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1. Introduction.

The sﬁbject of investigation is a Hamiltonian vector—field ]?[f on a 2N—dimensio-
nal symplectic manifold (M,w) , which is integrable on some invariant symplectic sub-
manifold 9 CM, dim J =2n< 2N.So J is foliated into invariant tori Tg depen-
ding on an n—dimensional parameter p € P CC R, and the flow on every torus Tg is
of the form q = V, 1y(p) (fy is a restriction of the hamiltonian f to ). Let
(T HTCT oM=U, o 5T bethe (skew—)normal bundle of J. If S, is a flow of
H,, then the normal bundle (T )" is invariant for the tangent flow S;x - We call the
restriction of S, on (T )" "the flow of the normal \.raria.tiona.l equation (NVE) of
H, along 9", and study the question: under what conditions is this flow reducible to
the flow of a linear equation with coefficients independent of the point q € Tg

(so—called reducibility problem; see e.g. Johnson, Sell (1981)). If such reducibility occur

n
)

then in the“nondegenera.te case" 5 is "KAM-stable". That is most of the tori T
p € P, survive after a small hamiltonian perturbation of the system (this results from a
perturbation theorem for lower—dimensional invariant tori of a linear system, see

Eliasson (1988), Kuksin (1989), Poschel (1989)).

It is known that if no additional conditions are imposed then the NVE may be
non—reducible (see Johnson (1979), Herman (1983)). On the other hand, if in a neighbor-
hood of J the conditions of the "degenerate Liouville—Arnold theorem" are fulfilled,
then the vector-field H, is integrable in the vicinity of J and NVE is trivially redu-
cible (for the degenerate Liouville—Arnold theorem see Eliasson (1988) and its bibliogra-

phy).

Our aim in this paper is to obtain some criterion of reducibility of the NVE ,

which is a rather straightforward infinitesimal version of the Liouville—Arnold theorem.
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In the important case of codimension 1 (N = n+1) this criterium gives as a test for

reducibility some zero—curvature equation.

We are most interested in elliptic invariant submanifolds 9. For sucha 9 with
reducible flow of the NVE we give a definition of a spectrum of the flow and formulate
the nondegeneracy condition sufficient for KAM—stability of 7 in terms of this spec-

trum.

§ 2. Criterion of reducibility.

We shall formulate the results in analytic case. So all the manifolds and the
mappings are supposed to be analytic. Let the symplectic manifold (M,w) be provided
with B.iema;nn metric dm and the submanifold J is symplectomorphic to (T" x P,
dp A dq), T" = {q}, P = {p} . Thatis, I =32, (T" x P) for an (analytic) map

*
EO:THXP——»M, Eow=dp Adq .
Below we identify J with T® x P .
If S t is a flow of hamiltonian vector field Hf , then the subbundles
T M=U_ T, MCTM, TICT ;M and (T 9" CT 4M (the skew—nor-
mal bundleto T 5 in T oM ) are invariant for the tangent flow S, .
Definition 1. The flow S;x of the NVE of the vector—field H, along J (to-

gether with the underlying normal bundle (T )" is called reducible if

1) there exist a symplectic trivialisation of the bundle (T 5’)"‘ ,



TN xPxY b (T (2.1)

where the fiber Y = IR;m = ER';I x IRI;,1 , m = N—n , has the usual symplectic struc-
+ -

ture with the form dy, Ady_.

2) There exists an analytic symmetric 2mx2m — matrix A(p) such that under
this trivialisation the flow S,, on (T .9’)1 corresponds on T" x P x Y to the flow of

the equation

a=Viyp), p=0, y =JA(p)y (22)

where J(y +,y_) =(-y_y +) (we use the same notation for operators and their matri-
ces).

In the situation of the Definition 1, we will say (with some abuse of language) that
the NVE is reducible.

Definition 2. The flow S, is called complex—reducible if its complexification in

1k
the bundle (T 3)* ® ¢ is reducible in the category of complex symplectic bundles,
R

with some symmetric complex matrix A(p) .

Proposition 1. If the bundle (T )" can be trivialized (i.e. if there exists an
isomorphism & asin (2.1)), then some neighborhood of  in M is symplectomorphic
to a neighborhood 0 of Jy=T" x P x {0} in T" x P x Y with the 2—form
dp A dq+dy+ Ady_.



Proof. Let us consider the restriction on (T .9’)J' of the geodesic flow on TM

and take its M—projection:
=. 1 , . ,
= (T ‘97 M ) (xtf) exPxf )

for x€M, £€(T 3); . Let (T 5’)3‘ be the zero—section of (T ). Then for arbi-
trary (x,0) € (T .9')6‘ the tangent map

Ex(%,0) : Ty 0)(T N1 IO(T I —— T M (2.3)

x,0)

is a linear symplectomorphism and its restriction on (Tx 3’)‘L is the identical map. Spo
by inverse function theorem the restriction of the map = o & on some neighborhood ol
of .9'0 in T" x P x R® defines an isomorphism and

. .
(Eo @) w|50=dphdq+dy+hdy_

Now by the relative Darboux theorem (see Arnold, Givental (1985), Weinstein (1977))
in a neighborhood 0 of T™ x P x {0} there exists a change of coordinates V such
that

and (Eo¢~oV)*a=dpAdq+dy+ndy_. ' -

Proposition 2. If the NVE for H, along J is reducible, then in the symplectic



cordinates (q,p,y) from Proposition 1

f(a,p.5) = fy(p) + 5 <A)yy> + O(1y1%) . (2.5)

Proof. Let us write f(q,p,y) as a seriesin y:

£=1(ap) + ' (g,p)oy + 5 <C(a,p)y.y> + O( 1y1%) . (2.6)

R2™ and £ iga symmetric linear operator. As the manifold

Here f' is a vector in
g = {y =0} isinvariant for the vector—field He, we have il = 0 ; as the restriction
of Hy on J is the Hamiltonian system with hamiltonian fo(p) , we also have

£ = £,(p) . The flow of a NVE along 5, for the system with hamiltonian (2.5) is the

one of equations

4=Viyp), b==, y=Iap)y - (2.7)

As Zi(x,0)] is identical map Vx € 9 and Vi(m) isidentical Vx € 7,

L
(T, 9)
then the map & transforms solutions of the system (2.7) into trajectories of the flow

S, 4 | . Sy by the item 2) of Definition 1 the set of solutions of equations (2.7) is

(T 9)*
equal to the one of the equation (2.2). Thus fz(q,p) = a(p) . -

In what follows for an analytic function g on M we write
g(m) = o(dist(m,5’))p , PELZ, p20,ifin every local chart on M with coordinates

(xl,...,x2N) we have:
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a
|%g(x) | = odist(x, on QP 12y Vae 1N, |a| <p .
Theorem 1. Let fl,...,f o, be analytic functions in some neighborhood of 5 such
that fl =1f and

3)  [ff]m) = ofdist(m,9)* , (238)

b) VQET", PEP thevectors H, (q,p),...H, (q,D) are linearly indepen-
f1 fn

dent and are tangent to T~ = {(q,p) € I|p =P} .
P

Then Vpy € P there exists a neighborhood P of pj such that the NVE for H;
along J, = T x P is complex—reducible.

Remark 1. The assumption b) of the theorem results from a) and the following
three assumptions:

§)  fjm)=ofdist(m, 7)),

iil) " Hessf(p) =0,

iii) V a,p the vectors H, (?i,'f)‘),...,Hf (E,S) are linearly independent.
. 1 n
Indeed, by (i) the submanifold  is invariant for the flows Si of He forall j and
. J
these flows commute on 97 by a) (see Lemma 1 below). So a set

M, =T, sl 6.0 ST (4,) isinvariant for S, for all (§,5) . This set is
n

i3 wrhth
n—dimensional by iii) and contains a closure of the trajectory of H, starting from
(&',3) . By ii) the last is equal to Tg for almst all '5 .So M, = Tg Vq,p and the
p q,p p
vector—fields H, ,...,H. are tangent to T |
f1 i'n P



.

Proof of the theorem. Let sJ (j=1,...,0) be the flows of Hf and s be the

tangent flows on TM . By the assumption b) of the theorem the ma.mfold (T 9)*

o iy
invariant for Sy, Yij.

Lemma 1. Restrictions of the flows Sii on (T 9)* .,n , commute. In

particular, the flows Si| commute.

(T 9)*

Proof. We shall prove that prove that the restrictions of the flows (Sg)* on
T gM commute. The statement is local and it is enough to prove it in a local chart Q
on M with coordinates (x;,...,Xoy) - Let in this chart |

ZN)

1 1 2N
He =V=(V,. V%), HfK=W=(W o WE

for some 1<j, k<n,and TV:TM — T(TM) be a vector—field of a variational

equation for V . Let (xl,...,x2N, {1,...,§2N) be coordinates on TQ . Then

TV(x,£) = (V(x), 2'33% V(x) {,) and the commutator [TV,tW] of the vector—fields
e

TV, TW is equal to

k 8 k W
[TV,TW] = () (W E-V Hk_) ,
2V k, av W k oW 6v!
axjw—kfw +a—v—fk vx—a—f" 'Hx_J'ﬂx—kfk))’

The r.h.s. of the last equality is equal to T[V,W] . So
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[TV,TW] = T[V,W] = TH [fj’fk]
and

[TVlTyM,TWITyM]=T’H[fj,fk]|T9M

because the commutation of vector—fields is a natural operation with respect to im-

bedding. By the assumption (2.8) H [£, £, (m) = o(dist(m, J)) . So the r.h.s. in the
4 j’

last equality is equal to zero, the restrictions of vector—fields TV, TW on T 5M

commute and the lemma is proved. -

Let us fix a point q en", q, =0 mod 27 I™ , and fix some analytic trivializa-
tion of the restriction of (T J)* on qy* P,

(T )|, xp P *E (2.9)

For p€P,let (T 51))l be the restriction of (T )" on the torus T} . To
prove the theorem, it is enough to trivialize the symplectic bundle (T 9’p)"‘ by a map
which depends on p in an analytic way, and to check that the restriction of the flow

Six on (T 3’p)J‘ is of the form (2.2).

Let (el,...,en) be the usual basis of I" and G}t'(q,p) =({q+t ej,p) . By Lemma
1 and assumption b) of the theorem we can see that there exists a nondegenerate analy-

tic matrix D, j(p) such that
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ﬂst DJ£|(T3) =& Vi (2.10)

(this is the first step from the classical proof of Liouville~Arnold theorem, see Arnold
(1974), Moser, Zehnder (1980)). Let us denote by Q}E*(p) the flowon (T 9, p)'L

I_TstD %0 =h

These ﬂows are well-defined by Lemma 1. By (2.9) the monodromy operators (5% !

j=1,...,n , define linear symplectomoprhisms of (T .9’)( ) ~ E . By Lemma Al (see

qy:P
Appendix)

27 Bl(p) (2.11)

J _
6217'(1)) =€
Here BJ are some analytic on p linear Hamiltonian operators in the complexification

E°=E®C of E (that is the matrix of B} in EC= C; X C; is of a form
R + —

B = 3 BI®) ; here T is the matrix of the operator J(y,,y_) = (-y_y,) and BI®)
is a symmetric matrix). As the operators (’3’%’r %1 J=1,...,n, commute, their logarithms
Bj(p) commute as well (these results, for example, from the representation (A3) for

Bj(p) ). Now we can trivialize the bundle (T J° p)J' ® € with the help of a map

TT'x {p} xE°— (T 5)" @C,
(2.12)

~a.BY(p)
(q,pf)-—*T_W *(p(OpT‘Te g
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The definition of this map is correct because the image does not change if the vector
(ql’“"qn) is replaced by (ql""’qj * 21,...,qn) . It is symplectic because every map

exp 7B j(p) :E* —5 E® and every flow G-t‘* are symplectic. The map (2.12) depends

on p in an analytic way because matrices BY(p) are analytic. Let us define a map &

in (2.1) in such a way that &| c 18 equal to the map (2.12).
T x{p}*E

Let us write for brevity

- . - .
00 6,(p) =TT &, ,(»), aoB(®)=)aBYp) .
J
From (2.10) we see that

1 - -
S;x =tD] o0& (2.13)

here D; is the first row of the inverse matrix D;} . So if under the trivialization (2.12)

(T )" ®€3 x2(ap¢) and Sty x 2 (a),€)) »ieif

3

x +—————{(q,p,§)

1 L 4

1
St* x‘_—(Q1:p:£1) ’

then q; =q+t DI and

_'
(q+tD))*B
€

¢ = TTy © (- D1-):84) o (t D]-8,) o
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—4

tD, B
£)

[y

- -}
o (q-84(0,p,6 9°B£)) = (0pe

(here T T is a projection of (T JP)J' @ C)qo ~T"x Y% on Y°).

_}
So (2.2) holds with A(p) = D(p) * B(p) and the theorem ig proved. -
An "almost inverse" to Theorem 1 statement easily results from Proposition 2:

Proposition 3. If the NVE for Hf along S is reducible, p € P and P0 isa
small enough neighborhood of p in P, then in a neighborhood of Iy = T" x P,.
There are n analytic functions with the properties a), b).

To prove the statement it is enough to write the hamiltonian f in a form (2.5)
and to choose f1 =f,andfor j2 2 fj(q,p,y) = fj(p) , where the vectors VfO(pO) ,
Vf2(p0),...,Vf o(P) are linearly independent. -
For the last proposition a natural question is whether the reduction of Theorem 1

can be done in the category of real bundles. This is true if in (2.11) the logarithms

B j(p) of the monodromy operators can be constructed as real matrices. For Lemmas

Al, A2 this is true if
o(® Jn(w0]=0Vj (2.14)

(0 = spectrum) or if (5% ok ¢+ J=1-,0, are replaced by their squares. The last takes

place if the tori Tg are replaced by their 2"~sheets covering



This covering induces a bundle (T ‘”Ji.nd with the induced flow (S,,), ; init.

Corollary 1. Under the assumptions of Theorem 1, the bundle (T 3')Ji'n g can be

trivialized as a real bundle. For this trivialization the flow (S ). . is of a form (2.2).
To realize the first possibility let us mention that (2.13) holds if
o(®] ) EIR V. (2.15)

Definition 3. An invariant manifold J is called linearly stable for a vector—field

Hf , if all the Liapunov exponents of every solution of Hf on J are equal to zero.

Lemma 2. Under the conditions of Theorem 1 the assumption (2.15) holds if and

only if the invariant manifold 5 is linearly stable for every vector—field Hf.
)

(7=1,...,n) .

Proof. Let us suppose that J is linearly stable V Hf_ , j=1,...,n. Then by the
: J

definition of the flows (B-ti*(p) for every € > 0 there exists C_ such that
j €n
81y @l < C e (2.16)
and so (2.15) is true.

Let us suppose that (2.15) holds. Then (2.16) is true ¥V € > 0 with some C.-By
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(2.13), (2.16) we see that IIS%*H < C(lE e and the same is true for all Sg* .50 J is

linearly stable for all H, . -
J

Theorem 2. Suppose the invariant manifold 5 is linearly stable for ]E[f and for

some p, € P Hf(pO) # 0. Then the NVE of H; along J, = T x P, ( P, is a small

enough neighborhood of Py in P ) is reducible if and only if there are analytic func-

tions f,....f suchthat f; ={ and the assumptions a), b) of Theorem 1 are fulfilled

for 5'=.9'0,

c) J, 18 linearly stable forall He , j=1,..,n.
J
In such a case the spectrum of the operator J A8p) is pure imaginary.

together with

Proof. If the NVE is reducible then we can construct the functions fq,...,fIl as in

Proposition 3. The manifold 7, is linearly stable for all H trivially.
1.

Suppose now that the assumptions a)—c) are fulfilled. Then by Lemma 2 the
assumption (2.15) holds and by Lemma Al the matrices B j(p) (and, so, the trivializa-
tion @ ) can be real choosen. The last statement of the theorem is trivial because a sy-

stem of the form (2.2) is linearly stable if and only if the spectrum of J A(p) is pure

imaginary. - -

Remarks. 2) Propositions 1, 2 and Theorems 1, 2 have direct smooth versions with
the same proofs.

3) Our proof of Theorems 1, 2 (but not of Lemmas A1, A2) does not use the finite
dimensionality of the fibers of the bundle (T )% .Ifin (2.9) dim A = o and we have
sufficient spectral information on the flows Sg 4 andcan construct "regular" logarithms

Bj(p) of the monodromy operators @% r* (see (2.11)), then our proof is valid.



—14—

4) The reducibility of the NVE along I, was proved via its reducibility along
the tori {(q,p) € J'|p = const} . So the proof can be used for proving the reducibility

of a linear Hamiltonian equation
q=v, y=JA(Qy (Q€T",y€Y)

to a constant—coefficient Hamiltonian equation y =J Ay by means of symplectic
transformation y = C(q)y . This reduction is possible if in the phase space
T™ x R™ x Y there are functions fj(q,p,y) (j=1,2,...,n) of the form
1 t t t
f.= wj°P + 35 <Aj(q)y,y> such that w; =w, A; =A, det(wl,wz,...,wn) #0 and

i
Vik

305 DAL= 50, DALQ) + A0l A(Q) - A (@I A(a) =0 .

5) In the special case n=1 we need no "infinitesimal integrals" other than
f, =1, and the assumptions a), b) of Theorem 1 are fulfilled in a trivial way. For n =1
Theorem 1 4+ Corollary 1 coincide with the Floquet theorem (see Arnold, Givental
(1985)). For a less trivial example, see § 4 below.

3. Elliptic case.

Definition 4. The invariant manifold 9 is called weakly elliptic if the NVE of
H; along J is reducible and operator J A(p) in (2.2) has pure imaginary spectrum
{i ,\j(p)} . J is called elliptic if it is weakly elliptic and operator J A(p) is semi-

simple (i.e. is diagonal in some complex symplectic basis) Vp € P .
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One can treat Theorem 2 as a weak ellipticity criterion.

Clearly, submanifold J is elliptic if it is weakly elliptic and Aj(p) # A (p) for
ifk.

Remark 6. Finite—dimensional elliptic invariant submanifold of infinite codimen-
sion appear in the study of nonlinear partial differential equations which are integrable

in terms of theta—functions. See Kuksin (1989), § 4.

For an elliptic invariant submanifold 9 the spectrum {£i A j(p)} is not defined

in an unique way:

Propogition 4. Let the submanifold J is elliptic and the flow S, | 5 is nondege-

nerate:

det 9| Bp =0, ofp) = Viy(p) - (3.1)

Let us consider some another trivialisation of S, with ¢’ and A’ in (2.1), (2.2)
instead of & and A .Let o(J A'(p)) = {1 ,uj(p)} . Then for every j there exist
k =k(j), s=s(j) € I" such that

#(p) = Ay (p) +8-w(p) Vop . (3.2)
Moreover, every n numbers of the form pj(p) = Aj(p) + sj(p) - w(p), 5; € I", may
be achieved as a spectrum of a Hamiltonian operator J A’(p) for some trivialisation

3/ .

Proof. Let {(p?(p)} , go}(p) = qf}'(p) , be symplectic basic of Y°,
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J A(p) qp:;: =i A(p) ¢? . Then the mapping &' : T" x P x Y — (T g)*, which
maps (q,p,qp?) to exp(¥s j,a.) <p:; , transforms the flow St* into a flow of an equation

(2.2) with an operator A’(p) such that

J A’(p) w? =% i(Sj°w(p) + Aj(p))tpf :

Thus the second statement is proved.

4
’ +) is a solu-

- L ip
To prove the first one let us mention that & 1o &’ (q+uwt,p,e ] 7 j
tion of (2.2) (here J A’ qoji =i qup"i*) Let 1o @'(q,p,wii) = th(q,p)go: .
Then the solution may be rewritten as exp(i ,ujt)z x:(q+ wt,p)(p: . So

. + d = +
(3.3) -

Among the functions xt there are nonzero ones. Let us suppose that x']t (q,p) =0.
0

For (3.1) the components of the vector (wl,...,wn) are rationally independent for al-

most all p € P . Then by (3.3) x'l'(' = C(p)expi§ - q for some s € I" and
0

”j = "k —s+w . Thus the first assertion is proved, too.
0

. Let us consider a family of subgroups of additive groupe Z of a form w(p) - I",
p € P, and corresponding factor groups G(p) = Z/w(p)-I" . For a weakly elliptoc
submanifold 5 let us define elements A,(p),...,A (p) of G(p) as follows:

A{(p) = A{(p) + w(p) - T" € G(p) . (3.4)
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The following definition is motivated by Proposition 4:

Definition 5. If 5 is an weakly elliptic invariant submanifold, then the depen-

dingon p € P set

A(p) = {A{(p),--,A,(P)} C G(p)
is called spectrum of 9.

The important reason to prove the reducibility of the NVE is Proposition 2 which
provide a hamiltonian f(q,p,y) with the useful normal form (2.5). For nondegenerate
hamiltonians of the form (2.5) (see the condition (3.5) below) one can prove that the
family =3 (T" x P) of invariant tori ¥ (T" x {p}), p € P, is KAM—stable in

the following sense:

Definition 6. A family of invariant tori J = )30('1‘n x P) of the Hamiltonian
vector—field Hf is called K AM—stable if for an arbitrary analytic function T and for

¢ small enough, the vector—field Hf . has an invariant set 5, =3 (T" x P ).
+€

Here

1) P_ is a Cantor—set in P and
mes(P\P ) — 0 (¢ —0) ,

2) the map 26 . T x P_—— M is Lipschitz and it is e—close to EO| :

Txp
€

3) the tori ¥ _(T"x{p}), p € P_, are invariant for the vector—field Hf .
+e
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To prove the KAM—stability one has to apply a theorem on perturbation of a line-
ar system (see Eliasson (1988), Kuksin (1989), Pdschel (1989)) to the vector-field H,
with { in the form (2.5) after a simple space—dilation (see Kuksin (1989), § 1). In such

a way we get the following result:

Theorem 3. Suppose the invariant manifold 9 is weakly elliptic for the NVE of
H; and for the spectrum {Aj(p) |j=1,...,n} of NVE we have:

Ap) =0 Vi, A(P)=A(p) Vitk (3.5)
Then A is KAM-—stable.

Remark 7. There is a natural smooth version of Theorem 3. In order to prove it
one has to write down a smooth version of perturbation theorem for lower—dimensional
invariant tori using usual smoothing techniques of J. Moser. Clearly it is possible but

this work still has not been done.

Remark 8. In order to prove KAM—stability of J via a smooth version of the
arguments (see Remark 6) it is enough to prove "KAM—reducibility" of NVE. That is,
for every 6> 0 we must be able to find a smooth trivialisation (2.1) such that inthe
equation (2.2) the matrix A8p) does not depend on q if p lies out of some Cantor set

of measure § .

Remark 9. In Johnson, Sell (1981) the hyperbolic situation was considered. It was
proved that.if normal bundle (T )" is trivial and the flow S;4 has full Sacker—Sell
spectrum then NVE is KAM—reducible and 5 as a family of "doubled tori" is
KAM-stable.
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4. Example.

" Let N =n+1 and suppose the symplectic Riemann manifold M is polarizable.
Then the bundles TM and T J are trivial and so the bundle (T .?')J' is also trivial.
Thjs. results from the fact that the symplectic bundles TM, T &, (T 3’)1' can be
given complex structures (see Arnold (1978), Arnold, Givental (1985)) and that a one—
dimensional complex bundle which is a factor—bundle of a trivial complex bundle is
trivial (see Hirzebruch (1966)). So by the Proposition 1, in a neighborhood of  in M
there are symplectic coordinates (q,p,y) (q€ T", pEPCR", y=(y +,y_) €0C IR2)
and J = {y = 0} . In this coordinates the hamiltonians fl,...,fn we are looking for,

can be written in the form

f{apy) = f(j’(p) +3 <A;(ap)y:y> + O(]y| % .
So [,,] = <y (apvy> + 0(1y1%),

A

_lwQ.va Ve, -
a= 3T VA -V 8 - VA)+ATA—ATA, .

P

Let us denote

fo‘: = wj(p) = (wj’lr"awj’n) E an ’
%(p) = J A{(p) € 88(2) = sL(2R) .

The assumptions of Theorem 1 are fulfilled if we can construct the functions
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f,,...f, and the matrices 2A,..., % € 8£(2) in such a way that f, = fO and
2(1 =] A0 (fo,ﬁo are given), for every p € P the vectors wl(p),...,w Il(p) span R",

and

J Qljk = (wj-Vq)th - (wk-Vq)QIj + [Qlk,Qlj] =0 . (4.1)
Vik=1,.n..

Let us suppose that Hess fO(pc) # 0 and, so, near Py the map
p—w=1V f(p) is invertible. Then to prove KAM—reducibility of NVE (see Re-
mark 8), for Remark 4 we have to construct smooth vectors wy= Ij(i) and smooth
matrices Qlj(q,w) (j=2,...,n) which solve equations (4.1) with w=uw,
A =% (qp), Vfo(p) = w, for w out of a set of small measure & in such a way that

det(o},...0}) #0 . (4.2)

In particular, if n=2, then we have to find a vector w, and a matrix

2(q) € 52(2) such that

(wl-vq)mz_(wz-vq)ml + [A,2,] =0,
(4.3)
det(w{,w;) $0

(the last relation excludes the trivial solution Ug =A%y, wy=Awy ).
The equation (4.3) is the equation of zero curvature (see Faddeev, Takhtajan
(1987)) with non—standard periodicity conditions (that is, the periodicity is not with

respect to the directions wyy Wy but to some other directions). Well-known gauge
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transformations
-1 -1
% — (0 V)G G + GG
% — (w, V)G ¢l +GaGT

( G = G(q) is an analytic symplectic matrix) transforms solutions of (4.3) into new
ones. It provides a means to construct new solutions of (4.3) from the trivial ones.
Clearly, the equation (4.3) cannot be solved for arbitrary analytic 2, (q) € sl(2)
forall w, € v fg(P) because some NVE with N = n+1 are not reducible (at least for
some Liouvilleau frequencies w, , see Johnson (1979), Herman (1983)). Nevertheless we

have the following

Conjécture. If the matrix Qll(q) is analytic then ¥ § > 0 there exist a smooth
matrix 2, and a smooth vector w, which solve (4.3) fro w; out of some set of mea-

sure 6.

If it is true then NVE is KAM—rteducible and 9 is KAM—stable (see Remark 8).

Appendix. On logarithms of analytic symplectic matrices.

Let Cp , P € P, be a symplectic matrix of order 2m analytic on p . Let for

some P € P the matrix Cp be reversible.
: 0

Lemma Al. There exist a neighborhood P0 of Py and an analytic complex ma-
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trix Bp , PE P0 , which is a branch of L, Cp :

expo:Cp .

(A1)
The matrix is Hamiltonian:

(4B,) = (3B,)"
(A2)

and may be choosen real if the spectrum a(Cp ) contains no real negative points.

Proof. As a(Cp )/10 , there exists a contour T' C € such that a(Cp ) lies in-
0 0

side I' and O lies outside I' . The same is true for o(Cp), pEP, if Py is small
enough. For A €T' let us fix some branch £n A of Ln A and set

_ 1 [E&n )
Bp_micp—_xd,\. (A3)

Then exp Bp = Cp (see Dunford, Schwartz (1958), Ch. VII) and s0 (A1) is proved. To
prove (A2) let us mention that

1) the operator B p in (A3) depends on Cp in a continuous way;

2) single—spectrum symplectic matrices are dense among symplectic matrices;

3) single—spectrum symplectic matrix is diagonal in some symplectic basis and for

it (A2) is evident.

So it remains to prove the last statement. It is well-known (Arnold (1974),
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Arnold, Givental (1985)) that for an invertible symplectic matrix C, the spectrum
o(C) consists of pairs of points A, a1 (X €R) ; pairs of points A, A" (]A] =1) and
quadruples A, %, A_l, pL (A € C\R, |A] #1). Soin the present situation

a(Cpo) =8, U(SyUS,), where S, = {Aj} CR,, Sy= {pj} C{A|Im A >0} . Let

us take a (nonconnected) contour Iy of the form Ty = g I'(A j) U (T(pg)V - I'(,uj)) :

J J
Here I‘(,\j) , r(-“j) are small circles centered at A it A (thus T'(A j) =-T(A j) Va j) :

We can do it in such a way that I‘0 N (—w,0] = ¢, and s0 we can takefor €nz a
branch of Lnz which is real for A € R . With such a choice of T' in (A3) one can see
in a trivial way that Bp = Bp . : -

Lemma A2. Under the assumptions of Lemma A1 there exists an analytic real

L . 2
Hamiltonian matrix ﬁp , p € Py such that exp ﬁp =C, PEP .

Proof. Let T' € € be a contour containing all negative eigenvalues of Cp and no

~ other eigenvalues. Then for p € Py ( P, is small enough there exists a smooth splitting
2m
R

into two invariant for Cp symplectic subspaces, IRZH1 = E1 ® E2 , such taht the
spectrum of C_| . is negative and lies inside I' and the spectrum of C_|r lies
p'E, p'E,
outside I' and out of (—w,0] . Then by Lemma A1l Cp | E_ = €xp B12) for some real
2
Hamiltonian operator BI(’2) , and (Cp | E. = €Xp Bl()z) for some real Hamiltonian ope-
2 :
rator B 1(32) , and (Cp g )2 = exp BI()I) . This operator has all the properties we need.
1
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