Holomorphic operator-valued symbols for

edge-degenerate pseudo-differential operators

J.B. Gil and B.-W. Schulze and J. Seiler

Max-Planck-Arbeitsgruppe

“Partielle Differentialgleichungen und
komplexe Analysis*

Universitiit Potsdam

Am Neuen Palais 10

14469 Potsdam

Germany

MPI 96-151

Max-Planck-Institut

fiir Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Germany






Holomorphic operator-valued symbols for edge—degenerate
pseudo—differential operators

J.B. Gil and B.-W. Schulze and J. Seiler

November 12, 1996

Abstract

The Mellin quantization assigns to an edge-degenerate pseudo-differential operator an
operator based on the Mellin transform in the cone axis direction. This procedure is here
presented in a new and more precise way, which leads to isomorphisms between edge-
degenerate and holomorphic Mellin symbols. Furthermore, we introduce a suitable class
of operator—valued edge symbols without asymptotics. They are, in particular, parameter
dependent pseudo—differential operators on a cone with smooth closed base.

1 Introduction

In this paper we describe some essential elements of the pseudo-differential analysis on a
manifold with edges. Such a manifold is a topological space with the structure of a smooth
manifold outside the edge Y'; near each point y € Y it looks like the product of an open set
Q C R? and a cone C with a smooth closed base. One basic idea in the approach of SCHULZE
[Sza)], [ES] to handle such a singular object is to formulate a pseudo—differential calculus via
operator-valued symbols, that is, symbols taking values in an established algebra on the cone.
In other words, the calculus is generated by iteration of calculi on manifolds of less singular
type.

Following this idea, we introduce a class of edge symbols, which are operator families
parametrized by y € Y and the corresponding covariable in R? and which take their values in
the cone algebra on C. Near the conical singularity these families are defined in terms of holo-
morphic Mellin symbols, whereas in the interior by standard pseudo—differential symbols; both
types are degenerate in a certain sense. These two components of the operator-valued edge
symbols are related by the so-called Mellin quantization, which maps a degenerate pseudo—
differential symbol to a holomorphic one in a way that the corresponding operators differ by
a smoothing remainder. The first variant of this quantization for classical symbols was in-
troduced in {Szb] (cf. also [DS], [SSb]), using techniques of asymptotic summation. Here we
present a new proof of this result and obtain exact formulas both for the holomorphic symbol
and for the remainder, formulas that are valid also for non—classical symbols. Moreover, we
achieve topological isomorphisms between the symbol classes involved.

The Mellin quantization immediatly leads to another very important tool of the theory in the
spirit of {Szc], [ES], the so—called kernel cut—off. Roughly speaking, this construction ensures
that (Mellin) pseudo-differential operators can be written, modulo smoothing remainders, with
symbols that extend to entire functions in the covariable.
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The material of this paper has applications in future works of the authors, e.g. [GSS], where
we develop a general algebra of pseudo—differential operators on a wedge-shaped manifold,
including a natural Fréchet topology.

Let us finally note that, for example, Plamenevskij [Pl], Melrose, Mendoza [MM] and Mazzeo
[M] also deal with operators on singular manifolds. While the nature of the degenerate symbols
considered by these authors has some intersection with the type discussed here, the structure
and intention of our calculus is fundamentally different.

Basic notation

Ry ={reR|r>0}, Ri=R.U{0}, MNo=NU{0}

A cut-off function is a non-negative function w € C§°(R4) with w = 1 near t = 0. For
u € CP(R™), v € C§°(Ry) the Fourier and Mellin transform respectively, are given by

Fu(€) = /‘n e u(z)dz, Mu(z) = /DOO 1=~ Ly(t) dt.

These transforms can be extended to more general (distribution) spaces.
Let U C R™ be open, and set (¢) = (1 + |¢]2)1/2 for £ € R™. Then S#¥(U x R™) consists of all
p € C®(U x R*) with -

sup {|D¢DZp(z,6)] (€))7} < o0 ¢y
z€K,{eR"

for all « € Njj, 8 € N, and all compact sets K C U. This is a Fréchet space. Further, such
a p is called classical if there are symbols p(,_;y € SE3(U x R*), which are homogeneous of
degree p — 7 in the covariable £ for large |¢}, and

N-1
rn(p):=p— D €SFN(UxRY) forall N € Ry
j=0

The space of these symbols is denoted by Sf,(U x[R"™). In view of the homogeneity, the functions
P(u—j) can be identified with elements of C*°(U x S™~!), where S"~! is the unit sphere in R".
The projective limit with respect to the maps p — p(,_;y and p — rn(p), gives rise to a Fréchet
topology on S%,(U x R"}; this topology is stronger than that induced by S#(U x R").

To a symbol p € S#(U x U x K*) with U C K" we associate in the standard way its pseudo—
differential operator op(p) : Cg°(U) = C=(U} by

lop(p)ul(z) = f [ &= p(z, 2! E)u(z') da'dt.

Here d¢ = (2m)~™ df. The space of these operators is denoted by L#(U). We also consider
the space L#(U;RR?) of parameter dependent operators, where the parameter is treated as an
additional covariable.

Moreover, set S¥(Ry x U xR*) = S#¥(R x U x R?)|g, xuxrn- This is a Fréchet space if we take
as semi-norms the analogous expressions as in (1), where now K is a compact set in Ry x U.

We also consider operators on half spaces, where the action along the inner normal is formulated
in terms of the Mellin transform. For real § set I's = {z € C|Re z = $8}. Under the
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identification 8 + it — 7 : ['g = R we obtain the symbol classes S#(U x I'g x R*), and
SH(R4y x U x g x R*), where I'g x R* 2 R'*" serves as the space of covariables.

IfU € R* and h(t t'z,7',2,§) € S¥(Ry xRy x U x U x T'y5_, x R*) we define the operator
opas(op(h)) : (R+ X U) - C®(Ry x U) by

opR(op(h)ul(tz) = [ . [7(3) opte.e,surSas

Here dz = (2mi)~'dz, and for t' fixed, u(t') is viewed as a function in C§P(U).

2 Mellin quantization

For a closed compact smooth manifold X let us set '
X2 =Ry x X)/({0} x X);

this is interpreted as the infinite cone with base X and vertex represented by {0} x X, contracted
to one point. Moreover, define the open stretched cone

:R_,_ x X

with a fixed splitting of coordinates (t,z). If (£,%) € X" is another splitting of coordinates
then we require that the transformation (¢, z) = (#(¢, z), Z(¢, 7)) extends to a diffeomorphism
K, x X - Ry x X, where £(0,z) = 0.

The local model of a manifold with edges is X© x Q with a smooth, closed, compact manifold
X and an open set {2 C R? that corresponds to a coordinate neighborhood on the edge. We
employ the coordinates (¢, z,y) on the associated open stretched wedge X x Q. To describe

the interior symbols we fix a chart on X with local coordinates z € V, V being an open set in
R".

The typical differential operators on a wedge are of the form
4 Y ajalt,y) (=B (ED,)°, )

J+lelgp

with coefficients ajq(t,y) € C®(R4 x Q, Diff#~U+tla (X)), i.e., smooth functions with values in
the differential operators on X. Among these operators (for 4 = 2) are the Laplace-Beltrami
operators for (warped) wedge metrics (i.e., metrics of the form dt? + t2gx (t) + dy? with metric
gx(t) on X depending smoothly on ¢ € R,). We can interpret (2) as a Mellin operator with
the operator—valued symbol

H(t,y,z,m) =t™* Y ajalt,y)2 (tn)°,
jtlal<p
which is a holomorphic family of operators with
H(t,y,B +ir,n) € L*(X;R,)

for every (t,y,n) € Ry x Q x R? uniformly for A in compact intervals.
This motivates the following definitions:



Definition 2.1 Let S#¥(R; x V x  x R*"+2) denote the space of all symbols p, which are
of the form

p(t,z,y,7,€,n) =L, z,y, 17,6, tn)

with a symbol § € S#¥(R4 x V x  x R1*7t4). Such a symbol p is called edge-degenerate.
Analogously we define the corresponding spaces of classical symbols, indicated by subsript cf,
where p is asked to be classical.

Definition 2.2 Let S#¥(Ry x V x 2 x C x R"*9) be the space of all functions h € C®(R; x
V x Q x C x R**9), which are holomorphic in z € C with values in S¥*(Ry x V x £ x R**9),
and

h(t, z:yyz:Eyn)lrﬂ € S“(ﬁ-}_ XV xQx I‘B X R?,:q)

for every. 8 € R and uniformly for 8 in compact intervals. This is a Fréchet space with the
system of semi-norms

sup |h(t,z,y,8 +i7,§,n)l,
c<p<e

where | - | runs over a system of semi-norms of S¥(R; x V x  x R}_:E::;'q). Analogously to

Definition 2.1 we also introduce S¥(R; x V x Q x C x R™*?) as the space of all symbols A
satisfying )

h(t,z,y,2,&,n) = h{t, 7,9, 2,§, in),
where A(t,z,y,2,£,1) € SH(Ry x V x 2 x C x R*9),

Similarly to the cone theory it is essential to establish a suitable Mellin quantization in order
to obtain (continuous) actions in the natural weighted edge Sobolev spaces. The local Mellin

quantization provides a relation between (y, n)-dependent operator families op, . (p)(y,7), de-

fined in terms of the Fourier transform in (¢, z), and o;:»},";,z(opz (g))(y,n) defined by means of the

Mellin transform in t. Moreover, we can pass from Mellin symbols ¢{¢,t',z,y, 7, 2,7), z € [y,
to symbols that extend in z holomorphically to the whole complex plane.

Theorem 2.3 (Mellin quantization) Let p(t,z,y,0,£,7) € SH(R, xV xQxRI*F"4), Then
there exists a symbol h(t,z,y,2,£,1) € SF (R4 x V x Q x C x R**9) such that

0P 2(P)(4,1) = 0pi(0ps (A))(y,7) mod C=(Q, L™®(R, x V;RY)). (3)

Moreover, the symbol h allows the following asymptotic expansion

o0 k
h(t,z,y,10,6,m) ~ B¢, 2,5, —0,6,1) + Y ( Y okt 3.y, —0,€, n)ej) (4)
=0

k=1

with certain cg; € R that are independent of p; the asymptotic summation being carried out
in S#(Ry x V x Q x R1"*9). An analogous result is valid for classical symbols. In this case
we have the homogeneous components

I &
h(,u—l)(ti T, ¥,10, &, ﬂ) = Z z ckj(8§+1p~)(p—l-j) (t'» 9,0, €, W)QJ .
k=0 3=0



PROOF. Let u € C§°(Ry,C=(V)), then
0P,z (P) (3, Mut)

- / / =) op, (p)(t,y, 7, )u(t)) de'dr

- j_oo/o (F) M(’fvlf')'f'opz(p)(t,y,—M(t,t’)rr,1,),_‘(,5')“‘t_’3"4,r

with the transformation T = —M (¢, )7, where M(¢,t') ;= 133%1?-& for t,t' € ]R+ We have
M e C®°(R; x Ry) and M > 0 (precise calculations and further properties of M(t,t') can be
found, e.g., in [SSa, Section 2.4]). If we set

g(t.t', z,y,47, &, n) = M(t, ¢ )'p(t, z,y, —M(t,t')7,€,7)
then g € S#(RZ x V x Q@ x T'g x R**?) and

op;+(P)(y,7) = 0p}]f4(0pz (@),

for every (y,7n) € QxR?. The operator op.{g)(¢,t,y,7,n) is already an operator-valued Mellin
symbol. The next step is to pass to a holomorphic symbol & being additionally independent of
t'. The procedure is similar to that from the usual pseudo-differential calculus; we reduce g to
a sum of properly supported and smoothing parts, and calculate the corresponding complete
symbol h.

Let ¢ € C§°(Ry) with ¢ =1 near to 1. For z € C put now

1
h(t,z,y,2,&,m) = t*op} ($(t'/t)g)(z, y, &, n)t™".
Then, applying the change of variables t' — tr

o0 oo t —iT+2 . dt{
hit,z,y,2,&,n) = f f (g) ¢(t'/t)9(t,t’,m,y,i'r,f,n)Fdf
=000

0o fo dr
= [ [ et inz i em Far,
'—W 0 r
the integrals being understood as oscillatory integrals. It is easy to see that
(t tr x y’ IT! { n) - rM(ri ) (t Z? y1 _M(r? 1)1-5 Ei tn)!

and so

h(t,z,y,2,&,10) = f / rTEG(r)M (r, 1)(t, , y, —M(r, 1)7, €, tn) drdr. - (5)

We next prove that h(t,z,y, 8 +ip,&,t7'n) = h{t,z,y,6 +i0,£,7) € SRy x V x Q2 x IR:;T:,W)

uniformly in & € [c1,¢y] for every ¢; < co. The symbol estimates of h will be recovered from
those of p, hence we actually have that h depends continuously on 5. With the change of
variables 7 — 7 + p we get

h(t,z,y,6 +ip,€,m)
= [[r M 5 M+ 0,6 Far
Nt e -
=25 (r)
= /[(1 +iT)_Nr1+iT(_T5r)N(¢,5(T)ﬁ(i,m,y,_M(,.’l)(,r + 9)’5,71))%7'67.
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The last integral converges for N € N big enough. Now
N

(=r3r )N ($s(r)(t, 2, y, —M(r, 1)(7 +0),6,m) = 3 ck(r)( @R )T + 0)F

k=0

with ¢ € C$°(Ry). For the symbol estimates of h we only have to investigate the derivatives
of . For 1 € N, o € Nj*? and § € Nj*"H9

Lias = |04Dg,DE.,l(855)(t 2,5, ~M(r, (7 + 0),€,0)(7 + 0"
i
S Y |0k Dg, Dl ). 1By (r + )]
j=0

Since
133[(85 D¢, DY, o)t z,y, —M(r,1)(r + 0),€,7)]]

= (85**Dg, DLz D) =M (r, 1)) < c(r) (r + 0,€, )7 ~~1e!

with ¢ € C*(R}.), and because of |3€,’j('r +0)f| <elr +p,& 7 !, weobtain together with
Peetre's inequality :

Lap < Gap(r) (40,6 P10 < g pr) (ryt1all (g, 6, pyptzlel,

Furthermore, since 9515 depends continuously on § for every k € Ny, the symbol estimates
of h are uniform in ¢; < § < c. If we analogously look now at the semi-norms of h in
SHRL x V x 2 x R"9); we can easily see that A depends holomorphically on z.

From a standard method of the pseudo—differential calculus (cf. [Sh, Theorem 3.1}}, we have
for each N € N the expansion

N-1 1

btz yiedn) = ) S(-t0e) o, {#(t'/09(t, ¢z, v 0.6, 1)} oo
k=0

1 (1 _ a)N—l .
+ -/0 Whlv(t'l -I?yagsfsn,o)dg) (6)

 where fm(t,x,y, 0,€,n,60) is given by

e 3,_ir(if)”ct»(t'/t)(ag‘g)(t,t’,z,y,i(g+9¢),§,t“n)£dr-
/_m/; (t _ ¢

Moreover,

Gyg(t,t', 2y, 40, 6,47 ) = M(t,t ) (B5P)(t, 7y, - M(t, )0, &, n) (~ M (t, ' )t)*

so that the sum on the right-hand side of (6) equals

N-—-

1
3 %(t'az')" {t"¢(t’/t)M(t, t)EH1 (85D) (¢, z, y, —M (8, )to, €, n)} |

k=0

(M

t’l=t’
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and furthermore hy(t, z,v, 0,€,7,6) equals

[ / (=ir)¥ $(r) M(r, )Y OV ) (1, 2, v, ~M(r, 1) + 07), £,17) drd.

The last identity clearly yields, as above, that the remainder in the expansion (6) belongs to

SE-N(R, x V x ) x RI';’:;H’) showing that the asymptotic summation of & can be carried

out in the space of symbols defined up to t = 0. Finally, (4) follows from (7) by applying the
Leibniz formula, the chain rule

L
Biuov) =Y 3 c(@u)(u()dv...8 v

i=1 n+...+y=L

ko1 ‘
with L, Y5+ C4 1S N, and the 1dent1ty 3§M(t, t’)lﬂ:t = (_l)kk_-f-l tkT O

Remark 2.4 a) Let € S#(Ry x V x @ x R1*") and h € 4Ry x V x @ x C x R*+9) be
as in the preceding Theorem 2.3. A Taylor expansion shows that

N-1

= . ) = .
h(t,z,9,6 +igén) =D F(th)(t,z,y,w,f,n) + rys(t T, 9, 0,€,n),
k=0

where the remainder ry s equals
_.__6N _ : N-=1/aN7} .
(N__.]_)l ]0 (1_6) - (az h)(t:$9y396+19:£:7?)d9

Since (8N A)(t,z,y,08 +i0,€,m) € S*N(Ry x V x  x m;*;j‘ﬂ) uniformly in 0 < 8 < 1,

c< 8 <, we have ry 5 € SPN(Ry x V x 2 x R1*™*9) uniformly for § in compact intervalls.
From this we can draw the following conclusions:

o Ifh e SH (R xV xQOxTyxRK*H9) for some § > 0, then h € S5~6(R, xV xQxCx R ),

e h(t,z,y,0 +10,&,1) — pt,z,y,—0,€,1) € S¥ 1Ry x V x Q x IR;’E':"H’) for all é.

e If 5, and thus @, are classical symbols, the homogeneous principal symbol (ﬁrith respect
to (0,£,m)) of h is independent of § € R

b) Let kA be as in (3). In view of the holomorphy of & in z we obtain as a consequence of the
Cauchy Theorem that

L
op4s (o (h))(y;n) = opj,(op.(h))(y,n) on C(Ry x V)
for arbitrary v € R.
Corollary 2.5 The proof of Theorem 2.3 supplies a ma;').

SHR x V x @ x R*™4) — ¥R, x V x Q@ x C x R*9) (8)

7



such that p(t,z,y,7,&,n) = h(t,z,y,2,£,7n) implies (3). Moreover, if we fix there a function
@, the corresponding mapping

P h:SHRy xV x QxR — 48R, x V x O x C x R*9)
is continuous.

Due to the Closed Graph Theorem the above continuity also holds when the symbols are
classical. Remember that the Fréchet topology of 5%, is stronger than that induced by S*.

Theorem 2.6 The map (8) induces isomorphisms
SHR, x V x @ x R /§-®(R, x V x 2 x RI+7+9)
= SHRy x Vx2xCxR™)/§TO(Ry x V x 2 x Cx R*9).
Corresponding isomorphisms hold with subscript ct.

PROOF. Let us denote by m(p)(¢, z,y, 2,£,n) the Mellin quantization of a symbol p according
to Theorem 2.3, where we fix the-function ¢ of the proof. -Because. of (4) we have trivially
injectivity of the induced mapping of m. For the surjectivity let

h{t,z,y,2,6,1) € SH(Ry x V x Q x C x R*9)

be given. Choose P € CP(R) with ¥ = 1 near to 0. Set (¢, t') := ¢(logt — logt) and
P(r) := ¢(logr) for ¢,t',r € Ry. Imitating the proof of Theorem 2.3 we set

Q(t! t’? Il y} T} Ei n) = M(t’ t’)-lt’-lh’(t1 I? y’ _tM(t’ t')—.lT! E’ 1’)’

p(t: nLyT, E: 77) = e_itTOPt(¢(t, t’)q)e“f;

then similar calculations show
p(t,z,y,7,6,1) = / / et=tNe=")op(t,¢')q(t, ', z,y, 0, €, 1) dt'do
= [[riee -0 gir i 2,3, -i0,6 ) F e

due to the changes of variables ' — tr and ¢ = t~!M(r,1)p. In this manner we obtain the
corresponding symbol

plt,z,y, 7€) = // r= e~y (r)h(t, 2, y, —io, E,n)é}.d@ (9)
in SH(Ry x V x Q x R1*™+), According to (5) the Mellin symbol to p looks like
m@) s &) = [[HNHMs, 5t 2,3, M(s, D ) dodr

- / / 50017 g (0)i(t, 7, y, —7, €, tn) dsdr
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with the transformation 7 — M(s, 1)~!7. Inserting (9) yields

= / f seile=1rg(s) { f f r= =Ty (r)A(t, 2, y, ~ip, €, r])d—:d‘g} dsdr
=!1_1’1[1)/:/- —io ‘"d; {// riee” T ( o)h(t,z,y, —ig,é.,n)ézdg} dsdf
= 31_1’% s ¢(s) {/ei" {-/e‘irfw(r) {‘/r_i‘?v,ﬁ(eg) (.. )dg} dr }d"r} ds

= iy {70806} { [ s deont, v -ie. ) o} 2

0
= f f s'(e=7) p(s)p(s) h(t, x,y,ig,é,n)i{da-
N, e 8
=:x(s)

Obviously, x{s) € C§°(R;+.), and x = 1 near to 1. Now

h(t T y,waﬁﬂ?) "'m(.p) t :L',y,‘lO' € 7})
= h(t,z,y,i0,¢,7m) / / s @7 x()h(t, 7, .10, )af 0

= h(t,zy,i0,6,1) - ] h(t, 2,9, i(e + 0), € njulie)de,

where u(ip) is the Mellin transform of x. The difference h — m(p) belongs to S~°(R, x V x
2 x ['yg x R**9), and using Remark 2.4 a) we even obtain

(h - m@))(t,%'y,zaf,ﬂ) € g—m(ﬁ.{. XV xOxCx ]RTH-Q).
In order to demonstrate that the symbol (h—m(p))(t, z,y,10,¢, t~17n) is smoothing, we expand
ht,z,y,i(o + o),€,n) in o near to g = 0, resulting in

N=1

Mt omile+00em = 3 S @RI E 0,000, m) + ragltsm o, €17)
k=0

with the remainder

N 1 .
2 1)! .[o 1 -0N-"YoNh)(t,z,y,i(00 + 0),&,n) df

TNg = v
The property of the Mellin transform [(ig)*u(ig}do = ((—r6,;)*x)(1) implies
i f(ﬂfﬁ)(t,x,y,io,é,n)(ie)"u(ie)de = h(t,z,y,i0,£,7).
Finally, as in the proof of Theorem 2.3, it is easy to verify that the symbol
(h = m(p))(t,,0,i0,6,t7'0) = [ racglt, v, i€ mulie)de
belongs to S#~N (R, x V x  x [y x R*"9). This completes the proof. 0
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Definition 2.7 The space of holomorphic Fourier symbols S# (R x V x 2 xiCx R**9) consists
of all functions p(t, z,y, z,£,n) such that

(t, 2,9, 2,€,1) = p(t,T,9,12,€,7) € SH(R4 x V x 2 x C x R**9),

Furthermore we introduce the corresponding space S#(R; x V x 2 x iC x R**), consisting
of all symbols p satisfying

p(t,z,y,2,§,n) =p(t,z,y,t2,&,tn)

for a certain p € S¥(Ry x V x £ x iC x R**9). The topology is that induced by S#(R, x V x
Q x C x R™9),

Theorem 2.8 (Kernel cut—off) Toeachg € SH(R; x V x Q@ x R1T"49) there exists a symbol
p € S¥(R4 x V x Q x iC x R**9) such that

g—p€ 85 PRy x V x Q xR,
i.e., g can'be “approximated” by-a holomorphic symbol. e
PROOF. Let h = m(g) be the Mellin quantization of . If we define p as in (9), where 7 € R
is replaced by z € C, the associated symbol p is an element of S#¥(R; x V x Q x iC x R**9), -
and from the proof of Theorem 2.6 we know that

m(p) — m(g) =m(p) —h € SRy x V x @ x C x R*9).

The injectivity then implies that p — g € §~®(R, x V x 2 x RI+n+¢), O
Toh € 5‘“(@_R7+ x V x Q2 x [y x R**9) it also makes sense to define p € S“(ﬁ.,. x V x Q x RI+7+4)
via formula (9). This gives rise to the “inverse Mellin quantization”

SHRy x V x Q x Ty x R*) — §#(R, x V x Q x iC x R*H9), (10)
For this map we then obtain results corresponding to Theorems 2.6 and 2.8:

Theorem 2.9 The map (10) induces isomorphisms

SHRy x V x 2 xTp x R /5 (R, x V x 2 x Ty x R*9)
> SRy x V x 2 xiC x R™9)/§ PR, x V x @ x iC x B*9).

Theorem 2.10 (Kernel cut—off) To each g € SA(R; x V x Q x Ty x R*4) there exists an
h € SHR,L x V x Qx C x R*9) such that

g—he S PRy x V x 0 x [y x Ry

i.e., each Mellin symbol given on a vertical line in C can be “approximated” by a holomorphic
one. ]
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3 Edge symbols

For s € R is H*(R") the standard Sobolev space, and for s,d € R we define
HHE) = ()0 u | w e B (R

with the norm [[oll gasrey = Il ()’ vl grs(rn).

Definition 3.1 Let s,y € R Then H*?(R, x R") is defined as the closure of C§{°(R;. x R*)
with respect to the norm

Il = 5 [ " JO+ 1+ Mis Pz, P dde. (11

Here F is the Fourier transform and M the Mellin transform.

Remark 3.2 The analysis of edge pseudo—differential operators will be formulated in terms of
operator-valued symbols acting between suitable Sobolev spaces on the infinite cone. To define
these spaces, we fix an open covering {Uy, ..., Un}-of X with corresponding diffeomorphisms
x;:U; = V; CR® and &; : U; = V; C S™, where S™ is the unit sphere in R!*". To the latter
ones associate '

ki Ry xU; = R'*", (t,z) ¥ tR;(z).

Further let {¢1,...,¢n} be a subordinate partition of unity, and {1; € C§°(U;); j = 1,..., N}
be a system of functions satisfying ¢;9; = ¢; forall j =1,...,N.

Definition 3.3 For s,y € R let £*7(X") denote the closure of C§°(X") with respect to the
norm

N .

Hul? = 3 wju) o (1% %)™ Winerim ey + (1 = 0)dj1) 0 65 Wopagaemyy  (12)
j=1

where the functions on the right-hand side are extended by zero outside their natural domains.
This construction is (up to equivalent norms) independent of the specific choice of all involved
data, and yields a scale of Hilbert spaces. Analogously we introduce the spaces E*7(X") replac-
ing the second term on the right-hand side of (12) by the norm {|((1 — w)¢;u) onj'lll%{,., (R1+n)-
That is, in E»7(X") we deal away from ¢ = 0 with weighted Sobolev spaces.

We have K*(X*) C H (X*), and
KO‘O(XA) — 'H.O'O(XA) — t_n/2L2(XA).

Further let £(¢) be a non-vanishing smooth weight function which equals t¢ near ¢t = 0, and
is identically 1 at infinity. Then we obtain

K:a.'y+o(XA) = kp}ca,'y(xf\)
for all v,0,s € R

11



Definition 3.4 For an operator A € [,cg L(K*7(X"),K*~#¢(X")) we can define the for-
mal adjoint with respect to the scalar product (;-)xo0(xa) as the unique operator A* €
Nyer LIKH7(XN), K2=#=7( X)) satisfying

(Au, v)coo(xny = (1, A'v) koo xn)
for all u,v € C§°(X").
Remark 3.5 For each ) > 0 define the linear mapping &) : C§°(X") — C§°(X*) by
(Rau)(t, z) == APHD 24 ()¢, 7),

where n = dim X. These mappings extend by continuity to linear operators on K*7(X”) for
all 3, € R, and the set {xx},er, is a (strongly continuous) group of isomorphisms, that means

(1) RaxKgp = K)p for all )\,Q > 0 and K1 = id.,ca,'y(xl\),
(ii) for each u € K%7(X") the function A = s u: Ry = K*(X") is continuous.

The same is true on E*7(X").

Definition 3.6 Let us fix a strictly positive function 7 — [n] in C*(R?) with (] = |5} for
|7] > ¢, for a constant ¢ > 0. Let v,4,v € R The space R&(2 x R, (v, 4d)) of Green symbols
for the local edge calculus consists of all operator-valued functions

9(y,n) € C®(Q, L-*°(X";R7))
such that

(i) for every cut-off function w € C{°(R,.)

9wy, 1= wg(y,mw € (] CX(Q x R, LIK*(X™), E¥(XM)));
s,r€ER

(ii) the following symbol estimates hold
”"i;ril {D;'Dggw(y;"))}n[n]IIC(K.'_T,E’_“) < c[n]”‘|°|

for all 5,7 € R, all multi-indices a, 8 € N} and all y € K for arbitrary K CC Q and
n € RY, with constants ¢ = ¢(s,r, e, 8, K) > 0;

(iii) the point-wise formal adjoint g} (y,n) satisfies analogous estimates with the norm in
L(K*=8 En=7),

Henceforth we restrict ourselves to degenerate classical symbols. This is motivated by the
following:

Lemma 3.7 Letp € §5(?§+ XV x QxRN S®(R, x V x Q x R+,
Then it is even true that p € S~ °(Ry x V x U x R*"+9),

12



PROOF. Let p € 5% (Ry x V x Q x R!*"+2) be the corresponding non-degenerate symbol to
p, with the asymptotic expansion in homogeneous components

o
P~ Pu-jy in SRy x V x Qx R,
j=0

. Now p € S™°(R,. x V x Q x R**"*+9) implies that f(,_;; = 0 in Ry, and by continuity also in
R,, for every j. Thus p € S~®(R4 x V x Q x RItn+9), 0
For non-classical symbols the above result is in general not true. Set for instance
B(t, 2, 7,6,m) = q(7,&, nw(tr, €, n), where g(r,£,n) € S¥(R™"*9) and w(r, £, ) € CFO(RIF™H)
with w = 1 near to 0. Note that w(tr,£,7) is an element of S™®(Ry x V x Q x R1+7+9), but
if we demand symbol estimates up to ¢ = 0, then it only belongs to S°(Ry x V x  x RI*"+4).
Therefore, p(t,z,7,€,n) = p(t, z,tr, £, tn) provides a counter-example.

In order to establish a notion of complete {(interior) symbols for the edge symbols, we first have
a look on the behaviour of a local symbol p under coordinate changes.

Remark 3.8 Let x : V — V be a diﬂ'eoznorghism. It is well known that there exists an
-open neighbourhood U of the diagonal in V' x V and a non-degenerate matrix—function ¥ €
C*(U,GL(n,R)) with

x7NE) - xTTENEEDE=(E-§E  V(E ) eUVEER.

Let ¢ € C®(U) be properly supported, ¢
$ € C®(V x V) be given by ¢1(z,z') = ¢(x
define p, € S*(Rs x V x Q x RM1+49) by

= 1 in a neighbourhood of the diagonal, and
(z ) x(z )) FO['PES#(R.FXVxQle+n+q)

peltgnen) = [[ 0065 +w) | det(Dx7 (@ + w)¥(E, 3 +w)l
p(t, x"H&),y, 7, V(E, & + w)(€ + €),7) dwdE.
Then the {y, n)~wise operator push-forward satisfies
(1 X x)s0P; 7 (P) (¥, 1) = 0P 2(Px) (4, 1) + (1 X x)s0p; 2 ((1 — $1)p).

Clearly, the second term is an element of C®(Q, L~°(R, x V;R?)). Now assume that the
operator of a symbol p; € §%(R, x V x 0 x R*"+4) also approximates {1 X x).op; z(P)

modulo C®(Q, L~°(R, xV; R?)). From the theory of parameter dependent pseudo-differential
operators we conclude that py —p; € S™®(Ry x V x Q1 x R!+"+4) hence py —p1 € S (R4 x
V x @ x R*™*9) in view of Lemma 3.7. In other words, we have proved the following:

Lemma 3.9 The operator push—-forward (1 X x)« induces an isomorphism
SE(R: x V x Q x RM*M)/§~(Ry x V x Q x RM7H)

> SE(Ry x V x Q xR/~ 0(R, x V x 0 x RI*"H9),

the so—called symbol push—forward. Furthermore, (1 x x).)™" = (1 x x7})..
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Ana.logous statements are valid in the class of holomorph1c Mellin symbols. The symbol hy €
S4(Ry x V x Q x C x R*9) associated to h € §(Ry x V x @ x C x R**9) is defined in the
same way as py.

Remark 3.10 From the Mellin quantization (5), it is obvious that p € §%(Ry x V x Qx
R*"*9) and h = m(p) € §%(R+ x V x Q x C x R**9) implies m(p,) = hy. Thus, understood
as operations on the corresponding equivalence classes, Mellin quantization and symbol push—
forward are commuting, i.e.

mo(lx x)e=(1xXx)som

Let us fix again an open covering {U),...,Un} of X by coordinates neighbourhoods. Further
let {x1,...,x~} be the corresponding charts and {¢1,...,¢n}, {¥1,-..,%¥n} as in Remark
3.2.

Definition 3.11 The set of complete symbols of order i € R is defined as

T ={(p1,...,pn)I P € §%(R4 x Vj x @ x R*™9) 50 = (1 x (x; 0 x;1))api}-

Here the symbol push-forward corresponding to x; o xi_l s xi(UiNU;) = x;(UsNU;) is as in
Lemma 3.9.

Taking into account the previous remark, we can associate to a complete symbol (py,...,px)
the tuple {(hy,...,hy) via formula (5) in a convenient way.

At present, we turn to a class of operator-valued symbols that are parameter dependent families
of pseudo-differential operators on the infinite cone X*.

Definition 3.12 For v, € R let

RHQ xR, (7,7 - 1)

be the space of all

a(y,n} = wo(t[n]) an(y,n) wit{n]) + (1 — wo(tn)) ap(y,n) (1 - wz(t[n])‘) + gy, m),

with
N . n
an(y:m) = D8 (1x x; )ut T opys 2 {0y (hy))(y ) ¥; (13)
—
JN
“p(yaﬂ) = Z(I)J (1 X X;])‘ t_“OPe,x(Pj)(yrﬂ) ‘I’ja (14)
' =

where (p1,...,py) € Z¥, (hy,...,hy) the corresponding holomorphic tuple, ®; and ¥; are
the multiplicators with ¢; and v;, and g € R% (2 x R?, (7,7 — p)). Further, w; € CP(R4) are
arbitrary cut-off functions satisfying wo(l — wy) = 0, wa(l — wp) = 0. Such an element a(y, n)
is called edge symbol (without asymptotics).
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Constructing to (pt,...,pn) an edge symbol as above (without Green remainder) we obtain a
map
Op: 2 =5 R¥(Q x R, (7,7 — u)).

Our next aim is to prove the following:
Theorem 3.13 The mapping Op induces an isomorphism
DHIET® 5 R¥(Q X R, (1,7 — 1)) /RG(Q2 x B, (7,7 — 1)) (15)

The inverse is denoted by o*. It associates to an equivalence class of edge symbols the local
pseudo—differential symbols of a representative.

To this end we need some further results.
Remark 3.14 For ¥ € R the mapping S, : CPP(R; x R*) = C§(RM"),
(Squ)(r,z) = e('V'Eﬂﬂ)'u(e", z),

induces isomorphisms H*7(R; x R*) — H*(RY") for all s € R If A(t,t,z,2',2,€) €
C®(RZ x R¥" x Cagi_, X R"*), a (formal) computation shows that opL‘"/ %(op,(h)) =

530Dy (r) S, with
hoy(r,r' z,2',7,6) = h(e"',e“"',:z:, 7', 2 -y +i7,8).
We now defire S%(R2 x R®" x Tagr_, X R*) as the space of all such h with
sup {|(tat)k(t'a,,)k'a£af,’ BLOZh(t, V', 2,2, L~y + 7, €))| (T,g)lal“-“} < o0
for all k, &',1 € Ng, B,8',a € N, and the supremum being taken over all {¢,t') € R%, (z,2') €

R?" . (1,€) € R™". This is a Fréchet space. Then the Calderén-Vaillancourt Theorem for

global pseudo—differential operators in R'*” implies that op};"/ %(op,(-)) induces continuous

mappings
Sh(R% x R%™ x Capi_, X R") = LOHY(Ry x R), H~# (R, x 7))

for each s € R In particular, the operator-norm.of Op:{;"/ %(op4(h)) can be estimated from
above by a finite number of semi-norms introduced before.

Lemma 3.15 For h € §~°(R, x R* x 2 x C x R*9), and ¢, € CP(R") set
H(y,n) = w(t)wo(tfn]) @t #op}; ™ (ops (k) (y,7) L wi (tfn))w(2).
Then for each s,r € R
(i) He C®(Q xR, L(H*(Ry x R*), H" " #(Ry x R"))),

and for each compact set K C Q and all multi-indices o,
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(ii) IIEE,f{DngH(y,n)}n[,,;IIc(w.-,,H-.-,-a) < cj#-lol
for ally € K, n € RY, with a constant ¢ = ¢(s,r, o, 3, K).

PROOF. Sincet™ : H»7(Ry xR*) = H*7~#(R; xR"*) is continuous, and rc[;]lt"“n[n] = [n]#t~#,
without loss of generality we can assume that u = 0.
Setting

hi(y,n bt 2,2, 2,€) = wt)wo(tl)w (' [Mw(t')¢(z)(z")h(t, 7, v, 2,€,7),
we obtain that h; € C®(Q x R, SH(RZ x R*" x Tapr_, x R")). Hence (i) holds in view of

H(y,n) = op};"/ %(opy(h1))(y,7) and Remark 3.14. Now let h be associated with h and define
hz(y, 7t tlx Ty 3:'1 z, &) by

w(tl)™ Yo (t)wn (¢ )t (1]~ ) )9 (= )hlel) ™, 2,9, 7, €, trln) ™)

Then n[;]lH (v, M~Km = op};"/ 2(opz(h2))(y, n). The norm of the latter operator is estimated
from above by a finite number of terms

csup {l(tat)kaiaiag(ﬁ(t[n]*l,rr, y, 8L — y +ir, &, tyln] ) (7, 5)16&!—#} ,

where the supremum is taken over all ¢ € supp wy, z € supp ¢, y € K, (7,£,7n) € R, and
c 18 a constant independent of h. Since

) (fEm ™ ™) = D i aga(n)(8F 82 ) (Eln] Y, tnlm) ™)
k+]a|<L

with certain ay, € S°(R?), the above supremum can be estimated in terms of semi-norms
of b in S#(R; x R* x @ x C x R**9). This shows (ii) for &« = 8 = 0. The general case is
treated analogously with help of Leibniz formula. Note that 87 generates a factor tlel) and
n[;]lt'“ln[,ﬂ = [n]~lellel, a

Remark 3.16 If S#™(R" x R"® x R") denotes the Fréchet space of all symbols p € C®(R" x
R® x R*) with :

sup {10268 8¢ p(a, =',€)] ()P ™ ()1} < oo

z,z! LeERD

for .all a, 3,8 € Mg, then op(') induces for each s,d € R continuous mappings
SEM(R® x R* x R*) — L(H*H(R), H*=#5-™(R")),
i.e., the operator norm can be estimated in terms of semi-norms of the symbol.
Lemma 3.17 Let p € §°(Ry x R* x O x R1*") and ¢,1 € CO(R™). Set
Ply,n) = w(t)(l = wo(t[n])) @t 0pez(p)(y, 1) ¥ (1 — wi(t[n)))w(t).

Then for each s,6,v,m € R
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(i) P e C®(Q x BRI, L(H(R!*"), He~»d-m(RI+7))),

and for each compact set K C Q0 and all multi-indices a, 8
(i) s (D2 DEP (Mgl s pr—vsmmy < el

for ally € K, n € RY, with a constant ¢ = ¢(s,d,v,m,a, 3, K).

PrOOF. The calculations are similar to those of the previous lemma. We first define
pl(y!n1t1 :B)t’!I” T! &) by

T ()1 — wo(t{)) (1 — wi (' [n))w(t)b(z)¥ (= )p(t, 7,9, 7,€, ),

then py € C®(QxRI, S~ (Ri+" xRy *7t x R'*")) due to the compact support in (t, z, ¢/, z');
besides P(y,n) = op, ,(p1)(y;n). The a.ssertxon (i) then follows from Remark 3.16. For the
estimates in (ii) we have to consider the symbol po(y,n, t, z,t', 2, 7, £) given by

- t 7
[ﬂ]'ut #W(['?]]-)(l “WO(t))(l [ ] ¢($ )P([ ],$1y,t7‘,§,tm),

where p is the non-degenerate symbol associated to p. It is again smoothing like p;, so

in pa.rtlcula.r p2 € C®(Q x RY, S¥™(RI*" x R!*™ x R!*™)) for every v,n € R Further,

rcl.] P(y, )"[n] = op; -(p2){y,7), and the operator-norm can be majorized by a finite number
expressions like

e sup {10407 0L08u (el ™) (1 = wo()e5ltln]™ 2,0, tr, 6, talnl )]

x (r, )11 (¢ g+t L, (16)

where ¢ > 0 is independent of p, and t runs over [¢),o0) for ¢; > 0. Looking first at the
t—derivatives we observe

AT [n] “H( - wolt)tHp f[n] &Y, 17,6, (] D)

chkak ’[w )1 — wolt )t'“]f"t’p(t[n]‘ 2,4, tr, & tnln] ).

j=0

Moreover,

ap(tin) ™tz y i & taln] ™) = > ay ()T (8], Bt~ 3oy b K i) ),
[vI<i

where a, (1) € S°(R?) and v = (71,72, 73) € N‘§+1+q. Combining these two formulas with the
symbol estimates of p as an element in S~%, L > 0, we obtain that the quantities (16) are
dominated by a finite sum of terms of the form

sup { @) (tr, &, tnlnl ™) "0 (r, €)% ()% } (¥,
t,r.k
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where ¢ > 0, p1, 02 € R, and ¢(t) is compactly supported or has at most polynomial growth at
infinity. If we choose L big enough, the claim follows for « = 3 = 0 once we use the elementary
inequality

(r & tnln] ™) ET (L6 < efn 6 ) THO (O < &) THre
with p3 € R The case of arbitrary a and 3 follows similarly. 0
Let a = wpapwy + (1 —wp)ap(l — wy) + ¢ be an edge symbol, cf. Definition 3.12. On the one
hand, a, is defined via pull-backs under 1 x x; of operators op(p;), on the other hand, the
cone Sobolev spaces are formulated (away from ¢t = 0) via the push-forward under «;. Hence,
to obtain continuity of a, between cone Sobolev spaces, one can consider the push—forward of
op(p;j) under &; o (1 x XJTI) (inverse polar coordinates). For our purposes it is more convenient
to analyze the behaviour of weighted Sobolev spaces in R1*™ under this change of coordinates.
To this end we fix the following notations:
Let V C V be open sets in R® such that V is relatively compact in V. Let 8 : VU
S™ be a diffeomorphism and set O(t,z) = tf(z) : R, x V — R*". Note that ©~1(y)
(lyl, 6= (Jy|~'y)). For € > 0 set V; =]e,00[xV and V2 = {t8(z)| t > €, z € V}.
For an open set U C R!*" let H%4(U) denote the closure of C§°(U) in H**(R'*"). Then, for

s € Ry, we have .
”u”,q- sy ™ z 1 D( "L’(U) A (17)
a|<s

N

Lemma 3.18 For each integer s, and § € R the push-forward of functions by © and ©7!,
respectively, induces continuous maps

O, : (V) — F*A-r/2Hmin0:s)(y8),
Or1: P8 (VL) — Bestr/imma0a(y,),
PROOF. Since V' is bounded, {t,z) ~ {t) ~ (©(¢,z)) on Ry x V. Furthermore
|DEDZO(t, )| < cft, =)
uniformly on Ry x V. If we denote with DO the Jacobian of O, we obtain
det DB(t,z) = t" f(z),
with a function f € C{°(V). In particular,
|Df D2(det DO(t, x))| < c(t,z)"

uniformly on R} x V. On V2 the functions y = 6~!(jy|~'y) and y — |y| are homogeneous of
degree 0 and 1, respectively. Then (8~!(y)) ~ (y) on V.2 and

ID*07 (W) S efy)' ™, |D%(det DOTH))] < efy) ™"

uniformly on VEA‘ For s € Ny the lemma now follows from elementary calculations, using the
norm representation (17). For s < 0 note that the L? scalar product induces a dual pairing
H*S(R1™) x H=9~¢(R!*") - C. Then the result follows from

(©au,v) 2 = (v, (67 'v)|det DO|) 2, (B8] 'v,u)p2 = (v,(6.u)|det DO™!|) 2
for u € CP(Ve), v € CP(V:R), and the fact that |det DO| : H*S(V,) — H»-n(V.),
|det DO~ : A (VL) = H*5+(V;2) are continuous. O
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Remark 3.19 A consequence of Lemma 3.18 is that a linear operator A : C§°(V,) = C§°(V;)
extends continuously to operators H*%(V,) = H™¢(V,) for all real s,7,4, p if and only if ©,4
extends to continuous operators H ”J(VgA) - H ""’(TGA) for all s,r,4, . This behaviour carries
over to families A(y,7n), where we now require smooth dependence on (y,7) as a function with
values in continuous operators between weighted Sobolev spaces.

Theorem 3.20 Let (py,...,pn) € £7%°. Then the edge symbol c(y,n) = Op(p1,...,pn) 88
in Definition 3.12 belongs to R (€ x RY, (7,7 — p)).

ProoF. To (p1,...,pn) € 5= we associate (hy,...,hx) and observe that h; € S~°(Ry x
V; x Q@ x CxR"*) for all j. The edge symbol c(y, ) is in C°(Q, L~°(X*; R?)), and in view of
the local considerations in Lemma 3.15 and Lemma 3.17 it satisfies (i) and (ii) of Definition 3.6.
At last the property (iii) holds since the local interior symbols of the formal adjoint ¢, (y,7)
are of the form

(") Pw(t ) wo(t' n)wr (EHnDw(t)¢(a Y b(2)h(t, o', y,n + 1 - £,€, 1),

(¢)#* _2t""’ 2u(t) (1 = wo(#' D) (1 = wr(t))w(t) bl )b (2)p(, 2, y, 7, €, ),

and the calculations are similar. : 0O

Proof of Theorem 3.13.

Clearly the map is surjective. Now let (p1,...,pn) € Z# and the associated edge symbol a(y, 1)
be an element of R%(Qx R, (,7—4)). Then, in particular, a € C®(f2, L~°(X";R?)). In view
of Theorem 2.3, formula (3), the standard theory implies that p; € S~ (R x V; x Q x RI+79)
for all j =1,...,N. Hence (p1,...,pn) € T because of Lemma 3.7. Finally Theorem 3.20
provides the injectivity, which completes the proof. m|
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