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Abstract

We give a classification of regular holonomic D-modules on skew-symmetric

matrices attached to the linear action of the general linear group GLN .

1 Introduction

The framework of the general theory of D-modules was built up by M. Sato, T.
Kawai and M. Kashiwara. It is a very powerful point of view, bringing ideas
from algebra and algebraic geometry to the analysis of systems of differential
equations. The interest in the theory of D-modules is due to its applications in
various parts of mathematics such as the representation theory, the singularity
theory, the cohomology of singular spaces etc. Perhaps the first systematic use
of D-modules appeared in [13]. Since then there have appeared several articles
by Kashiwara and others. We should also mention the contribution of B. Mal-
grange. Furthermore Z. Mebkhout used the theory of D-modules to study the
topology of singular varieties. Last but not least we mention the work of A.
Beilinson and J. Bernstein regarding the algebraic aspect of the theory. Among
the D-modules we single out a class of objects of utmost importance: the reg-
ular holonomic D-modules. One of the main problem in the D-modules theory
consists in the classification of these objects. Let us point out that several au-
thors have taken an interest in it, notably L. Boutet de Monvel [1], P. Deligne,
R. MacPherson and K. Vilonen [9] etc. One knows by the Riemann-Hilbert
correspondence (see.[5] or [10]) that there is a general equivalence between the
category consisting of regular holonomic DV -modules with characteristic vari-
ety Σ and the category consisting of perverse sheaves on V (where V denotes
a complex manifold) with microsupport Σ. This gives a classification of reg-
ular holonomic D-modules theoretically, but in practice the classification of
perverse sheaves is not always much simpler. A more accessible problem is
as follows: given a complex manifold V on which a Lie group acts linearly
with finitely many orbits (Vj)j∈J ; the problem is to classify regular holonomic
DV -modules whose characteristic variety is contained in the union of conormal
bundles (Σ :=

⋃
j∈J

T ∗
Vj
V ) to these orbits. Closely equivalent: those that admit
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a good filtration stable by infinitesimal generators of the group. These modules
form a full category denoted Modrh

Σ (D). In this paper we consider the action
of GLN (C) on skew-symmetric tensors. This last induces a linear action on
V := Λ2

(
CN
)
, which we will think of as the space of skew-symmetric matrices.

There are
([

N
2

]
+ 1
)

orbits V2k

(
0 ≤ k ≤

[
N
2

])
(
[

N
2

]
is the integer part of N

2 ):
the set of rank 2k matrices in V . This study is done here for N even which is
the most interesting case. Note that here there is a natural algebra associated
to this situation: the (graded) algebra A of (polynomial coefficients) differen-
tial operators acting on polynomials of the pfaffian, which is a quotient of the
algebra A of SLN (C)-invariant differential operators on V (see. section 3).
The main result of this paper is the theorem 18 saying that there is an equiv-
alence of categories between the category Modrh

Σ (D) consisting of regular holo-
nomic D-modules as above and the category Modgr(A) consisting of graded
A-modules of finite type for the Euler vector field on V . The algebra A is
described simply by generators and relations (see Proposition 7) thanks to a
beautiful skew-Capelli identity construted by R. Howe and T. Umeda (see. [3,
p. 592, Corollary (11.3.19)]). This also leads to the description of the latter cat-
egory as an “elementary” category consisting of finite dimensional vector spaces
and linear maps between them satisfying certain relations (Quiver category) on
which one can see what are the simple or indecomposable objects (see. section
6). The following example is provided to illustrate the theoretical results:

Example 1 Denote pf (X) the pfaffian of X ∈ V , pf (D) its dual and θ the
Euler vector field on V .The DV -module OV is an object in Modrh

Σ (D). It is
generated by an element e0 = 1V such that θe0 = 0 and pf (D) e0 = 0. This
yields a graded A-module of finite type in Modgr(A) with a basis (eq) where
q = mk (k ∈ N) such that pf (D) e0 = 0 and satisfying the folowing system:

S0 =





θeq = qeq (q = mk, k ∈ N)
pf (X) eq = eq+m,

pf (D) eq =
m−1∏
t=0

(
q
m + 2t

)
eq−m

. (1)

Throught the paper we assume that the reader has some familiarity with the
language of D-modules. He may consult the very nice book [6] that provides a
good account of an introduction to the general theory of D-modules. Finally we
should recall that in precedent papers the author has obtained similar results
for D-modules on Cnassociated to the action of the orthogonal group (see. [11]),
and on Mn (C) the space of complex square matrices associated to the action of
GLn (C) ×GLn (C) (see. [12]).

2 Definitions and preliminary results

We have the following proposition.

Proposition 2 The orbits V2k

(
0 ≤ k ≤

[
N
2

])
are simply connected.
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Proof. Recall that the fundamental group of a homogeneous space G/H ,
where G is a connected group, is the component group of H . If the skew -
symmetric matrices are thought as the skew bilinear forms, then a typical point
is determined by
a) the radical of the form, which is a subspace,
and
b) a non degenerate skew-symmetric form on the quotient. The stabilizer of this
consists of all transformations which preserves the radical, and which act as an
isometry of the quotient. This group is the product of a connected unipotent
group with the GL of the radical and the symplectic group. Here the coefficient
field is C, then this group is connected, so the orbits should be simply connected.

Denote θ the Euler vector field on Λ2CN . Let M be a D-module.

Definition 3 A section s in M is homogeneous if dimC C [θ] s < ∞. s is ho-
mogeneous of degree λ ∈ C, if there exists j ∈ N such that (θ − λ)js = 0.

We recall the following useful theorem (see [11, Theorem 1.3.]):

Theorem 4 Let M be a coherent DΛ2CN -module with a good filtration (Mk)k∈Z

stable by θ. Then
i) M is generated by finitely many homogeneous global sections,

ii) For any k ∈ N, λ ∈ C, the vector space Γ
(
Λ2CN ,Mk

)⋂
[
⋃

p∈N

ker (θ − λ)
p

]

of homogeneous global sections of Mk of degree λ is finite dimensional.

Denote by G is the quotient of GLN (C) by the kernel of its action on skew

symmetric matrices. Let G̃ := SLN (C) be its universal covering.

Definition 5 The action of the group G (preserving the good filtration) on a
DΛ2CN -module M is given by an isomorphism u : p+

1 (M)
∼
−→ p+

2 (M) where
p1 : G× Λ2CN −→ Λ2CN is the projection on Λ2CN , and p2 : G × Λ2CN −→
Λ2CN defines the action of G on Λ2CN .

Remark 6 From [11, Proposition 1.6.] we see that the infinitesimal action of

G on M lifts to an action of its universal covering G̃ := SLn (C) on M.

3 Invariant differential operators for skew-sym

metric matrices

In this section we describe SLN (C)-invariant (polynomial coefficients) differ-
ential operators. Let us consider the action of GLN (C) on skew-symmetric
tensors. This action (λ (g) : X → gXgt) (g ∈ GLN (C)) naturally takes place
in Λ2CN (which we will think of as the space of skew-symmetric matrices) and
in particular on the algebra P

(
Λ2CN

)
of polynomials on Λ2CN . Thus we have
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a natural homomorphism (also denoted λ) from the universal enveloping alge-
bra U (glN ) to the algebra PD

(
Λ2CN

)
of (polynomial coefficients) differential

operators. This homomorphism λ maps the center Z (U (glN )) to the algebra

PD
(
Λ2CN

)GLN
of GLN -invariant differential operators with polynomial coef-

ficients, and this restriction to the center is known to be surjective (see. [3]).
Thus it is natural to consider the concrete correspondence of GLN -invariant dif-
ferential operators and the central elements of the universal enveloping algebra
U (glN ) in more details (the concrete Capelli problem see. [3, (10.4)]). Here
the central elements of the universal enveloping algebra U (glN ) are the skew
Capelli elements which were introduced in [3, p. 592, Remark (a)] to construct
a skew Capelli identity for multiplicity free action of GLN on skew symmetric
matrices (see [3, p. 592, Corollary (11.3.19)]). Note that the explicit description
of these skew Capelli elements was given by [8, p. 457, Theorem 3.2] in terms
of the traces of powers of a matrix defined by the standard infinitesimal gener-
ators of GLN . Now we know from [3, p. 589, (11.3.4)] (see. also [4, p. 741])

that the canonical generators of the algebra PD
(
Λ2CN

)GLN
of GLN -invariant

differential operators on Λ2CN are the following skew Capelli operators defined
with the Pfaffian:

ΓΛ
k :=

∑

|I|=2k

pf (XI) pf (DI) (2)

where ΓΛ
k has degree k as differential operator (1 ≤ k ≤

[
N
2

]
). Here, XI

and DI indicate the submatrices XI = (xij)i,j∈I and DI = (∂ij)i,j∈I for I ⊆

{1, 2, · · · , N}, respectively. These GLN -invariant operators are commutative,
and isomorphic to the center of the universal enveloping algebra of glN (C).
This is discussed in [3, p.581 (10.3), (10.4), p.589-593, and p.612 Table(15.1) ].

3.1 SLN-Invariant differential operators

Now denote A := PD
(
Λ2CN

)SLN
the algebra of SLN -invariant differential op-

erators with polynomial coefficients on Λ2CN . This is sligtly larger than that of
GLN -invariant operators described from the ΓΛ

k :=
∑

|I|=2k

pf (XI) pf (DI). Then

we deduce generators for A by adding operators pf (X) and pf (D). Note that
here ΓΛ

1 =: θ is the Euler vector field on Λ2CN . Denote J ⊂ A the ideal of
SLN -invariant operators annihilating SLN -invariant polynomials C [pf (X)].

Proposition 7 The algebra A of SLN -invariant differential operators on Λ2CN

is generated over C by pf (X), θ := ΓΛ
1 , ΓΛ

2 , · · · , ΓΛ
N
2 −1

, pf (D) subject to the

following relations modulo J

(a) [θ, pf (X)] = N
2 pf (X) , [θ, pf (D)] = −N

2 pf (D)

(b)
[
ΓΛ

k ,Γ
Λ
l

]
= 0 for k, l = 1, · · · , N

2 − 1

(c) pf (X) pf (D) =

N
2 −1∏
t=0

(
θ

(N
2 )

+ 2t

)
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(d) pf (D) pf (X) =

N
2 −1∏
t=0

(
θ

(N
2 )

+ 2t+ 1

)

(e) [pf (D) , pf (X)] =

N
2 −1∏
t=0

(
θ

(N
2 )

+ 2t+ 1

)
−

N
2 −1∏
t=0

(
θ

(N
2 )

+ 2t

)

(f) ΓΛ
k = αk

k−1∏
t=0

(
θ

( N
2 )

+ 2t

)

(g)
[
ΓΛ

k , pf (X)
]

= αkpf (X)

{
k−1∏
t=0

(
θ

(N
2 )

+ 2t+ 1

)
−

k−1∏
t=0

(
θ

(N
2 )

+ 2t

)}

(h)
[
ΓΛ

k , pf (D)
]

= αk

{
k−1∏
t=0

(
θ

(N
2 )

+ 2t− 1

)
−

k−1∏
t=0

(
θ

(N
2 )

+ 2t

)}
pf (D)

where αk :=
Γ( N

2 +1)
Γ(N

2 +1−k)Γ(k+1)
.

Before going to proof of Proposition 7 we recall the explicit eigenvalues of the
Capelli operators ΓΛ

k . From [8, p. 463, Formula (3.10)] we deduce (1 ≤ k ≤ N
2 )

ΓΛ
k pf (X)

s
=

Γ
(

N
2 + 1

)

Γ
(

N
2 + 1 − k

)
Γ (k + 1)

k−1∏

t=0

(s+ 2t) pf (X)
s

(3)

where Γ (z) is the gamma function. As an application (k = N
2 , ΓΛ

N
2

= pf (X) pf (D))

of this formula we note the following evaluation of the (simplest) Cayley type
formula (b-function) attached to Λ2CN (see. [8, p. 463, Corollary 3.13]):

pf (D) pf (X)
s

=

N
2 −1∏

t=0

(s+ 2t) pf (X)
s−1

. (4)

Proof. of Proposition 7. Consider the following non commutative algebra

B := C
〈
pf (X) , θ,ΓΛ

2 , · · · ,Γ
Λ
N
2 −1

, pf (D)
〉
⊂ A. (5)

We show that A = B. Let V ∗ be the dual of V := Λ2CN and (X, ξ) be
matrices in V × V ∗. We first show that grA is free abelian, generated by
pf (X), γ1,· · · , γ N

2 −1, pf (ξ) the symbols of pf (X), θ, ΓΛ
2 ,· · · , ΓΛ

N
2 −1

, pf (D)

respectively. Put µj = dz2j−1dz2j for j = 1, · · · , N
2 and consider matrices

Xt := tµ1 +

N
2∑

j=2

µj ∈ V and ξ[t] := ξ
t1,···t N

2 = t1
t µ1 +

N
2∑

j=2

tjµj ∈ V ?, t 6= 0.

The invariant polynomials γk

(
Xt, ξ[t]

)
are exactly the elementary symmetric

polynomials sk(tj) :=
∑

i1<···<ik

ti1 · · · tik
, for k, j = 1, · · · , N

2 (This can be seen

from [8, Equations (2.2), (2.4) and (2.6), p.452, 453.]). Let f = f (X, ξ) be a
polynomial in (X, ξ), there exists a polynomial q such that

f
(
Xt, ξ[t]

)
= q

(
t, t1, · · · , tN

2

)
(6)
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is a polynomial in the variables t, t1, · · · , tN
2
. Note that if the variables tj are

permuted one remains in the same orbit (of Sp ⊂ SL). So if f is an invariant

polynomial, then f
(
Xt, ξ[t]

)
is a polynomial of t and of the sk (tj) elementary

symmetric polynomials for k, j = 1, · · · , N
2 :

f
(
Xt, ξ

[t]
)

= q̃
(
t, s1 (tj) , · · · , sN

2
(tj)
)

. (7)

Then the difference

f (X, ξ) − q̃
(
pf (X) , γ1, · · · , γ N

2 −1, pf (ξ)
)

(8)

is a polynomial in (X, ξ) vanishing on the set (
(

N
2 + 1

)
-affine space) of

(
Xt, ξ[t]

)
.

Denote R :=
⊔
t
G̃ ·
(
Xt, ξ[t]

)
the union of orbits of points

(
Xt, ξ[t]

)
in one of

affine spaces of V × V ∗. Assume f is invariant, then f − q̃ is invariant and
vanishes on R. To see that f− q̃ vanishes everywhere (i.e. grA = grB) it remains
to show that R is open in V × V ∗. For this purpose consider X : V → V ∗,
ξ : V ∗ → V skew symmetric: generically X (resp. ξ) is invertible then there

exits g ∈ SL such that tgXg−1 = tµ1 +

N
2∑

j=2

µj (here tg denote the transpose

of g) (see.[2, Abstract p.119 and Theorem 4 p. 125]). Moreover the matrice
Xξ is diagonalizable with distinct eigenvalues, so there exists h a symplectic

transformation (preserving X) such that gξ(th)−1 = t1
t µ1 +

N
2∑

j=2

tjµj . This

means exactly that the orbit of
(
Xt, ξ[t]

)
contains a Zariski open dense set. So

R is open in V × V ∗, and f − q̃ vanishes everywhere.

Thus grA = grB. (9)

Now, if P is an invariant operator of degree m ≥ 0 (P ∈ A), its symbol σ (P ) is

also invariant and from (9) we get σ (P ) = σ (P )
(
pf (X) , γ1, · · · , γ N

2 −1, pf (ξ)
)
.

Then P can be written as the sum of an operator Q ∈ B (a polynomial in the
ΓΛ

k ’s, pf (X), pf (D)) and R ∈ A an invariant operator of degree at most m−1:

P = Q
(
pf (X) , θ,ΓΛ

2 , · · · ,Γ
Λ
N
2 −1

, pf (D)
)

+R, with deg (R) ≤ m− 1. (10)

By recurrence on the degree of the operator we see that P is a polynomial in
the ΓΛ

k ’s, pf (X), pf (D) that is P ∈ B. Therefore

A = B. (11)

The remaining part of the proof is devoted to desmontrating the relations
(a), (b), (c), (d), (e), (f), (g). The algebra A acts on C [pf(X)] the ring of
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G̃-invariant polynomials. Now (a) is obvious since the pfaffian is homogeneous
of degree N

2 . (b) holds since the GLN -invariant operators commute (see. [3, P.
581, (10.3) (The abstract Capelli problem) and p. 612, Table (15.1) : (line 3,
column 3).]). To verify (c), (d) and (e), (f), (g) we use the relations (4), (3).

.
Now put A := A/J the quotient algebra of A by the ideal J .

Corollary 8 A is generated by pf (X), θ, pf (D) satisfying the relations

[θ, pf (X)] = N
2 pf (X) , [θ, pf (D)] = −N

2 pf (D) ,

pf (X) pf (D) =

N
2 −1∏

t=0

(
θ(
N
2

) + 2t

)
.

Proof. Let P be in A, we decompose it into homogeneous components (P =∑
j∈Z

Pj) Pj of degree jN
2 (ie. [θ, Pj ] = jN

2 Pj) so that if j = 0 then P0 = ϕ (θ) is

a polynomial in θ. Indeed, P0 acts on C [pf(X)] then P0 ∈ C
[
pf(X), ∂

∂(pf(X))

]

with pf(X) ∂
∂(P (X)) = 1

N
2

θ. If j > 0 then pf(D)jPj = ψ (θ) is a polynomial

in θ because pf(D)jPj is homogeneous of degree 0. Likewise if j < 0 then
pf(X)−jPj = φ (θ) is a polynomial in θ. Thus for any Pj (SLN -invariant)
homogeneous of degree j N

2 , its class modulo J is of the form

Pj modJ =

{
pf(X)jφj (θ) if j ≥ 0
pf(D)−jψj (θ) if j ≤ 0

(12)

where φj (θ), ψj (θ) are (polynomials) homogeneous of degree 0.

Now put K := A

(
pf (X) pf (D) −

N
2 −1∏
t=0

(
θ

( N
2 )

+ 2t

))
A ⊂ J we show that

J = K. Let P be in J . Since P annihilates pf(X)m, m ≥ 0, then its
homogeneous components Pj = pf(X)jQ (θ) modK if j ≥ 0 (resp.pf(D)−jQ (θ)
modK if j ≤ 0) also annihilate pf(X)m . This means that the polynomial in m
vanishes Q

(
N
2 m
)

= 0 for m > j. Then we may deduced that the polynomial

in λ ∈ C, Q
(

N
2 λ
)

= 0. Therefore Q = 0 modK and J = K.

4 Invariant sections of D-modules on skew sym-

metric matrices

This section is devoted to the main general argument of the paper. The idea
is to show that the DΛ2CN -modules studied here are generated by their invari-
ant global sections under the action of SLN (C). The general structure of the
demonstration uses classical methods and the fact that such DΛ2CN -modules are
essentially inverse images of modules over C by the pfaffian map.
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Theorem 9 A module M in Modrh
Σ (D) is generated by its SLN -invariant global

sections.

Before going to the proof of the theorem, we need the following results.

4.1 D-modules with support in V N−2

From now on N = 2m. Denote V 2k :=
{
X ∈ Λ2C2m / rank (X) ≤ 2k

}
the

set of skew-symmetric matrices of rank 2k or less for 0 ≤ k ≤ m. Then
V 2m−2 =

{
X ∈ Λ2C2m / pf (X) = 0

}
is the hypersurface defined by the pfaffian

map pf : Λ2C2m −→ C, X −→ t. Here we study D-modules with support on
V 2k. These modules will be used in the sequel to prove the central theorem 9.

4.1.1 Meromorphic sections

Let N be a DC-module and pf+ (N ) its inverse image by the pfaffian map. Note
that the transfer module D

Λ2C2m
pf
−→C

is flat over pf−1 (DC) thanks to the flatness

of the pfaffian map. Thus the inverse image pf+ is an exact functor. If N is a
regular holonomic DC-module with singularity at t = 0 (t is a coordinate on C)
then its inverse image pf+ (N ) decomposes at least as N . If the operator of mul-
tiplication by t is invertible on the DC-module N then the multiplication by the
pfaffian pf is invertible on pf+ (N ). In particular in this case, any meromorphic
section defined on Λ2C2m\V 2m−2 extends to the whole Λ2C2m. Precisely, if M is
a DΛ2C2m-module, we set M := Γ[Λ2C2m|V 2m−2] (M) = lim−→HomOΛ2C2m

(
Ik,M

)

(where I is the defining ideal of V 2m−2) the algebraic module of meromorphic
sections of M with pole in the pfaffian hypersurface V 2m−2(see. [6]). We have
a canonical morphism M −→ M.

Proposition 10 Let N be a holonomic DC-module with regular singularity at
t = 0. Assume that the multiplication by t defines an automorphism of N then

(i) the multiplication by the pfaffian pf defines an automorphism of pf+ (N ),

(ii) we have the isomorphism

pf+ (N )
∼
−→ pf+ (N ). (13)

Proof. (i) follows from [7, Lemma 1.2, p.166] (see. [7, Definition 1.1, (1.3)
p.164-165]) and [7, Remark 1.1., (1.4) p.165]. Next, recall [6] that we have
an exact sequence 0 → Γ[V 2m−2] (M) → M → M where Γ[V 2m−2] (M) =

lim−→HomOΛ2C2m
(OΛ2C2m/Im,M) is the subsheaf of M of sections annihilated

by some power of I. Since pf gives a bijection on pf+ (N ), [7, Remark 1.1.,
(1.4) and (1.3) p.165] asserts that Hk

[V 2m−2]
(pf+ (N )) = 0 ∀k. Then from the

previous exact sequence, we get pf+ (N ) ' pf+ (N ).

8



4.1.2 Study of pf+
(
O
(

1
t

))

Here we describe the subquotient modules of F := OΛ2C2m

(
1

pf(X)

)
. Actually

F is generated by its SLN -invariant homogeneous sections es = pf (X)
s

where
s ≤ 0. From formulas (4) and (3 ) we get the relations (1 ≤ k ≤ N

2 = m)

pf (X) .es = es+1, θes =
N

2
ses (14)

pf (D) es =

N
2 −1∏

t=0

(s+ 2t) es−1 (15)

ΓΛ
k es =

Γ
(

N
2 + 1

)

Γ
(

N
2 + 1 − k

)
Γ (k + 1)

k−1∏

t=0

(s+ 2t) es (16)

where Γ (z) is the gamma function.

4.1.3 Relations

Note that the DΛ2CN -module F has N
2 +1 submodules denoted by Fs, generated

respectively by e−s = pf (X)
−s

(s = 0, 1, · · · , N
2 ) in OΛ2CN

(
1

pf

)
:

F0 := OΛ2CN ⊂ F1 := DΛ2CN pf (X)−1 ⊂ · · · ⊂ FN
2

:= DΛ2CN pf (X)−
N
2 . (17)

Consider the following quotient modules of OΛ2CN

(
1

pf(X)

)
by the FN

2 −s−1

which will be used in the sequel:

Rs := O
Λ2CN

(
1

pf

)
/FN

2 −s−1 = O
Λ2CN

(
1

pf

)
/Dpf−N

2 +s+1. (18)

The Rs are generated by e−N
2 +s mod e−N

2 +s+1, e−N
2 +s−1 mod e−N

2 +s+1, · · · ,

e−N
2

mod e−N
2 +s+1 homogeneous sections of degree N

2

(
−N

2 + s
)
, N

2

(
−N

2 + s− 1
)
,

· · · , −N
4

2
respectively. Put ẽ−N

2 +s−k := e−N
2 +s−k mod e−N

2 +s+1 for k = 0,· · · ,s:

Rs :=





generators ẽ−N
2 +s, ẽ−N

2 +s−1, · · · , ẽ−N
2
,

pf (X) ẽ−N
2 +s = 0

θẽ−N
2 +s = N

2

(
−N

2 + s
)
ẽ−N

2 +s

pf (XI) ẽ−N
2 +s = 0, |I | = s+ 1 for 0 ≤ s ≤ N

2 − 1

pf (DI) ẽ−N
2 +s = 0, |I | = s for 0 ≤ s ≤ N

2 .

(19)

thanks to the relations (14), (15), (16). Thus Char (Rs) := T ∗
V 2s

X.

Lemma 11 The Rs := O
(

1
pf

)
/FN

2 −s−1 are modules with support on V 2s.
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4.1.4 Extension

In this subsection we show that any section s of the DX -module Rs in the
complementary of V 2s−2 extends to the whole Λ2CN .

Proposition 12 A section s ∈ Γ
(
Λ2C2m\V 2s−2, Rs

)
of the DΛ2CN -module Rs

in the complementary of V 2s−2 extends to the whole Λ2C2m (s = 1, · · · ,m− 1).

Proof. First, note that the hypersurface V 2m−2 is smooth out of V 2m−4 and
it is a normal variety along V2m−4 (smooth). Likewise the variety V 2s is smooth
out of V 2s−2 and normal along V2s−2 for s = 1, · · · ,m− 1. Next, the DΛ2C2m-
module Rs is the union of modules OΛ2CN ẽ−N

2 +s−j (0 ≤ j ≤ s) such that the

associated graded modules gr(Rs) is the sum of modules OT∗
V2s

Λ2CN ẽ−N
2 +s−j

(0 ≤ j ≤ s). In this case the property of extension here is true for functions
because V 2s is normal along V 2s−2 (s = 1, · · · ,m− 1).

4.2 Inverse image by the pfaffian map

Now let i : C −→ Λ2C2m, t 7→ ωt := tdz1dz2 + dz3dz4 + · · · + dz2m−1dz2m

(with
ωm

t

n! = tdz1dz2 · · · dz2m and pf (ωt) = t) be a section of the pfaffian map
pf : Λ2C2m −→ C. Denote by D = ωC = Cdz1dz2 + dz3dz4 + · · ·+ dz2m−1dz2m

its image. We need the following lemma:

Lemma 13 The line D is non characteristic for M in Modrh
Σ (D) i.e. T ∗

DΛ2CN⋂
char(M) ⊂ T ∗

Λ2(CN )Λ
2
(
CN
)
. In other words char(M)

⋂
T ∗Λ2

(
CN
)
|D

−→

T ∗D is a proper morphism.

Proof. Note that V2k ∩ D =





{ω0} if k = m− 1
∅ if k = 0, · · ·m− 2
D\ {ω0} if k = m

. We show that

T ∗
DΛ2CN

⋂
T ∗

V2m−2
Λ2CN is contained in the zero section T ∗

Λ2CN Λ2CN . It suf-

fices to check at the point ω0 (t = 0) which is the only point of the line D above
which the characteristic variety char(M) has a non zero covector ξ0 6= 0. Note
that this covector ξ0 is parallel to dpf (the conormal bundle to pfaffian variety)

and on the line D we have dpf (X) = dt 6= 0, that is, ξ0 /∈ T ∗
DΛ2CN .

.
Let M be a regular holonomic DΛ2(CN )-module along char(M). Since the line D
is non characteristic for M then M is canonically isomorphic to the inverse im-
age pf+i+ (M) in the neighborhood of D. The sheaf HomDX

(M, pf+i+ (M))
is constructible (see. [6]) and it is also locally constant on the fibers of the
pfaffian map. Let u be its canonical section defined in the neighborhood of
D (corresponding with the isomorphism M

∼
−→ pf+i+ (M) which induces the

identity on D). Now, thanks to the simply connectedness of the fibers of the
pfaffian map (see. Proposition 2) we have the following proposition:

Proposition 14 The canonical isomorphism u : M
∼
−→ pf+i+ (M) defined in

the neighborhood of D such that i+.u = Id|D, extends to Λ2C2m\V 2m−4.

10



Proof. The local canonical section u : M|D
∼
−→ pf+i+ (M)|D is defined

out of V2m−4 ∪ · · · ∪ V2 ∪ V0(the singular part of the pfaffian variety V 2m−2 :=
pf−1 {0}). Then we focus our attention on the orbits V2m = Λ2C2m\pf−1 {0}
and V2m−2 = pf−1 {0}\ (V2m−4 ∪ · · · ∪ V2 ∪ V0). These orbits are simply con-
nected (see. proposition 2):
(i) π1 (V2m) = {1}
(ii) π1 (X2m−2) = {1}.

Note that the fundamental group π1 (V2m) (resp. π1 (V2m−2)) acts on the
constructible sheaf HomDX

(M, pf+i+M). This sheaf is trivial on V2m =
⋃

t6=0

pf−1 (t) and on V2m−2 = pf−1 (0) \ (V2m−4 ∪ · · · ∪ V2 ∪ V0). Then the local
section u : M|D

∼
−→ pf+i+ (M)|Dextends globally to the union V2m ∪ V2m−2 =

Λ2C2m\ (V2m−4 ∪ · · · ∪ V2 ∪ V0).
.

Denote N := i+M the restriction of the DΛ2C2m-module M to the transver-
sal line D. From Proposition 14, we deduce that the DΛ2C2m-module M is
isomorphic to pf+N on Λ2C2m\V 2m−2:

M|Λ2C2m\V 2m−2
' pf+N|Λ2C2m\V 2m−2

(20)

Recall that M (see section 4.1.1) stands for the DΛ2C2m -module of meromor-
phic sections of M defined on Λ2

(
C2m

)
\V 2m−2. According to an argument

of Kashiwara, since M and pf+N are regular holonomic and isomorphic out
of Λ2

(
C2m

)
\V 2m−2, then their corresponding meromorphic modules are also

isomorphic that is
M ' pf+N . (21)

Now let us consider the following morphism (see section 4.1.1)

M −→ M
(
' pf+N

)
. (22)

By using the basic fact that pf+N ' pf+N (see relation (13) of Proposition
10) and the morphism (22), we deduce that there exists a morphism

v : M −→ pf+N (23)

which is an isomorphism out of the pfaffian hypersurface V 2m−2.

Lemma 15 The image v (M) ⊂ pf+N is a DΛ2C2m -module generated by its
SLN -invariant homogeneous global sections.

Now, we are in position to prove the theorem 9.

4.3 Proof of Theorem 9

Recall F := OΛ2C2m

(
1

pf

)
and Rs := O

(
1

pf

)
/Dpf−N

2 +s+1 (see. section 4.1.3).

The D-module F is generated by its SLN -invariant homogeneous sections es =

11



pfs where s ≤ 0 subject to the relations (14),(15 (16). In particular, F has(
N
2 + 1

)
subquotient modules denoted byRs, generated by ẽ−N

2 +s, ẽ−N
2 +s−1,· · · ,

ẽ−N
2

(0 ≤ s ≤ N
2 = m), and supported by V 2s (see. Lemma 11) .

Let us denote by M̃ ⊂ M the submodule generated over DΛ2C2m by SLN -
invariant homogeneous global sections (that is the module M̃ := DΛ2C2m{u ∈

Γ
(
Λ2C2m,M

)SLN
, dimC C [θ]u < ∞}). We will see successively that the quo-

tient module M�M̃ is supported by V 2s (0 ≤ s ≤ m−1), and the monodromy
is trivial since V 2s\V 2s−2 is simply connected.

To begin with, M/M̃ is supported by V 2m−2: indeed M is isomorphic in
Λ2C2m\V 2m−2 to a DΛ2C2m-module pf+ (N ) (see. formula (20) and Proposi-
tion 14). We may assume that the operator of multiplication by t is invertible
on N such that there exists a morphism v : M −→ pf+ (N ) which is an isomor-
phism out of V 2m−2 (see. (23)). The image v (M) is a submodule of pf+ (N ) so
it is generated by its SLN -invariant homogeneous global sections (see. Lemma
15). If σ is a SLN -invariant homogeneous global section of a quotient of M then

σ lifts to an invariant homogeneous global section σ̃ of M (σ̃ ∈ Γ (X,M)SLN ,

dimC C [θ] σ̃ <∞). This means that M/M̃ is supported by V 2m−2. Next, if M
is supported by V 2m−2, it is isomorphic out of V 2m−4 to a direct sum of copies
of Rm−1, then there is a morphism M −→ Rq

m−1 whose sections extend (see.

Proposition 12) such that M/M̃ is supported by V 2m−2 because the submod-
ules of Rm−1 are also generated by their invariant homogeneous sections. In
the same way by induction on k, if M is with support on V 2s (0 ≤ S ≤ m− 2)
then there is a morphism M −→ Rq

s which is an isomorphism out of V 2s−2,

such that M/M̃ is with support on V 2s−2 because the submodules of Rs are
also generated by their invariant homogeneous sections. Finally, if M is sup-
ported by V0 (the Dirac module with support at the origin) then the result is
obvious.This ends the proof of theorem 9.

5 Equivalence of categories

Recall A is the algebra of SLN -invariant differential operators, J ⊂ A the ideal
annihilator of C [pf (X)] and A the quotient of A by J . Then A is generated
by the 3 operators pf (X), θ, pf (D) (see. Corollary 8) such that [θ, pf (X)] =

N
2 pf (X), [θ, pf (D)] = −N

2 pf (D) and pf (X) pf (D) =

N
2 −1∏
t=0

(
θ

(N
2 )

+ 2t

)
.

We denote by Modgr(A) the category of graded A-modules T of finite type
such that dimC C [θ]u < ∞ for ∀u ∈ T . In other words, T = ⊕

λ∈C

Tλ is a direct

sum of C-vector spaces (Tλ =
⋃

p∈N

ker (θ − λ)
p

is finite dimensional) equipped

with 3 endomorphisms pf (X), θ, pf (D) of degree N
2 , 0, −N

2 , respectively and
satisfying the above relations with (θ − λ) being a nilpotent operator on each
Tλ.
Let us recall that Modrh

Σ (D) stands for the category of regular holonomicDΛ2C2m -

12



modules whose characteristic variety is contained in Σ.
If M is an object in the category Modrh

Σ (D), denote by Ψ (M) the submodule
of Γ

(
Λ2C2m,M

)
consisting of SLN -invariant homogeneous global sections u of

M such that dimC C [θ]u < ∞. Recall that (Theorem 4) Ψ (M)λ := [Ψ (M)]

⋂
[
⋃

p∈N

ker(θ − λ)p

]
is the C-vector space of homogeneous global sections of

degree λ of Ψ (M) and Ψ (M) =
⊕
λ∈C

Ψ (M)λ. Then Ψ (M) is an object in

the category Modgr(A). Indeed, let (σ1, · · · , σp) be a finite family of homo-
geneous invariant global sections generating the DΛ2C2m-module M (see The-
orem 9), we can see that the family (σ1, · · · , σp) generates also Ψ (M) as

an A-module: In fact, if σ =
p∑

j=1

qj (X,D)σj is an invariant section of M

(qj ∈ Γ
(
Λ2C2m,DΛ2C2m

)
), denote by q̃j the average of qj over SUn (C) (compact

maximal subgroup of SLN), then q̃j ∈ A. Let fj = fj (pf (X) , θ, pf (D)) be the

class of q̃j modulo J that is fj ∈ A, then we also have σ =
p∑

j=1

q̃jσj =
p∑

j=1

fjσj .

Conversely, if T is an object in the category Modgr(A), one associates to it
the DΛ2C2m-module

Φ (T ) = M0

⊗

A

T (24)

where M0 := D/J is a (D,A)-module. Then Φ (T ) is an object in the category
Modrh

Σ (D).
Thus, we have defined two functors

Ψ : Modrh
Σ (D) −→ Modgr(A), Φ : Modgr(A) −→ Modrh

Σ (D). (25)

We need the following lemmas:

Lemma 16 The canonical morphism

T −→ Ψ(Φ (T )), t 7−→ 1 ⊗ t (26)

is an isomorphism, and defines an isomorphism of functors IdModgr(A) −→ Ψ◦Φ.

Proof. As above M0 := D/J . Denote by ε (the class of 1D modulo J )

the canonical generator of M0. Let h ∈ D, denote by h̃ ∈ A its average on
SUN (C) and by ϕ the class modulo J that is ϕ ∈ A. Since ε is SLN -invariant,

we get h̃ε = h̃ε = εϕ. Moreover, we have h̃ϕ = 0 if and only if h̃ ∈ J , in other
words ϕ = 0. Therefore the average operator (over SUN (C)) D −→ A, h 7−→ h̃
induces a surjective morphism of A-modules v : M0 −→ A. More generally, for
any A-module T in the category Modgr(A) the morphism v⊗ 1T is a surjective
map

vT : M0

⊗

A

T −→ A
⊗

A

T = T (27)
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which is the left inverse of the morphism

uT : T −→ M0

⊗

A

T , t 7−→ ε⊗ t (28)

that is (v ⊗ 1T ) ◦ (ε⊗ 1T ) = v (ε) = 1T . This means that the morphism uT

is injective. Next, the image of uT is exactly the set of invariant sections of

M0

⊗
A T = Φ (T ) that is Ψ(Φ(T )): indeed if σ =

p∑
i=1

hi ⊗ ti is an invariant

section in M0

⊗
A T , we may replace each hi by its average h̃i ∈ A, then we get

σ =

p∑

i=1

h̃i ⊗ ti = ε⊗

p∑

i=1

h̃iti ∈ ε⊗ T (29)

that is
p∑

i=1

h̃iti ∈ T . Therefore the morphism uT is an isomorphism from T to

Ψ (Φ (T )) and defines an isomorphism of functors.

Lemma 17 The canonical morphism

w : Φ (Ψ (M)) −→ M (30)

is an isomorphism and defines an isomorphism of functors Φ◦Ψ −→ IdModrh
Σ (D).

Proof. As in the Theorem 9 the DΛ2C2m-module M is generated by a finite
family of invariant sections (σi)i=1,··· ,p ∈ Ψ (M) so that the morphism w is
surjective. Anyway w is injective. Indeed let Q be the kernel of the morphism
w : Φ (Ψ (M)) −→ M. The DΛ2C2m-module Q is also generated by its invariant
sections that is by Ψ (Q). Then we get

Ψ (Q) ⊂ Ψ [Φ (Ψ (M))] = Ψ (M) (31)

where we used Ψ◦Φ = IdModgr(A) (see the previous Lemma 16). Since the mor-

phism Ψ (M) −→ M is injective (Ψ (M) ⊂ Γ
(
Λ2C2m, M

)
), we obtainΨ (Q) =

0. Therefore Q = 0 (because Ψ (Q) generates Q).
.

This section ends by the following theorem established by means of the previous
lemmas:

Theorem 18 The functors Φ and Ψ induce equivalence of categories

Modrh
Σ (D)

∼
−→ Modgr(A). (32)

6 Classification of finite type graded A-modules

This section consists in the classification of objects in the category Modgr (A).
A graded A-module T in Modgr(A) defines an infinite diagram consisting of

14



finite dimensional vector spaces Tλ (with (θ − λ) being a nilpotent operator on
each Tλ, λ ∈ C) and linear maps between them deduced from pf (X), θ, pf (D):

· · · � Tλ

pf(X)

�

pf(D)

Tλ+ N
2

� · · · (33)

satisfying the following (θ − λ)Tλ ⊂ Tλ, pf (X) pf (D) =

N
2 −1∏
t=0

(
θ

( N
2 )

+ 2t

)
,

pf (D) pf (X) =

N
2 −1∏
t=0

(
θ

(N
2 )

+ 2t+ 1

)
.

6.1 Examples

We describe graded A-modules of finite type and the corresponding diagrams

associated to DV -modules OV , B{0}|V , OV

(
1

pf(X)

)
/OV , which are regular holo-

nomic with characteristic variety contained in Σ.

Example 19 The DV -module OV is generated by an element e0 = 1V such that
θe0 = 0 and pf (D) e0 = 0. Then its associated graded A-module has a basis
(eq) where q = mk (k ∈ N) such that pf (D) e0 = 0 and satisfying the system:

S0 =





θeq = qeq (q = mk, k ∈ N)
pf (X) eq = eq+m,

pf (D) eq =
m−1∏
t=0

(
q
m + 2t

)
eq−m

. (34)

Since pf (D) e0 = 0 (i.e pf (D) T0 = 0), the arrows at the left of T0 in the
diagram vanish.

Example 20 The DV -module B{0}|V is generated by an element e−m such that
θe−m = −me−m and pf (X) e−m = 0. Its associated A-module has a basis (eq)
where q = −m−mk (k ∈ N) such that pf (X) e−m = 0 satisfying the system:

S1 =





θeq = qeq (q = −m−mk, k ∈ N)
pf (D) eq = eq−m,

pf (X) eq =
m−1∏
t=0

(
q
m + 2t+ 1

)
eq+m

(35)

Since pf (X) e−m = 0 (i.e pf (X)T−m = 0), the arrows at the right of T−m in
the diagram vanish.

Example 21 The DV -module OV

(
1

pf(X)

)
/OV is generated by an element e−m =

1
pf(X) modOV such that θe−m = −me−m and pf (X) e−m = e0. Then its asso-

ciated A-module has a basis (eq) where q = −mk (k ∈ N) satisfying a system
as S1.
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Actually diagrams studied are completely determined by a finite subset of
objects and arrows. Indeed

a) For σ ∈ C/N
2 Z, denote by T σ ⊂ T the submodule T σ =

⊕
λ=σmod N

2 Z

Tλ. Then

T is generated by the finite direct sum of T σ’s

T =
⊕

σ ε C/ N
2 Z

T σ =
⊕

σ ε C/ N
2 Z


 ⊕

λ=σmod N
2 Z

Tλ


 . (36)

b) If σ 6= 0 mod N
2 Z

(
λ = σmodN

2 Z
)
, then the linear maps pf (X) and pf (D)

are bijective. Therefore T σ is completely determined by one element Tλ equipped
with the nilpotent action of (θ − λ).

c) If σ = 0 mod mZ (λ = σmodmZ) with N
2 = m, then T σ is completely

determined by one diagrams of m elements

T−(2m−1)m

pf(X)

�

pf(D)

T−(2m−2)m · · · � T−m

pf(X)

�

pf(D)

T0 (37)

In the other degrees pf (X) or pf (D) are bijective. Indeed, we have T0 '

pf (X)k T0 ' Tmk and T−(2m−1)m ' pf (D)k T−(2m−1)m ' T−(2m−1+k)m (k ∈

N) thanks to the relations pf (X) pf (D) =
m−1∏
t=0

(
θ
m + 2t

)
and pf (D) pf (X) =

m−1∏
t=0

(
θ
m + 2t+ 1

)
. The operator pf (X) pf (D) (resp. pf (D) pf (X)) on Tλ has

only one eigenvalue λ
m( λ

m + 2)(λ
n + 4)× · · ·×

(
λ
m + 2m− 2

)
(resp. ( λ

m + 1)( λ
m +

3) × · · · ×
(

λ
m + 2m− 1

)
) so that the equation pf (X) pf (D) =

m−1∏
t=0

(
θ
m + 2t

)

(resp.pf (D) pf (X) =
m−1∏
t=0

(
θ
m + 2t+ 1

)
) has a unique solution θ of eigenvalue

λ if λ is not a critical value. Here λ = 0, −2m, −4m, · · · ,−(2m − 2)m or
λ = −m,· · · , −(2m− 1)m thus it is always the case.

.
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able, Mathématiques et Physique, Séminaire de L’ENS, Progr.Math., 37

16
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