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EIGENVALUES OF FROBENIUS ENDOMORPHISM OF

ABELIAN VARIETIES

YURI G. ZARHIN

Abstract. In this paper we discuss multiplicative relations between eigenval-

ues of Frobenius endomorphism of abelian varieties of small dimension over

finite fields.

1. Introduction

There was a growing interest recently, in the study of multiplicative relations
between eigenvalues of Frobenius endomorphism FrX of an abelian varietiy X over
a finite field k. e.g, see [2, 1]. That is why I decided to return to this topic after
a rather long break. Our main tool, as in [14, 15, 16, 5, 17], is the multiplicative
group Γ(X, k) generated by the set of RX of eigenvalues of FrX . Assuming that k
is sufficiently large with respect to X, i.e., Γ(X, k) does not contain nontrivial roots
of unity, we say that X is neat (see [17, Sect. 3] and Sect. 2 below) if it enjoys the
following property.

If e : RX → Z is an integer-valued function such that∏
α∈RX

(
q−1α2

)e(α)
= 1

then e(α) = e(q/α) for all α ∈ RX . Here q is the number of elements of k. (Recall
that α 7→ q/α is a permutation of RX .)

Our main result is the following statement.

Theorem 1.1. Suppose that 1 ≤ dim(X) ≤ 3 and k is sufficiently large with respect
to X. Then X is not neat if and only it enjoys all of the following three properties.

(i) X is abslolutely simple, all endomorphisms of X are defined over k and its
endomorphism algebra End0(X) is a sextic CM field that is generated by
FrX .

(ii) End0(X) contains an imaginary quadratic subfield B that enjoys the fol-
lowing property. If

Norm : End0(X)→ B

is the norm map corresponding to the cubic field extension End0(X)/B then

Norm
(
q−1Fr2X

)
= 1.

(iii) X is almost ordinary, i.e. the set of slopes of its Newton polygon is {0, 1/2, 1}
and length(1/2) = 2.

This work was partially supported by the Simons Foundation (grant #246625 to Yuri Zarkhin).
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2 YURI G. ZARHIN

Remark 1.2. Let X and B satisfy the conditions (i)-(iii) of Theorem 1.1. Let
us fix an embedding B ⊂ C of the imaginary quadratic field B into the field C of
complex numbers. Let

σ1, σ2, σ3 : End0(X) ↪→ C
the distinct embeddings of sextic End0(X) to C that act as the identity map on B.
Let us put

α1 = σ1(FrX), α2 = σ2(FrX), α3 = σ3(FrX).

Then α1, α2, α3 are distinct eigenvalues of FrX and

q3 = (α1α2α3)2.

Remark 1.3. See [17, Sect. 4] for examples of not neat abelian threefolds con-
structed by Hendrik Lenstra.

Acknowledgements. I am grateful to Hendrik Lenstra and Frans Oort for
helpful discussions and to Igor Shparlinski for stimulating questions. This work
was started during my stay at the Max-Planck-Institut für Mathematik (Bonn) in
September 2013: I am grateful to the Institute for the hospitality and support.

2. Ranks of neat abelian varieties

As usual, ` is a prime different from p, N,Z,Z`,Q.C,Q` stand for the set of
positive integers, ring of integers, ring of `-adic integers and the fields of rational,
complex and `-adic numbers respectively. If A is a finite set then we we write
#(A) for number of its elements. We write rk(∆) for rank of a finitely generated
commutative group ∆.

Throughout this paper k is a finite field of characteristic p that consists of q
elements, k̄ an algebraic closure of k and Gal(K) = Gal(k̄/k) the absolute Galois
group of k. It is well known that the profinite group Gal(K) is procyclic and the
Frobenius automorphism

σk : k̄ → k̄, x 7→ xq

is a topological generator of Gal(k).
Let X be an abelian variety of positive dimension over k. We write End(X)

for the ring of its k-endomorphisms and End0(X) for the corresponding (finite-
dimensional semisimple) Q-algebra End(X) ⊗ Q. We write FrX = FrX,k for the
Frobenius endomorphism of X. We have

FrX ∈ End(X) ⊂ End0(X).

By a theorem of Tate [12, Sect. 3, Th. 2 on p, 140], he Q-subalgebra Q[FrX ] of
End0(X) generated by FrX coincides with the center of End0(X). In particular, if
End0(X) is a field then End0(X) = Q[FrX ].

If ` is a prime different from p then we we write T`(X) for the Z`-Tate module
of X and V`(X) for the corresponding Q`-vector space

V`(X) = T`(X)⊗Z` Q`.

It is well known [7] that T`(X) is a free Z`-module of rank 2dim(X) that may be
viewed as a Z`-lattice in the Q`-vector space V`(X) of dimension 2dim(X).

By functoriality, End(X) and FrX acts on (T`(X) and) V`(X); it is well known
that the action of FrX coincides with the action of σk. By a theorem of A. Weil
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[7, Sect. 19 and Sect. 21], FrX acts on V`(X) as a semisimple linear operator, its
characteristic polynomial

PX(t) = PX,k(t) = det(tId− FrX , V`(X)) ∈ Z`[t]

lies in Z[t] and does not depend on a choice of `. In addition, all eigenvalues of FrX
(which are algebraic integers) have archimedean absolute value equal to q1/2. This
means that if

L = LX ⊂ C

is the splitting field of PX(t) and

RX = RX,k ⊂ L

the set of roots of P (t) then L is a finite Galois extension of Q such that for every
field embedding L ↪→ C we have | α |= q1/2 for all α ∈ RX . Let Gal(L/Q) be the
Galois group of L/Q. Clearly, RX is a Gal(L/Q)-invariant (finite) subset of L∗. It
follows easily that if α ∈ RX then q/α ∈ RX . Indeed, q/α is the complex-conjugate
ᾱ of α. We have

q−1α2 =
α

q/α
.

Remark 2.1. Let m(α) be the multiplicity of the root α of PX(t). Then

PX(t) =
∏
α∈RX

(t− α)m(α) ∈ C[t] (1)

and

rk(End(X)) =
∑
α∈RX

m(α)2 (2)

(see [12, pp. 138–139], especially (4) and (5)). Let κ be a finite overfield of k of
degree d and Xκ = X ×k κ. Then T`(Xκ) and V`(Xκ) are canonically isomorphic
to T`(X) and V`(X) respectively,

FrXκ = FrdX ⊂ End(X) ⊂ End(Xκ),

RXκ = {αd | α ∈ RX}, PXκ(t) =
∏
α∈RX

(t− αd)m(α).

Suppose that α/β is not a root of unity for every pair of distinct α, β ∈ RX .
This implies that αd and βd are distinct roots of PXκ(t). It follows that for every
α ∈ RX the positive integer m(α) coincides with the multiplicity of root αd of the
polynomial PXκ(t). The formulas (1) and (2) applied to Xκ give us the equality
rk(End(Xκ)) = rk(End(X)), which implies that End(Xκ) = End(X), because the
quotient End(Xκ)/End(X) is torsion-free [11, Sect. 4, p. 501].

Remark 2.2. Let OL be the ring of integers in L. Clearly, RX ⊂ OL. It is also
clear that B is a maximal ideal in OL such that char(OL/B) 6= p then all elements
of RX are B-adic units.

Remark 2.3. Notice that RX is a Gal(L/Q)-orbit if and only if PX(t) is a power
of an irreducible polynomial (over Q), which means that X is isogenous over k to
a simple abelian variety over k [12, Theorem 2(e)].
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Example 2.4. By functoriality, End0(X) and Q[FrX ] act on V`(X). This action
extends by Q`-linearity to the embedding of Q`-algebras

Q[FrX ]⊗Q Q` ⊂ End0(X)⊗Q Q` = End(X)⊗Q Q` ⊂ EndQ`(V`(X)).

Let us assume that E = Q[FrX ] is a field. (E.g., X is simple.) Then it is known [10]
that V`(X) carries the natural structure of a free E⊗Q Q`-module and this module
is free of rank e = 2dim(X)/[E : Q]. It follows that

PX(t) = [PX,min(t)]e

where PX,min(t) is the minimal polynomial of the semisimple linear operator FrX :
V`(X) → V`(X). Clearly, PX,min(t) has integer coefficients, PX,min(FrX) = 0 ∈
End(X) and the natural homomorphism

Q[t]/PX,min(t)Q[t]→ Q[FrX ], t 7→ FrX + PX,min(t)Q[t]

is a field isomorphism. (In particular, PX,min(t) is irreducible over Q.)
This implies that if we fix an embedding E ⊂ C then LX is the normal closure

of E over Q and RX is the set of images of FrX ion C with respect to all field
embeddings E ↪→ C; in addition, every eigenvalue α ∈ RX has multiplicity e.

We write

Γ = Γ(X, k)

for the multiplicative subgroup of L∗ generated by RX . One may easily check,
using Weil’s results that ΓX contains q and is a finitely genetated group of rank
rk(Γ) ≤ dim(X) + 1. Notice that the rank of Γ is dim(X) + 1 if and only if Γ is a
free commutative group of rank dim(X) + 1 [16].

Remark 2.5. It follows from Remark 2.2 that if B is a maximal ideal in OL such
that char(OL/B) 6= p then all elements of Γ(X.k) are B-adic units.

We write

Γ′ = Γ(X, k)′

for the multiplicative subgroup of L∗ generated by all the eigenvalues of q−1Fr2X .
In other words, Γ′ is the multiplicative (sub)group generated by

R′X = {q−1α2 | α ∈ RX}.

Clearly, all the archimedean absolute values of all elements of Γ′ are equal to 1.
One may easily check that

rk(Γ′) + 1 = rk(Γ)

and Γ′ and q generate a subgroup of finite index in Γ. We define the rank of X as
rk(Γ′) and denote by rk(X). Clearly,

0 ≤ rk(X) ≤ dim(X).

It is known [17, Sect. 2.9 on p. 277 and Remark 2.9.2 on p. 278] that if Y is an
abelian variety over k then

max(rk(X), rk(Y )) ≤ rk(X × Y ) ≤ rk(X × Y ).

Notice also that rk(X) does not depend on a field of definition of X and would not
change if we replace X by an isogenous abelian variety. In addition, rk(X) = 0 if
and only if X is a supersingular abelian variety [17, Sect. 2.0].



EIGENVALUES OF FROBENIUS ENDOMORPHISM OF ABELIAN VARIETIES 5

This implies the following trivial multiplicative relations between eigenvalues
α, β, q/α, q/β ∈ RX .

α · q
α

= q = β · q
β
. (3)

Let us put

R′X := {q−1α2 | α ∈ RX}.
Clearly, all elements of R′X have archimedean absolute value 1 with respect to all
field embeddings L ↪→ C and the map β 7→ β−1 is an involution of R′X .

Assume that k is sufficiently large with respect to X, i.e., the multiplicative
group Γ(X, k) generated by k does not contain roots of unity (except 1). This
implies (thanks to Remark 2.1) that all the endomorphisms of X are defined over
k. On the other hand, the map

RX → R′X , α 7→ α′ = q−1α2

is a bijective map that sends q/α to 1/α′.
Suppose that there are an integer-valued function e : RX → Z and an integer M

such that ∏
α∈RX

αe(α) = qM . (4)

Since the archimedean absolute value of each α is
√
α, we have

1

2

( ∑
α∈RX

e(α)

)
= M

and therefore

2M =
∑
α∈RX

e(α),
∏
α∈RX

α2e(α) = q2M .

This implies that ∏
α∈RX

(q−1α2)e(α) = 1. (5)

We may rewrite (5) as ∏
β∈R′

X

βe
′(β) = 1 (5bis)

where e′(α2/q) := e(α).
Conversely, if (5bis) holds for some e′ : R′X → Z then we have∏

α∈RX

αe(α) = qM

with e(α) := 2e′(α2/q) and M :=
∑
β∈R′

X
e′(β). We say that X is neat if it enjoys

one of the following (obviously equivalent) equivalent conditions (we continue to
assume that k is sufficiently large).

(i) Suppose an integer-valued function e : RX → Z and a positive integer M
satisfy (3). Then e(α) = e(q/α) ∀α ∈ RX .

(ii) Suppose an integer-valued function e′ : R′X → Z satisfies (4bis). Then
e′(β) = e′(1/β) ∀β ∈ R′X .
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Remark 2.6. Let us consider the (sub)set RX,ss of α ∈ RX such that q−1α2 is a
root of unity. (Here the subscript ss is short for supersingular.) Clearly, α ∈ RX,ss
if and only if qα−1 ∈ RX,ss. It is also clear that if RX,ss is non-empty then 1/2 is
a slope of X. (The converse is not true if dim(X) > 1.)

Recall [17, Definition 2.3 on p. 276] that k is sufficiently large with respect tp
X or just sufficiently large if Γ(X, k) does not contain roots of unity different from
1. If m the order of the subgroup of roots of unity in Γ(X, k) and κ/k is a finite
algebraic field extension then κ is sufficiently large for X if and only if the degree
[κ : k] is divisible by m [17, p. 276]. In particular, if k is sufficiently large and
β ∈ R′X is a root of unity then β = 1. Notice also that if rk(X) = dim(X) then
Γ(X, k) is a free commutative group [16, Sect. 2.1], i.e., k is sufficiently large.

Lemma 2.7. Suppose that k is sufficiently large with respect to X. If RX,ss is
non-empty then the following conditions hold:

(i) q is a square.
(ii) RX,ss is either the singleton {√q} or the singleton {−√q}. In both cases

R′X contains

q−1(±√q)2 = 1.

Proof. Let α ∈ RX,ss. Since the root of unity q−1α2 lies in Γ(X, k), we conclude
that α2 = q. Since RX is Gal(L/Q)-stable, we conclude that if q is not a square
then both

√
q and −√q lie in RX and therefore

−1 =
−√q
√
q
∈ Γ(X, k),

which is not the case, because k is sufficiently large. Therefore q is a square and
RX is either the singleton {√q} or the singleton {−√q}. �

Remark 2.8. Suppose that k is sufficiently large. Then if α1 and α2 are distinct
elements of RX then

α1

α2
6= ±1

and therefore q−1α2
1 and q−1α2

2 are distinct elements of R′X . This implies that

#(RX) = #(R′X).

Till the end of this Section we assume that k is sufficiently large with respect to
X.

In order to compute the rank of neat abelian varieties, let us consider the minimal
polynomial PX,min(t) of the semisimple linear operator FrX : V`(X)→ V`(X). The
set of roots of PX,min(t) coincides with one of PX(t), i.e., with RX ; in addition, all
the roots of PX(t) are simple. It follows from Remark 2.3 that if X is simple or
k-isogenous to a k-simple abelian variety then PX,min(t) is irreducible over Q and
PX(t) = [PX,min(t)]d for a certain positive integer d. In general case we have

PX,min(t) =
∏
α∈RX

(t− α).

In particular,

deg(PX,min) = #(RX).
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Example 2.9. Suppose X a supersingular abelian variety. According to Subsection
4.2, α2/q is a root of unity for all α ∈ RX , i.e., RX = RX,ss. It follows from Lemma
2.7 that q is a square and RX is either the singleton {−√q} or the singleton {√q}.
Then PX,min(t) is a linear polynomial that equals t − √q or t +

√
q respectively.

This implies that that PX(t) = (t±√q)2dim(X) and R′X is always the singleton {1}.
It follows that X is neat.

Example 2.10. Suppose RX,ss is empty. This implies that α 6= q/α for every
α ∈ RX , the set RX consists of even, say, 2d elements and one may choose d
distinct elements α1, . . . , αd of RX such that

RX = {α1, . . . , αd; q/α1, . . . , q/αd}.
If we put βi = q−1α2

i then R′X also consists of 2d (distinct) elements and coincides
with

{β1, . . . , βd; β−11 , . . . , β−1d }.
In particular, rk(X) ≤ d. Now X is neat if and only if the set {β1, . . . , βd} is
multiplicatively independent, which means that

rk(X) = d.

If this is the case then

rk(X) = d =
#(RX)

2
=

deg(PX,min)

2
.

Example 2.11. Suppose RX,ss is non- empty but does not coincide with the whole
RX . Let us denote by α0 the only element of RX,ss; as we have seen above, q is a
square and α0 = ±√q. This implies that if α is an element of RX that is different
from α0 then α 6= q/α, the set RX \{α0} consists of even, say, 2d elements and one
may choose d distinct elements α1, . . . , αd of RX \ {α0} such that

RX = {α0; α1, . . . , αd; q/α1, . . . , q/αd}.
If we put βi = q−1α2

i then β0 = 1 R′X consists of (2d+ 1) (distinct) elements

{1;β1, . . . , βd; β
−1
1 , . . . , β−1d }.

In particular, rk(X) ≤ d. Now X is neat if and only if the set {β1, . . . , βd} is
multiplicatively independent, which means that

rk(X) = d.

. If this is the case then

rk(X) = d =
#(RX)− 1

2
=

deg(PX,min)− 1

2
.

Example 2.12. Suppose that X is simple and rk(X) = 1. It follows from Lemma
2.10 of [17] that R′X consists of two elements say, β and β−1. Clearly, β is not a
root of unity. This implies easily that X is neat.

We will need the following elementary lemma.

Lemma 2.13. Let p be a prime, B an imaginary quadratic field, T the set of
maximal ideals in B that lie above p. Let UT ⊂ B∗ be the multiplicative subgroup
of T -units in B and U1

T the subgroup of TB that consists of all γ ∈ UT such that
the archimedian absolute value of γ is 1. If U1

T is infinite then p splits in B (i.e.,
#(T ) = 2), rk(UT ) = 2 and rk(U1

T ) = 1.
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Proof. By the generalized Dirichlet unit’s theorem [3, Ch. V, Sect. 1], UT is
a finitely generated commutative group of rank #(T ). Clearly, UT contains an
element p of infinite order. If #(T ) = 1 then rk(UT ) = 1 and therefore for each

γ ∈ U1
T ⊂ UT

a certain positive power of γ is a power of p. However, the archimedean absolute
value of γ equals 1 and therefore γ must be a root of unity, which is not the case,
since there are only finitely many roots of unity in B. So, #(T ) = 2, i.e., p splits
in B. In addition, UT has rank 2. Since no power of p (except 1 = p0) lies in
U1
T , we conclude that rk(U1

T ) < rk(UT ) = 2. Since rk(U1
T ) ≥ 1, we conclude that

rk(U1
T ) = 1. �

Corollary 2.14. Let B be an imaginary quadratic subfield in L. Suppose that the
intersection Γ′(X, k)B of B and Γ′(X, k) is infinite. Then p splits in B and the
infinite multiplicative group Γ′(X, k)B has rank 1.

Proof. Notice that (in the notation of Lemma 2.13) Γ′(X, k)B is an infinite subgroup
of U1

T . In particular, U1
T is also infinite. Now Corollary follows readily from Lemma

2.13. �

Remark 2.15. Suppose that g = dim(X) > 1, k is sufficiently large with respect
to X and X is simple. Then X is absolutely simple. In addition, if α ∈ RX then
α 6= q/α. (Indeed, otherwise, α is a square root of q and therefore X is supersingular
[12]. Now the absolute simplicity of X implies that dim(X) = 1, which is not the
case.) This implies that RX has even cardinality say, 2m and one may choose m
distinct elements {α1, . . . , αm} of RX such that the 2m-element set RX coincides
with {α1, . . . , αm; q/α1, . . . , q/αm}. If we put βi = α2

i /q then R′X coincides with

the 2m-element set {β1, . . . , βm;β−11 , . . . , β−1m ) and

rk(X) = rk(Γ′(X, k) ≤ m.
Clearly, X is neat if and only if the set {β1, . . . , βm} consists of multiplicatively
independent elements, i.e., Γ′(X, k) has rank m.

We have

PX,min(t) =

m∏
i=1

(t− αi)(t = q/αi)

has degree 2m. Since X is simple, there is a positive integer d such that PX(t) =
PX,min(t)d. Comparing the degrees, we obtain that

2g = 2dim(X) = 2md, g = md.

It follows that if rk(X) > g/2 then m > g/2 and therefore d = 1, i.e., PX(t) has no
multiple roots and therefore End0(X) is a field.

3. Ranks of non-simple abelian varieties

The following assertion was proven in [17, pp. 273, 280–281].

Theorem 3.1. Let X and Y be non-supersingular simple abelian varieties over k.
If

rk(X × Y ) = rk(X) + rk(Y )− 1

then there exists an imaginary quadratic field B enjoying the following properties.

0) p splits in B;
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1) The number fields EX = Q[FrX,k] and EY = Q[FrY,k] contain subfields
isomorphic to B;

2) NormEX/B(q−1Fr2X,k) and NormEY /B(q−1Fr2Y,k) are not roots of unity.

Remark 3.2. There was a typo in the displayed formula for ranks in [17, Th. 2.12],
see Sect. 8. It was also erroneously claimed (without a proof) in [17, Th. 2.12] that
the conditions 0,1,2 are equivalent to the formula rk(X × Y ) = rk(X) + rk(Y )− 1.
Actually, the conditions 0),1),2) imply only the inequality rk(X × Y ) ≤ rk(X) +
rk(Y )− 1.

Proof of Theorem 3.1. Assertions 1 and 2 are proven in [17, pp. 280–281]. Asser-
tion 0 is proven in [17, Remark 1.1.5 on p. 273]. (It also follows from Assertion 2
combined with Lemma 2.14).

�

Corollary 3.3 (Theorem 2.11 of [17]). Assume that E = End0(X) is a number
field. Let Y be an ordinary elliptic curve over k. The equality rk(Γ(X × Y )) =
rk(Γ(X)) holds true if and only if End0X contains an imaginary quadratic subfield
isomorphic to B = End0Y and NormE/B(q−1Fr2X,k) is not a root of unity.

Proof. Since rk(Y ) = 1, we have

rk(X) = rk(X) + rk(Y )− 1.

This implies that in one direction (if we are given that rk(Γ(X × Y )) = rk(Γ(X)),
i.e., rk(X × Y ) = rk(X)) our assertion follows from Theorem 3.1. Conversely,
suppose that B = End0Y is isomorphic to a subfield of E and

γ := NormE/B(q−1Fr2X,k) ∈ B
is not a root of unity. Let us fix an embedding E ⊂ C. We have

γ ∈ B ⊂ E ⊂ LX ⊂ C.

By definition, γ is a product of elements of R′X and therefore lies in Γ′(X, k). In
particular, in the notation of Lemma 2.14, γ ∈ Γ′(X, k)B . On the other hand,
q−1Fr2Y,k ⊂ B is also not a root of unity; in addition, it generates Γ′(Y, k). Notice

that (in the notation of Lemma 2.13) both γ and q−1Fr2Y,k lie in U1
T ; in particular,

U1
T is infinite. By Lemma 2.13, U1

T is a group of rank 1 and therefore the intersection

of cyclic (sub)groups generated by γ and q−1Fr2Y,k is an infinite cyclic group. This
implies that the intersection of finitely generated groups Γ′(X, k) and Γ′(Y, k) is an
infinite group. It follows that the rank of Γ′(X ×Y, k) = Γ′(X, k)Γ′(Y, k) is strictly
less than the sum

rk(Γ′(X, k)) + rk(Γ′(Y, k)) = rk(Γ′(X, k)) + 1.

In other words, rk(X × Y ) < rk(X) + 1, i.e., rk(X × Y ) ≤ rk(X). It follows that
rk(X × Y ) = rk(X) and we are done. �

4. Newton polygons

In order to define the Newton polygon of X, let us consider the ring OL of
integers in L and pick a maximal ideal P in OL such that the residue field OL/P
has characteristic p. The set Sp of such ideals consitutes a Gal(L/Q)-orbit. Let

ordP : L∗ → Q
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be the discrete valuation map that corresponds to P and normalized by the condi-
tion

ordP(q) = 1.

Then the set

SlpX = ordP(RX) ⊂ Q
is called the set of slopes of X. For each c ∈ SlpX we write

length(c) = lengthX(c)

for the number of roots α of PX(t) (with multiplicities) such that

ordP(α) = c.

By definition ∑
c∈SlpX

length(c) = deg(PX) = 2dim(X). (6)

Remark 4.1. It is well known that all slopes c ∈ SlpX are rational numbers
that lie between 0 and 1. In addition, if c is a slope then 1 − c is also a slope
and length(c) = length(1 − c). In addition, if 1/2 is a slope then its length is
even. Notice also that the rational number c can be presented as a fraction, whose
denominator is a positive integer that does not exceed 2dim(X) [15, p. 173].

Since P(t) has rational coefficients and Gal(L/Q) acts transitively on Sp, the set
SlpX and the function

lengthX : Slpp → N
do not depend on a choice of P. The integrality property of the Newton polygon
[9, Sect. 9 and 21] means that c · lengthX(c) is a positive integer for each nonzero
slope c. Suppose that a slope c 6= 1/2 is presented as the fraction in lowest terms,
whose denominator is greater than dim(X). Then length(c) > dim(X) and

length(1− c) = length(c) > dim(X),

which implies length(c) + length(1 − c) > 2dim(X) and we get a contradiction to
(6). So, each slope c 6= 1/2 can be presented as a fraction, whose denominator does
not exceed dim(X). It is also clear, that if the denominator of c in lowest terms is
exactly dim(X) then

length(c) = dim(X) = length(1− c)

and SlpX = {c, 1− c}.

Definition 4.2. An abelian variety X is called ordinary if SlpX = {0, 1}; it is
called supersingular if SlpX = {1/2}. It is well known that X is supersingular if
and only if R′X consists of roots of unity, i.e., q−1α2 is a root of unity for all α ∈ RX .
(By the way, it follows immediately from Proposition 3.1.5 in [15, p. 172].)
X is called of K3 type [16] if SlpX is either {0, 1/2, 1} or {0, 1} while (in both

cases) lengthX(0) = lengthX(1) = 1. It is called almost ordinary [5] if

SlpX = {0, 1/2, 1}, lengthX(1/2) = 2.

Remark 4.3. Clearly, X is supersingular if and only if rk(X) = 0. If X is a simple
abelian variety of K3 type then rk(X) = dim(X) [16]. If X is a simple almost
ordinary then rk(X) = dim(X) or dim(X)− 1; if, in addition dim(X) is even then
rk(X) = dim(X) [5].
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Theorem 4.4. Let X be a simple abelian variety of positive dimension over k
and PX(t) is irreducible. Suppose there exists a rational number c 6= 1/2 such that
SlpX = {c, 1 − c}. (E.g., X is ordinary.) If rk(X) = dim(X) − 1 then dim(X) is
even.

Proof. Let us put g = dim(X) and

c′ = 2c− 1 = −[2(1− c)− 1].

Clearly, c′ 6= 0 and for all i the rational number ordP(α2
i /q) is either c′ or −c′ . Let

us define mi by

ordP(α2
i /q) = mic

′.

Clearly, mi = 1 or −1. By Theorem 3.6(b) of [5] there are exist α1, . . . , αg ∈ RX
and integers n1, . . . , ng such that every ni is either 1 or −1 and γ =

∏g
i=1(α2

i /q)
ni

is a root of unity. Pick P ∈ Sp. We have

0 = ordP(γ) =

g∑
i=1

niordP

(
α2
i /q
)

=

g∑
i=1

nimic
′ =

[
g∑
i=1

(±1)

]
c′.

It follows that for a certain choice of signs
∑g
i=1(±1) = 0 and therefore g is even. �

Corollary 4.5. Suppose that X is a simple abelian variety over k. Assume that
1 ≤ dim(X) ≤ 3 and k is sufficiently large with respect to X. If X is not neat then
it is almost ordinary and dim(X) = 3.

Proof. The equality dim(X) = 3 follows from Theorem 3.5 in [17]. Since X is
not neat, 1 < rk(X) < dim(X) = 3. This implies that rk(X) = 2 and therefore
deg(PX,min) > 2 · 2 = 4. Since deg(PX,min) divides deg(PX) = 6, we conclude that
deg(PX,min) = deg(PX), i.e., PX(t) = PX,min is irreducible over Q. By Theorem
4.4, the Newton polygon of X has, at least, 3 distinct slopes. By Remark 4.1, all
the slopes different from 1/2 can be presented as fractions, whose denominator is
strictly less than dim(X) = 3. In other words, SlpX = {0, 1/2, 1}. In particular,
length(1/2) = 2 or 4. If length(1/2) = 4 then length(0) = length(1) = 1 and X is of
K3 type, which is not the case, since the rank of a simple abelian variety of K3 type
equals its dimension [16]. Therefore length(1/2) = 2 and length(0) = length(1) = 2,
i.e., X is almost ordinary. �

5. Abelian Surfaces

The following statement should be known (at least, to experts) but I failed to
find a reference.

Theorem 5.1. Let L be a quartic CM field that contains an imaginary qua-
dratic field B. Let S be a complex abelian surface provided with an embedding
L ↪→ End0(S). Then S is isogenous to a square of an elliptic curve with complex
multiplication. In particular, S is not simple.

Proof. We may view L as a subfield of C, Then B = Q(
√
−d) where d is a positive

integer. The field L contains the real quadratic subfield Q(
√
r) where r is a square-

free positive integer. Clearly,

L = Q⊕Q
√
−d⊕Q

√
r ⊕Q

√
−rd
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is a Galois extension of Q. This implies that L contains a second imaginary qua-
dratic subfield H := Q(

√
−rd). The natural map B ⊗Q H → L, b ⊗ h 7→ bh is a

field isomorphism. In addition, the natural injective homomorphism

Gal(B/Q)×Gal(H/Q) ↪→ Gal(L/Q)

is surjective and therefore is a group isomorphism. Since [L : Q] = 2 · 2, it admits
22 = 4 CM types Φ [7, ect. 22], [4]. Here is the list of all them. We have two CM
types Gal(B/Q)⊗ τ2 indexed by τ2 ∈ Gal(H/Q) and two CM types τ1⊗Gal(H/Q)
indexed by τ1 ∈ Gal(B/Q). They all have nontrivial automorphism groups

Aut(Φ) := {σ ∈ Gal(L/Q) | σΦ = Φ}.

Namely, Aut(Φ) = Gal(B/Q) for the former two CM types and Aut(Φ) = Gal(H/Q)
for the latter two. Now the result follows from Theorem 3.5 of [4, p. 13] (applied
to F = l.) �

Corollary 5.2. There does not exist an abelian surface Y over a finite field k that
enjoys the following properties.

(i) All endomorphisms of Y are defined over k.
(ii) End0(Y ) is a quartic CM field that contains an imaginary quadratic sub-

field.

Proof. Assume that such Y does exist. Then it is absolutely simple. Replacing if
necessary, k by its finite overfield and Y by a k-isogenous abelian variety, we may
and will assume that Y can be lifted to an abelian variety A in characteristic zero
such that there is an embedding End0(Y ) ↪→ End0(A) [13, Sect. 3, Th. 2]. It
follows that A is absolutely simple, which contradicts Theorem 5.1. The obtained
contradiction proves Corollary. �

6. Proof of Theorem 1.1

Assume that X is not neat, k is sufficiently large and 1 ≤ dim(X) ≤ 3. According
to [17, Th. 3.5 on p. 283], dim(X) = 3 and one of the following two conditions
holds.

(a) X is simple, E = End0(X) is a number field that contains an imaginary
quadratic subfield B such that NormE/B(q−1Fr2X) is a root of unity.

(b) X is isogenous over k to a product Y ×Z of a simple abelian surface Y and
an elliptic curve Z; End0(Y ) is a quartic CM-field containing an imaginary
quiadratic subfield.

It follows from Corollary 5.2 that such an Y does not exist. Indeed, Γ(X, k) =
Γ(Y, k)Γ(Z, k); in particular, Γ(Y, k) does not contain nontrivial roots of unity.
Therefore all endomorphisms of Y are defined over k and therefore Y is absolutely
simple. This contradicts to Corollary 5.2 and implies that the case (b) does not
occur.

In the case (a), Corollary 4.5 implies that X is almost ordinary. Let us fix a field
embedding B ⊂ C and let

σ1, σ2, σ3 : E ↪→ C
be the list of field embedding E → C that coincide with the identity map on B.
Let us put

α1 = σ1(FrX) ∈ C, α2 = σ2(FrX) ∈ C, α3 = σ3(α3) ∈ C.
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Then
RX = {α1, α2, α3; q/α1, q/α2, q/α3},

L = Q(RX) = Q(α1, α2, α3) = B(α1, α2, α3)

and the root of unity

NormE/B

(
q−1Fr2X

)
=

3∏
i=1

σi
(
q−1Fr2X

)
= q−3

3∏
i=1

α2
i ∈ Γ(X, k).

Since Γ(X, k) does not contain nontrivial roots of unity,

NormE/B(q−1Fr2X) = 1.

(By the way, this gives us the relation

q3 =

(
3∏
i=1

αi

)2

.)

This ends the proof.

7. Abelian fourfolds

The following observation was inspired by results of Rutger Noot [8, Prop. 4.1
on p. 165 and p. 168] about the reduction type of abelian varieties of Mumford’s
type [6, Sect. 4].

Theorem 7.1. Let X be an abelian fourfold over k. Suppose k is sufficiently large
with respect to X, rk(X) = 3 and X enjoys one of the following two properties.

• X is absolutely simple.
• X is isogenous over k to a product X(3) × X(1) of an (absolutely) simple

abelian threefold X(3) and an ordinary elliptic curve X(1).

Then one of the following two conditions holds.

(i) there exist an imaginary quadratic field B and an embedding B ↪→ End0(X)
that sends 1 to 1.

(ii) X is not simple and X(3) is an almost ordinary abelian threefold that is not
neat and therefore satisfies the conditions of Theorem 1.1. In particular,
End0(X(3)) contains an imaginary quadratic subfield.

Proof. If X is simple then

rk(X) = 3 > 2 =
dim(X)

2
.

By Remark 2.15, End0(X) is a field. it follows from Theorem 3.6 of [5] that the
condition (i) holds.

Now we may assume that X = X(3) × X(1). Since X(1) is an ordinary elliptic
curve, End0(X(1)) is an imaginary quadratic field and rk(X(1)) = 1. We have

rk(X(3)) ≤ rk(X) = 3 ≤ rk(X(3)) + rk(X(1)) = rk(X(3)) + 1.

This implies that rk(X(3)) = 2 or 3. In both cases

rk(X(3)) >
3

2
=

dim(X(3))

2
.

Now Remark 2.15 implies that End0(X(3)) is a field (recall that X(3) is simple).
If rk(X(3)) = 3 then it follows from Corollary 3.3 (applied to X = X(3) and
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Y = X(1)) that there is a field embedding End0(X(1)) ↪→ End0(X(3)) and therefore
one may take as B the imaginary quadratic field End0(X(1)), which implies that
the condition (i) holds. If rk(X(3)) = 2 then X(3) is not neat. It follows from
Theorem 1.1 that the condition (ii) holds. �

8. Corrigendum to [17]

• Page 274, Remark 2.1 The displayed formula should read

rk(Γ) ≤ bdeg(Pmin)/2c+ 1.

The formula on last line should read bdeg(Pmin)/2c+ 1.
• Page 280, Theorem 2.12. The beginning of second sentence

The equality

rk(Γ(X × Y )) = rk(X) + rk(Y )− 1

holds true if and only if there exists an imaginary quadratic field B enjoying
the following properties:

should read as follows.
If

rk(X × Y ) = rk(X) + rk(Y )− 1

then there exists an imaginary quadratic field B that enjoys the following
properties.

• Page 281, Remark 3.1, last line. The formula should read

rk(Γ) = bdeg(Pmin)/2c+ 1.

• Page 284, line 8. α− 1 should read α′
−1

.

9. Corrigendum to [16]

• Pages 267, 269 (and throughout the text), ∠ and ∠∗ should read L and L∗

respectively.
• Page 267, line -10: multiplicities should read multiplies.
• Page 271, Definition 3.4: ignore senseless tenibk.
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