An infinitesimal Liouville-Arnold
 theorem as criterion of reducibility
 for variational Hamiltonian equations

S. B. Kuksin

Max-Planck-Institut	Institute of Control Sciences
für Mathematik	65 Profsoyuznaya Street
Gottfried-Claren-Straße 26	117806 Moscow, GSP-7
D-5300 Bonn 3	USSR
Federal Republic of Germany	

-

1. Introdaction.

The subject of investigation is a Hamiltonian vector-field H_{f} on a 2 N -dimensional symplectic manifold (M, ω) , which is integrable on some invariant symplectic submanifold $\mathscr{S C M}, \operatorname{dim} \mathscr{I}=2 \mathrm{n}<2 \mathrm{~N}$. So \mathscr{I} is foliated into invariant tori $\mathrm{T}_{\mathrm{p}}^{\mathrm{n}}$ depending on an n-dimensional parameter $p \in P C C \mathbb{R}^{n}$, and the flow on every torus T_{p}^{n} is of the form $\dot{q}=\nabla_{p} f_{0}(p)$ (f_{0} is a restriction of the hamiltonian f to \mathscr{g}). Let $\left(\mathrm{T} \mathscr{S}^{\perp} \subset \mathrm{T} \mathscr{G}^{\mathrm{M}} \equiv \mathrm{U}_{\mathrm{m}} \in \mathscr{G}_{\mathrm{m}}\right.$ be the (skew-)normal bundle of \mathscr{S}. If S_{t} is a flow of H_{f}, then the normal bundle $(T \mathcal{S})^{\perp}$ is invariant for the tangent flow $S_{t *}$. We call the restriction of $\mathrm{S}_{\mathrm{t} *}$ on (T S^{\perp} "the flow of the normal variational equation (NVE) of H_{f} along $g^{\prime \prime}$, and study the question: under what conditions is this flow reducible to the flow of a linear equation with coefficients independent of the point $q \in T_{p}^{n}$ (so-called reducibility problem; see e.g. Johnson, Sell (1981)). If such reducibility occur then in the "nondegenerate case" \mathscr{F} is "KAM-stable". That is most of the tori $\mathrm{T}_{\mathrm{p}}^{\mathrm{n}}$, $p \in P$, survive after a small hamiltonian perturbation of the system (this results from a perturbation theorem for lower-dimensional invariant tori of a linear system, see $\because \quad$ Eliasson (1988), Kuksin (1989), Pöschel (1989)).

It is known that if no additional conditions are imposed then the NVE may be non-reducible (see Johnson (1979), Herman (1983)). On the other hand, if in a neighborhood of g the conditions of the "degenerate Liouville-Arnold theorem" are fulfilled, then the vector-field H_{f} is integrable in the vicinity of \mathscr{F} and NVE is trivially reducible (for the degenerate Liouville-Arnold theorem see Eliasson (1988) and its bibliography).

Our aim in this paper is to obtain some criterion of reducibility of the NVE, which is a rather straightforward infinitesimal version of the Liouville-Arnold theorem.

In the important case of codimension $1(\mathrm{~N}=\mathrm{n}+1)$ this criterium gives as a test for reducibility some zero－curvature equation．

We are most interested in elliptic invariant submanifolds \mathscr{F} ．For such a \mathscr{F} with reducible flow of the NVE we give a definition of a spectrum of the flow and formulate the nondegeneracy condition sufficient for KAM－stability of g in terms of this spec－ trum．

§ 2．Criterion of reducibility．

We shall formulate the results in analytic case．So all the manifolds and the mappings are supposed to be analytic．Let the symplectic manifold（ M, ω ）be provided with Riemann metric dm and the submanifold \mathscr{g} is symplectomorphic to（ $\mathbb{T}^{\mathrm{I}} \times \mathrm{P}$ ， $\mathrm{dp} \wedge \mathrm{dq}$ ）， $\mathbf{T}^{\mathrm{n}}=\{\mathrm{q}\}, \mathrm{P}=\{\mathrm{p}\}$ ．That is， $\mathscr{I}=\boldsymbol{\Sigma}_{0}\left(\mathbf{T}^{\mathbf{n}} \times \mathrm{P}\right.$ ）for an（analytic）map

$$
\Sigma_{0}: \mathbb{T}^{\mathbf{n}} \times \mathrm{P} \longrightarrow \mathbf{M}, \quad \boldsymbol{\Sigma}_{0}^{*} \omega=\mathrm{dp} \wedge \mathrm{dq} .
$$

Below we identify g with $\mathbf{T}^{\mathrm{n}} \times \mathrm{P}$ ．

If S_{t} is a flow of hamiltonian vector field H_{f} ，then the subbundles
 mal bundle to $\mathrm{T} \mathscr{F}$ in $\mathrm{T} \mathscr{g}^{\mathrm{M}}$ ）are invariant for the tangent flow $\mathrm{S}_{\mathrm{t} *}$ ．

Definition 1．The flow $\mathrm{S}_{\mathrm{t} *}$ of the NVE of the vector－field H_{f} along \boldsymbol{g}（to－ gether with the underlying normal bundle $(\mathrm{T} ⿹ 勹 巳) ~{ }^{\perp}$ is called reducible if

1）there exist a symplectic trivialisation of the bundle（T $\mathscr{F})^{\perp}$ ，

where the fiber $Y=\mathbb{R}_{\mathbf{y}}^{2 \mathrm{~m}}=\mathbb{R}_{\mathrm{y}_{+}}^{\mathrm{m}} \times \mathbb{R}_{\mathrm{y}_{-}}^{\mathrm{m}}, \mathrm{m}=\mathrm{N}-\mathrm{n}$, has the usual symplectic structure with the form $\mathrm{dy}_{+} \Lambda \mathrm{dy}_{-}$.
2) There exists an analytic symmetric $2 \mathrm{~m} \times 2 \mathrm{~m}$ - matrix $\mathrm{A}(\mathrm{p})$ such that under this trivialisation the flow $S_{t *}$ on $(T \mathscr{V})^{\perp}$ corresponds on $T^{\mathrm{n}} \times \mathrm{P} \times \mathrm{Y}$ to the flow of the equation

$$
\begin{equation*}
\dot{\mathrm{q}}=\nabla \mathrm{f}_{0}(\mathrm{p}), \dot{\mathrm{p}}=0, \dot{\mathrm{y}}=\mathrm{JA}(\mathrm{p}) \mathrm{y} \tag{2.2}
\end{equation*}
$$

where $J\left(y_{+}, y_{-}\right)=\left(-y_{-}, y_{+}\right)$(we use the same notation for operators and their matrices).

In the situation of the Definition 1, we will say (with some abuse of language) that the NVE is reducible.

Definition 2. The flow $S_{t *}$ is called complex-reducible if its complexification in the bundle $(T \mathscr{F})^{\perp} \underset{\mathbb{R}}{\otimes \mathbb{C}}$ is reducible in the category of complex symplectic bundles, with some symmetric complex matrix $A(p)$.

Proposition 1. If the bundle (T$)^{\perp}$ can be trivialized (i.e. if there exists an isomorphism Φ as in (2.1)), then some neighborhood of \mathscr{F} in M is symplectomorphic to a neighborhood 0 of $\mathscr{g}_{0}=\mathbb{T}^{\mathbf{n}} \times \mathrm{P} \times\{0\}$ in $\mathrm{T}^{\mathrm{n}} \times \mathrm{P} \times \mathrm{Y}$ with the 2-form $d p \wedge d q+\mathrm{dy}_{+}{ }^{\wedge} \mathrm{dy}_{-}$.

Proof. Let us consider the restriction on (T 9) ${ }^{\perp}$ of the geodesic flow on TM and take its M -projection:

$$
\Xi:\left(\mathrm{T} \mathscr{S}^{\perp} \longrightarrow \mathrm{M}, \quad(\mathrm{x}, \xi) \longmapsto \exp _{\mathrm{x}} \xi\right.
$$

for $x \in M, \xi \in(T \mathscr{I})_{x}^{\perp}$. Let $(T \mathscr{I})_{0}^{\perp}$ be the zero-section of $(\mathrm{T} \mathscr{I})^{\perp}$. Then for arbitrary $(x, 0) \in(T \mathscr{I})_{0}^{\perp}$ the tangent map

$$
\begin{equation*}
\Xi_{*}(\mathrm{x}, 0): \mathrm{T}_{(\mathrm{x}, 0)}(\mathrm{T} \mathscr{F})^{\perp} \simeq \mathrm{T}_{\mathrm{x}} \mathscr{I} \oplus\left(\mathrm{~T}_{\mathrm{x}} \mathscr{F}\right)^{\perp} \longrightarrow \sim \mathrm{T}_{\mathrm{x}} \mathrm{M} \tag{2.3}
\end{equation*}
$$

is a linear symplectomorphism and its restriction on $\left(\mathrm{T}_{\mathrm{x}} \mathscr{g}^{\wedge}\right)^{\perp}$ is the identical map. Spo by inverse function theorem the restriction of the map $\Xi \circ \Phi$ on some neighborhood 0^{1} of \mathscr{S}_{0} in $\mathbb{T}^{\mathbf{n}} \times \mathrm{P} \times \mathbb{R}^{\mathrm{n}}$ defines an isomorphism and

$$
\left.(\Xi \circ \Phi)^{*} \omega\right|_{\mathscr{g}_{0}}=\mathrm{dp} \wedge \mathrm{dq}+\mathrm{dy}_{+} \wedge \mathrm{dy} y_{-}
$$

Now by the relative Darboux theorem (see Arnold, Givental (1985), Weinstein (1977)) in a neighborhood 0 of $T^{\mathbf{n}} \times \mathrm{P} \times\{0\}$ there exists a change of coordinates V such that

$$
\begin{equation*}
\left.\mathrm{V}_{*}\right|_{\mathrm{T}_{\mathscr{S}}(\mathrm{M})}=\mathrm{id} \tag{2.4}
\end{equation*}
$$

and $(\Xi \circ \Phi \circ \mathrm{V})^{*} \alpha=\mathrm{dp} \wedge \mathrm{dq}+\mathrm{dy}_{+}{ }^{\wedge} \mathrm{dy}_{-}$.

Proposition 2. If the NVE for H_{f} along \mathscr{F} is reducible, then in the symplectic
cordinates ($\mathrm{q}, \mathrm{p}, \mathrm{y}$) from Proposition 1

$$
\begin{equation*}
\left.\mathrm{f}(\mathrm{q}, \mathrm{p}, \mathrm{y})=\mathrm{f}_{0}(\mathrm{p})+\frac{1}{2}<\mathrm{A}(\mathrm{p}) \mathrm{y}, \mathrm{y}\right\rangle+\mathrm{O}\left(|\mathrm{y}|^{3}\right) . \tag{2.5}
\end{equation*}
$$

Proof. Let us write $f(q, p, y)$ as a series in y :

$$
\begin{equation*}
\mathrm{f}=\mathrm{f}^{0}(\mathrm{q}, \mathrm{p})+\mathrm{f}^{1}(\mathrm{q}, \mathrm{p}) \mathrm{oy}+\frac{1}{2}\left\langle\mathrm{f}^{2}(\mathrm{q}, \mathrm{p}) \mathrm{y}, \mathrm{y}\right\rangle+\mathrm{O}\left(|\mathrm{y}|^{3}\right) . \tag{2.6}
\end{equation*}
$$

Here f^{1} is a vector in $\mathbb{R}^{2 m}$ and f^{2} is a symmetric linear operator. As the manifold $\mathscr{S}=\{y=0\}$ is invariant for the vector-field H_{f}, we have $f^{1} \equiv 0$; as the restriction of H_{f} on \mathscr{g} is the Hamiltonian system with hamiltonian $\mathrm{f}_{0}(\mathrm{p})$, we also have $f^{0}=f_{0}(p)$. The flow of a NVE along \mathscr{S}_{0} for the system with hamiltonian (2.5) is the one of equations

$$
\begin{equation*}
\dot{\mathrm{q}}=\nabla \mathrm{f}_{0}(\mathrm{p}), \dot{\mathrm{p}}==, \dot{\mathrm{y}}=\mathrm{Jf} \mathrm{f}^{2}(\mathrm{q}, \mathrm{p}) \mathrm{y} . \tag{2.7}
\end{equation*}
$$

As $\left.\Xi_{*}(\mathrm{x}, 0)\right|_{\left(\mathrm{T}_{\mathrm{x}} \mathscr{I}\right)^{\perp}}$ is identical map $\forall \mathrm{x} \in \mathscr{G}$ and $\mathrm{V}_{*}(\mathrm{~m})$ is identical $\forall \mathrm{x} \in \mathscr{T}$, then the map Φ transforms solutions of the system (2.7) into trajectories of the flow $S_{t *} \mid$. Sy by the item 2) of Definition 1 the set of solutions of equations (2.7) is $(\mathrm{T})^{\perp}$
equal to the one of the equation (2.2). Thus $f^{2}(q, p) \equiv a(p)$.

In what follows for an analytic function g on M we write $g(m)=o(\operatorname{dist}(m, \mathscr{F}))^{p}, p \in \mathbb{Z}, p \geq 0$, if in every local chart on M with coordinates ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{2 \mathrm{~N}}$) we have:

$$
\left|\frac{\partial^{\alpha}}{\partial \mathrm{x}^{\alpha}} \mathrm{g}(\mathrm{x})\right|=0\left(\operatorname{dist}(\mathrm{x}, \mathscr{I} \cap \mathrm{Q})^{\mathrm{p}-|a|}\right) \forall a \in \mathbb{Z}^{2 \mathrm{~N}},|a| \leq \mathrm{p}
$$

Theorem 1. Let $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}$ be analytic functions in some neighborhood of \mathscr{F} such that $\mathrm{f}_{1}=\mathrm{f}$ and
a) $\quad\left[\mathrm{f}_{\mathrm{j}}, \mathrm{f}_{\mathrm{k}}\right](\mathrm{m})=\mathrm{o}(\operatorname{dist}(\mathrm{m}, \mathscr{I}))^{2}$,
b) $\quad \forall \tilde{q} \in \mathbf{T}^{\mathrm{n}}, \tilde{\mathrm{p}} \in \mathrm{P}$ the vectors $\mathrm{H}_{\mathrm{f}_{1}}(\tilde{\mathrm{q}}, \tilde{\mathrm{p}}), \ldots, \mathrm{H}_{\mathrm{f}}(\tilde{\mathrm{q}}, \tilde{\mathrm{p}})$ are linearly independent and are tangent to $\mathrm{T}_{\tilde{\mathrm{p}}}^{\mathbf{n}}=\{(\mathrm{q}, \mathrm{p}) \in \mathscr{F} \mid \mathrm{p}=\tilde{\mathrm{p}}\}$.

Then $\forall \mathrm{p}_{0} \in \mathrm{P}$ there exists a neighborhood P_{0} of p_{0} such that the NVE for H_{f} along $\mathscr{S}_{0}=\mathbb{H}^{n} \times \mathrm{P}_{0}$ is complex-reducible.

Remark 1. The assumption b) of the theorem results from a) and the following three assumptions:
i) $\quad f_{j}(m)=o(\operatorname{dist}(m, \mathscr{I}))$,
ii) Hess $f(p) \neq 0$,
iii) $\quad \forall \tilde{\mathrm{q}}, \tilde{\mathrm{p}}$ the vectors $\mathrm{H}_{\mathrm{f}_{1}}(\tilde{\mathrm{q}}, \tilde{\mathrm{p}}), \ldots, \mathrm{H}_{\mathrm{f}_{\mathrm{n}}}(\tilde{\mathrm{q}}, \tilde{\mathrm{p}})$ are linearly independent.

Indeed, by (i) the submanifold \mathcal{G} is invariant for the flows S_{t}^{j} of $H_{f_{j}}$ for all j and these flows commute on g^{j} by a) (see Lemma 1 below). So a set
$\mathrm{M}_{\tilde{\mathrm{q}}, \tilde{\mathrm{p}}}=\mathrm{U}_{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}} \mathrm{S}_{\mathrm{t}_{1}}^{1} \circ \ldots \circ \mathrm{~S}_{\mathrm{t}_{\mathrm{n}}}^{\mathrm{n}}(\tilde{\mathrm{q}}, \tilde{\mathrm{p}})$ is invariant for S_{t} for all $(\tilde{\mathrm{q}}, \tilde{\mathrm{p}})$. This set is n-dimensional by iii) and contains a closure of the trajectory of H_{f} starting from
 vector-fields $H_{f_{1}}, \ldots, H_{f_{n}}$ are tangent to T_{p}^{n}.

Proof of the theorem. Let $S_{t}^{j}(j=1, \ldots, n)$ be the flows of $H_{f_{j}}$ and $S_{t *}^{j}$ be the tangent flows on TM . By the assumption b) of the theorem the manifold ($\mathrm{T} \mathfrak{S}^{\perp}$ is invariant for $\mathbf{S}_{\mathfrak{t} *}^{\mathbf{j}} \forall \mathbf{j}$.

Lemma 1. Restrictions of the flows $S_{\mathfrak{t} *}^{\mathrm{j}}$ on $(\mathrm{T} \mathscr{F})^{\perp}, \mathrm{j}=1,2, \ldots, \mathrm{n}$, commute. In particular, the flows $\left.S_{t}^{j}\right|_{(\mathrm{T} 9)^{\perp}}$ commute.

Proof. We shall prove that prove that the restrictions of the flows $\left(S_{t}^{j}\right)_{*}$ on $\mathrm{T} \mathscr{g}^{\mathrm{M}}$ commute. The statement is local and it is enough to prove it in a local chart Q on M with coordinates $\left(x_{1}, \ldots, x_{2 N}\right)$. Let in this chart

$$
\mathrm{H}_{\mathrm{f}_{\mathrm{j}}}=\mathrm{V}=\left(\mathrm{V}^{1}, \ldots, \mathrm{~V}^{2 \mathrm{~N}}\right), \mathrm{H}_{\mathrm{f}_{\mathrm{K}}}=\mathrm{W}=\left(\mathrm{W}^{1}, \ldots, \mathrm{~W}^{2 \mathrm{~N}}\right)
$$

for some $1 \leq j, k \leq n$, and $T V: T M \longrightarrow T(T M)$ be a vector-field of a variational equation for V. Let $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{2 \mathrm{~N}}, \xi_{1}, \ldots, \xi_{2 \mathrm{~N}}\right.$) be coordinates on TQ. Then $\mathrm{TV}(\mathrm{x}, \xi)=\left(\mathrm{V}(\mathrm{x}), \sum \frac{\partial}{\partial \mathrm{x}_{\mathrm{e}}} \mathrm{V}(\mathrm{x}) \xi_{\mathrm{e}}\right)$ and the commutator [TV,tW] of the vector-fields TV, TW is equal to

$$
\begin{aligned}
& {[T V, T W]=\left(\sum\left(W^{k} \frac{\partial}{\partial x_{k}}-V^{k} \frac{\partial W}{\partial x_{k}}\right)\right.} \\
& \left.\sum\left(\frac{\partial^{2} V}{\partial x_{j} \partial x_{k}} \xi_{j} W^{k}+\frac{\partial V}{\partial x_{j}} \frac{\partial W^{j}}{\partial x_{k}} \xi_{k}-\frac{\partial^{2} W}{\partial x_{j} \partial x_{k}} \xi_{j} V^{k}-\frac{\partial W}{\partial x_{j}} \frac{\partial V^{j}}{\partial x_{k}} \xi_{k}\right)\right)
\end{aligned}
$$

The r.h.s. of the last equality is equal to $T[V, W]$. So

$$
[\mathrm{TV}, \mathrm{TW}]=\mathrm{T}[\mathrm{~V}, \mathrm{~W}]=\mathrm{TH}\left[\mathrm{f}_{\mathrm{j}}, \mathrm{f}_{\mathbf{k}}\right]
$$

and
because the commutation of vector-fields is a natural operation with respect to imbedding. By the assumption (2.8) $\mathrm{H}_{\left[\mathrm{f}_{\mathrm{j}} \mathrm{f}_{\mathrm{k}}\right]}(\mathrm{m})=\mathrm{o}(\operatorname{dist}(\mathrm{m}, ~ \mathscr{F}))$. So the r.h.s. in the last equality is equal to zero, the restrictions of vector-fields TV , TW on $\mathrm{T}_{g^{M}} \mathrm{M}$ commute and the lemma is proved.

Let us fix a point $\mathrm{q}_{0} \in \mathbb{Z}^{\mathrm{n}}, \mathrm{q}_{0}=0 \bmod 2 \pi \mathbb{Z}^{\mathrm{n}}$, and fix some analytic trivialization of the restriction of $(\mathrm{T} \mathscr{F})^{\perp}$ on $\mathrm{q}_{0} \times \mathrm{P}$,

$$
\begin{equation*}
\left.(\mathrm{T} \mathscr{F})^{\perp}\right|_{\mathrm{q}_{0} \times \mathrm{P}} \simeq \mathrm{P} \times \mathrm{E} \tag{2.9}
\end{equation*}
$$

For $p \in P$, let $\left(T \mathscr{F}_{\mathrm{p}}\right)^{\perp}$ be the restriction of $(\mathrm{T})^{\perp}$ on the torus $\mathrm{T}_{\mathrm{P}}^{\mathrm{n}}$. To prove the theorem, it is enough to trivialize the symplectic bundle ($\left.\mathrm{T} \mathscr{I}_{\mathrm{p}}\right)^{\perp}$ by a map which depends on p in an analytic way, and to check that the restriction of the flow $S_{t *}$ on $\left(T \mathscr{J}_{\mathrm{p}}\right)^{\perp}$ is of the form (2.2).

Let $\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right)$ be the usual basis of \mathbb{Z}^{n} and $\mathfrak{G}_{\mathbf{t}}^{\mathbf{j}}(\mathrm{q}, \mathrm{p})=\left(\mathrm{q}+\mathrm{t} \mathrm{e}_{\mathrm{j}}, \mathrm{p}\right)$. By Lemma 1 and assumption b) of the theorem we can see that there exists a nondegenerate analytic matrix $D_{i j}(p)$ such that

$$
\begin{equation*}
\left.\prod_{\ell=1}^{\mathrm{n}} \mathrm{~s}_{\mathrm{t} \mathrm{D}_{\mathrm{j} \ell}^{\ell}}\right|_{\left(\mathrm{T} \mathscr{S}_{\mathrm{p}}\right)^{\perp}}=\mathfrak{G}_{\mathrm{t}}^{\mathrm{j}} \forall \mathrm{j} \tag{2.10}
\end{equation*}
$$

(this is the first step from the classical proof of Liouville-Arnold theorem, see Arnold (1974), Moser, Zehnder (1980)). Let us denote by $\mathfrak{G}_{\mathfrak{t} *}^{\mathrm{j}}(\mathrm{p})$ the flow on $\left(\mathrm{T} \mathscr{I}_{\mathrm{p}}\right)^{\perp}$,

$$
\mathfrak{G}_{\mathfrak{t} *}^{\mathrm{j}}(\mathrm{p})=\prod_{\ell=1}^{\mathrm{n}} \mathrm{~S}_{\mathbf{t} \mathrm{D}_{\mathrm{je}}{ }^{\ell}}^{\ell}, \quad \mathrm{j}=1, \ldots, \mathrm{n} .
$$

These flows are well-defined by Lemma 1. By (2.9) the monodromy operators $\mathfrak{G}_{2 \pi^{*}}^{\mathrm{j}}$, $\mathrm{j}=1, \ldots, \mathrm{n}$, define linear symplectomoprhisms of $(\mathrm{T})_{\left(\mathrm{q}_{0}, \mathrm{p}\right)}^{\perp} \simeq \mathrm{E}$. By Lemma A1 (see Appendix)

$$
\begin{equation*}
\mathfrak{G}_{2 \pi \tau}^{\mathrm{j}}(\mathrm{p})=\mathrm{e}^{2 \pi \mathrm{~B}^{\mathrm{j}}(\mathrm{p})} \tag{2.11}
\end{equation*}
$$

Here B^{j} are some analytic on p linear Hamiltonian operators in the complexification $\mathrm{E}^{\mathrm{C}}=\mathrm{E} \otimes \mathbb{R}$ © of E (that is the matrix of $\mathrm{B}^{\mathbf{j}}$ in $\mathrm{E}^{\mathbf{C}}=\mathbb{C}_{\mathrm{y}_{+}}^{\mathbf{n}} \times \mathbb{C}_{\mathrm{y}_{-}}^{\mathbf{n}}$ is of a form $B^{j}=J_{B}{ }^{j(s)}$; here J is the matrix of the operator $J\left(y_{+}, y\right)=\left(-y_{-}, y_{+}\right)$and $B^{j(s)}$ is a symmetric matrix). As the operators $\mathfrak{G}_{2 \pi^{*}}^{\mathrm{j}}, \mathrm{j}=1, \ldots, \mathrm{n}$, commute, their logarithms $B^{j}(p)$ commute as well (these results, for example, from the representation (A3) for $\mathrm{B}^{\mathrm{j}}(\mathrm{p})$). Now we can trivialize the bundle $\left(\mathrm{T} \mathscr{S}_{\mathrm{p}}\right)^{\perp} \otimes \mathbb{C}$ with the help of a map

$$
\begin{gather*}
T T^{n} \times\{p\} \times E^{c} \longrightarrow\left(T \mathscr{G}_{p}\right)^{\perp} \otimes \mathbb{C}, \tag{2.12}\\
(q, p, \xi) \longmapsto \prod_{j=1}^{n} \mathscr{G}_{q_{j} *}^{j}(p)\left(0, p, \prod_{j=1}^{n} e^{-q_{j} B^{j}(p)} \xi\right)
\end{gather*}
$$

The definition of this map is correct because the image does not change if the vector $\left(q_{1}, \ldots, q_{n}\right)$ is replaced by ($q_{1}, \ldots, q_{j} \pm 2 \pi, \ldots, q_{n}$). It is symplectic because every map $\exp \tau B_{j}(\mathrm{p}): \mathrm{E}^{\mathrm{C}} \longrightarrow \mathrm{E}^{\mathrm{C}}$ and every flow $\mathcal{G}_{\mathfrak{t} *}^{\mathbf{j}}$ are symplectic. The map (2.12) depends on p in an analytic way because matrices $B^{j}(p)$ are analytic. Let us define a map Φ in (2.1) in such a way that $\left.\Phi\right|_{\mathbb{I}^{n} \times\{\mathrm{p}\} \times \mathrm{E}^{\mathrm{C}}}$ is equal to the map (2.12).

Let us write for brevity

From (2.10) we see that

$$
\begin{equation*}
\mathrm{S}_{\mathrm{t} *}^{1}=\mathrm{t} \mathrm{D}_{1}^{-} \circ \overrightarrow{\mathfrak{G}}_{*} \tag{2.13}
\end{equation*}
$$

here D_{1}^{-}is the first row of the inverse matrix $\mathrm{D}_{\mathrm{ij}}^{-1}$. So if under the trivialization (2.12) $\left(\mathrm{T} \mathscr{F}_{\mathrm{p}}\right)^{\perp} \otimes \mathbb{C} \exists \chi \simeq(\mathrm{q}, \mathrm{p}, \xi)$ and $\mathrm{S}_{\mathrm{t} *}^{1} \chi \simeq\left(\mathrm{q}_{1}, \xi_{1}\right)$, i.e. if

then $q_{1}=q+t D_{1}^{-}$and

$$
\xi_{1}=\mathrm{e}^{\left(\mathrm{q}+\mathrm{t} \mathrm{D}_{1}\right) \cdot \overrightarrow{\mathrm{B}}} T_{Y} \circ\left(\left(-\mathrm{t} \mathrm{D}_{1}^{-}-\mathrm{q}\right) \cdot \overrightarrow{\mathfrak{G}}_{*}\right) \circ\left(\mathrm{t} \mathrm{D}_{1}^{-} \cdot \overrightarrow{\mathfrak{G}}_{*}\right) \circ
$$

(here T_{Y} is a projection of $\left.\left(T \mathscr{F}_{\mathrm{p}}\right)^{\perp} \otimes \mathbb{C}\right)_{q_{0}} \simeq \mathbb{T}^{\mathbf{n}} \times \mathrm{Y}^{\mathbf{c}}$ on $\mathrm{Y}^{\mathbf{c}}$).

So (2.2) holds with $\mathrm{A}(\mathrm{p})=\mathrm{D}_{1}^{-}(\mathrm{p}) \cdot \overrightarrow{\mathrm{B}}(\mathrm{p})$ and the theorem is proved.

An "almost inverse" to Theorem 1 statement easily results from Proposition 2:

Proposition 3. If the NVE for H_{f} along \mathscr{S} is reducible, $\mathrm{p} \in \mathrm{P}$ and P_{0} is a small enough neighborhood of p in P , then in a neighborhood of $\mathscr{I}_{0}=\mathbf{T}^{\mathrm{n}} \times \mathrm{P}_{0}$. There are n analytic functions with the properties a), b).

To prove the statement it is enough to write the hamiltonian f in a form (2.5) and to choose $f_{1}=f$, and for $j \geq 2 \quad f_{j}(q, p, y)=f_{j}(p)$, where the vectors $\nabla f_{0}\left(p_{0}\right)$, $\nabla \mathrm{f}_{2}\left(\mathrm{p}_{0}\right), \ldots, \nabla \mathrm{f}_{\mathrm{n}}\left(\mathrm{p}_{0}\right)$ are linearly independent.

For the last proposition a natural question is whether the reduction of Theorem 1 can be done in the category of real bundles. This is true if in (2.11) the logarithms $B_{j}(p)$ of the monodromy operators can be constructed as real matrices. For Lemmas A1, A2 this is true if

$$
\begin{equation*}
\sigma\left(\mathcal{G}_{2 \pi^{*}}^{\mathrm{j}}\right) \cap(-\infty, 0]=\emptyset \forall \mathrm{j} \tag{2.14}
\end{equation*}
$$

($\sigma=$ spectrum) or if $\mathfrak{G}_{2 \pi *}^{\mathrm{j}}, \mathrm{j}=1, \ldots, \mathrm{n}$, are replaced by their squares. The last takes place if the tori $\mathrm{T}_{\mathrm{p}}^{\mathrm{n}}$ are replaced by their 2^{n}-sheets covering

$$
\begin{gathered}
-12- \\
T_{p}^{n} \longrightarrow T_{p}^{n}, q \longmapsto 2 q
\end{gathered}
$$

This covering induces a bundle (T $\mathscr{I})_{\text {ind }}^{\perp}$ with the induced flow $\left(\mathrm{S}_{\mathrm{t} *}\right)_{\text {ind }}$ in it.

Corollary 1. Under the assumptions of Theorem 1, the bundle (T $\mathscr{F}_{\text {) }}^{\perp}$ ind can be trivialized as a real bundle. For this trivialization the flow $\left(\mathrm{S}_{\mathrm{t} *}\right)_{\mathrm{ind}}$ is of a form (2.2).

To realize the first possibility let us mention that (2.13) holds if

$$
\begin{equation*}
\sigma\left(\mathbb{G}_{2 \pi^{*}}^{\mathrm{j}}\right) \in \mathrm{i} \mathbb{R} \quad \forall \mathrm{j} . \tag{2.15}
\end{equation*}
$$

Definition 3. An invariant manifold g is called linearly stable for a vector-field H_{f}, if all the Liapunov exponents of every solution of H_{f} on g are equal to zero.

Lemma 2. Under the conditions of Theorem 1 the assumption (2.15) holds if and only if the invariant manifold \mathcal{G} is linearly stable for every vector-field $\mathrm{H}_{\mathrm{f}_{\mathrm{j}}}$ $(\mathrm{j}=1, \ldots, \mathrm{n})$.

Proof. Let us suppose that \mathscr{G} is linearly stable $\forall \mathrm{H}_{\mathrm{f}_{\mathrm{j}}}, \mathrm{j}=1, \ldots, \mathrm{n}$. Then by the definition of the flows $\mathscr{G}_{\mathfrak{t} *}^{\mathrm{j}}(\mathrm{p})$ for every $\epsilon>0$ there exists C_{ϵ} such that

$$
\begin{equation*}
\left\|\mathcal{S}_{ \pm 2 \pi n}^{j}(p)\right\| \leq C_{\epsilon} e^{\epsilon \mathrm{n}} \tag{2.16}
\end{equation*}
$$

and so (2.15) is true.

Let us suppose that (2.15) holds. Then (2.16) is true $\forall \epsilon>0$ with some C_{ϵ}. By
(2.13), (2.16) we see that $\left\|S_{t *}^{1}\right\| \leq C_{\epsilon}^{1} e^{\epsilon n}$ and the same is true for all $S_{t *}^{j}$. So \mathscr{g} is linearly stable for all $H_{f_{j}}$.

Theorem 2. Suppose the invariant manifold g is linearly stable for H_{f} and for some $\mathrm{p}_{0} \in \mathrm{P} \quad \mathrm{H}_{\mathrm{f}}\left(\mathrm{p}_{0}\right) \neq 0$. Then the NVE of H_{f} along $\mathscr{I}_{0}=\mathbf{T}^{\mathrm{n}} \times \mathrm{P}_{0}\left(\mathrm{P}_{0}\right.$ is a small enough neighborhood of p_{0} in P) is reducible if and only if there are analytic functions f_{1}, \ldots, f_{n} such that $f_{1}=f$ and the assumptions $\left.a\right)$, b) of Theorem 1 are fulfilled for $\mathscr{F}=\mathscr{I}_{0}$, together with
c) \mathscr{F}_{0} is linearly stable for all $H_{f_{j}}, j=1, \ldots, n$.

In such a case the spectrum of the operator J A8p) is pure imaginary.

Proof. If the NVE is reducible then we can construct the functions f_{q}, \ldots, f_{n} as in Proposition 3. The manifold \mathscr{F}_{0} is linearly stable for all $\mathrm{H}_{\mathrm{f}_{\mathrm{j}}}$ trivially.

Suppose now that the assumptions a)-c) are fulfilled. Then by Lemma 2 the assumption (2.15) holds and by Lemma A1 the matrices $B_{j}(p)$ (and, so, the trivialization Φ) can be real choosen. The last statement of the theorem is trivial because a system of the form (2.2) is linearly stable if and only if the spectrum of $J A(p)$ is pure imaginary.

Remarks. 2) Propositions 1, 2 and Theorems 1, 2 have direct smooth versions with the same proofs.
3) Our proof of Theorems 1,2 (but not of Lemmas A1, A2) does not use the finite dimensionality of the fibers of the bundle ($\mathrm{T} \mathscr{g}^{\perp}$. If in (2.9) $\operatorname{dim} \mathrm{A}=\infty$ and we have sufficient spectral information on the flows $S_{t *}^{j}$ and can construct "regular" logarithms $B_{j}(\mathrm{p})$ of the monodromy operators $\mathfrak{B}_{2 \pi^{*}}^{j}($ see (2.11)), then our proof is valid.
4) The reducibility of the NVE along \mathscr{I}_{0} was proved via its reducibility along the tori $\{(q, p) \in \mathscr{F} \mid p=$ const $\}$. So the proof can be used for proving the reducibility of a linear Hamiltonian equation

$$
\dot{\mathrm{q}}=\omega, \dot{\mathrm{y}}=\mathrm{J} A(\mathrm{q}) \mathrm{y}\left(\mathrm{q} \in \mathbf{T}^{\mathrm{n}}, \mathrm{y} \in \mathrm{Y}\right)
$$

to a constant-coefficient Hamiltonian equation $\dot{\mathbf{y}}=\mathrm{J} \boldsymbol{\mathbb { A }} \mathbf{y}$ by means of symplectic transformation $\mathrm{y}=\mathrm{C}(\mathrm{q}) \mathrm{y}$. This reduction is possible if in the phase space $\mathbb{T}^{\mathbf{n}} \times \mathbb{R}^{\mathbb{n}} \times Y$ there are functions $\mathrm{f}_{\mathrm{j}}(\mathrm{q}, \mathrm{p}, \mathrm{y})(\mathrm{j}=1,2, \ldots, \mathrm{n})$ of the form $f_{j}=\omega_{j} \cdot p+\frac{1}{2}<A_{j}(q) y, y>$ such that $\omega_{1}=\omega, A_{1}=A, \operatorname{det}\left(\omega_{1}^{\mathrm{t}}, \omega_{2}^{\mathrm{t}}, \ldots, \omega_{\mathrm{n}}^{\mathrm{t}}\right) \neq 0$ and $\forall \mathrm{j}, \mathrm{k}$

$$
\frac{1}{2}\left(\omega_{j} \cdot \nabla\right) A_{k}(q)-\frac{1}{2}\left(\omega_{k} \cdot \nabla\right) A_{j}(q)+A_{k}(q) J A_{j}(q)-A_{j}(q) J A_{k}(q) \equiv 0
$$

5) In the special case $n=1$ we need no "infinitesimal integrals" other than $\mathrm{f}_{1}=\mathrm{f}$, and the assumptions a), b) of Theorem 1 are fulfilled in a trivial way. For $\mathrm{n}=1$ Theorem $1+$ Corollary 1 coincide with the Floquet theorem (see Arnold, Givental (1985)). For a less trivial example, see § 4 below.

3. Elliptic case.

Definition 4. The invariant manifold \mathscr{I} is called weakly elliptic if the NVE of H_{f} along \mathscr{g} is reducible and operator $\mathrm{J} \mathrm{A}(\mathrm{p})$ in (2.2) has pure imaginary spectrum $\left\{ \pm \mathrm{i} \lambda_{\mathrm{j}}(\mathrm{p})\right\} . \mathscr{I}$ is called elliptic if it is weakly elliptic and operator $\mathrm{JA}(\mathrm{p})$ is semisimple (i.e. is diagonal in some complex symplectic basis) $\forall \mathrm{p} \in \mathrm{P}$.

One can treat Theorem 2 as a weak ellipticity criterion.
Clearly, submanifold g is elliptic if it is weakly elliptic and $\lambda_{j}(p) \neq \lambda_{k}(p)$ for $\mathrm{j} \neq \mathrm{k}$.

Remark 6. Finite-dimensional elliptic invariant submanifold of infinite codimension appear in the study of nonlinear partial differential equations which are integrable in terms of theta-functions. See Kuksin (1989), § 4.

For an elliptic invariant submanifold \mathscr{G} the spectrum $\left\{ \pm \mathrm{i} \lambda_{j}(\mathrm{p})\right\}$ is not defined in an unique way:

Proposition 4. Let the submanifold \mathscr{G} is elliptic and the flow $S_{\mathfrak{t}} \mid \mathscr{G}$ is nondegenerate:

$$
\begin{equation*}
\operatorname{det} \partial \omega \mid \partial \mathrm{p} \neq 0, \omega(\mathrm{p})=\nabla \mathrm{f}_{0}(\mathrm{p}) \tag{3.1}
\end{equation*}
$$

Let us consider some another trivialisation of $S_{t *}$ with Φ^{\prime} and A^{\prime} in (2.1), (2.2) instead of Φ and A. Let $\sigma\left(\mathrm{J} \mathrm{A}^{\prime}(\mathrm{p})\right)=\left\{ \pm \mathrm{i} \mu_{\mathrm{j}}(\mathrm{p})\right\}$. Then for every j there exist $\mathrm{k}=\mathrm{k}(\mathrm{j}), \mathrm{s}=\mathrm{s}(\mathrm{j}) \in \mathbb{Z}^{\mathrm{n}}$ such that

$$
\begin{equation*}
\mu_{j}(p)=\lambda_{\mathbf{k}}(\mathrm{p})+\mathrm{s} \cdot \omega(\mathrm{p}) \quad \forall \mathrm{p} \tag{3.2}
\end{equation*}
$$

Moreover, every n numbers of the form $\mu_{j}(p)=\lambda_{j}(p)+s_{j}(p) \cdot \omega(p), s_{j} \in \mathbb{Z}^{n}$, may be achieved as a spectrum of a Hamiltonian operator $\mathrm{J} \mathrm{A}^{\prime}(\mathrm{p})$ for some trivialisation Φ^{\prime}.

Proof: Let $\left\{\varphi_{\mathrm{j}}^{ \pm}(\mathrm{p})\right\}, \overline{\varphi_{\mathrm{j}}}(\mathrm{p})=\varphi_{\mathrm{j}}^{+}(\mathrm{p})$, be symplectic basic of Y^{C},
$\mathrm{JA}(\mathrm{p}) \varphi_{\mathrm{j}}^{ \pm}= \pm \mathrm{i} \lambda_{\mathrm{j}}(\mathrm{p}) \varphi_{\mathrm{j}}^{ \pm}$. Then the mapping $\boldsymbol{\Phi}^{\prime}: \mathbf{T}^{\mathrm{n}} \times \mathrm{P} \times \mathrm{Y} \longrightarrow\left(\mathrm{T}_{g}\right)^{\perp}$, which maps $\left(\mathrm{q}, \mathrm{p}, \varphi_{\mathrm{j}}^{ \pm}\right)$to $\exp \left(\mp \mathrm{s}_{\mathbf{j}}, \mathrm{a}\right) \varphi_{\mathrm{j}}^{ \pm}$, transforms the flow $\mathrm{S}_{\mathrm{t} *}$ into a flow of an equation (2.2) with an operator $A^{\prime}(p)$ such that

$$
\mathrm{JA}^{\prime}(\mathrm{p}) \varphi_{\mathrm{j}}^{ \pm}= \pm \mathrm{i}\left(\mathrm{~S}_{\mathrm{j}} \cdot \omega(\mathrm{p})+\lambda_{\mathrm{j}}(\mathrm{p})\right) \varphi_{\mathrm{j}}^{ \pm}
$$

Thus the second statement is proved.

To prove the first one let us mention that $\Phi^{-1} \circ \Phi^{\prime}\left(\mathrm{q}+\omega \mathrm{t}, \mathrm{p}, \mathrm{e}^{\mathrm{i} \mu \mathrm{j}}{ }^{\mathrm{t}} \varphi_{\mathrm{j}}^{\prime+}\right)$ is a solution of (2.2) (here $\mathrm{J} \mathrm{A}{ }^{\prime}{\varphi_{\mathrm{j}}^{\prime}}^{ \pm}= \pm \mathrm{i} \mu_{\mathrm{j}}{\varphi_{\mathrm{j}}^{\prime}}^{ \pm}$). Let $\Phi^{-1} \circ \Phi^{\prime}\left(\mathrm{q}, \mathrm{p}, \varphi_{\mathrm{j}}^{\prime \pm}\right)=\sum \mathrm{x}_{\mathrm{k}}^{ \pm}(\mathrm{q}, \mathrm{p}) \varphi_{\mathrm{k}}^{ \pm}$. Then the solution may be rewritten as $\exp \left(\mathrm{i} \mu_{\mathrm{j}} \mathrm{t}\right) \sum_{\mathrm{x}_{\mathbf{k}}}^{ \pm}(\mathrm{q}+\omega \mathrm{t}, \mathrm{p}) \varphi_{\mathbf{k}}^{ \pm}$. So

$$
\begin{equation*}
\mathrm{i} \mu_{\mathrm{j}} \mathrm{x}_{\mathrm{k}}^{ \pm}+\frac{\partial}{\partial \omega} \mathrm{x}_{\mathrm{k}}^{ \pm}= \pm \lambda_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}^{ \pm} \forall \mathrm{k} \tag{3.3}
\end{equation*}
$$

Among the functions $x_{k}^{ \pm}$there are nonzero ones. Let us suppose that $x_{k_{0}}^{+}(q, p) \neq 0$. For (3.1) the components of the vector ($\omega_{1}, \ldots, \omega_{\mathrm{n}}$) are rationally independent for almost all $\mathrm{p} \in \mathrm{P}$. Then by (3.3) $\mathrm{x}_{\mathrm{k}_{0}}^{+}=\mathrm{C}(\mathrm{p}) \exp$ i $S \cdot \mathrm{q}$ for some $\mathrm{s} \in \mathbb{Z}^{\mathrm{n}}$ and $\mu_{\mathrm{j}}=\lambda_{\mathbf{k}_{0}}-\boldsymbol{f} \cdot \omega$. Thus the first assertion is proved, too.

Let us consider a family of subgroups of additive groupe \mathbb{I} of a form $\omega(\mathrm{p}) \cdot \mathbb{Z}^{\mathrm{n}}$, $p \in P$, and corresponding factor groups $G(p)=\mathbb{I} / \omega(p) \cdot \mathbb{Z}^{n}$. For a weakly elliptoc submanifold \mathscr{F} let us define elements $\Lambda_{1}(p), \ldots, \Lambda_{n}(p)$ of $G(p)$ as follows:

$$
\begin{equation*}
\Lambda_{j}(p)=\lambda_{j}(p)+\omega(p) \cdot \mathbb{Z}^{n} \in G(p) \tag{3.4}
\end{equation*}
$$

The following definition is motivated by Proposition 4:

Definition 5. If g is an weakly elliptic invariant submanifold, then the depending on $p \in P$ set

$$
\Lambda(p)=\left\{\Lambda_{1}(p), \ldots, \Lambda_{n}(p)\right\} \subset G(p)
$$

is called spectrum of \mathscr{S}.

The important reason to prove the reducibility of the NVE is Proposition 2 which provide a hamiltonian $\mathrm{f}(\mathrm{q}, \mathrm{p}, \mathrm{y})$ with the useful normal form (2.5). For nondegenerate hamiltonians of the form (2.5) (see the condition (3.5) below) one can prove that the family $g=\Sigma_{0}\left(\mathbf{T}^{n} \times P\right)$ of invariant tori $\Sigma_{0}\left(\mathbf{T}^{n} \times\{p\}\right), p \in P$, is KAM-stable in the following sense:

Definition 6. A family of invariant tori $\mathscr{I}=\Sigma_{0}\left(\mathbf{T}^{\mathrm{n}} \times \mathrm{P}\right)$ of the Hamiltonian vector-field H_{f} is called KAM-stable if for an arbitrary analytic function \mathcal{f} and for ϵ small enough, the vector-field $\mathrm{H}_{\mathrm{f}+\epsilon \mathrm{f}}$ has an invariant set $\mathcal{J}_{\epsilon}=\Sigma_{\epsilon}\left(\mathrm{T}^{\mathrm{n}} \times \mathrm{P}_{\epsilon}\right)$. Here

1) P_{ϵ} is a Cantor-set in P and

$$
\operatorname{mes}\left(\mathrm{P} \backslash \mathrm{P}_{\epsilon}\right) \longrightarrow 0(\epsilon \longrightarrow 0)
$$

2) the map $\Sigma_{\epsilon}: \mathbf{T}^{\mathrm{n}} \times \mathrm{P}_{\epsilon} \longrightarrow \mathrm{M}$ is Lipschitz and it is ϵ-close to $\left.\Sigma_{0}\right|_{\mathbb{T}^{n} \times P_{\epsilon}}$;
3) the tori $\Sigma_{\epsilon}\left(\mathbb{T}^{\mathrm{n}} \times\{\mathrm{p}\}\right), \mathrm{p} \in \mathrm{P}_{\epsilon}$, are invariant for the vector-field $\mathrm{H}_{\mathrm{f}+\epsilon \mathcal{T}}$.

To prove the KAM-stability one has to apply a theorem on perturbation of a linear system (see Eliasson (1988), Kuksin (1989), Pöschel (1989)) to the vector-field H_{f} with f in the form (2.5) after a simple space-dilation (see Kuksin (1989), § 1). In such a way we get the following result:

Theorem 3. Suppose the invariant manifold \mathscr{F} is weakly elliptic for the NVE of H_{f} and for the spectrum $\left\{\Lambda_{j}(p) \mid j=1, \ldots, n\right\}$ of NVE we have:

$$
\begin{equation*}
\Lambda_{j}(\mathrm{p}) \not \equiv 0 \quad \forall \mathrm{j}, \quad \Lambda_{\mathrm{j}}(\mathrm{p}) \neq \Lambda_{\mathrm{k}}(\mathrm{p}) \forall \mathrm{j} \neq \mathrm{k} \tag{3.5}
\end{equation*}
$$

Then A is KAM-stable.

Remark 7. There is a natural smooth version of Theorem 3. In order to prove it one has to write down a smooth version of perturbation theorem for lower-dimensional invariant tori using usual smoothing techniques of J. Moser. Clearly it is possible but this work still has not been done.

Remark 8. In order to prove KAM-stability of g via a smooth version of the arguments (see Remark 6) it is enough to prove "KAM-reducibility" of NVE. That is, for every $\delta>0$ we must be able to find a smooth trivialisation (2.1) such that inthe equation (2.2) the matrix A8p) does not depend on q if p lies out of some Cantor set of measure δ.

Remark 9. In Johnson, Sell (1981) the hyperbolic situation was considered. It was proved that. if normal bundle $(\mathrm{T} \mathscr{F})^{\perp}$ is trivial and the flow $\mathrm{S}_{\mathrm{t} *}$ has full Sacker-Sell spectrum then NVE is KAM-reducible and g as a family of "doubled tori" is KAM-stable.

4. Example.

Let $\mathrm{N}=\mathrm{n}+1$ and suppose the symplectic Riemann manifold M is polarizable. Then the bundles TM and $\mathrm{T} \mathscr{J}$ are trivial and so the bundle ($\mathrm{T} \mathscr{F})^{\perp}$ is also trivial. This results from the fact that the symplectic bundles $\mathrm{TM}, \mathrm{T} \boldsymbol{\mathscr { S }},(\mathrm{T})^{\perp}$ can be given complex structures (see Arnold (1978), Arnold, Givental (1985)) and that a onedimensional complex bundle which is a factor-bundle of a trivial complex bundle is trivial (see Hirzebruch (1966)). So by the Proposition 1, in a neighborhood of 9 in M there are symplectic coordinates (q, p, y) ($q \in \mathbb{T}^{\mathbf{n}}, p \in P \subset \mathbb{R}^{n}, y=\left(y_{+}, y\right) \in 0 \subset \mathbb{R}^{2}$) and $\mathscr{S}=\{\mathrm{y}=0\}$. In this coordinates the hamiltonians $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}$ we are looking for, can be written in the form

$$
f_{j}(q, p, y)=f_{j}^{0}(p)+\frac{1}{2}<A_{j}(q, p) y, y>+O\left(|y|^{3}\right)
$$

So $\left[f_{j}, f_{k}\right]=\left\langle\mathfrak{A}_{j k}(q, p) y, y>+O\left(|y|^{3}\right)\right.$,

$$
\mathfrak{A}_{j k}=\frac{1}{2}\left(\nabla_{p} f_{j}^{0} \cdot \nabla_{q} A_{k}-\nabla_{p} f_{k}^{0} \cdot \nabla_{q} A_{j}\right)+A_{k} J A_{j}-A_{j} J A_{k} .
$$

Let us denote

$$
\begin{aligned}
& \nabla_{\mathrm{p}} \mathrm{f}_{\mathrm{j}}^{0}=\omega_{\mathrm{j}}(\mathrm{p})=\left(\omega_{\mathrm{j}, 1}, \ldots, \omega_{\mathrm{j}, \mathrm{n}}\right) \in \mathbb{R}^{\mathbf{n}}, \\
& \mathfrak{A}_{\mathrm{j}}(\mathrm{p})=\mathrm{J} A_{\mathrm{j}}(\mathrm{p}) \in \mathrm{s} \ell(2)=s \ell(2, \mathbb{R})
\end{aligned}
$$

The assumptions of Theorem 1 are fulfilled if we can construct the functions
$\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}$ and the matrices $\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{\mathrm{n}} \in \operatorname{s\ell (2)}$ in such a way that $\mathrm{f}_{1}=\mathrm{f}_{0}$ and $\mathfrak{A}_{1}=\mathrm{J} A_{0}$ ($\mathrm{f}_{0}, \mathfrak{Z}_{0}$ are given), for every $\mathrm{p} \in \mathrm{P}$ the vectors $\omega_{1}(\mathrm{p}), \ldots, \omega_{\mathrm{n}}(\mathrm{p})$ span \mathbb{R}^{n}, and

$$
\begin{gather*}
\mathrm{J} \mathfrak{A}_{j k} \equiv\left(\omega_{j} \cdot \nabla_{q}\right) \mathfrak{A}_{k}-\left(\omega_{k} \cdot \nabla_{q}\right) \mathfrak{A}_{j}+\left[\mathfrak{A}_{\mathbf{k}}, \mathfrak{A}_{j}\right] \equiv 0 . \tag{4.1}\\
\forall \mathrm{j}, \mathbf{k}=1, \ldots, \mathbf{n} .
\end{gather*}
$$

Let us suppose that Hess $\mathrm{f}_{0}\left(\mathrm{P}_{\mathrm{c}}\right) \neq 0$ and, so, near p_{0} the map $\mathrm{p} \longmapsto \omega=\nabla \mathrm{f}_{0}(\mathrm{p})$ is invertible. Then to prove KAM-reducibility of NVE (see $\mathrm{Re}-$ mark 8), for Remark 4 we have to construct smooth vectors $\omega_{j}=I_{j}(i)$ and smooth matrices $\mathscr{A}_{j}(\mathrm{q}, \omega)(\mathrm{j}=2, \ldots, \mathrm{n})$ which solve equations (4.1) with $\omega_{1}=\omega$, $\mathfrak{A}_{1}=\mathfrak{A}_{1}(\mathrm{q}, \mathrm{p}), \nabla \mathrm{f}_{0}(\mathrm{p})=\omega$, for ω out of a set of small measure δ in such a way that

$$
\begin{equation*}
\operatorname{det}\left(\omega_{1}^{\mathbf{t}}, \ldots, \omega_{\mathbf{n}}^{\mathbf{t}}\right) \neq 0 \tag{4.2}
\end{equation*}
$$

In particular, if $\mathrm{n}=2$, then we have to find a vector ω_{2} and a matrix $\mathscr{A}_{2}(q) \in \operatorname{s\ell }(2)$ such that

$$
\begin{gather*}
\left(\omega_{1} \cdot \nabla_{\mathrm{q}}\right) \mathfrak{A}_{2}-\left(\omega_{2} \cdot \nabla_{\mathrm{q}}\right) \mathfrak{A}_{1}+\left[\mathfrak{A}_{2}, \mathfrak{A}_{1}\right]=0 \tag{4.3}\\
\operatorname{det}\left(\omega_{1}^{\mathbf{t}}, \omega_{2}^{\mathbf{t}}\right) \neq 0
\end{gather*}
$$

(the last relation excludes the trivial solution $\mathfrak{A}_{2}=\lambda \mathfrak{A}_{1}, \omega_{2}=\lambda \omega_{1}$).
The equation (4.3) is the equation of zero curvature (see Faddeev, Takhtajan (1987)) with non-standard periodicity conditions (that is, the periodicity is not with respect to the directions ω_{1}, ω_{2}, but to some other directions). Well-known gauge
transformations

$$
\begin{aligned}
& \mathfrak{A}_{2} \longrightarrow\left(\omega_{2} \cdot \nabla_{\mathrm{q}}\right) \mathrm{G} \mathrm{G}^{-1}+\mathrm{G} \mathfrak{A}_{2} \mathrm{G}^{-1} \\
& \mathfrak{A}_{1} \longrightarrow\left(\omega_{1} \cdot \nabla_{\mathrm{q}}\right) \mathrm{G} \mathrm{G}^{-1}+\mathrm{G} \mathfrak{A}_{1} \mathrm{G}^{-1}
\end{aligned}
$$

($\mathrm{G}=\mathrm{G}(\mathrm{q})$ is an analytic symplectic matrix) transforms solutions of (4.3) into new ones. It provides a means to construct new solutions of (4.3) from the trivial ones.

Clearly, the equation (4.3) cannot be solved for arbitrary analytic $\mathfrak{A}_{1}(q) \in s l(2)$ for all $\omega_{1} \in \nabla f_{1}^{0}(\mathrm{P})$ because some NVE with $\mathrm{N}=\mathrm{n}+1$ are not reducible (at least for some Liouvilleau frequencies ω_{1}, see Johnson (1979), Herman (1983)). Nevertheless we have the following

Conjecture. If the matrix $\mathfrak{A}_{1}(\mathrm{q})$ is analytic then $\forall \delta>0$ there exist a smooth matrix \mathfrak{A}_{2} and a smooth vector ω_{2} which solve (4.3) fro ω_{1} out of some set of measure δ.

If it is true then NVE is KAM-reducible and \mathcal{F} is KAM-stable (see Remark 8).

Appendix. On logarithms of analytic symplectic matrices.

Let $C_{p}, p \in P$, be a symplectic matrix of order $2 m$ analytic on p. Let for some $\mathrm{p}_{0} \in \mathrm{P}$ the matrix $\mathrm{C}_{\mathrm{p}_{0}}$ be reversible.

Lemma A1. There exist a neighborhood P_{0} of p_{0} and an analytic complex ma-
trix $B_{p}, p \in P_{0}$, which is a branch of $L_{n} C_{p}$:

$$
\exp B_{p}=C_{p}
$$

(A1)

The matrix is Hamiltonian:

$$
\begin{equation*}
\left(\mathrm{JB}_{\mathrm{p}}\right)=\left(\mathrm{JB}_{\mathrm{p}}\right)^{\mathrm{t}} \tag{A2}
\end{equation*}
$$

and may be choosen real if the spectrum $\sigma\left(\mathrm{C}_{\mathrm{p}_{0}}\right)$ contains no real negative points.

Proof. As $\sigma\left(\mathrm{C}_{\mathrm{p}_{0}}\right) \not \not \rho 0$, there exists a contour $\Gamma \subset \mathbb{C}$ such that $\sigma\left(\mathrm{C}_{\mathrm{p}_{0}}\right)$ lies inside Γ and 0 lies outside Γ. The same is true for $\sigma\left(\mathrm{C}_{\mathrm{p}}\right), \mathrm{p} \in \mathrm{P}_{0}$ if P_{0} is small enough. For $\lambda \in \Gamma$ let us fix some branch $\ln \lambda$ of $\operatorname{Ln} \lambda$ and set

$$
\begin{equation*}
\mathrm{B}_{\mathrm{p}}=\frac{1}{2 \pi \mathrm{I}} \oint_{\Gamma} \frac{\ln \lambda}{\mathrm{C}_{\mathrm{p}}-\lambda} \mathrm{d} \lambda \tag{A3}
\end{equation*}
$$

Then $\exp B_{p}=C_{p}$ (see Dunford, Schwartz (1958), Ch. VII) and so (A1) is proved. To prove (A2) let us mention that

1) the operator B_{p} in (A3) depends on C_{p} in a continuous way;
2) single-spectrum symplectic matrices are dense among symplectic matrices;
3) single-spectrum symplectic matrix is diagonal in some symplectic basis and for it (A2) is evident.

So it remains to prove the last statement. It is well-known (Arnold (1974),

Arnold, Givental (1985)) that for an invertible symplectic matrix C, the spectrum $\sigma(\mathrm{C})$ consists of pairs of points $\lambda, \lambda^{-1}(\lambda \in \mathbb{R})$; pairs of points $\lambda, \lambda^{-}(|\lambda|=1)$ and quadruples $\lambda, \bar{\lambda}, \lambda^{-1}, \lambda^{1}(\lambda \in \mathbb{C} \backslash \mathbb{R},|\lambda| \neq 1)$. So in the present situation $\sigma\left(\mathrm{C}_{\mathrm{p}_{0}}\right)=\mathrm{S}_{1} \cup\left(\mathrm{~S}_{2} \cup \mathrm{~S}_{2}\right)$, where $\mathrm{S}_{1}=\left\{\lambda_{\mathrm{j}}\right\} \subset \mathbb{R}_{+}, \mathrm{S}_{2}=\left\{\mu_{\mathrm{j}}\right\} \subset\{\lambda \mid \operatorname{Im} \lambda>0\}$. Let us take a (nonconnected) contour Γ_{0} of the form $\Gamma_{0}=\underset{\lambda_{j}}{\bigcup} \Gamma\left(\lambda_{\mathrm{j}}\right){\underset{\mu}{\mathrm{j}}}^{\mathrm{U}}\left(\Gamma\left(\mu_{0}\right) U-\Gamma\left(\mu_{\mathrm{j}}\right)\right)$. Here $\Gamma\left(\lambda_{j}\right), \Gamma\left(\mu_{j}\right)$ are small circles centered at λ_{j}, μ_{j} (thus $\left.\Gamma\left(\lambda_{j}\right)=-\Gamma\left(\lambda_{j}\right) \forall \lambda_{j}\right)$. We can do it in such a way that $\Gamma_{0} \cap(-\infty, 0]=\phi$, and so we can take for $\ell \ln z$ a branch of $\operatorname{Ln} z$ which is real for $\lambda \in \mathbb{R}_{+}$. With such a choice of Γ in (A3) one can see in a trivial way that $\mathrm{B}_{\mathrm{p}}=\mathrm{B}_{\mathrm{p}}$.

Lemma A2. Under the assumptions of Lemma A1 there exists an analytic real Hamiltonian matrix $\tilde{B}_{p}, p \in P_{0}$ such that $\exp \tilde{B}_{p}=C_{p}^{2}, p \in P_{c}$.

Proof. Let $\tilde{\Gamma} \in \mathbb{C}$ be a contour containing all negative eigenvalues of C_{p} and no other eigenvalues. Then for $p \in P_{0}$ (P_{0} is small enough there exists a smooth splitting $\mathbb{R}^{2 \mathrm{~m}}$ into two invariant for C_{p} symplectic subspaces, $\mathbb{R}^{2 m}=E_{1} \oplus E_{2}$, such taht the spectrum of $\left.\mathrm{C}_{\mathrm{p}}\right|_{\mathrm{E}_{1}}$ is negative and lies inside Γ and the spectrum of $\left.\mathrm{C}_{\mathrm{p}}\right|_{\mathrm{E}_{2}}$ lies outside $\tilde{\Gamma}$ and out of $(-\infty, 0]$. Then by Lemma $\left.A 1 C_{p}\right|_{E_{2}}=\exp B_{p}^{2}$ for some real Hamiltonian operator $B_{p}^{(2)}$, and $\left(\left.C_{p}\right|_{E_{2}}=\exp B_{p}^{(2)}\right.$ for some real Hamiltonian operator $\mathrm{B}_{\mathrm{p}}^{(2)}$, and $\left(\mathrm{C}_{\mathrm{p}} \mid \mathrm{E}_{1}\right)^{2}=\exp \mathrm{B}_{\mathrm{p}}^{(1)}$. This operator has all the properties we need.

Acknowledgement. I am grateful to Serge Ochanine for useful discussions and to the Max-Planck-Gesellschaft for financial support.

References

Arnold, V.I. (1974). Mathematical methods in classical mechanic, Nauka, Moscow. Emglish transl. Springer-Verlag, 1978.

Arnold, V.I. Givental, A.B. (1985). Symplectic geometry, Sovremennye Problem Mat., Vol. 4, VINITI, Moscow. English transl. in Encycl. of Math. Sci., Vol. 4, Springer-Verlag, 1990.

Dunford, N., Schwartz, J.T. (1958). Linear operators, part 1, Interscience Publ., New York.

Eliasson, L.H. (1988). Perturbations of stable invariant tori for hamiltonian systems. Ann. Sc. Norm. Sup. Pisa 53, 115-147.

Faddeev, L.D., Takhtajan L.A. (1987). Hamiltonian methods in the theory of solitons, Springer-Verlag.

Herman, M.R. (1983). Une methode pour minores les exposants de Liapouniv et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2. Comment. Mathl Helv. 58, 453-502.

Hirzebruch, F. (1966). Topological methods in algebraic geometry, 3-d ed, Springer-Verlag.

Johnson, R.A. (1979). Measurable subbundles in linear skew-product flows. Illinois J. Math. 23, 183-198.

Johnson, R.A. Sell, G.R. (1981). Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems. J. Dif. Eq. 41, 262-288.

Kuksin, S.B. (1989). Perturbation theory for quasiperiodic solutions of infinite-dimensional Hamiltonian systems, and its application to the Konteweg-de Vries equation. Math. USSR Sbornik 64, 397-413.

Moser, J. Zehnder, E. (1980). Lecture notes on Hamiltonian systems and celestial mechanics. New York Univ.

Pöschel, J. (1989). On elliptic lower dimensional tori on Hamiltonian systems. Math. Z. 202, 559-608.

Weinstein, A. (1977). Lectures on symplectic manifolds. Reg. Conf. Ser. Math. 29, American Math. Society, Providence.

