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ABOUT LEIBNIZ COHOMOLOGY AND
DEFORMATIONS OF LIE ALGEBRAS

A. FIALOWSKI, L. MAGNIN, AND A. MANDAL

Abstract. We compare the second adjoint and trivial Leibniz
cohomology spaces of a Lie algebra to the usual ones by a very el-
ementary approach. The comparison gives some conditions, which
are easy to verify for a given Lie algebra, for deciding whether it
has more Leibniz deformations than just the Lie ones. We also give
the complete description of a Leibniz (and Lie) versal deformation
of the 4-dimensional diamond Lie algebra, used in a WZW model,
and study the case of its 5-dimensional analogue by computing
Massey products.

1. Introduction

Leibniz algebras, along with their Leibniz cohomologies, were in-
troduced in [8] as a non antisymmetric version of Lie algebras. Lie
algebras are special Leibniz algebras, and Pirashvili introduced [17] a
spectral sequence, that, when applied to Lie algebras, measures the
difference between the Lie algebra cohomology and the Leibniz coho-
mology. Now, Lie algebras have deformations as Leibniz algebras and
those are piloted by the adjoint Leibniz 2-cocycles. On Lie algebra
cohomology we refer to [7, 6]. In the present paper, we focus on the
second Leibniz cohomology groups HL2(g, g), HL2(g,C) for adjoint
and trivial representations of a complex Lie algebra g. We adopt a
very elementary approach, not resorting to the Pirashvili sequence, to
compare HL2(g, g) and HL2(g,C) to H2(g, g) and H2(g,C) respec-
tively. In both cases, HL2 is the direct sum of 3 spaces: H2⊕ZL2

0⊕C
where H2 is the Lie algebra cohomology group, ZL2

0 is the space of
symmetric Leibniz 2-cocycles and C is a space of coupled Leibniz 2-
cocycles, the nonzero elements of which have the property that their
symmetric and antisymmetric parts are not Leibniz cocycles. Our com-
parison gives some useful practical information about the structure of
Lie and Leibniz cocycles. We analyse the case of Heisenberg algebras,
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2 A. FIALOWSKI, L. MAGNIN, AND A. MANDAL

the 4-dimensional diamond algebra which is used to construct a Wess-
Zumino-Witten model, and its 5-dimensional analogue. We completely
describe a versal Leibniz and Lie deformation of the diamond algebra
by computing Massey products.

The last version of the paper was completed during the first author’s
stay at the Max-Planck-Institute for Mathematik Bonn. The authors
would like to thank Jim Stasheff for his valuable comments.

2. Leibniz cohomology and deformations

Recall that a (right) Leibniz algebra is an algebra g with a (non nec-
essarily antisymmetric) bracket, such that the right adjoint operations
[−, Z] are required to be derivations for any Z ∈ g. In the presence of
antisymmetry, that is equivalent to the Jacobi identity, hence any Lie
algebra is a Leibniz algebra.

The Leibniz cohomology HL•(g, g) of a finite dimensional Leibniz
algebra is defined from the complex CL•(g, g) = Hom (g⊗•, g) = g ⊗
(g∗)⊗• with the Leibniz coboundary δ defined for ψ ∈ CLn(g, g) by

(δψ)(X1, X2, · · · , Xn+1) =

[X1, ψ(X2, · · · , Xn+1)] +
n+1∑
i=2

(−1)i[ψ(X1, · · · , X̂i, · · · , Xn+1), Xi]

+
∑

16i<j6n+1

(−1)j+1 ψ(X1, · · · , Xi−1, [Xi, Xj], Xi+1, · · · , X̂j, · · · , Xn+1).

(If g is a Lie algebra, δ coincides with the usual coboundary d on
C•(g, g) = g⊗

∧• g∗. )
For ψ ∈ CL1(g, g) = C1(g, g) = g⊗ g∗

(δψ)(X, Y ) = [X,ψ(Y )] + [ψ(X), Y ]− ψ([X, Y ]).

For ψ ∈ CL2(g, g) = g⊗ (g∗)⊗2 ,

(δψ)(X, Y, Z) = [X,ψ(Y, Z)] + [ψ(X,Z), Y ]− [ψ(X, Y ), Z]

− ψ([X, Y ], Z) + ψ(X, [Y, Z]) + ψ([X,Z], Y ).

In the same way, the Leibniz cohomology HL•(g,C) with trivial
coefficients is defined from the complex CL•(g,C) = (g∗)⊗• with the
Leibniz coboundary
δC defined for ψ ∈ CLn(g,C) by

(δCψ)(X1, X2, · · · , Xn+1) =∑
16i<j6n+1

(−1)j+1 ψ(X1, · · · , Xi−1, [Xi, Xj], Xi+1, · · · , X̂j, · · · , Xn+1).

If g is a Lie algebra, δC is the usual coboundary dC on C•(g,C) =
∧• g∗.
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For ψ ∈ CL1(g,C) = g∗,

(δCψ)(X, Y ) = −ψ([X, Y ]).

For ψ ∈ CL2(g,C) = (g∗)⊗2 ,

(δCψ)(X, Y, Z) = −ψ([X, Y ], Z) + ψ(X, [Y, Z]) + ψ([X,Z], Y ).

For computing Leibniz deformations, we need to consider the 2- and
3-dimensional cohomology cocycles.

Let K be a field of zero characteristic. A deformation of a Lie alge-
bra with (nontrivial) base was introduced in [1]. We recall the notion
of deformation of a Lie (Leibniz) algebra g (L) over a commutative
algebra base A with identity, with a fixed augmentation ε : A → K
and maximal ideal M. Assume dim(Mk/Mk+1) < ∞ for every k (see
[2, 4]).

Definition 1. A deformation λ of a Lie algebra g (or a Leibniz algebra
L) with base (A,M), or simply with base A is an A-Lie algebra (or an
A-Leibniz algebra) structure on the tensor product A ⊗ g (or A ⊗ L)
with the bracket [, ]λ such that

ε⊗ id : A⊗ g→ K⊗ g (or ε⊗ id : A⊗ L→ K⊗ L)

is an A-Lie algebra (A-Leibniz algebra) homomorphism.

A deformation of the Lie (Leibniz) algebra g (L) with base A is
called infinitesimal, or first order, if in addition to this M2 = 0. We
call a deformation of order k, if Mk+1 = 0. A deformation with base is
called local if A is a local algebra over K, which means A has a unique
maximal ideal.

Suppose A is a complete local algebra ( A = lim←−
n→∞

(A/Mn)), where

M is the maximal ideal in A. Then a deformation of g (L) with base A
which is obtained as the projective limit of deformations of g (L) with
base A/Mn is called a formal deformation of g (L).

Definition 2. (see [2]) Let C be a complete local algebra. A formal
deformation η of a Lie algebra g (Leibniz algebra L) with base C is
called miniversal if
(i) for any formal deformation λ of g (L) with base A there exists a
homomorphism f : C → A such that the deformation λ is equivalent
to f∗η;
(ii) if A satisfies the condition M2 = 0, then f is unique.

If only (i) is satisfied, we call the deformation versal.

Theorem 1. ([2, 4]) If H2(g; g) is finite dimensional, then there exists
a (mini)versal deformation of g (similarly for L).

In [1] a construction for a miniversal deformation of a Lie algebra was
given and it was generalized to Leibniz algebras in [4]. The computation
for a specific Leibniz algebra example was given in [3].
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3. Comparison of the cohomology spaces HL2 and H2 for
a Lie algebra

In [17] the relation between Chevalley-Eilenberg and Leibniz homol-
ogy with coefficients in a right module is considered via a spectral
sequence. The statements are valid in the cohomological version as
well. As a corollary, one deduces

Proposition 1. [17] Let g be a Lie algebra over a field K and M be a
right g-module. If

H∗(g,M) = 0, then HL∗(g,M) = 0.

As the similar statement is true for cohomologies, it implies that
rigid Lie algebras are Leibniz rigid as well.

Now we describe the Leibniz 2-cohomology spaces with the help of
Lie 2-cohomology space of a Lie algebra g.

Recall that a symmetric bilinear form B ∈ S2g∗ is invariant, i.e.
B ∈ (S2g∗)

g
if and only if B([Z,X], Y ) = −B(X, [Z, Y ]) ∀X, Y, Z ∈ g.

The Koszul map [7] I : (S2g∗)
g →

(∧3 g∗
)g ⊂ Z3(g,C) is defined by

I(B) = IB, with IB(X, Y, Z) = B([X, Y ], Z) ∀X, Y, Z ∈ g. Since the
projection π : g→ g/C2g induces an isomorphism

$ : ker I → S2
(
g/C2g

)∗
,

(where C2g = [g, g]), dim (S2g∗)
g

= p(p+1)
2

+dim ImI, with p = dimH1(g,C).

For reductive g, dim (S2g∗)
g

= dimH3(g,C) . Note also that the re-
striction of δC to (S2g∗)

g
is −I.

Definition 3. g is said to be I-null (resp. I-exact) if I = 0 (resp.
Im I ⊂ B3(g,C)).

For more details on I-null Lie algebras, see [13].

Example 1. The (2N + 1)-dimensional complex Heisenberg Lie al-
gebra HN (N > 1) with basis (xi)16i62N+1 and nonzero commutation
relations (with anticommutativity) [xi, xN+i] = x2N+1 (1 6 i 6 N) is I-

null since, for any B ∈ (S2HN
∗)
HN , B(xi, x2N+1) = B(xi, [xi, xN+i]) =

−B([xi, xi], xN+i) = 0 (similarly with xN+i instead of xi) (1 6 i 6 N),
andB(x2N+1, x2N+1) = B(x2N+1, [x1, xN+1]) = −B([x1, x2N+1], xN+1) =
0.

If c denotes the center of g, then c ⊗ (S2g∗)
g

is the space of invariant
c-valued symmetric bilinear mapS and we denote F = Id ⊗ I : c ⊗
(S2g∗)

g → C3(g, g) = g ⊗
∧3 g∗. Then ImF = c ⊗ ImI.

Theorem 2. Let g be any finite dimensional complex Lie algebra and
ZL2

0(g, g) (resp. ZL2
0(g,C)) the space of symmetric adjoint (resp. triv-

ial) Leibniz 2-cocycles.



ABOUT LEIBNIZ COHOMOLOGY AND DEFORMATIONS OF LIE ALGEBRAS5

(i) ZL2
0(g, g) = c ⊗ ker I. In particular, dimZL2

0(g, g) = c p(p+1)
2

where
c = dim c and p = dim g/C2g = dimH1(g,C).

(ii) ZL2(g, g) /(Z2(g, g)⊕ ZL2
0(g, g)) ∼= (c ⊗ Im I) ∩B3(g, g).

(iii) HL2(g, g) ∼= H2(g, g)⊕ (c⊗ ker I)⊕ ((c⊗ Im I) ∩B3(g, g)) .

(iv) ZL2
0(g,C) = ker I.

(v) ZL2(g,C) /(Z2(g,C)⊕ ZL2
0(g,C)) ∼= Im I ∩B3(g,C).

(vi) HL2(g,C) ∼= H2(g,C)⊕ ker I ⊕ (Im I ∩B3(g,C)) .

Proof. (i) The Leibniz 2-cochain space CL2(g, g) = g⊗ (g∗)⊗2 decom-
poses as

(
g⊗

∧2 g∗
)
⊕ (g⊗ S2 g∗) with g⊗S2 g∗ the space of symmetric

elements in CL2(g, g). By definition of the Leibniz coboundary δ, one
has for ψ ∈ CL2(g, g) and X, Y, Z ∈ g

(1) (δψ)(X, Y, Z) = u+ v + w + r + s+ t

with u = [X,ψ(Y, Z)], v = [ψ(X,Z), Y ], w = −[ψ(X, Y ), Z], r =
−ψ([X, Y ], Z), s = ψ(X, [Y, Z]), t = ψ([X,Z], Y ). δ coincides with
the usual coboundary operator on g ⊗

∧2 g∗. Now, let ψ = ψ1 + ψ0 ∈
CL2(g, g) , ψ1 ∈ g⊗

∧2 g∗, ψ0 ∈ g⊗ S2 g∗.

Suppose ψ ∈ ZL2(g, g) : δψ = 0 = δψ1 + δψ0 = dψ1 + δψ0. Then
δψ0 = −dψ1 ∈ g ⊗

∧3 g∗ is antisymmetric. Then permuting X and Y
in formula (1) for ψ0 yields (δψ0)(Y,X,Z) = −v − u + w − r + t + s.
As δψ0 is antisymmetric, we get

(2) w + s+ t = 0.

Now, the circular permutation (X, Y, Z) in (1) for ψ0 yields (δψ0)(Y, Z,X) =
−v − w + u− s− t+ r. Again, by antisymmetry,

(3) v + w + s+ t = 0,

i.e. (δψ0)(X, Y, Z) = u+ r.
From (2) and (3), v = 0. Applying twice the circular permutation

(X, Y, Z) to v, we get first w = 0 and then u = 0.Hence (δψ0)(X, Y, Z) =
r = −ψ0([X, Y ], Z). Note first that u = 0 reads [X,ψ0(Y, Z)] = 0. As
X, Y, Z are arbitrary, ψ0 is c-valued. Now the permutation of Y and
Z changes r to −t = s (from (3)). Again, by antisymmetry of δψ0,
r = t = −s. As X, Y, Z are arbitrary, one gets ψ0 ∈ c ⊗ (S2g∗)

g
. Now

F (ψ0) = −r = −δψ0 = dψ1 ∈ B3(g, g). Hence

ψ0 ∈ ZL2
0(g, g)⇔ F (ψ0) = 0⇔ ψ1 ∈ Z2(g, g)⇔ ψ0 ∈ c⊗ ker I.

Consider now the linear map Φ : ZL2(g, g) → F−1(B3(g, g)) / kerF
defined by ψ 7→ [ψ0] (mod kerF ). Φ is onto: for any [ϕ0] ∈ F−1(B3(g, g)) / kerF ,
ϕ0 ∈ c ⊗ (S2g∗)

g
, one has F (ϕ0) ∈ B3(g, g), hence F (ϕ0) = dϕ1,

ϕ1 ∈ C2(g, g), and then ϕ = ϕ0 + ϕ1 is a Leibniz cocycle such that
Φ(ϕ) = [ϕ0]. Now ker Φ = Z2(g, g)⊕ ZL2

0(g, g), since condition [ψ0] =
[0] reads ψ0 ∈ kerF which is equivalent to ψ ∈ Z2(g, g) ⊕ ZL2

0(g, g).
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Hence Φ yields an isomorphism ZL2(g, g) /(Z2(g, g)⊕ ZL2
0(g, g)) ∼=

F−1(B3(g, g)) / kerF . The latter is isomorphic to ImF ∩ B3(g, g) ∼=
(c⊗ ImI) ∩B3(g, g).
(ii) results from the invariance of ψ0 ∈ ZL2

0(g, g).
(iii) results immediately from (i) and (ii) since BL2(g, g) = B2(g, g) as
the Leibniz differential on CL1(g, g) = g∗⊗g = C1(g, g) coincides with
the usual one.
(iv)-(vi) are similar. �

Remark 1. Since ker I ⊕ (ImI ∩B3(g,C)) ∼= kerh where h denotes
I composed with the projection of Z3(g,C) onto H3(g,C), the result
(vi) is the same as in [14].

Remark 2. Any supplementary subspace to Z2(g,C) ⊕ ZL2
0(g,C) in

ZL2(g,C) consists of coupled Leibniz 2-cocycles, i.e. the nonzero el-
ements have the property that their symmetric and antisymmetric
parts are not cocycles. To get such a supplementary subspace, pick
any supplementary subspace W to ker I in (S2g∗)

g
and take C =

{B + ω ;B ∈ W ∩ I−1(B3(g,C)), IB = dω} .
Definition 4. g is said to be an adjoint (resp. trivial) ZL2-uncoupling
if

(c ⊗ Im I) ∩B3(g, g) = {0}
(
resp. Im I ∩B3(g,C) = {0}

)
.

The class of adjoint ZL2-uncoupling Lie algebras is rather exten-
sive since it contains all zero-center Lie algebras and all I-null Lie
algebras. For non zero-center, adjoint ZL2-uncoupling implies trivial
ZL2-uncoupling, since c ⊗ (ImI ∩B3(g,C)) ⊂ (c ⊗ ImI) ∩ B3(g, g).
The reciprocal holds obviously true for I-exact Lie algebras. However
we do not know if it holds true in general (e.g. we do not know of a
nilpotent Lie algebra which is not I-exact).

Corollary 1. (i) HL2(g, g) ∼= H2(g, g)⊕ (c⊗ ker I) if and only if g is
adjoint ZL2-uncoupling.
(ii) HL2(g,C) ∼= H2(g,C) ⊕ ker I if and only if g is trivial ZL2-
uncoupling.

Corollary 2. For any Lie algebra g with trivial center c = {0}, HL2(g, g) =
H2(g, g).

Remark 3. This fact also follows from the cohomological version of
Theorem A in [17].

Proof. Let g be a Lie algebra and M be a right g-module. Consider
the product map m : g ⊗ Λng −→ Λn+1 in the exterior algebra. This
map yields an epimorphism of chain complexes

C∗(g, g) −→ C∗(g,K)[−1],

where C∗(g,K) is the reduced chain complex:

C0(g,K) = 0, Ci(g,K) = Ci(g,K) for i > 0.
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Define the reduced chain complex CR∗(g) such that CR∗(g[1]) is the
kernel of the epimorphism C∗(g, g) −→ C∗(g,K)[−1]. Denote the co-
homology of CR∗(g) by HR∗(g).

Let us recall Theorem A in [17]. It states that there exists a spectral
sequence

E2
pq = HRp(g⊗HLq(g,M)) =⇒ Hrel

p+q(g,M).

As the center of our Lie algebra is 0, it follows that E2
00 = 0, and so

we get Hrel
0 (g, g) = 0.

But then from the exact sequence in [17]

0← H2(g,M)← HL2(g,M)← Hrel
0 (g,M)← H3(g,M)← ...

we get

HL2(g,M) = H2(g,M).

�

Corollary 3. For any reductive Lie algebra g with center c, HL2(g, g) =

H2(g, g)⊕ (c ⊗ S2c∗) , and dimH2(g, g) = c2(c−1)
2

with c = dim c.

Proof. g = s ⊕ c with s = C2g semisimple. We first prove that g is
adjoint ZL2-uncoupling. c ⊗ (S2g∗)

g
=
(
c ⊗ (S2s∗)

s) ⊕ (c ⊗ S2c∗) =

c (S2s∗)
s⊕c (S2c∗) . Suppose first s simple. Then any bilinear symmet-

ric invariant form on s is some multiple of the Killing form K. Hence
c ⊗ (S2g∗)

g
= c (CK) ⊕ c (S2c∗) . For any ψ0 ∈ c ⊗ (S2g∗)

g
, F (ψ0)

is then some linear combination of copies of IK . As is well-known, IK
is no coboundary. Hence if we suppose that F (ψ0) is a coboundary,
necessarily F (ψ0) = 0. g is adjoint ZL2-uncoupling when s is sim-
ple. Now, if s is not simple, s can be decomposed as a direct sum
s1 ⊕ · · · ⊕ sm of simple ideals of s. Then (S2s∗)

s
=
⊕m

i=1 (S2si
∗)

si =⊕m
i=1 CKi (Ki Killing form of si.) The same reasoning then applies

and shows that g is adjoint ZL2-uncoupling. ¿From (ii) in theorem
2, ZL2

0(g, g) = c ⊗ S2c∗. Now, g = s ⊕ c with s = C2g semisim-
ple. s can be decomposed as a direct sum s1 ⊕ · · · ⊕ sm of ideals of s
hence of g. Then H2(g, g) =

⊕m
i=1H

2(g, si) ⊕ H2(g, c). As si is a non-
trivial g-module, H2(g, si) = {0} ([6], Prop. 11.4, page 154). Hence
H2(g, g) = H2(g, c) = cH2(g,C). By the Künneth formula and White-
head’s lemmas,

H2(g,C) =
(
H2(s,C)⊗H0(c,C)

)
⊕
(
H1(s,C)

⊗H1(c,C)
)
⊕
(
H0(s,C)⊗H2(c,C)

)
=H0(s,C)⊗H2(c,C)

=C⊗H2(c,C).
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.
Hence

dimH2(g, g) =
c2(c− 1)

2
.

�

4. Examples

For ω, π ∈ g∗, � stands for the symmetric product ω � π = ω ⊗ π +
π ⊗ ω.

Example 2. For g = gl(n),

HL2(g, g) = ZL2
0(g, g) = Cxn2 ⊕ C(ωn

2 � ωn2

),

where (xi)16i6n2 is a basis of g such that (xi)16i6n2−1 is a basis of
sl(n) and xn2 is the identity matrix, and (ωi)16i6n2 the dual basis to
(xi)16i6n2 . Hence there is a unique Leibniz deformation of gl(n).

Corollary 4. Let g = HN be the (2N+1)-dimensional complex Heisen-
berg Lie algebra (N > 1) as in example 1.
(i) ZL2

0(HN ,HN) has basis (x2N+1⊗(ωi�ωj))16i6j62N with (ωi)16i62N+1

the dual basis to (xi)16i62N+1

(ii)

dimZL2
0(HN ,HN) = dimB2(HN ,HN) = N(2N + 1);

dimHL2(HN ,HN) = dimZ2(HN ,HN) =

{
N
3

(8N2 + 6N + 1) if N > 2

8 if N = 1 .

Proof. (i) This follows from ker I = S2 (g/C2g)
∗
.

(ii) HN consists of adjoint ZL2-uncouplings since it is I-null. The
result then follows from the fact that ([9]) dimB2(HN ,HN) = N(2N+
1) and for N > 2, dimH2(HN ,HN) = 2N

3
(4N2 − 1). �

Example 3. The case N = 1 has been studied in [3]. In that case,
dimZL2

0(H1,H1) = 3 and the 3 Leibniz deformations are nilpotent, in
contradistinction with the 5 Lie deformations. The authors completely
describe a Leibniz versal deformation of the 3-dimensional Heisenberg
algebra.

Example 4. The 4-dimensional complex solvable “diamond” Lie alge-
bra d has basis (x1, x2, x3, x4) and nonzero commutation relations (with
anticommutativity)

(4) [x1, x2] = x3, [x1, x3] = −x2, [x2, x3] = x4.

The relations show that d is an extension of the one-dimensional abelian
Lie algebra Cx1 by the Heisenberg algebra n3 with basis x2, x3, x4.
It is also known as the Nappi-Witten Lie algebra [15] or the cen-
tral extension of the Poincaré Lie algebra in two dimensions. It is
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a solvable quadratic Lie algebra, as it admits a nondegenerate bilin-
ear symmetric invariant form. Because of these properties, it plays an
important role in conformal field theory. We can use d to construct

a Wess-Zumino-Witten model, which describes a homogeneous four-
dimensional Lorentz-signature space time [15]. It is easy to check that
d is I-exact. In fact, one verifies that all other solvable 4-dimensional
Lie algebras are I-null (for a list, see e.g. [16]).

Consider d as Leibniz algebra with basis {e1, e2, e3, e4} over C.
Define a bilinear map [ , ] : d× d −→ d by [e2, e3] = e1, [e3, e2] = −e1,
[e2, e4] = e2, [e4, e2] = −e2, [e3, e4] = e2 − e3 and [e4, e3] = e3 − e2, all
other products of basis elements being 0.

We get a basis satisfying the usual commutation relations (4) by
letting

(5) x1 = ie4, x2 = e3, x3 = i(−e2 + e3), x4 = ie1.

One should mention that even though these two forms are equivalent
over C, they represent the two nonisomorphic real forms of the complex
diamond algebra.

We found that by considering Leibniz algebra deformations of d one
gets more structures. Indeed it gives not only extra stuctures but
also keeps the Lie structures obtained by considering Lie algebra de-
formations. To get the precise deformations we need to consider the
cohomology groups.

We compute cohomologies necessary for our purpose. First consider
the Leibniz cohomology space HL2(L;L). Our computation consists
of the following steps:
(i) determine a basis of the space of cocycles ZL2(L;L),
(ii) determine a basis of the coboundary space BL2(L;L),
(iii) determine a basis of the quotient space HL2(L;L).

(i) Let ψ ∈ ZL2(L;L). Then ψ : L ⊗ L −→ L is a linear map and
δψ = 0, where

δψ(ei, ej, ek) = [ei, ψ(ej, ek)] + [ψ(ei, ek), ej]− [ψ(ei, ej), ek]− ψ([ei, ej], ek)

+ ψ(ei, [ej, ek]) + ψ([ei, ek], ej) for 0 ≤ i, j, k ≤ 4.

Suppose ψ(ei, ej) =
∑4

k=1 a
k
i,jek where aki,j ∈ C ; for 1 ≤ i, j, k ≤ 4.

Since δψ = 0, equating the coefficients of e1, e2, e3 and e4 in δψ(ei, ej, ek)
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we get the following relations:

(i) a11,1 = a21,1 = a31,1 = a41,1 = a11,2 = a31,2 = a41,2 = 0;

(ii) a41,3 = a31,4 = a41,4 = a12,1 = a32,1 = a42,1 = a12,2 = a22,2 = a32,2 = a42,2 = 0;

(iii) a43,1 = a23,3 = a33,3 = a43,3 = a34,1 = a44,1 = a24,4 = a34,4 = a44,4 = 0;

(iv) a21,2 = −a22,1 = a21,3 = −a31,3 = −a23,1 = a33,1;

(v) a11,3 = −a13,1 = a21,4 = −a24,1;
(vi) a32,3 = −a33,2 = −a42,4 = a44,2; a

4
2,3 = −a43,2; a22,3 = −a23,2;

(vi) a12,4 = −a14,2; a22,4 = −a24,2; a32,4 = −a34,2;
(vii) a13,4 = −a14,3; a23,4 = −a24,3; a33,4 = −a34,3; a43,4 = −a44,3
(ix) a33,4 = (a114 − a224); a43,4 = (a214 + a223)

(x)a133 =
1

2
(a123 + a132); a

1
41 = −(a114 + a123 + a132).

Therefore, in terms of the ordered basis {ei ⊗ ej}1≤i,j≤4 of L ⊗ L and
{ei}1≤i≤4 of L, the transpose of the matrix corresponding to ψ is of the
form

M t =



0 0 0 0
0 x1 0 0
x2 x1 −x1 0
x3 x2 0 0
0 −x1 0 0
0 0 0 0
x4 x5 x6 x7
x8 x9 x10 −x6
−x2 −x1 x1 0
x11 −x5 −x6 −x7

1
2
(x4 + x11) 0 0 0

x12 x13 (x3 − x9) (x2 + x5)
−(x4 + x3 + x11) −x2 0 0

−x8 −x9 −x10 x6
−x12 −x13 −(x3 − x9) −(x2 + x5)
x14 0 0 0



.

where x1 = a21,2; x2 = a11,3; x3 = a11,4; x4 = a12,3; x5 = a22,3; x6 = a32,3;

x7 = a42,3; x8 = a12,4; x9 = a22,4;x10 = a32,4; x11 = a13,2; x12 = a13,4;

x13 = a23,4 and x14 = a14,4

are in C . Let φi ∈ ZL2(L;L) for 1 ≤ i ≤ 14, be the cocyle with xi = 1
and xj = 0 for i 6= j in the above matrix of ψ. It is easy to check that
{φ1, · · · , φ14} forms a basis of ZL2(L;L).
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(ii) Let ψ0 ∈ BL2(L;L). We have ψ0 = δg for some 1-cochain
g ∈ CL1(L;L) = Hom (L;L). Suppose the matrix associated to ψ0 is
same as the above matrix M .

Let g(ei) = a1i e1 + a2i e2 + a3i e3 + a4i e4 for i = 1, 2, 3, 4. The matrix
associated to g is given by

(aji )i,j=1,...,4

From the definition of coboundary we get

δg(ei, ej) = [ei, g(ej)] + [g(ei), ej]− ψ([ei, ej])

for 0 ≤ i, j ≤ 4. The transpose matrix of δg can be written as



0 0 0 0
−a31 −a41 0 0
a21 −a41 a41 0
0 (a21 + a31) −a31 0
a31 a41 0 0
0 0 0 0

−(a11 − a22 − a33) −(a21 + a42 − a43) −(a31 − a42 −a41
−(a12 − a34) (a32 + a44) −2a32 −a42
−a21 a41 −a41 0

(a11 − a22 − a33) (a21 + a42 − a43) (a31 − a42) a41
0 0 0 0

−(a12 − a13 + a24) −(a22 − 2a23 − a33 − a44) −(a32 + a44) −(a42 − a43)
0 −(a21 + a31) a31 0

(a12 − a34) −(a32 + a44) 2a32 a42
(a12 − a13 + a24) (a22 − 2a23 − a33 − a44) (a32 + a44) (a42 − a43)

0 0 0 0



.

Since ψ0 = δg is also a cocycle in CL2(L;L), comparing matrices δg
and M we conclude that the transpose matrix of ψ0 is of the form
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M t =



0 0 0 0
0 x1 0 0
x2 x1 −x1 0
0 x2 0 0
0 −x1 0 0
0 0 0 0
x4 x5 x6 x1
x8 x9 x10 −x6
−x2 −x1 x1 0
−x4 −x5 −x6 −x1

0 0 0 0
x12 x13 −x9 (x2 + x5)
0 −x2 0 0
−x8 −x9 −x10 x6
−x12 −x13 x9 −(x2 + x5)

0 0 0 0



.

Let φi
′ ∈ BL2(L;L) for i = 1, 2, 4, 5, 6, 8, 9, 10, 12, 13 be the cobound-

ary with xi = 1 and xj = 0 for i 6= j in the above matrix of ψ0. It
follows that {φ′1, φ′2, φ′4, φ′5, φ′6, φ′8, φ′9, φ′10, φ′12, φ′13} forms a basis of the
coboundary space BL2(L;L).

(iii) It is straightforward to check that

{[φ3], [φ7], [φ11], [φ14]}

span HL2(L;L) where [φi] denotes the cohomology class represented
by the cocycle φi.

Thus dim(HL2(L;L)) = 4.
The representative cocycles of the cohomology classes forming a basis

of HL2(L;L) are given explicitely as the following.

(1) φ3 : φ3(e1, e4) = e1, φ3(e4, e1) = −e1; φ3(e3, e4) = e3; φ3(e4, e3) = −e3;
(2) φ7 : φ7(e2, e3) = e4, φ7(e3, e2) = −e4;

(3) φ11 : φ11(e3, e2) = e1, φ11(e3, e3) =
1

2
e1, φ11(e4, e1) = −e1;

(4) φ14 : φ14(e4, e4) = e1.

Here φ3 and φ7 are skew-symmetric, so φi ∈ Hom(Λ2L;L) ⊂ Hom(L⊗2;L)
for i = 3 and 7.

Consider µi = µ0 + tφi for i = 3, 7, 11, 14, where µ0 denotes the
original bracket in L.

This gives 4 non-equivalent infinitesimal deformations of the Leibniz
bracket µ0 with µ3 and µ7 giving the Lie algebra structure on the factor
space L[[t]]/ < t2 >.

Now we have to compute the nontrivial Massey brackets which give
relations on the base of the miniversal deformation.
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Let us start to compute the nonzero brackets [φi, φi] which are the
obstructions to extending infinitesimal deformations. We find

[φ3, φ3] = 0, [φ7, φ7] = 0.

That means that these two infinitesimal Lie deformations can be ex-
tended. In fact, they can be extended to real Lie deformations as
follows.

We give the new nonzero Lie brackets (and their anticommutative
analogue).

The first deformation

[e2, e3]t = e1 + te4

[e2, e4]t = e2

[e3, e4]t = e2 − e3
is isomorphic to sl(2,C)⊕ C for every nonzero value of t, see [5].

The second deformation represents a 2-parameter projective family
d(λ, µ), for which each projective parameter (λ, µ) defines a noniso-
morphic Lie algebra (in fact, the diamond algebra is a member of this
family with (λ, µ) = (1,−1)):

[e2, e3]λ,µ = e1

[e2, e4]λ,µ = λe2

[e3, e4]λ,µ = e2 + µe3

[e1, e4]λ,µ = (λ+ µ)e1.

Furthermore, we also have [φ14, φ14] = 0 which means that φ14 defines
a real Leibniz deformation:

[e2, e3]t = e1

[e2, e4]t = e2

[e3, e4]t = e2 − e3
[e4, e4]t = te1.

We note that this Leibniz algebra is not nilpotent.
For the bracket [φ11, φ11] we get a nonzero 3-cocycle, so the infinites-

imal Leibniz deformation with infinitesimal part being φ11 can not be
extended even to the next order. That means it gives a relation on the
base of the versal deformation.

The nontrivial mixed brackets [φi, φj] also determine relations on the
base of the versal deformation.

Among the six possible cases [φ3, φ11], [φ3, φ14] and [φ11, φ14] are non-
trivial 3-cocycles, the others are represented by 3-coboundaries.

Thus we need to check the Massey 3-brackets which are defined,
namely
< φ3, φ3, φ7 >



14 A. FIALOWSKI, L. MAGNIN, AND A. MANDAL

< φ3, φ7, φ7 >
< φ7, φ7, φ11 >
< φ7, φ7, φ14 >
< φ7, φ14, φ14 >
In these five possible Massey 3-brackets, only < φ3, φ3, φ7 > is rep-

resented by nontrivial cocycle.
So we now proceed to compute the possible Massey 4-brackets. We

get that four of them are nontrivial:
< φ3, φ7, φ7, φ11 >
< φ3, φ7, φ7, φ14 >
< φ7, φ7, φ14, φ11 >
< φ7, φ7, φ14, φ14 >.
At the next step, we get that all the Massey 5-brackets which are

defined are trivial.
So we can write the versal Leibniz deformation of our Lie algebra:

[e1, e2]v = [e2, e1]v = [e1, e3]v = [e3, e1]v = 0,

[e1, e4]v = te1, [e4, e1]v = −(t+ u)e1,

[e2, e3]v = e1 + se4, [e3, e2]v = (u− 1)e1 − se4,
[e2, e4]v = e2, [e4, e2] = −e2,
[e3, e4]v = e2 + (t− 1)e3, [e4, e3]v = −e2 + (1− t)e3,
[e1, e1]v = [e2, e2]v = 0, [e3, e3]v = 1/2ue1,

[e4, e4]v = we1.

With the nontrivial Massey brackets and the identification t = φ3, s =
φ7, u = φ11, w = φ14, we get that the base of the versal deformation is

C[[t, s, u, w]]/{u2, tu, tw, uw; t2s; ts2u, ts2w, s2uw, s2w2}.

Example 5. The quadratic 5-dimensional nilpotent Lie algebra g5,4
[11] has commutation relations [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5.

This is an extension of the trivial Lie algebra Cx1 by the 4-dimensional
Lie algebra Cx4 × n3 (n3 the 3-dimensional Heisenberg Lie algebra
[x2, x3] = x5). As it is moreover the only 5-dimensional indecompos-
able nilpotent Lie algebra which is not I-null, it can be considered as
a 5-dimensional analogue of the diamond algebra d.

Let us first compute its trivial Leibniz cohomology. We here denote
simply d for dC, and ωi,j for ωi ∧ ωj (see also [10],[12]).
B2(g,C) = 〈dω3 = −ω1,2, dω4 = −ω1,3, dω5 = −ω2,3〉, dimZ2(g,C) =
6, dimH2(g,C) = 3, Z2(g,C) = 〈ω1,4, ω2,5, ω1,5 + ω2,4〉 ⊕ B2(g,C),
dimZL2

0(g,C) = 3, ZL2
0(g,C)(∼= ker I) = 〈ω1 ⊗ ω1, ω1 � ω2, ω2 ⊗ ω2〉,

dimZL2(g,C) = 10, dimHL2(g,C) = 7, and

ZL2(g,C) = Z2(g,C)⊕ ZL2
0(g,C)⊕ Cg1,

HL2(g,C) = H2(g,C)⊕ ZL2
0(g,C)⊕ Cg1
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with g1 = B + ω1,5 and B = ω1 � ω5 − ω2 � ω4 + ω3 ⊗ ω3. (Here
ImI = CIB = Cdω1,5 and Im I ∩B3(g,C) = Im I is one-dimensional.)
g5,4 is not trivial ZL2-uncoupling (hence not adjoint ZL2-uncoupling
either), and g1 is a coupled Leibniz 2-cocycle.

Now let us turn to the adjoint Leibniz cohomology, which represents
nonequivalent infinitesimal Leibniz deformations.
dimZ2(g, g) = 24; ZL2

0(g, g) = c⊗ker I has dimension 6, dimZL2(g, g) =
32,

ZL2(g, g) = Z2(g, g)⊕ ZL2
0(g, g)⊕ CG1 ⊕ CG2,

HL2(g, g) = H2(g, g)⊕ ZL2
0(g, g)⊕ CG1 ⊕ CG2,

where G1, G2 are the following Leibniz 2-cocycles, each of which is
coupled:

G1 = x5 ⊗ (B + ω1,5)

G2 = x4 ⊗ (B + ω1,5)

Here H2(g, g) has dimension 9.
Of course these spaces are too huge to compute, but we would like to
point out some structural similarity with the diamond algebra.

One may observe that the coupled cocycle φ11 of d reads in the basis
(5)

φ11 = −ix4 ⊗ (C − ω2,3 + ω1,4)

with C = ω1 � ω4 + ω2 ⊗ ω2 + ω3 ⊗ ω3 the non degenerate invariant
bilinear form, a similarity with G1, G2. The similarity extends to the
fact that G1, G2 cannot be extended to the second level.

As for Lie deformations, g5,4 has a number of deformations. Without
identifying all of them, we list some:

1. A three-parameter solvable projective family d(p : q : r) where
g5,4 belongs (it is its nilpotent element, with p = q = r = 0) with
nonzero brackets

[x3, x4]p,q,r = x2

[x1, x5]p,q,r = rx1

[x2, x5]p,q,r = (p+ q)x2

[x3, x5]p,q,r = px3 + x1

[x4, x5]p,q,r = x3 + qx4.
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2. A solvable Lie algebra with nonzero brackets

[x3, x4] = 2x4

[x3, x5] = −2x5

[x4, x5] = x3

[x1, x2] = x1.

3. Another solvable Lie algebra with nonzero brackets

[x3, x4] = 2x4

[x3, x5] = −2x5

[x4, x5] = x3

[x1, x3] = x1

[x2, x5] = x1

[x2, x3] = −x2
[x1, x4] = x2.

4. A 2-parameter solvable projective family with nonzero brackets

[x2, x5]p,q = x1 + px2

[x3, x5]p,q = x2 + qx3

[x4, x5]p,q = x3 + (p+ q)x4

[x1, x5]p,q = (p+ q)x1

[x2, x3]p,q = pqx1

[x2, x4]p,q = qx1

[x3, x4]p,q = x1.

5. Another 2-parameter solvable projective family with nonzero
brackets

[x3, x4]p,q = x2

[x2, x5]p,q = (p+ q)x2

[x3, x5]p,q = x1 + px3

[x4, x5]p,q = x3 + qx4

[x1, x5]p,q = (q + 2p)x1

[x2, x3]p,q = (p− q)x1
[x2, x4]p,q = x1.
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sétány 1/C, H-1117 Budapest, Hungary

E-mail address: fialowsk@cs.elte.hu
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