaulay type $\tau(A)$ verifies $\tau(A)<\binom{h+t-2}{t-1}$ then again $g r_{m}(A)$ is Cohen-Macaulay and

$$
P_{A}(z)=\left(\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+z^{t}\right) /(1-z)^{d}
$$

(see [RV]). On the other hand if we consider a set X of e distinct points in the projective space \mathbf{P}^{h} and we let $A=k\left[X_{0}, \ldots, X_{h}\right] / I$ be the coordinate ring of X, then A is a graded

[^0] Institüt für Mathematik in Bonn for hospitality and financial support during the preparation of this paper.

Cohen-Macaulay ring of dimension 1. Hence the Hilbert function of A is strictly increasing up to the degree of X, which is e. Many authors (see [GO1],[G],[GO2],[GM],[GGR], $[\mathrm{B}],[\mathrm{Br} 1],[\mathrm{Br} 2],[\mathrm{BK}],[\mathrm{L} 1],[\mathrm{L} 2],[\mathrm{R}],[\mathrm{TV}])$ have studied the notion of points in "generic" position. This means by definition that

$$
H_{A}(n)=\min \left(e,\binom{h+n}{n}\right) .
$$

It is easy to prove that almost every set of e points in \mathbf{P}^{h} are in generic position, in the sense that the points in generic position in \mathbf{P}^{h} form a dense open set U of $\mathbf{P}^{h} \times \mathbf{P}^{h} \times \cdots \times \mathbf{P}^{h}$ (e times). Now it is clear that if X is a set of points in generic position in \mathbf{P}^{h} then

$$
P_{A}(z)=\left(\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+c z^{t}\right) /(1-z)
$$

where t is defined to be the integer such that $\binom{h+t-1}{h} \leq e<\binom{h+t}{h}$.
Thus we are led to consider graded algebras $A=k\left[X_{0}, \ldots, X_{r}\right] / I$ over an infinite field k which are Cohen-Macaulay and whose Poincare series is given by

$$
P_{A}(z)=\left(\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+c z^{t}\right) /(1-z)^{d}
$$

where d is the Krull dimension of A, t is an integer ≥ 2, and c is an integer $0 \leq c<\binom{h+t-1}{t}$.
We call such an algebra a Short Graded Algebra.
It is easy to see that short graded algebras are the Cohen-Macaulay graded algebras A such that H_{A}^{1-d} is maximal according to the definition given by Orecchia in [O] . Also extremal Cohen-Macaulay graded algebras in the sense of Schenzel (see [Sc]) are short graded algebras with $c=0$.

Generalities on short graded algebras.

Let $A=k\left[X_{0}, \ldots, X_{r}\right] / I$ be a short graded algebra with Poincare series

$$
P_{A}(z)=\left(\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+c z^{t}\right) /(1-z)^{d}
$$

The multiplicity of A is denoted by $e=e(A)$. We have $e=\binom{h+t-1}{h}+c$. Also we have $i=i(A)=t-d+1$. Since k is an infinite field, we can find d linear forms L_{1}, \ldots, L_{d} in $R=k\left[X_{0}, \ldots, X_{r}\right]$ such that if $J=\left(L_{1}, \ldots, L_{d}\right)$, the graded algebra $B=A / J A$ is of dimension 0 , codimension h and has $e(A)=e(B)$. If we denote by - reduction modulo J, we get $B=\bar{R} / \bar{I}$ and we call B an artinian reduction of A. It is clear that B is a short graded algebra with

$$
P_{B}(z)=\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+c z^{t}
$$

It follows that $s(B)=s(A)=t(B)=t(A)=t$. Now let

$$
\overline{\mathbf{F}}: 0 \rightarrow \bar{F}_{h} \rightarrow \cdots \rightarrow \bar{F}_{1} \rightarrow \bar{R} \rightarrow B \rightarrow 0
$$

be a minimal graded free resolution of B with $\bar{F}_{i}=\oplus_{j=1}^{\beta_{i}} \bar{R}\left(-d_{i j}\right)$. The positive integers β_{i} are called the Betti numbers of B; the integers $d_{i j}$ are called the shifting in the resolution of B and, along with the β_{i}, are unique. Since $t(B)=t$ we have $t \leq d_{1 j}$ for every j. Further it is well known that we have a graded isomorphism $\operatorname{Tor}_{h}^{\bar{R}}(B, k) \simeq\left(0: B_{1}\right)(-h)$, hence we get $d_{h j} \leq s+h$ for every j. The following lemma is possibly well known, but we insert here a proof for the sake of completeness.

Let

$$
\overline{\mathbf{F}}: 0 \rightarrow \bar{F}_{h} \rightarrow \bar{F}_{h-1} \rightarrow \cdots \rightarrow \bar{F}_{0} \rightarrow M \rightarrow 0
$$

be a minimal graded free resolution of the graded R-module M, with $F_{i}=\oplus_{j=1}^{\beta_{i}} R\left(-d_{i j}\right)$.
Lemma 1.1. If $i>0$, for every j there exists q such that $d_{i-1, q}<d_{i j}$. If $i<h$, for every j there exists p such that $d_{i j}<d_{i+1, p}$.
Proof: It is clear that $d_{i j}$ is the degree of the element of F_{i-1} which is the j-th column of the matrix Δ_{i} representing the map of free modules $F_{i} \rightarrow F_{i-1}$. Hence we get for every $q=1, \ldots, \beta_{i-1}$

$$
\delta_{q}+d_{i-1, q}=d_{i j}
$$

where $\delta_{1}, \ldots, \delta_{\beta_{i-1}}$ are the degree of the elements of this column vector. Now if for some j we have $d_{i j}=d_{i-1, q}$ for every q, then Δ_{i} would have a column of zeros, a contradiction to the minimality of the resolution. The other result follows in the same way, by using the fact that the transpose of Δ_{i} cannot have a column of zeros since it is a matrix in the minimal graded free resolution of $E x t_{R}^{h}(M, R)$.

Using this lemma we get that in the resolution $\overline{\mathbf{F}}$ of B we have

$$
\bar{F}_{i}=\bar{R}(-t-i)^{b_{i}} \oplus \bar{R}(-t-i+1)^{a_{i}}
$$

for every $i \geq 1$. Now it is well known that the graded free resolution of A as an R-module has the same Betti numbers and shifting as the resolution of B as an \bar{R}-module. Hence a graded free resolution of A can be written as
$0 \rightarrow R(-t-h)^{b_{h}} \oplus R(-t-h+1)^{a_{h}} \rightarrow \cdots \rightarrow R(-t-i)^{b_{i}} \oplus R(-t-i+1)^{a_{i}} \rightarrow \cdots \rightarrow R \rightarrow A \rightarrow 0$
for some integers $a_{i}, b_{i} \geq 0$. By the particular Hilbert function of A we get $a_{1}=\binom{h+t-1}{t}-c$ and $b_{h}=c$.

A detailed proof of these observations can be found in [L2].
We close this section by remarking that for a short graded algebra the Betti numbers β_{i} determine all the resolution. This can be easily seen by using the fact that in each degree $n>t$ we have

$$
\operatorname{dim}\left(\bar{R}_{n}\right)+\sum_{i=1}^{h}(-1)^{i}\left[a_{i} \operatorname{dim}\left(\bar{R}(-t-i+1)_{n}\right)+b_{i} \operatorname{dim}\left(\bar{R}(-t-i)_{n}\right)\right]=0
$$

Pure and linear resolution.

Recall that given a graded free resolution

$$
\mathbf{F}: 0 \rightarrow F_{h} \rightarrow \cdots \rightarrow F_{1} \rightarrow R \rightarrow A \rightarrow 0
$$

of the graded algebra A with $F_{i}=\oplus_{j=1}^{\beta_{i}} R\left(-d_{i j}\right)$ we say that the resolution is pure of type $\left(d_{1}, \ldots, d_{h}\right)$ if for every $i=1, \ldots, h$ we have $d_{i j}=d_{i}$ for every j. If the resolution is pure of type $(t, t+m, t+2 m, \ldots, t+(h-1) m$), we shall say that it is pure of type (t, m). A pure resolution of type ($t, 1$) is just called a t-linear resolution (see [W],[HK])

In this section we investigate what short graded algebras have pure or linear resolution. The first proposition deals with the case of a linear resolution.

Proposition 2.1. Let A be a Cohen-Macaulay graded algebra. The following conditions are equivalent
a) A is short and has a t-linear resolution.
b) A is short with $c=0$.
c) $e=\binom{h+t-1}{h}$ and $t=\operatorname{indeg}(A)$
d) I is generated by $\binom{h+t-1}{t}$ forms of degree t

Proof: The conditions b), c) and d) are equivalent by theorem 3.3 in [RV]. If A is short and $c=0$ then $b_{h}=0$. By lemma 1.1 this implies $b_{i}=0$ for every $i=1, \ldots, h$ and the resolution is linear. If the resolution is linear then $b_{h}=0$, hence $c=0$.

The case of a pure resolution of type (t, m) is considered in the next proposition which extends Theorem 2 in [Br 1$]$.

Proposition 2.2. Let A be a short graded algebra. A has a pure resolution of type (t, m) if and only if one of the following occurs
a) $e=\binom{h+t-1}{h}$
or
b) $h=2, e=\binom{t+1}{2}+\frac{t}{2}$ where t is even and I is generated by forms of degree t.

Proof: If the resolution is linear a) holds by the above proposition. If the resolution is pure of type (t, m) with $m \geq 2$, we get $d_{h}=t+(h-1) m \leq t+h$, hence $(h-1) m \leq h$. This implies $m=1$ or $m=h=2$. In the first case a) holds by the above proposition, while in the latter case we get a resolution

$$
0 \rightarrow R(-t-2)^{a-1} \rightarrow R(-t)^{a} \rightarrow R \rightarrow A \rightarrow 0
$$

From this it follows easily that t is even, $e=\binom{t+1}{2}+\frac{t}{2}$ and I is generated by forms of degree t.

Conversely if a) holds the conclusion follows by the above proposition, while if b) holds we get a resolution

$$
0 \rightarrow R(-t-2)^{b_{2}} \oplus R(-t-1)^{a_{2}} \rightarrow R(-t)^{a_{1}} \rightarrow R \rightarrow A \rightarrow 0
$$

It follows that $b_{2}+a_{2}=a_{1}-1$ where $a_{1}=t+1-c$ and $b_{2}=c=\frac{t}{2}$. Hence $a_{2}=$ $t+1-\frac{t}{2}-1-\frac{t}{2}=0$

The next result says that a short graded algebra has a pure resolution if and only if it has some special Betti numbers. It extends Theorem 3 in [Br 1$]$ (see also [L1]).

Proposition 2.3. Let A be a short graded algebra with $\binom{h+t-1}{h}<e<\binom{h+t}{h}$. A has a pure resolution if and only if there exists an integer p such that $1 \leq p \leq h-1$ and

$$
\beta_{i}= \begin{cases}\binom{t+i-2}{i-1}\binom{h+t}{h-i+1} \frac{p-i+1}{t+p}, & \text { for } i=1, \ldots, p \\ \binom{t+i-1}{i}\binom{h+t}{h-i} \frac{i-p}{t+p}, & \text { for } i=p+1, \ldots, h .\end{cases}
$$

Proof: If A is short and has a pure resolution of type $\left(d_{1}, \ldots, d_{h}\right)$, then $d_{1}=t$ and $d_{h}=t+h$, otherwise if $d_{h}=t+h-1$ then the resolution would be linear and by Proposition $2.1 e=\binom{h+t-1}{h}$. Hence there exists an integer $p, 1 \leq p \leq h-1$ such that

$$
d_{i}= \begin{cases}t+i-1, & \text { for } \mathrm{i}=1, \ldots, \mathrm{p} \\ t+i, & \text { for } \mathrm{i}=\mathrm{p}+1, \ldots, \mathrm{~h}\end{cases}
$$

Now, by a result of Herzog and Kuhl (see [HK]), if the graded algebra A has a pure resolution of type $\left(d_{1}, \ldots, d_{h}\right)$ then $\beta_{i}=\left|\Pi_{j \neq i} \frac{d_{j}}{d_{j}-d_{i}}\right|$. In our case the conclusion follows by an easy computation. Conversely, we have seen at the end of section 1 that for a short graded algebra the Betti numbers determine all the resolution. Now it is easy to prove that the particular Betti numbers of the proposition determine a pure resolution.

For example let us consider the case $h=3, t=3, p=2$. We get $\beta_{1}=8, \beta_{2}=9, \beta_{3}=2$, hence we have a resolution

$$
0 \rightarrow R(-6)^{b_{3}} \oplus R(-5)^{a_{3}} \rightarrow R(-5)^{b_{2}} \oplus R(-4)^{a_{2}} \rightarrow R(-4)^{b_{1}} \oplus R(-3)^{a_{1}} \rightarrow R \rightarrow A \rightarrow 0
$$

with $a_{1}=10-c$, hence $b_{1}=c-2$. Now $b_{3}=c \leq \beta_{3}=2$, hence $c=2, a_{1}=8, b_{1}=0$, $b_{3}=2, a_{3}=0$. Further we have

$$
\operatorname{dim}\left(\bar{R}_{4}\right)+a_{2}=b_{1}+a_{1} \operatorname{dim}\left(\bar{R}_{1}\right) .
$$

Since $b_{1}=0, \operatorname{dim}\left(\bar{R}_{4}\right)=\left(\begin{array}{c}3+4-1\end{array}\right)=15, \operatorname{dim}\left(\bar{R}_{1}\right)=3$ we get $a_{2}=9$, hence $b_{2}=0$ and the resolution is pure of type $(3,4,6)$.

We finally remark that if A is a short graded algebra with a pure resolution, then for the same p as in the above prposition, we get $e=\frac{t\binom{h+t}{h}}{t+p}$ (see [HM]).

A particular case of pure resolution is considered in the last result of this section.

Theorem 2.4. Let $A=R / I$ be a graded algebra which is Cohen-Macaulay. Then the following conditions are equivalent:
a) A is Gorenstein and short.
b) A has a pure resolution and $e=h+2$.
c) The resolution of A is

$$
0 \rightarrow R(-h-2)^{\beta_{h}} \rightarrow R(-h)^{\beta_{h-1}} \rightarrow \cdots \rightarrow R(-2)^{\beta_{1}} \rightarrow R \rightarrow A \rightarrow 0
$$

Proof: If A is Gorenstein the Hilbert function of its artinian reduction is symmetric, hence we get $c=1, e=h+2$ and $t=2$. This proves that A is an extremal Gorenstein algebra according to the definition given by Schenzel in [Sc]. But extremal Gorenstein algebras have a pure resolution of type $(2,3, \ldots, h, h+2)$ as proved in the same paper [Sc]. Hence a) implies b) and c). Let now prove that b) implies c). It is clear that $P_{A}(z)=\left(1+h z+z^{2}\right) /(1-z)^{d}$, hence $c=1$ and $b_{h}=c=1$. Since the resolution is pure we get $\beta_{h}=1$ and A is Gorenstein. Finally we prove that c) implies a). By the formula of Herzog and Kuhl we get

$$
\beta_{h}=\left|\Pi_{j<h} \frac{d_{j}}{d_{j}-h-2}\right|=\left|\frac{2}{-h} \frac{3}{-h+1} \cdots \frac{h}{-2}\right|=\frac{h!}{h!}=1
$$

hence A is Gorenstein. Further I is generated by forms of degree 2 and we get

$$
\beta_{1}=a_{1}=\left|\Pi_{j>1} \frac{d_{j}}{d_{j}-2}\right|=\left|\frac{3}{1} \frac{4}{2} \cdots \frac{h}{h-2} \frac{h+2}{h}\right|=\frac{h!(h+2)}{2(h-2)!h}=\binom{h+1}{2}-1 .
$$

The conclusion follows by using theorem 3.10 in [RV].

Right almost linear resolution

Let A be a graded algebra with graded free resolution

$$
\mathbf{F}: 0 \rightarrow F_{h} \rightarrow F_{h-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow R \rightarrow A \rightarrow 0
$$

where $F_{i}=\oplus_{j=1}^{\beta_{i}} R\left(-d_{i j}\right)$. Following [L1] we say that \mathbf{F} is right almost linear if it is linear except possibly at F_{1}. In [L1] Lorenzini proved that the coordinate ring of a set of points in \mathbf{P}^{h} has a right almost linear resolution in some particular cases. All these results are
consequence of the following theorem which proves that a suitable condition on the defining ideal of a short graded algebra forces the resolution to be right almost linear with special Betti numbers.

We recall that for a short graded algebra $A=R / I, N$ denotes the embedding dimension of A. Hence we may assume $A=R / I$ where R is a polynomial ring of dimension N. As before we let $B=\bar{R} / \bar{I}$ be an artinian reduction of A. (see section 1).

Theorem 3.1. Let A be a short graded algebra such that $e=\binom{h+t}{h}-p$ for some positive integer p. If $\operatorname{dim}_{k}\left(I_{t} R_{1}\right)=N p$ then the resolution of A is right almost linear of type

$$
0 \rightarrow R(-t-h)^{b_{h}} \rightarrow \cdots \rightarrow R(-t-2)^{b_{2}} \rightarrow R(-t-1)^{b_{1}} \oplus R(-t)^{a_{1}} \rightarrow R \rightarrow A \rightarrow 0
$$

where $a_{1}=p, b_{1}=\binom{h+t}{h-1}-h p, b_{i}=\binom{h}{i} e-\binom{i+t-1}{i}\binom{h+t}{h-i}$ for every $i=2, \ldots, h$.
Proof: Since $e=\binom{h+t}{h}-p=\binom{h+t-1}{h}+\binom{h+t-1}{t}-p$ we get $c=\binom{h+t-1}{t}-p$, hence $a_{1}=p$. This means $\operatorname{dim}_{k}\left(I_{t}\right)=p$, and since $\operatorname{dim}_{k}\left(I_{t} R_{1}\right)=N p$ we get $a_{2}=0$. By lemma 1.1 this implies $a_{i}=0$ for every $i \geq 2$. Since in each degree $n>t$ we have

$$
\operatorname{dim}\left(\bar{R}_{n}\right)+\sum_{i=1}^{h}(-1)^{i}\left[a_{i} \operatorname{dim}\left(\bar{R}(-t-i+1)_{n}\right)+b_{i} \operatorname{dim}\left(\bar{R}(-t-i)_{n}\right)\right]=0
$$

we get $\operatorname{dim}\left(\bar{R}_{t+1}\right)-a_{1} \operatorname{dim}\left(\bar{R}_{1}\right)-b_{1}=0$, hence $b_{1}=\binom{h+t}{t+1}-p h$. In the same way we get $\operatorname{dim}\left(\bar{R}_{t+2}\right)-a_{1} \operatorname{dim}\left(\bar{R}_{2}\right)-b_{1} \operatorname{dim}\left(\bar{R}_{1}\right)+b_{2}=0$, from which, by easy computation, one gets $b_{2}=\binom{h}{2} e-\binom{t+1}{2}\binom{h+t}{h-2}$. By induction we get the right value of the remaining b_{i} 's.

We remark that we can apply the above results to the following cases:
a) $e=\binom{h+t}{h}-1$ points in generic position in \mathbf{P}^{h}
b) $e=\binom{h+t}{h}-2$ points in uniform position in \mathbf{P}^{h}.

In fact in case a) I_{t} is a vector space of dimension 1 , hence it is clear that the condition of the theorem is fullfilled. As for the case b) we recall that a set of e points in \mathbf{P}^{h} is said to be in uniform position if every subset is in generic position. Now case b) follows from the following lemma a stronger version of which has been proved by Geramita and Maroscia in [GM] by completely different methods. We insert here a proof since the original one is rather complicate.

As usual we denote by $A=k\left[X_{0}, \ldots, X_{n}\right] / I$ the coordinate ring of a set of points in \mathbf{P}^{h} and by t the initial degree of A.

Lemma 3.2. If P_{1}, \ldots, P_{e} are points in uniform position in \mathbf{P}^{h}, the forms of degree t in I cannot have a common factor (if $\operatorname{dim}\left(I_{t}\right)=1$ and $I_{t}=k F$ this means that F is irreducible).
Proof: Let F be a common factor of all the forms in I_{t} with $\operatorname{deg}(F)=d, 1 \leq d \leq t-1$. Let \wp_{1}, \ldots, \wp_{e} be the prime ideals of the poits P_{1}, \ldots, P_{e} respectively. Since $d<t=\operatorname{indeg}(A)$ we must have $F \in \wp_{1} \cap \cdots \cap \wp_{n}, F \notin \wp_{n+1} \cup \cdots \cup \wp_{e}$ for some $n, 1 \leq n<e$. Let $K=$ $\wp_{1} \cap \cdots \cap \wp_{n}, J=\wp_{n+1} \cap \cdots \cap \wp_{e}$. It is clear that $I_{t}=F J_{t-d}$, hence $\operatorname{dim}\left(I_{t}\right)=\operatorname{dim}\left(J_{t-d}\right)$ and we get $H_{R / J}(t-d)=\binom{h+t-d}{h}-\operatorname{dim}\left(I_{t}\right)$. Since P_{n+1}, \ldots, P_{e} are in generic position we have $H_{R / J}(t-d)=\min \left\{e-n,\binom{h+t-d}{h}\right\}$, hence we get $e-n=\binom{h+t-d}{h}-\operatorname{dim}\left(I_{t}\right)=$ $\binom{h+t-d}{h}-\binom{h+t}{h}+H_{R / I}(t) \leq\binom{ h+t-d}{h}-\binom{h+t}{h}+e$. This implies $n \geq\binom{ h+t}{h}-\binom{h+t-d}{h} \geq$ $\binom{h+d}{h}$ where the last inequality follows by an easy combinatorial argument. Thus we get $H_{R / K}(d)=\min \left\{n,\binom{h+d}{h}\right\}=\binom{h+d}{h}$, a contradiction to the fact that $F \in K$.

The Cohen-Macaulay type

In this section we study the Cohen-Macaulay type of some special classes of short graded algebras. The first theorem extends and simplifies analogous results given by Brown and Roberts (see [Br 2] and [R$]$).

Theorem 4.1. Let A be a short graded algebra with $e=\binom{h+t}{h}-p$ for some positive integer p. Let J be the ideal generated by the forms of degree t in I. If $h(J)>p-h+1$ then $\beta_{h}=\binom{h+t-1}{t}-p$

Proof: Since k is an infinite field, it is clear that given a maximal regular sequence of forms of degree t in I we may complete this to a maximal regular sequence in R with linear forms L_{1}, \ldots, L_{d} such that $A /\left(L_{1}, \ldots, L_{d}\right) A=\bar{R} / \bar{I}$ is an artinian reduction of A. Hence $h(J)$ coincides with the height of the corresponding ideal generated by the forms of degree t in \bar{I}. Thus we may assume $A=k\left[X_{1}, \ldots, X_{h}\right] / I$ with $\operatorname{dim}(A)=0$. We have $b_{h}=c=\binom{h+t-1}{t}-p$, hence we need only to prove that $a_{h}=0$, or which is the same, that if F is a form of degree $t-1$ such that $F R_{1} \subseteq I$, then $F=0$. We have $\operatorname{dim}\left(I_{t}\right)=p$, hence if $p<h$ the conclusion is clear. Let $p \geq h$ and F be a form of degree $t-1$ such that $F R_{1} \subseteq I$. Then $F X_{1}, \ldots, F X_{h}$ are linearly independent vectors in I_{t}, hence we can find vectors $G_{1}, \ldots, G_{p-h} \in I_{t}$ such that $\left(F X_{1}, \ldots, F X_{h}, G_{1}, \ldots, G_{p-h}\right)$ is a k-vector base of I_{t}. This means that $J \subseteq\left(F, G_{1}, \ldots, G_{p-h}\right)$, hence $h(J) \leq p-h+1$, a contradiction.

The case of e points in generic position in \mathbf{P}^{h} with $e=\binom{h+t}{h}-p$ and $p \leq h-1$ is the main result in [R$]$.

On the other hand if we have $e=\binom{h+t}{h}-h$ points in uniform position, by lemma 3.2 we get $h(J) \geq 2$ and we may apply the above theorem. This is the main result in [Br 2$]$.

Let now $A=R / I$ be a Cohen-Macaulay graded algebra with codimension h, multiplicity e and initial degree t. It is clear that $e \geq\binom{ h+t-1}{h}$ and we have seen in proposition 2.1 that if $e=\left(\begin{array}{c}h+t-1\end{array}\right)$ then A is short and the resolution is t-linear. In the following proposition we study the case $e=\binom{h+t-1}{h}+1$.

Proposition 4.2. Let A be a Cohen-Macaulay graded algebra with $e=\binom{h+t-1}{h}+1$. Then we have:
a) A is short with $c=1$.
b) $\beta_{h} \leq\binom{ h+t-2}{t-1}$.
c) The following condition are equivalent:
c1) $\beta_{h}<\binom{h+t-2}{t-1}$
c2) $b_{1}=0$
c3) $\beta_{1}=\binom{h+t-1}{t}-1$
d) The following conditions are equivalent:
d1) $\beta_{h}=\binom{h+t-2}{t-1}$
d2) $b_{1}=1$
d3) $\beta_{1}=\binom{h+t-1}{t}$.
Proof: By passing to an artinian reduction of A we may assume $\operatorname{dim}(A)=0$. Then it is clear that A is short with $c=1$ and $b_{h}=\operatorname{dim}\left(A_{t}\right)=1$. Also $\left(0: A_{1}\right)_{t-1} \neq A_{t-1}$ otherwise $A_{t}=0$, hence

$$
\beta_{h}=\operatorname{dim}\left(0: A_{1}\right)_{t}+\operatorname{dim}\left(0: A_{1}\right)_{t-1}<\operatorname{dim}\left(A_{t}\right)+\operatorname{dim}\left(A_{t-1}\right)=1+\binom{h+t-2}{t-1}
$$

This proves b). The equivalence in c) has been proved in [RV] theorem 3.10. As for d), since $\beta_{1}=b_{1}+a_{1}=b_{1}+\binom{h+t-1}{t}-1$, we get $\beta_{1}=\binom{h+t-1}{t}$ if and only if $b_{1}=1$. If $b_{1}=1$, then by b) and c) we get $\beta_{h}=\binom{h+t-2}{t-1}$. Finally if $\beta_{h}=\binom{h+t-2}{t-1}$, then by b) and c) we get $b_{1}>0$ and we need only to prove that $\operatorname{dim}\left(R_{t+1} / R_{1} I_{t}\right) \leq 1$. Now $\operatorname{dim}\left(A_{t}\right)=1$ implies $R_{t}=I_{t}+k M$ for some monomial M of degree t. Hence we may assume $M=X_{1} N$ for
some monomial N of degree $t-1$ and we get

$$
R_{t+1}=R_{1} I_{t}+R_{1} M=R_{1} I_{t}+X_{1} R_{1} N \subseteq R_{1} I_{t}+X_{1}\left(I_{t}+k M\right)=R_{1} I_{t}+k X_{1} M
$$

This gives the conclusion.

The above Proposition can be applied for example in the following situation.
Corollary 4.3. Let A be a Cohen-Macaulay graded algebra with $e=\binom{h+t-1}{h}+1$. Let J be the ideal generated by the forms of degree t in I. If $h(J)=h$ then $\beta_{1}=\binom{h+t-1}{t}-1$. Proof: As in theorem 4.1 we may assume $\operatorname{dim}(A)=0$. We have $\operatorname{dim}\left(I_{t}\right)=\binom{h+t-1}{t}-1$. This implies $R_{1} I_{t}=R_{t+1}$, a fact proved in [RV] theorem 3.10. Hence $b_{1}=0$ and we may apply the above proposition to get the conclusion.

We remark that, again by lemma 3.2, we may apply the above corollary to the case of $e=\binom{t+1}{2}+1$ points in uniform position in \mathbf{P}^{2}.

The last result of this section gives the Cohen-Macaulay type of some special onedimensional short graded algebras. This extends a result in [TV].

Theorem 4.4. Let A be a one dimensional short graded algebra with $t=2$. If $I \subseteq$ $\left(X_{i} X_{j}\right)_{1 \leq i<j \leq h+1}$ and $X_{i} X_{j} \notin I$ for every $i \neq j$, then $\beta_{h}=b_{h}=c$.

Proof: We need only to prove that $a_{h}=\operatorname{dim}\left(\operatorname{Tor}_{h}^{R}(A, k)_{h+1}\right)=0$. The crucial point is that one can compute $\operatorname{Tor}_{i}^{R}(A, k)$ via the Koszul resolution of $k=R /\left(X_{1}, \ldots, X_{h+1}\right)$

$$
0 \rightarrow \stackrel{h+1}{\Lambda} V \otimes R(-h-1) \xrightarrow{\delta_{h+1}} \stackrel{h}{\Lambda} V \otimes R(-h) \rightarrow \cdots \rightarrow \Lambda V \otimes R(-1) \xrightarrow{\delta_{1}} R \rightarrow k \rightarrow 0
$$

where V is a k-vector space of dimension $h+1$. Hence, in order to prove $\operatorname{Tor}_{h}^{R}(A, k)_{h+1}{ }^{\prime}=0$, we need only to prove that the Koszul-type complex

$$
\stackrel{h+1}{\Lambda} V \otimes A(-h-1)_{h+1} \rightarrow \stackrel{h}{\Lambda} V \otimes A(-h)_{h+1} \rightarrow{ }^{h-1} \Lambda \otimes A(-h+1)_{h+1}
$$

is exact in the middle term. We may write this complex in the following way

$$
\stackrel{h+1}{\Lambda} V \otimes k \xrightarrow{f=\delta_{h+1}} \stackrel{h}{\Lambda} V \otimes R_{1} \xrightarrow{g}{ }^{h-1} V \otimes A_{2}
$$

Now let $\xi \in \operatorname{Ker}(g)$; this means that $\delta_{h}(\xi) \in \stackrel{h+1}{\Lambda} V \otimes I_{2}$ and we need to prove that $\xi \in \operatorname{Im}(f)=\operatorname{Im}\left(\delta_{h+1}\right)=\operatorname{Ker}\left(\delta_{h}\right)$. This is equivalent to prove that if $\alpha \in{ }^{h-1} V \otimes I_{2}$ and $\alpha \in \operatorname{Im}\left(\delta_{h}\right)=\operatorname{Ker}\left(\delta_{h-1}\right)$, then $\alpha=0$. Let e_{1}, \ldots, e_{h+1} be a k-vector base of V and $\varepsilon_{i j}=e_{1} \wedge \cdots \wedge \hat{e}_{i} \wedge \cdots \wedge \hat{e}_{j} \wedge \cdots \wedge e_{h+1}$ be the corresponding vector base of ${ }^{h-1} V$. Then we can write $\alpha=\sum_{1 \leq i<j \leq h+1} \varepsilon_{i j} \otimes F_{i j}$ with $F_{i j} \in I_{2}$ and $\delta_{h-1}(\alpha)=0$. This implies $F_{i j}=\lambda_{i j} X_{i} X_{j}$, otherwise if for example $F_{i j}=X_{t} X_{s}+\ldots$ with $t \neq i, j$ then in $\delta_{h-1}(\alpha)$ we have a term

$$
\pm e_{1} \wedge \cdots \wedge \hat{e}_{i} \wedge \cdots \wedge \hat{e}_{j} \wedge \cdots \wedge \hat{e}_{t} \wedge \cdots \wedge e_{h+1} \otimes X_{t}^{2} X_{s}
$$

which cannot cancel out since every quadratic form in I_{2} does not contain any pure square. This implies that $F_{i j}=0$ and the conclusion follows.

Corollary 4.5.. Let A be a one-dimensional short graded algebra with $e=h+2$. If $I \subseteq\left(X_{i} X_{j}\right)_{1 \leq i<j \leq h+1}$ and $X_{i} X_{j} \notin I$ for every $i \neq j$, then A is Gorenstein.

We remark that the conditions in the above theorem are verified for a set of $h+1<e<$ $\binom{h+2}{2}$ points in generic position in \mathbf{P}^{h} such that $h+1$ of these points are not contained in an hyperplane. On the other hand it is easy to find a short graded algebra with $e=h+2$ which is not Gorenstein.

Let $A=k[X, Y, Z] /\left(X Z, Y Z, X^{2} Y-X Y^{2}\right)$; then $h=2, e=4, I \subseteq(X Y, X Z, Y Z)$ but A is not Gorenstein since it is not a complete intersection.

A remark on a conjecture by Sally

Given a local Cohen-Macaulay ring (A, m) of dimension d, codimension h and multiplicity $e=h+2$, the tangent cone $g r_{m}(A)=\oplus m^{n} / m^{n+1}$ is not necessarily Cohen-Macaulay. But Sally conjectured in $[\mathrm{S}]$ that in this case we always have $\operatorname{depth}\left(g r_{m}(A)\right) \geq d-1$. In the same paper she proves that if $d=1$, then $H_{A}(n) \geq h+1$, for every n, hence the Hilbert function of A does not decrease. This implies that $P_{A}(z)=\frac{1+h z+z^{0}}{1-z}$ for some $s \geq 2$. Hence we are led to consider graded algebra A, not necessarily Cohen-Macaulay, with Poincare series $P_{A}(z)=\left(\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+z^{s}\right) /(1-z)^{d}$ for some integer $s \geq t$. This could be the right notion of short graded algebras in the non Cohen-Macaulay case.

Here we ask the following question. If (A, m) is a Cohen-Macaulay local ring of dimension d, codimension h and multiplicity $e=\binom{h+t-1}{h}+1$ is it true that $P_{A}(z)=$ $\left(\sum_{i=0}^{t-1}\binom{h+i-1}{i} z^{i}+z^{s}\right) /(1-z)^{d}$ for some integer s ?

At the moment we are not able to answer this question, but in the case $t=2$ we can show that this is equivalent to Sally's conjecture.

Proposition 5.1. Let (A, m) be a local Cohen-Macaulay ring of dimension d, codimension h and multiplicity $e=h+2$. The following conditions are equivalent.
a) $\operatorname{depth}\left(g r_{m}(A)\right) \geq d-1$.
b) $P_{A}(z)=\frac{1+h z+z^{a}}{(1-z)^{d}}$.

Proof: By the result of Sally the conclusion holds in the case $d=1$. Let $d \geq 2$ and $\operatorname{depth}\left(g r_{m}(A)\right) \geq d-1$. We may assume that A / m is infinite and take x_{1}, \ldots, x_{d} a minimal reduction of m with x_{i} superficial for every i. The initial forms $x_{1}^{*}, \ldots, x_{d}^{*}$ in $g r_{m}(A)_{1}$ are a system of parameters in $g r_{m}(A)$, hence we may assume $x_{1}^{*}, \ldots, x_{d-1}^{*}$ form a regular sequence in $g r_{m}(A)$. This implies that if $B=A /\left(X_{1}, \ldots, X_{d-1}\right)$, then B is a 1-dimensional Cohen-Macaulay ring with the same codimension and multiplicity as A. Further we have $P_{A}(z)=P_{B}(z) /(1-z)^{d-1}$. By the result of Sally we get $P_{B}(z)=\frac{1+h z+z^{0}}{(1-z)}$ for some integer $s \geq 2$ and the conclusion follows. Conversely let us assume $P_{A}(z)=\frac{1+h z+z^{0}}{(1-z)^{d}}$ and let $B=A /\left(x_{1}, \ldots, x_{d-1}\right)$. As before B is a 1 -dimensional Cohen-Macaulay ring with the same codimension and multiplicity as A. Since $d \geq 2$ we get $e_{1}(A)=e_{1}(B)$, where for a local ring S of dimension d and Poincare series $P_{S}(z)=\sum_{i=0}^{s} a_{i} z^{i} /(1-z)^{d}$, we define $e_{1}(S)=\sum_{j=1}^{s} j a_{j}$ (see [EV]). By the result of Sally we have $P_{B}(z)=\frac{1+h z+z^{t}}{1-z}$, hence $e_{1}(B)=h+t=e_{1}(A)=h+s$. This implies $s=t$ and $P_{A}(z)=P_{B}(z) /(1-z)^{d-1}$. Hence $x_{1}^{*}, \ldots, x_{d-1}^{*}$ is a regular sequence in $g r_{m}(A)$ and the conclusion follows.

Some of the results here were discovered or confirmed with the help of the computer algebra program COCOA written by A.Giovini and G.Niesi.

References

[B] E.Ballico, Generators for the homogeneous ideal of s general points in $\mathbf{P}^{\mathbf{3}}$, J.Alg. 106 (1987), 46-52.
[BK] W.C.Brown and J.W.Kerr, Derivations and the Cohen-Macaulay type of points in generic position in n-space, J.Alg. 112 (1988), 159-172.
[Br1] W.C.Brown, A note on the Cohen-Macaulay type of lines in uniform position in \mathbf{A}^{n+1}, Proc. Am. Math. Soc. 87 (1983), 591-595.
[Br2] W.C.Brown, A note on pure resolution of points in generic position in \mathbf{P}^{n}, Rocky Mountain J. Math.. 17 (1987), 479-490.
[EV] J. Elias and G. Valla, Rigid Hilbert functions, J. Pure Appl. Alg. (to appear).
[G] A.V. Geramita, Remarks on the number of generators of some homogeneous ideals, Bull. Sci. Math., 2 Serie 107 (1983), 193-207.
[GGR] A.V.Geramita, D.Gregory and L.Roberts, Monomial ideals and points in the projective space, J.Pure Appl.Alg. 40 (1986), 33-62.
[GO1] A.V.Geramita and F.Orecchia, On the Cohen-Macaulay type of s lines in \mathbf{A}^{n+1}, J.Alg. 70 (1981), 116-140.
[GO2] A.V.Geramita and F.Orecchia, Minimally generating ideals defining certain tangent cones, J.Alg. 78 (1982), 36-57.
[GM] A.V.Geramita and P.Maroscia, The ideals of forms vanishing at a finite set of points in \mathbf{P}^{n}, J.Alg. 90 (1984), 528-555.
[HK] J.Herzog and M.Kuhl, On the Bettinumbers of finite pure and linear resolution, Comm.Al. 12 (1984), 1627-1646.
[HM] C.Huneke and M.Miller, A note on the multiplicity of Cohen-Macaulay algebras with pure resolutions, Can. J. Math. 37 (1985), 1149-1162.
[L1] A.Lorenzini, On the Betti numbers of points in the projective space, "Thesis," Queen's University, Kingston, Ontario, 1987.
[L2] A.Lorenzini, Betti numbers of perfect homogeneous ideals, J.Pure Appl.Alg. 60 (1989), 273-288.
[O] F.Orecchia, Generalised Hilbert functions of Cohen-Macaulay varieties, "Algebraic Geometry-Open problems,Ravello," Lect. Notes in Math., Springer, 1980, pp. 376-390.
[R] L.G.Roberts, A conjecture on Cohen-Macaulay type, C.R. Math. Rep. Acad. Sci. Canada 3 (1981), 43-48.
[RV] M.E.Rossi and G.Valla, Multiplicity and t-isomultiple ideals, Nagoya Math. J. 110 (1988), 81-111.
[S] J.Sally, Cohen-Macaulay local rings of embedding dimension e+d-2, J.Alg. 83 (1983), 393-408.
[Sc] P.Schenzel, Uber die freien auflosungen extremaler Cohen-Macaulay-ringe, J.Alg. 64 (1980), 93-101.
[TV] N.V.Trung and G.Valla, The Cohen-Macaulay type of points in generic position, J.Alg. 125 (1989), 110-119.
[W] J.M.Wahl, Equations defining rational singularities, Ann. Sci. Ecole Norm. Sup. 10 (1977), 231-264.

Dipartimento di Matematica, Università di Genova, Via L.B.Alberti 4, 16132 Genova, Italy

[^0]: The first two authors were partially supported by M.P.I.(Italy). The third author thanks the Max-Planck-

