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On short graded algebras

M.P.CAVALIERE, M.E.RoSSI AND G. VALLA

Introduction.

Let (A, m, k) be a local Cohen-Macaulay ring of dimension d. We denote by e the

multiplicity of A, by N its embedding dimension,and by h := N - d the codimension of A.

The Hilbert function of Ais the numerical function defined by HA(n):= dimk(mn /mn+1 )

and the Poincare series is the series PA(Z):= L:n~o HA(n)Zn. By the theorem of Hilbert

SeITe there exists a polynomial J(z) E Z[z] such that J(l) = e and PA(z) = J(z)/(l- z)d.

From this it follows that there exists a polynomial hA(x) E Q[x] such that HA(n) = hA(n)

for all n ~ O. This polynomial is called the Hilbert polynomial of A. If we denote by

s = s(A) := deg(J(z)) and by i = i(A) := max{n E ZIHA(n) :f hA(n)} + 1, then it is well

known that i = s - d + 1 (see [EV]). Also we denote by t = t(A) the initial degree of A,

which is by definition t = t(A) := min{jIHA(j) :f (N+J-1)}. It is clear from the definition

that t ~ 2. In [RV] we proved that e ~ (h+~-1). Also in the same paper we proved that if

e = (h+~-1) then grm(A) := EB(mn /m n+1) is a Cohen-Macaulay graded ring and

t-1 .""' (h +i-I) . dPA(Z) =~ i z'/(l-z).

If e = (h+~-1) + 1 then grm(A) needs not to be Cohen-Macaulay (see [S]) but if the

Cohen-Macaulay type r(A) verifies r(A) < (ht~~2) then again grm(A) is Cohen-Macaulay

and

(see [RV]). On the other hand if we consider a set X of e distinct points in the projective

space ph and we let A = k[Xo, ... ,Xh]/I be the coordinate ring of X, then A is a graded
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Cohen-Macaulay ring of dimension 1. Hence the Hilbert function of A is strictly increas

ing up to the degree of X, which is e. Many authors (see [GOl],[G],[G02],[GM],[GGR],

[B]'[Brl]'[Br2]' [BK], [LI],[L2], [R], [TV]) have studied the notion of points in "generic" posi

tion. This means by definition that

It is easy to prove that almost every set of e points in ph are in generic position, in the

sense that the points in generic position in ph form a dense open set U of ph x ph x··· X ph

(e times). Now it is clear that if X is a set of points in generic position in ph then

where t is defined to be the integer such that (h+~-l) :s; e < (htt).

Thus we are led to consider graded algebras A = k[Xo, . .. , X r]/lover an infinite field

k which are Cohen-Macaulay and whose Poincare series is given by

(

t-l -)h+i-l .
PA(z) = ~ ( i )z' + czt /(1- z)d

where dis the Krull dimension of A, t is an integer ~ 2, and c is an integer 0 :s; c < (h+:-l).

We call such an algebra a Short Graded Algebra.

It is easy to see that short graded algebras are the Cohen-Macaulay graded algebras

A such that H~-d is maximal according to the o definition given by Orecchia in [0] . Also

extremal Cohen-Macaulay graded algebras in the sense of Schenzel (see [Sc]) are short

graded algebras with c = o.

Generalities on short graded algebras.

Let A = k[Xo, ... ,Xr]/I be a short graded algebra with Poincare series
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The multiplicity of A is denoted by e = e(A). We have e = (h+~-l) + c. Also we have

i = i(A) = t - d + 1. Since k is an infinite field, we can find d linear forms LI, .. . ,Ld

in R = k[Xo, ... ,Xr ] such that if J = (LI," ., L d ), the graded algebra B = AIJA is of

dimension 0, codimension hand has e(A) = e(B). If we denote by - reduction modulo J,

we get B= RI j and we call B an artinian reduction of A. It is clear that B is a short

graded algebra with

t-1 ( )h+i-1 i t
PB(z) = {; i Z + cz .

It foHows that s(B) = s(A) = t(B) = t(A) = t. Now let

be a minimal graded free resolution of B with Fi = ffi~~l R(-dij ) . The positive integers ßi

are called the Betti numbers of B; the integers dij are caHed the shifting in the resolution

of Band, along with the ßi, are unique. Since t(B) = t we have t ~ d1j for every j.

Further it is weH known that we have a graded isomorphism Tor~(B, k) ~ (0 : B 1 )(-h),

hence we get dhj ~ s + h for every j. The foHowing lemma is possibly weH known, but we

insert here a proof for the sake of completeness.

Let

F : 0 ---+ Fh ---+ Fh - 1 ---+ ••• ---+ Fo ---+ M ---+ 0

be a minimal graded free resolution of the graded R-module M, with Fi = ffi~~l R(-dij).

LEMMA 1.1. Jf i > 0, for every j there exists q such that di-1,q < d ij . H i < h, for every

j there exists p such that dij < di+ 1,p'

PROOF: It is clear that d ij is the degree of the element of Fi-1 which is the j-th column

of the matrix ~i representing the map of free modules F i ---+ F i -1' Hence we get for every

q = 1, ... , ßi-1

8q +di - 1 ,q = dij

where 81"", 8ßi _ 1 are the degree of the elements of this column vector. Now if for some

j we have d ij = d i - 1,q for every q, then ~i would have a column of zeros, a contradiction

to the minimality of the resolution. The other result foHows in the same way, by using

the fact that the transpose of ~i cannot have a column of zeros since it is a matrix in the

~inimal graded free resolution of Ext~(M, R).
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Using this lemma we get that in the resolution F of B we have

for every i 2:: 1. Now it is well known that the graded free resolution of A as an R-module

has the same Betti numbers and shifting as the resolution of B as an R-module. Hence a

graded free resolution of A can be written as

for some integers ai, bi 2:: O. By the particular Hilbert function of A we get al = (h+:-l)_c

.and bh = c.

A detailed proof of these observations can be found in [L2].

We close this section by remarking that for a short graded algebra the Betti numbers ßi

determine all the resolution. This can be easily seen by using the fact that in each degree

n > t we have

h

dim(Rn) + L(-l)i [aidim(R(-t - i + l)n) + bidim(R(-t - i)n)] = O.
i=l

Pure and linear resolution.

Recall that given a graded free resolution

of the graded algebra A with Pi = ffi1::1 R( -dij) we say that the resolution is pure of type

(d1 , • •• ,dh) if for every i = 1, ... ,h we have dij = di for every j. If the resolution is pure

of type (t, t + m, t + 2m, ... , t + (h - l)m), we shall say that it is pure of type (t, m). A

pure resolution of type (t, 1) is just called at-linear resolution (see [W]'[HK])

In this section we investigate what short graded algebras have pure or linear resolution.

The first proposition deals with the case of a linear resolution.
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PROPOSITION 2.1. Let A be a Cohen-Macaulay graded algebra. The following conditions

are equivalent

a) A is short and has at-linear resolution.

b) A is short with c = o.
c) e = (h+~-l) and t = indeg(A)

d) I is generated by (h+:-1) forms of degree t

PROOF: The conditions b), c) and d) are equivalent by theorem 3.3 in [RV]. If A is short

and c = 0 then bh = O. By lemma 1.1 this implies bi = 0 for every i = 1, ... , h and the

resolution is linear. If the resolution is linear then bh = 0, hence c = o.
The case of a pure resolution of type (t, m) is considered in the next proposition which

extends Theorem 2 in [Brl].

PROPOSITION 2.2. Let A be a short graded algebra. A has apure resolution oftype (t, m)

if and only if one of the following occurs

a) e = (h+~-l)

or

b) h = 2, e = ct1
) + ~ where t is even and I is generated by forms of degree t.

PROOF: If the resolution is linear a) holds by the above proposition. If the resolution is

pure of type (t, m) with m ~ 2, we get dh = t + (h - l)m ~ t + h, hence (h - l)m ~ h.

This implies m = 1 or m = h = 2. In the first case a) holds by the above proposition,

while in the latter case we get aresolution

o-t R( - t - 2)a -1 -t R( - t) a -t R -t A -t 0

From this it follows easily that t is even, e = ct1
) + ~ and I is generated by forms of

degree t.

Conversely if a) holds the conclusion follows by the above proposition, while if b) holds

we get aresolution

o-t R(-t - 2)b 2 EB R(-t - l)a 2 -t R( _t)a 1 -t R -t A -t 0

It follows that b2 + a2 = a1 - 1 where a1 = t + 1 - c and b2 = c = ~. Hence a2

t+l-!-l-!=O

The next result says that a short graded algebra has a pure resolution if and only if it

has some special Betti numbers. It extends Theorem 3 in [Brl] (see also [LI]).
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PROPOSITION 2.3. Let A be a short graded algebra with (h+~-I) < e < (htt). A 'has a

pure resolution if and only if there exists an integer p such that 1 ~ p ~ h - 1 and

{

(t+i-2) ( h+t ) p-i+l
i-I h-i+l t+p'

ßi = (t+i.-l) (h+~) i:::I!.,
a h-a t+p'

for i=l, ... ,p

for i-p+l, ... ,h.

PROOF: If A is short and has a pure resolution of type (dl, ... , dh ), then d1 = t and

dh = t + h, otherwise if dh = t + h - 1 then the resolution would be linear and by

Proposition 2.1 e = (h+~-1). Hence there exists an integer p, 1 ~ p ~ h - 1 such that

{
t+i-l, fori=l, ... ,p

d· -'
I - t + i, for i=p+l, ... ,ho

Now, by a result of Herzog and Kuhl (see [HK]), if the graded algebra A has a pure

resolution of type (d1, . .. ,dh) then ßi= IIIi#i dj~di I. In our case the conclusion follows

by an easy computation. Conversely, we have seen at the end of section 1 that for a short

graded algebra the Betti numbers determine all the resolution. Now it is easy to prove

that the particular Betti numbers of the proposition determine a pure resolution.

For example let us consider the case h = 3, t = 3, p = 2. We get ßl = 8, ß2 = 9,ß3 = 2,

hence we have aresolution

with al = 10 - c, hence b1 = c - 2. Now b3 = c ~ ß3 = 2, hence c = 2, al = 8, b1 = 0,

b3 = 2, a3 = O. Further we have

Since b1 = 0, dim(R4 ) = C+:- 1
) = 15, dim(R1 ) = 3 we get a2 = 9, hence b2 = 0 and the

resolution is pure of type (3,4,6).

We finally remark that if A is a short graded algebra with a pure resolution, then for
t(h+t\

the same p as in the above prposition, we get e =~ (s,ee [HMD.

A particular case of pure resolution is considered in the last result of this section.
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THEOREM 2.4. Let A = R/I be a graded algebra which is Cohen-Macaulay. Then the

following conditions are equivalent:

a) A is Gorenstein and short.

b) A has a pure resolution and e = h + 2.

c) The resolution of A is

PROOF: HAis Gorenstein the Hilbert funetion of its artinian reduetion is symmetrie,

henee we get c = 1, e = h + 2 and t = 2. This proves that A is an extremal Gorenstein

algebra aceording to the definition given by Sehenzel in [Sc]. But extremal Gorenstein

algebras have a pure resolution of type (2,3, ... , h, h + 2) as proved in the same paper

[Sc]. Henee a) implies b) and e). Let now prove that b) implies e). It is clear that

PA(Z) = (1 + hz + z2)/(1 - z)d, henee c = 1 and bh = c = 1. Sinee the resolution is pure

we get ßh = 1 and A is Gorenstein. Finally we prove that e) implies a). By the formula of

Herzog and Kuhl we get

I
dj I I 2 3 h I h!ßh = IIj<h = - ... - = - = 1

dj - h - 2 -h -h + 1 -2 h!

henee A is Gorenstein. Further I is generated by forms of degree 2 and we get

1
dj 1 134 h h + 21 h!(h +2) (h +1)

ßl =al = II j >ld
j

_2 = 12'" h-2-h- = 2(h-2)!h = 2 -1.

The eonclusion follows by using theorem 3.10 in [RV].

Right almost linear resolution

Let A be a graded algebra with graded free resolution

where Fi = ffij::l R(-dij). Following [LI] we say that F is right almost linear if it is linear

exeept possibly at F1 • In [LI] Lorenzini proved that the eoordinate ring of a set of points

in ph has a right almost linear resolution in some partieular cases. All these results are
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consequence of the following theorem which proves that a suitable condition on the defining

ideal of a short graded algebra forces the resolution to be right almost linear with special

Betti numbers.

We recall that for a short graded algebra A = R/I, N denotes the embedding dimension

of A. Hence we may assurne A = R/I where R is a polynomial ring of dimension N. As

before we let B = R/I be an artinian reduction of A. (see section 1).

THEOREM 3.1. Let A be a short graded algebra such that e = (htt) - P for some positive

integer p. If dimk(ItRl) = Np then the resolution of A is right almost linear of type

where al = p, b1 = (~~D - hp, bi = (~) e - (i+~-l) (~~D for every i = 2, ... , h.

PROOF: Since e = (htt) - P = (h+~-l) + (h+:-l) - p we get c = (h+:-l) - p, hence al = p.

This means dimk(It) = p, and since dimk(ItR1) = Np we get a2 = O. By lemma 1.1 this

implies ai = 0 for every i ~ 2. Since in each degree n > t we have

h

dim(Rn) + L(_l)i [aidim(R( -t - i + l)n) + bidim(R(-t - i)n)] = 0.'
i=l

we get dim(Rt+1) - aldim(R1) - b1 = 0, hence b1 = (~:;) - ph. In the same way we get

dim(Rt+2) - aldim(R2) - b1dim(R1)+ b2 = 0, from which, by easy computation, one gets

·b2 = (~) e - C~l) (~~~). By induction we get the right value of the remaining bi's.

We remark that we can apply the above results to the following cases:

a) e = (htt) - 1 points in generic position in ph

b) e = (htt) - 2 points in uniform position in ph.

In fact in case a) I t is a vector space of dimension 1, hence it is clear that the. condition

of the theorem is fullfilled. As for the case b) we recall that a set of e points in ph is said to

be in uniform position if every subset is in generic position. Now case b) follows from the

following lemma a stronger version of which has. been proved by Geramita and Maroscia

in [GM] by completely different methods. We insert here a proof since the original one is

rather complicate.

As usual we denote by A = k[Xo, ... , X n ]/I the coordinate ring of a set of points in ph

and by t the initial degree of A.
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LEMMA 3.2. Jf PI, . .. ,Pe are points in uniform position in Ph, the forms of degree t in I

cannot have a common factor (if dim(It ) = 1 and I t = kF this means that Fis irreducible).

PROOF: Let F be a common factor of all the forms in I t with deg(F) = d, 1 ~ d ~ t-l. Let

PI, ... ,pe be the prime ideals of the poits PI, ,Pe respectively. Since d < t = indeg(A)

we must have F E PI n ... n pn, F f/:. pn+l U U pe for some n, 1 ~ n < e. Let K =
PI n· .. n pn, J = pn+l n· .. n Pe. It is clear that I t = F Jt- d, hence dim(It ) = dime Jt-d)

and we get HR/J(t - d) = (h+~-d) - dim(It).Since Pn+I, ... ,Pe are in generic position

we have HR/J(t - d) = min {e - n, (h+~-d)}, hence we get e - n = (h+~-d) - dim(It ) =
(h+~-d) _ (htt) + HR/1(t) ~ (h+~-d) _ (htt) + e. This implies n ~ (htt) _ (h+~-d) ~

(ht d
) where the last inequality follows by an easy combinatorial argument. Thus we get

HR/K(d) = min {n, (ht d) } = (htd), a contradiction to the fact that F E K.

The Cohen-Macaulay type

In this section we study the Cohen-Macaulay type of some special classes of short graded

algebras. The first theorem extends and simplifies analogous results given by Brown and

Roberts (see [Br2] and [RD.

THEOREM 4.1. Let A be a short graded algebra with e = (htt) - P for some positive

integer p. Let J be the ideal generated .by the forms of degree t in I. Jf h( J) > P - h + 1

then ßh = (h+:-l) - p

PROOF: Since k is an infinite field, it is clear that given a maximal regular sequence of

forms of degree t in I we may complete this to a maximal regular sequence in R with

linear forms Ll, ... ,Ld such that A/(LI , ... ,Ld)A = tl/I is an artinian reduction of A.

Hence h( J) coincides with the height of the corresponding ideal generated by the forms

of degree t in I. Thus we may assume A = k[XI, ... , Xh]/ I with dim(A) = O. We have

bh = C = (h+:-l) - p, hence we need only to prove that ah = 0, or which is the same,

that if F is a form of degree t - 1 such that FRI ~ I, then F = O. We have dim(It ) = p,

hence if p < h the conclusion is clear. Let p ~ hand F be a form of degree t -1 such that

F R I ~ I. Then F Xl, ... , F Xh are linearly independent vectors in I t , hence we can find

vectors GI, ... ,Gp-h E I t such that (FXl, ... , F Xh, GI, ... ,Gp-h) is a k-vector base of

I t . This means that J ~ (F, GI, ... , Gp - h ), hence h(J) ~ p - h + 1, a contradiction.
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The case of e points in generic position in ph with e = (htt) - P and p ~ h - 1 is the

main result in [R].

On the other hand if we have e = (htt) - h points in uniform position, by lemma 3.2

we get h(J) ~ 2 and we may apply the above theorem. This is the main result in [Br2].

Let now A = R/I be a Cohen-Macaulay graded algebra with codimension h, multiplicity

e and initial degree t. It is clear that e ~ (h+~-I) and we have seen in proposition 2.1 that

if e = (h+~-I) then A is short and the resolution is t-linear. In the following proposition

we study the case e = (h+~-I) + 1.

PROPOSITION 4.2. Let A be a Cohen-Macaulay graded algebra with e

Then we have:

a) A is short with c = 1.

b) ß < (h+t-2).h- t-I
c) The following condition are equivalent:

cl) ßh < (ht~~2)

c2) bi -:- 0

c3) ßI = (h+:-I) - 1

d) The following conditions are equivalent:

dl) ßh = (ht~~2)

d2) bi = 1

d3) ßI = (h+:-I).

PROOF: By passing to an artinian reduction of A we may assume dim(A) = O. Then it is

clear that A is short with c = 1 and bh= dim(At) = 1. Also (0 : AI )t-I t- At- I otherwise

At = 0, hence

This proves b). The equivalence in c) has been proved in [RV] theorem 3.10. As for d),

since ßI = bi + ai = bi + (h+:-I) -1, we get ßI = (h+:-I) if and only if bi = 1. If bi = 1,

then by b) and c) we get ßh = (ht~~2). Finally if ßh = (ht~~2), then by b) and c) we get

bi > 0 and we need only to prove that dim(Rt+I /RII t) ~ 1. Now dim(At) = 1 implies

R t = I t + kM for some monomial M of degree t. Hence we may assuine M = X I N for
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some monomial N of degree t - 1 and we get

This gives the conclusion.

The above Proposition can be applied for example in the following situation.

COROLLARY 4.3. Let A be a Cohen-Macaulay graded algebra with e = (h+~-l) + 1. Let

J be the ideal generated by the forms of degree t in I. Jf h(J) = h then ßl = (h+:-l) -1.

PROOF: As in theorem 4.1 we mayassume dim(A) = O. We have dim(It ) = (h+:-l) - 1..

This implies R 1 I t = R t+1 , a fact proved in [RV] theorem 3.10. Hence b1 = 0 and we may

apply the above proposition to get the conclusion.

We remark that, again by lemma 3.2, we may apply the above corollary to the case of

e = C~l) + 1 points in uniform position in p2.

The last result of this sectiön gives the Cohen-Macaulay type of some special one

dimensional short graded algebras. This extends a result in [TV].

THEOREM 4.4. Let A be a one dimensional short graded algebra with t - 2. Jf I ~

(XiXj)l-~i<j~h+l and XiXj ~ I for every i t:- j, then ßh = bh = c.

PROOF: We need only to prove that ah = dim(Torf(A, k)h+l) = O. The cmcial point is

that one can compute Torf-(A, k) via the Koszul resolution of k = R/(XI, ... ,Xh+1 )

h+l 6h+l h 6o-+ A V Q9 R( - h - 1) --+ AV Q9 R( - h) --+ ... --+ AV Q9 R( -1)~ R --+ k --+ 0

where V is a k-vector space of dimension h+1. Hence, in order to prove Torf(A, k)h+; = 0,

we need only to prove that the Koszul-type complex

h+l h h-l
A V Q9 A(-h - l)h+l --+ AV Q9 A( -h)h+l --+ A V Q9 A(-h + l)h+l

is exact in the middle term. We may write this complex in the following way
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h+l
Now let e E K er(g); this means that Dh(e) E A V Q9 12 and we need to prove that

h-leE 1m(f) = 1m(Dh+l) = K er(Dh). This is equivalent to prove that if a E A V Q9 12

and a E 1m(Dh) = Ker(Dh-l), then a = O. Let el, ... , eh+l be a k-vector base of V and
h-l

Cij = el /\ ... /\ ei /\ ... /\ ej /\ ... /\ eh+l be the corresponding vector base of A V. Then

we can write a = 2::1~i<j~h+l Cij Q9 Fij with Fij E 12 and Dh-l (a) = O. This implies

Fij = AijXiXj, otherwise iffor example Fij = XtXs + ... with t -=f i,j then in Dh-l(a)

we have a term

which cannot cancel out since every quadratic form in 12 does not contain any pure square.

This implies that Fij = 0 and the conclusion fol1ows.

COROLLARY 4.5 .. Let A be a one-dimensional sbort graded algebra witb e = h + 2. If

I ~ (XiXjh~i<j~h+l and XiXj ~ I for every i -=f j, tben A is Gorenstein.

We remark that the conditions in the above theorem are verified for a set of h +1 < e <
(ht2) points in generic position in ph such that h + 1 of these points are not contained in

an hyperplane. On the other hand it is easy to find a short graded algebra with e = h +2

which is not Gorenstein.

Let A = k[X, Y,.Z]/(XZ, YZ,X 2 y - XY 2
); then h = 2, e = 4, I ~ (XY,XZ, YZ) but

A is not Gorenstein since it is not a complete intersection.

Aremark on a conjecture by Sally

Given a local Cohen-Macaulay ring (A, m) of dimension d, codimension hand multiplic

ity e = h + 2, the tangent cone grm(A) = ffim n /m n+1 is not necessarily Cohen-Macaulay.

But Sally conjectured in [S] that in this case we always have depth(grm(A)) ~ d-l. In the

same paper she proves that if d = 1, then HA (n) ~ h + 1, for every n, hence the Hilbert

function of A does not decrease. This implies that PA(z) = l+~~tzll for some s ~ 2. Hence

we are led to consider graded algebra A, not necessarily Cohen-Macaulay, with Poincare

series PA(Z) = (?=~:~ (h+;-l)zi + zs) /(1 - z)d for some integer s ~ t. This could be the

right notion of short graded algebras in the non Cohen-Macaulay case.
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Here we ask the following question. H (A, m) is a Cohen-Maeaulay loeal ring of di

mension d, codimension hand multiplicity e = (h+~-l) + 1 is it true that PA(z) =
(L:~:~ (h+;-l)zi + zs) /(1- z)d for some integer s ?

At the moment we are not able to answer this question, but in the ease t = 2 we ean

show that this is equivalent to Sally's eonjeeture.

PROPOSITION 5.1. Let (A, m) be alocal Cohen-Macaulay ring ofdimension d, codimension

h and multiplicity e = h + 2. The following conditions are equivalent.

a) depth(grm(A)) ~ d - 1.

b) P (z) = 1(jhz;)z6 .A l-z a

PROOF: By the result of Sally the eonclusion holds in the ease d = 1. Let d ~ 2 and

depth(grm(A)) ~ d-1. We may assume that A/m is infinite and take Xl, ••. , Xd a minimal

reduetion of m with Xi superfieial for every i. The initial forms xi, ... ,xd in grm(A)l

are a system of parameters in grm(A), henee we may assume xi, ... ,x d- l form a regular

sequenee in grm(A). This implies that if B = A/(Xl, . .. ,Xd-l), then B is al-dimensional

Cohen-Maeaulay ring with the same eodimension and multiplicity as A. Further we have

PA(z) = PB(z)/(l - z)d-l. By the result of Sally we get PB(z) = l1~.::t{6 for some

integer s ~ 2 and the eonclusion follows. Conversely let us assume PA(Z) = lD.~$f and

let B = A/(Xl, ... ,Xd-l). As before B is al-dimensional Cohen-Maeaulay ring with the

same codimension and multiplicity as A. Sinee d ~ 2 we get el (A) = el (B), where for

.a loeal ring S of dimension d and Poineare series Ps(z) = L::=oaizi/(l- z)d,we define

el(S) = L:j=ljaj (see [EV]). By the result of Sally we have PB(Z) = l+;.::; zt , henee

el(B) = h + t = el(A) = h + s. This implies s = t and PA(z) = PB(z)/(l - z)d-l. Henee

xi, ... ,Xd- l is a regular sequenee in grm(A) and the eonclusion follows.

Some of the results here were diseovered or eonfirmed with the help of the computer

algebra program COCOA written by A.Giovini and G.Niesi.
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