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Abstract
The Mellin quantization assigns to an edge-degenerate pseudo-differential operator an
operator based on the Mellio transform in the cone axis direction. This procedure iB here
presented in a new and more precise way, which leads to isomorphisms between edge­
degenerate and holomorphic Mellin symbols. Furthermore, we introduce a suitable dass
of operator-valued edge symbols without asymptotics. They are, in particular, parameter
dependent pseudo-differential operators on a cone with smooth closed base.

1 Introduction

.In this paper we describe some essential elements of the pseudo-differential analysis on a
manifold with edges. Such a manifold is a topological space with the structure of a smooth
manifold outside the edge Y; near each p?int y E Y it looks like the product of an open set
n c R'l and a cone C with a smooth closed base. One basic idea in the approach of SCHULZE

[Sza], [ES] to handle such a singular object is to formulate a pseudo-differential calculus via
operator-valued symbols, that is, symbols taking values in an established algebra on the cone.
In other words, the calculus is generated by iteration of calculi on manifolds of less singular
type.

Following this idea, we introduce a dass of edge symbols, which are operator families
parametrized by y E Y and the corresponding covariable in JIrl and ·which take their values in
the cone algebra on C. Near the conical singularity these families are defined in terms of hol~
morphic Mellin symbols, whereas in the interior by standard pseudo-differential symbols; both
types are degenerate in a certain sense. These two components of the operator-valued edge
symbols are related by the so-called Mellin quantization, whicb maps adegenerate pseudo­
differential symbol to a holomorphic one in a way that the corresponding operators differ by
a smoothing remainder. The first variant of this quantization for classical symbols was in·
troduced in [Szb] (cf. also [DS], [SSb]) , using techniques of asymptotic summation. Here we
present a new proof of this result and obtain exact fonnulas botb for the holomorphic symbol
and for the remainder, formulas that are valid also for non-classical symbols. Moreover 1 we
achieve topological isomorphisms between tbe symbol classes involved.

The Mellin quantization immediatly leads to another very important tool of the theory in the
spirit of [Szc], [ES], tbe so-called kernel cut-off. Roughly speaking, this construction ensures
that (Mellin) pseudo-differential operators can be written, modulo smoothing remainders, with
symbols that extend to entire functions in tbe covariable.
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The material of this paper has applications in future works of tbe authors, e.g. [GSS], where
we develop a general algebra of pseudo-differential operators on a wedge-shaped manifold,
including a natural Frechet topology.

Let us finally note that, for example, Plamenevskij [PI], Melrose, Mendoza [MM] and Mazzeo
[M] also deal with operators on singular manifolds. While the nature of the degenerate symbols
considered by these authors has some intersection with the type discussed here, the structure
and intention of our calculus is fundamentally different.

Basic notation

ll4 = {r E IRI r > O}, II4 = lR.t- U {O}, No = Nu {O}.

A cut-off function is a non-negative function w E Cff (R+) with w == 1 near t = O. For
u E Gff(R'l), v E Gff(~) the Fourier and Mellin transform respectively, are given by

Fu(O = kn e-ix{u(x) <lx, Mv(z) = 10"0 tZ-1v(t) dt.

These transforms can be extended to more general (distribution) spaces.

Let U C IRm be open, and set (e) = (1 + lel2) 1/2 for eE IIrJ". Then" SJl(U X IRn ) consists of all
pE Coo(U x IRn ) with

sup {IDeDgp(x,e)l(e)IOI-Jl}<oo (1)
xEK,(ERn

for all a E N(), ß E NO J and all compact sets K cU. This is a Frechet space. Further, such
a p is called classical if there are symbols p(Jl-j) E SJl-j (U x JRfi), which are homogeneous of
degree J.L - j in the covariable efor large lei, and

N-l

TN(P) := p - L E SJl-N (U x fR'l) for all N E ~.
j=O

The space of these symbols is deooted by S~(U x IRn ). In view of the homogeneity, the functions
P(IJ-j) can be identified with elements of Coo(U x sn-I), where sn-I is the unit sphere in r.
The projective limit with respect to the maps P H P(IJ-j) andp H TN(P), gives rise to a FrOChet
topology on S~(U x JR'l)j this topology is stronger than that induced by SJl(U X IRn ).

To a symbol P E SJl(U X U x JIrl) with U C JRfi we associate in the standard way its pseudo­
differential operator op(P) : G{f(U) --+ Coo(U) by

[op(p)u](x) = JJei(x-x'){p(x,x',Ou(x') <lx'de·

Here de = (27r) -n de. Tbe space of these operators is denoted by LIJ (U). We also consider
the space LJl(Uj IRQ) of parameter dependent operators, where the parameter is treated as an
additional covariable.

Moreover I set Silo (IR+ x U x IRn ) = SIJ (R x U x IR") Ii4 x U x IRn. This is a Frechet space if we take

as semi-norms the analogous expressions as in (1), where now K is a compact set in Rt x U.

We also conaider operators on half spaces, where the action along the inner normal is formulated
in terms of the Mellin transform. For real ß set r ß = {z E CI Re z = ß}. Uoder the
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(2)

identification ß + i7" .t-+ 7" : r ß ~ IR we obtain the· symbol classes S~ (u x r ß x Ilfl), and
S~(ll4 x U x rß x Rn), where rß X Rn 2:! }Rl+n serves as the space of covariables.

If U E !Rn and h(t, t', X I x', z, e) E S~(ll4 X lI4 X u X U X r 1/2-'1 X JR1!) we define the operator
op1(op(h)) : Ctf(ll4 X U) ~ COO(1I4 X U) by

1 {oo (t )-z dt'
[op1(op(h))u](t, x) = in fj op(h)(t, t', z)u(t') "t'Gz.

r 1/ 2-.., 0

Here az = (2'lTi)-ldz, and for t' fixed, u(t') is viewed as a function in Cr(U).

2 Mellin quantization

For a closed compact smooth manifold X let us set

X/J. = (IR+ X X)/( {O} X X) i

this is interpreted as the infinite cone with base X and vertex represented by {O} X X, contracted
to one ~oint. Moreover, define the open stretched cone

X" =R.t x X

with a fixed splitting of coordinates (t, x). If (t, x) E X" is another splitting of coordinates
theo we require that the transformation (t, x) -t (l(t, x), x(t, x)) exteods to a diffeomorphism
ll4 x X -t IR+ x X, where l(O,x) = O.
The local model of a manifold with edges is X6 x n with a smooth, closed, compact manifold
X and an open set n c R1 that corresponds to a coordinate neighborhood 00 the edge. We
employ the coordinates (t, x, y) on the associated open stretched wedge X" x n. To describe
the interior symbols we fix achart on X with local coordinates x E V, V.being an open set in
JIrl.

The typical differe~tial operators on a wedge are of the form

t-~ L aja(t, y)( -tat)j (tDy)a,
j+lal:51'

with coefficients aja (t, y) E Coo (!llr x 0, Diff~-U+lal) (X)), Le., smooth functions with values in
the differential operators on X. Among these operators (for J..' = 2) are the Laplace-Beltrami
operators for (warp~) wedge metrics (i.e., metrics of the form dt2 + t2gx(t) +dy2 with metric
gx(t) on X depending smoothly on t E R+). We cau interpret (2) as a Mellin operator with
the operator-valued symbol

H(t, y, z,71) = t-~ L ajo(t, y)zi (t'7)O,
j+lol:51'

which is a holomorphic family of operators with

H(t, y, ß + i7", 11) E L~(X; IRr)

for every (t, y, '7) E IR+ x 0 x R'l uniformly for ß in compact intervals.

This motivates the following definitions:
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Definition 2.1 Let S~(IR+ x V x 0 X IR1+n+q ) denote the space of all symbols p, which are
of the form

p(t, x, V, T, {, 11) = p(t, x, y, tT,~, t'1)

with a symbol ji E S~(IR+ x V x 0 X IR1+n+q). Such a symbol p is called edge-degenerate.
Analogously we define the corresponding spaces of classicalsymbols, indicated by subsript cl,
where p is asked to be classical.

Definition 2.2 Let SIJ(1l4 x V x n x Cx r+q ) be the space of all functions h E COO(R+ x
V x n x C x JIrl+q), which are holomorphic in z E C with values in SIJ(IR+ x V x 0 x IRn+q),
and

- ~+qh(t,x,y,z,{,'1)lrß E S'"'(R+ x V x 0 x rß x "~.fJ )

for every. ß E IR and uniformly for ß in compact intervals. This ia a Frechet space with the
system of semi-norms

sup Ih(t,x,y,ß + iT,e,'1)I,
c'5ß'5c'

where I . 1 runs over a system of semi-norms of S~(R+ x V x 0 x ~~~+q). Analogously to

Definition 2.1 we also introduee SIJ(IR.r x V x ,0 x C x IRn+q) as the space of all symbols h
satisfying " , . .,

h(t, X, y, z, {, '1) = h(t, X, V, z, e, t11),

where h(t,x,y,z,e,11) E SIJ(IR+ x V x 0 x C x r+q ).

Similarly to the cone theory it is essential to establish a suitable Mellin quantization in order
to obtain (continuous) actions in the natural weighted edge Sobolev spaces. The loeal Mellin
quantization provides a relation between (Y,1J)-dependent operator families 0Pt x (P)(y, 1]), de-

fined in terms of the Fourier transform in (t, x), and op~2 (oPx (g)) (y, 1]) defined b~ means of the
Mellin transform in t. Moreover, we ean pass from Mellin symbols g(t, t', x, y, T, z, 1]), z E f o,
to symbols that extend in z holomorphieally to the whole complex plane.

Theorem 2.3 (Mellin quantization) Let p(t, x, y, e, e, 1]) E SIJ(IR+ x V x 0 X IRl+n~q). Tben
tbere exists a symbol h(t, x, y, z, {, 1]) E S~(IR+ x V x 0 x C X JR1l+q) such tbat

1

OPt,:I:Cp)(V,1]) = opL (oPx (h))(y, 1]) mod COO(O, L-OO(~ x Vj JRll)). (3)

Moreover, the symbol h allows the following asymptotic expansion

00 k

h(t, x, y, ie, e,1J) "J p(t, x, y, -e, {, 11) +:E (:E Ckja:+jp(t, x, y, -e,~, 1])e i ) (4)
k=l j=o

with certain Ckj E IR tbat are independent of p; tbe asymptotic summation being ca.rried out
in S~(IR+ x V x n x 1R1+n+q ). An analogous result is valid for c1assical symbols. In tbis case
we bave the bomogeneous components

I k

;"'(IJ-I) (t, x, y, ie, e, 1]) = :E:ECkj(a:+jp){IJ-l-j) (t, x, y, -e, {,1])e j .
k=Oj=O
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and so

PROOF. Let u E CÖ(IR,., COO(V)), then

OPt,:c(P) (V,TJ)u(t)

= 100

(OO ei(t-t')Topx(P)(t, v, r,1J)u(t') dt'ar
-00la

100 (OO (t) -iT dt'
= -oola fj M(t, t')t'oPx(P)(t, y, -M(t, t')r, 71)U(t') i!ar

with the transformation r ~ -M(t, t')r, where M(t, t') := log:=~?g t' for t, t'E ~ ~ We have
M E C OO (ll4 x IR;-) and M > 0 (precise calculations and further properties of M(t, t') can be
found, e.g., in [SSa, Section 2.4]). Ir we set

g(t, t', X, y, ir,~, 1]) = M(t ,t')t'p(t, X, v, -M(t, t')r, ~ ,71)

then 9 E S~(~ x V x n x ro x r+q
) and

1

0Pt,:c (P)(V, 71) = opL(op:c (g) )(V, 71)

for every (V, 71) E n x}RQ. The operator oPx(g) (t, t', V, ir, 1]) is already an operator-valued Mellin
symbol. The next step is to pass to a holomorphic symbol h being additionally independent of
t'. The procedure is similar to that from the us~al pseudo-differential calculus; we reduce 9 to
a sum of properly supported and smoothing parts, and calculate the corresponding complete
symbol h.

Let 4> E Cö'(IR;-) with 4J := 1 near to 1. For z E C put now
1

h(t, X, V, z,~, 71) = eop ~(4J(t'/t)g)(x, V, ~,1])t-z.

Then, applying the change of variables t' ~ tr

h(t, X, y, z,~, 1]) = 100

{OO (~)-iT+Zq,(t' /t)iJ(t, t ' , x, v, ir,~, 1]) d: ar
-00 la t t

= 100

(OO riT-Zq,(r)g(t, tr, x, v, ir, e, 1]) dr ar,
-ooJo r

the integrals being underatood as oscillatory integrals. It is easy to see that

g(t, tr, x, V, i'T, ~,1]) = r M(r, l)ß(t, x, V, - M(r, l)'T,~, t7]),

h(t, x, y, z,~, 7)) = 11 r iT
-

z4>(r)M(r, l)p(t, x, y, -M(r, l)r,~, t7)) drGr. (5)

We next prove that h(t, X, v, 0 +ie,~, t-11]) = h(t, X, V,o + ie,~, 1]) E S~(Rr x V x n x IR~~~+q)

uniformly in d E [Cl, C2] for every Cl < c2. The symbol estimates of h will be recovered from
those of p, hence we actually have that h depends continuously on ß. With the change of
variables T ~ T + fJ we get

h(t, X, v, 0 + ig, {, 1])

= 11 r 1+iT r- 4>(nM(r l)}(t, x, y, -M(r, l)(r + e),~, 7)) d; Gr

=:tP6(r)

11(1 + ir)-Nr HiT (-r8r )N (,p.(r)p(t, x, y, - M(r, 1)(r + e), ~,7))) d; Gr.
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The last integral converges for N E N big enough. Now

N

(-r8r )N (,p6(r)p(t, x, v, -M(r, 1)(1" + ll), e, 7]) = L ck(r)(~p)( .. .)(1" + ll)k
k=O

with Ck E Ctf(!R.r). For the symbol estimates of h we only have to investigate the derivatives
ofp. For l E N, a E ~+q and ß E ~+n+q

Ii,o,ß .- I~De'1JD~~'II((~p)(t,x,v,-M(r, 1)(1" + ll),e, 7])(1" + ll)k] I
l

~ L ICiat[(~De.1JDf.x,~)( ...)]~-j(1" + Q)k]l·
i=O

Since

1~[(a:D~1JD~x'IIP)(t,x,V,-M(r, 1)(1" + Q),e, 7])]1

= 1(8t+k D{'1JD~~,yp)( ... )(-M(r, 1))il :::; c(r) (1" + Q, e, 7])~-i-k-lol
with c E C OO (!R.r ), and because of I~- j (T+Q) k I :::; C (T +" Q, e, "7])i+k-i, we "obt8.in together with
Peetre's inequality

li,o,ß ::; Ci,o,ß(r) (1" + ll, e, 1J}Jl-l-lol ::; ct,o,p(r) (1")IJl-l- loll (e, {, 7])Jl-l-loj .

Furthermore, since 8:1/J6 depends continuously on 0 for every k E No, the symbol estimates
of h are uniform ip. Cl < 6 < c2. Ir we analogously look now at the semi-norrns of h in
SJl(ll4 x V x n x JR1l+q)~ we can easily see that h depends holomorphically on z.

Prom a standard method of the pseudo-difIerential calculus (cf. [Sh, Theorem 3.1]), we have
for each N E N the expansion

N-I

h(t,x,y,ill,~,11) = L ~!(-t'at')ka; {4>((/t)g(t,t',x,v,ie,e,t- I 7])} It'=t
k=Orl (1 _ 9)N-I -
+ Ja (N _ I)! hN(t, x, v, e, e, 11, 9)d9,

where hN(t, x, y, e, e, 7],9) is given by

Moreover,

&:g(t, t', x, y, iQ, {, t- l 7]) = M(t, t')t' (o;p)(t, x, V, -M(t, t')te, e,1J)( -M(t, t')t)k

so that the surn on the right-hand side of (6) equals

(6)
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o

100 (OO ri'T(-ir)Nep(r)M(r,l)N+l(a:p)(t, x, y, -M(r, l)(e + 8r), (, 7J) drdr.
-00 lo

The last identity clearly yields, as above, that the remainder in the expansion (6) belongs to
SP-N(IR+ x V x n x IR~~~+q), showing that the asymptotic summation of h can be carried
out in the space of symbols defined up to t = O. Finally, (4) followB from (7) by applying the
Leibniz formula, the chain rule

L

8~(u 0 v) = :E :E Cj(&!,u)(v(t')) 8JI V... aJi v
j=l "Yl+"':YY"i=L

with L,'Yj,cj E N, and the identity ~M(t, t')!t'=l = (-l)k k~ 1 tk~l'

Remark 2.4 a) Let pE SP(IR+ x V x n x R1+n+q) and hE SJJ(R+ x V x n x cx r+ q ) be
as in the preceding Theorem 2.3. A Taylor expansion shows that

_ N-10A: _
h(t,x,y,o+i{},{,7J) =:E k!(~hHt,x,y,i{},{,7J) + rN,rS(t,X,y,{},~,7J),

k=O

where the remainder rN,rS equals

Since (8fhHt,x,y,80 + i{},~,7J) E S~-N(~ x V x n x IR~~~+q) uniformly in 0 :5 8 :5 1,

C ::; 0 ~ d l we have r N,rS E Sp-N (IR+ x V x fl X IR1+n+q) uniformly for 0 in compact intervalls.
Prom this we can draw the following conclusions:

• If ii E SJJ-O(IR+ x Vx flxro xIR"+q) for BOrne 0 > 0, then h E Sp-rS(IR+ x VxOxCx IRn+q).

• h(t, x, y, 0 + iU, e, '7) - p(t, x, y, -{}, e, '7) E Sp-l (IR+ x V x 11 x IR~~~+q) for all o.

• If p, and thus h, are classical symbols, the homogeneous principal symbol (with respect
to (e, e, 7J)) of h is independent of 0 E IR.

b) Let h be as in (3). In view of the holomorphy of h in z we obtain as a consequence of the
Cauchy Theorem that

für arbitrary , E IR.

Corollary 2.5 The prooE oE Theorem 2.3 supplies a map.

(8)
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such tbat p(t, x, y, T, ~,fJ) t-t h(t, x, y, z,~, 7]) implies (3). Moreover, if we fix tbere a funetion
tjJ, the corresponding mapping

is continuous.

Due to the Closed Graph Theorem the above continuity also holds when the symbols are
classical. Remember that the Frechet topology of S~ is stronger than that incluced by SJJ.

Theorem 2.6 Tbe map (8) induces isomorphisms

SJJ(ll4 x V x n x JRl+n+q)/s-oo(IR+ X V x n x JRl+n+q)

~ SJJ(IR+ x V x n x c x r+q )/S-OO(R+ x V x n x c x r+q ).

Corresponding isomorphismB hold with subscript cl.

P ROOF. Let us denote by m (P) (t, x, y, z, ~, 1]) the Mellin quaotizatioD of a symbol p according
to Theorem 2.3, where we tue the-function <p of the·proof. -Because· of (4) we have trivially
injectivity of the ioduced mapping of m. For the surjectivity let

h(t,x,y,z,~,1J) E SJ.l(IR+ x V x n x C x lRn +q
)

be given. Choose;j; E Cö"(IR) with ;j; == 1 Dear to O. Set 1/J(t, t') := ~(log f - log t) aud
1/1(r) := ,p (log r) for t, t' ,r E 1I4. Imitating the proof of Theorem 2.3 we set

q(t, t', x, y, T,~, "1) = M(t, t')-lt'-lh(t, x, y, -iM(t, t/)-lT,~,1]),

(t ~) - -itr (~/,(t t') ) itr.p lX,y,T'~l1J -e OPt'f" qe ,

then similar calculations show

p(t, x, y, r, {, '7) = 11 ei(t-t')(Q-T),p(t, t')q(t, t', x, y, e, {, '7) dt' ae

= 11 r-iQe-i(l-T)IT,p(r)h(t,x,y,-ie,{,'7)d; ae

due to the cbanges .of variables t' -+ tr and f} -+ t- 1M(r, 1)f}. In this manner we obtain the
corresponding symbol

(9)

in $J.l(lR+ x V x n x jRl+n+q ). According to (5) the Mellin symbol to p looks like

m(p)(t, x, y, ia, {, '7) = 11 S;(T-U)4>(S )M(s, l)p(t, x, y, - M(s, l)r, {, t'7) dsar

= 11 s-;ue;('-I)T 4>(s )p(t, x, y, -r, {, t'7) dsar

8



with the transformation.,. --.. M(s, 1)-1.,.. Inserting (9) yields

= JJs-i<Tei(.-l)Tq,(s) {JJr-i~ei(l-T)T ,p(r)h(t, x, y, -iU, {,I)) d; dU} dsdT

= !~JJs-iueinq,(s) {JJ r-i~e-iTT ,p(r)~(eu)h(t,x, y, -iU,{, 1)) d; dU} dsdT

=!~Js-iuq,(s) {J ei>r {J e-iTT ,p(r) {J r-ie~(eu)h( ... ) dU} ~} dT} ds

J . {J' - }da= ~~ s-IUfjJ(S),p(s) s-Il!1/J(EI2)h(t,x,y,-il2,e,1])a12 -;

= JJ~i(e-u) 1'(s)!(s),h(t, x, y, iU, {,I)) d: deo

=:x(.5)

Obviously, x(s) E C~(I4), and X == 1 near to 1. Now

h(t, X, y, ia, e,1]) - m(p)(t, x, y, ia, e, 1])

= h( t, x, y, ia, e, 1]) -100
(OO ai(q-u) x(s) ~(t, x, y, i(}, e, 1]) ds al2

-ooJo s·

= h(t,x,y,ia,{,I)) -1: h(t,x,y,i(e+a),{,I))u(ie)du,

where u(ig) is the Mellin transform of X. The difference h - m(p) belongs to S-oo(lR.+ x V x
n x fo x lRn+q ), and using Remark 2.4 a) we even obtain

(h - m(p))(t, x, y, z, e, 1]) E §-OO(lR+ x V x n x c x r+q
).

In order to demonstrate that the symbol (h - m (P) )(t, x, y, ia, e, t-11]) is smoothing, we expand
h(t, X, y, i((} + a), e, 1]) in (} near to (} = 0, resulting in

with the remainder

rN,~ = (t~:)! [(1-Ii)N-l(a~h)(t,x, y, i(8e + a),{, 1)) d8.

The property of the Mellin transform J(il2)ku (il2 )012 = ((-rar)kX)(l) implies

N-l

L J(~h)(t, x, y, ia, {, I))(ie)ku(ie)de = ;'(t, x, y, ia, {, 1)).
k=O

Finally, as in the proof of Theorem 2.3, it is easy to verify that the symbol

(h - m(p))(t, x, y, ia, {, C1T/) = JrN.~(t, x, y, ia,{, I))u(iu)de

belangs to SJl-N (Rr x V x n x f o x lRn+q ). This completes the proof.

9

o



Definition 2.7 The space of holomorphic Fourier symbols SJJ (IR+ x V x nx iC x IRn+q) consists
of all functions p(t, x, y, z,~, '7) such that

Furthermore we introduce the corresponding space SJJ(lR.+ x V x n x iC x llfl+q), consisting
of all symbols p satisfying

p(t, x, y, z, e, '7) = jj(t, X, y, tz, {, t1J)

for a certain jj E SIJ(IR+ x V x 11 x iC x llfl+q). The topology is that induced by SIJ(IR+ x V x
n x C x llfl+q).

Theorem 2.8 (Kernel cut-off) Ta each q E SJJ(Rt x V x nx IR1+n+q) there exists a symbol
pE SJJ(IR+ x V x n x iC x JRfl+q) such that

i.e., q can'-be "approximated" by"a holomorphic" symbol.

PROOF. Let h = m (q) be the Mellin quantization of q. If we define ß as in (9), where T E IR
is replaced by z E C, the associated symbol p is an element of SIJ(IR+ x V x n x iC x IRn+q),
and from the proof of Theorem" 2.6 we know that

m(p) - m(q) = m(p) - h E §-OO(IR+ x V x n x C x IRn+q).

The injectivity then implies that p - q E §-OO(iR+ x V x n x IR1+n+q). 0

To h E SJJ(ll4 x V x n x rox JIr1+q) it also makes sense to define p E SJJ(IR+ x V x n x 1R1+n+q)
via fürmula (9). This gives rise to the "inverse Mellin quantization"

Für this map we then obtain results cürresponding to Theorems 2.6 and 2.8:

Theorem 2.9 Tb~ map (10) induces isomorphisms

SJJ(ll4 x V x n x r o x IRn+q)jS-OO(IR+ x V x n x r o x lRn+q )

~ SIJ(lR+ x V x n x iC x IRn+q)jS-OO(IR+ x V x n x iC x r+q
).

Theorem 2.10 (Kernel cut-off) Ta each 9 E SJ..I(lR+ x V x n x r o x IRn+q) tbere exists an
h E §JJ(R+ x V x n x C x IRn+q) such tbat

i.e., each Mellin symbol given on a vertica1line in C can be "approximated" bya holomorphic
one.
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3 Edge symbols

For s E IR is H"(IRn) the standard Sobolev space, and for s, 8 E IR we define

H",O(IRn) := {(.)-O u 1 u E H"(IRn)}

with the norm 1I~IIH",6(Rn) = I1 (.)0 vIlH"(Rn).

Definition 3.1 Let s" E IR. Then 'H""'Y(IR.r x IR") is defined as the closure of Ctf(II4 x IRn )

with respect to the norm

lluI1 2
= -2

1.1 J(1 + Izl2 + leI2
)" I(Mt-+z.rx-+~U)(Z, e)l2 dz tLe· (11)

1ft r~_,.

Here :F is the Fourier transform and M the Mellin transform.

Remark 3.2 The analysis of edge pseudo-differential operators will be formulated in terms of
operator-valued symbols acting between suitable Sobolev spaces on the infinite cone. To define
these spaces, we fix an open covering {Ur,: .. ,·UN}-of X with corresponding diffeomorphisms
Xj : Uj -t Vj C lRfl and Kj : Uj -t ~ C sn, where sn is the unit sphere in JRl+n. To tbe latter
ones associate

K.j :~ X Uj -t IR1-+: n , (t, x) I-t tKj(X),

Further let {4>1, .. , , epN} be a subordinate partition of unity, and {1/1j Eer(Uj ) j j = 1, - .. , N}
be a system of functions satisfying <PjWj = ,pi for all j = 1, ... IN.

Definition 3.3 For s" E IR let X::""(X") denote the closure of e~(X") with respect to the
norm

N

llull 2 = 2:= 11 (w,pju) 0 (1 X xi)-III~"'-Y(l4xRn) + 11((1 - w)4>ju) 0 K.j l ll1I-"(Rl+n), (12)
j=1

where the functions on the right-hand side are extended by zero outside their natural domains.
This construction is (up to equivalent norms) independent of the specific choice of all involved
data, and yields ascale of Hilbert spaces. Analogously we introduce the spaces E"" (X") replac·
ing the second term on the right-hand side of (12) by the norm 11((1-w)cPju)oK.jlll~"'''(lRl+n)"

That is, in E""(X") we deal away from t = 0 with weighted Sobolev spaces.

We have K:",'Y(XA
) C H1oc(X A ), and

Further let ke(t) be a non-vanishing smooth weight function which equals tQ near t = 0, and
is identically 1 at infinity. Then we obtain

for all " {}, s E IR.
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Definition 3.4 For an operator A E n"eR .c(A:"'''Y(X''), X:"-J"~(X")) we ean deBne the for·
mal adjoint with respect to the scalar product (', 'h:o,o(x/\) as the unique operator A* E
n"elR J:.(K"'-~(X"), !C"-J',-"Y (X")) satisfying

for all tl,V E C~(X").

Remark 3.5 Für each ,\ > 0 define the linear mappiog 1';>. : Cr(X")~ Cgo(X") by

(1';),u)(t, x) := ,\(n+l)/2u('\t, x),

where n = dimX. These mappings rot:tend by continuity to linear operators on K"'''Y(X'') für
aU s, 'Y E IR, and the set {1';>.}>.eIl4 is a (strongly continuous) group of isomürphisms, that means

(i) !t>.1';g = !t>.g for all '\, {} > 0 and Itl = idK:.''l' (x/\) ,

(ii) for each u E !C"'''Y(X'') the function ,\ t-+ K>.U : ll4 ~ JC","Y(X") is continuous.

The same is true 00 E"'''Y(X'').

Definition 3.6 Let us fix a strietly positive function fJ H [fJ] in COO(JR'l) with [fJ] = [17! for
1171 > c, for a eonstant c > O. Let 1,8, v E IR. The space Rc(O x Rl, (1,8)) üf Green symbols
for the Ioeal edge caleulus consists of all operator-valued functions

such that

(i) for every cut-off function w E Clf(IR+)

gw(y,1]) := wg(y,1])w E n Coo(O x JIrl,J:.(K"I"Y(X"),E"'O(X")));
",reR

(ii) the following symbol estimates hold

11 K.~l {D~De9w (y, 1])}K(711 11 C(1\:.,'l' ,Er,6) ::; c{1]r-1ol

for all s, r E IR, aU multi-indices 0, ß E NZ and all y E K for arbitrary K ce 0 and
7] E Rl, with constants c = c(s, r, o,ß, K) > 0;

(iii) the point-wise formal adjoint g:(y,1]) satisfies analogous estimates with tbe norm in
J:.(K",-6, W,-"Y).

Henceforth we restriet ourselves to degenerate cl38Sical symbols. This is motivated by the
following:

Lemma 3.7 Let p E S~(iR+ x V x 0 X IRl+n+q) n S-oo(~ x V x 0 X IR1+n+q).

Then it is even true tbat p E S-OO(Il4 x V x U X IR1+n+q).

12



PROOF. Let jj E S~(Rt x v x n x IR1+n+q) be the corresponding non-degenerate symbol to
p, with the asymptotic expansion in homogeneous components

00

p~ ~P(J.'-;) in S~(IR+ x V x n x IR1+n+q).
;;;0

Now jj E S-OO(lllr x V x n x IR1+n+q) implies that p(J.'-;) == 0 in~, and by continuity also in
Rr, for every j. Thus PE S-OO(IR+ x V x n x IR1+n+q). 0

For non-classical symbols the above result is in general not true. Set for instance
jj(t, x, T, e,1]) = q(T, e, 1])W(tT, e, 1]), where q('T, e,1]) E SJ.'(IRl+n+q) and w(T, e, 1]) E Cö'(IRl+n+Q)

with W == 1 near to o. Note that w(t'T, e,1]) is an element of S-OO(l!4 x V x n x JR1+n+q ), hut
if we demand symbol estimates up to t = 0, then it only belongs to SO(lR+ x V x n x IR1+n+q).
Therefore, p(t, x, T, e,1]) = jj(t, X, t'T, e, t1]) provides a counter-example.

In order to establish a notion of complete (interior) symbols for the edge symbols, we first have
a look on the behaviour of a loeal symbol p under coordinate changes.

Remark 3.8 Let X : V -+ V be a diffeomorphism. It is weIl known that there exists an
. open neighbourhood U·of the diagonal in V x V and a non-degenerate matrix-function W E
COO(U, GL(n, IR)) with

v(x, fj) E U 'V ~ E IRn
.

Let cP E CDO(U) be properly supported, cP := 1 in a neighbourhood of the diagonal, and
cPl E CDO(V X V) be given by cPl(X,X') = cP(X(x),X(x')). For P E S~(~ x V x n x IR1+n+q)
define Px E §~(IR+ x V x f2 X IR1+n+q) by

Px(t, X, y, T,~, 1)) = JJeiW{q,(x, x + w) Idet[(Dx- 1(x + w) )1lJ(x, x + w)]I

p(t, X-I (x), y, 'T, W(X, X +w)(e + t),1]) dwiI{

Then the (y,1])-wise operator push-forward satisfies

Clearly, the second term is an element of COO (f2,L-OO (l!4 x V;JIr1)). Now assume that the
operator of a symbol PI E S~(IR;. x V x n x IR1+n+q) also approximates (1 x X).oPt,x(P)
modulo COO (n, L -00 (!R.+ x V; JIrl )). From the theory of parameter dependent pseudo-differential
operators we conclude that Px - PI E S-OO(ll4 x V x nx R1+n+q), hence Px - PI E §-OO(R+ x
V x n x IR1+n+q) in view of Lemma 3.7. In other words, we have proved the following:

Lemma 3.9 The operator push-forward (1 x X). induces an isomorphism

S~(IR+ x V x n x JRl+n+q)/S-OO(IR+ X V x n x IR1+n+q)

~ S~(IR+ x V x n x IR1+n+Q)/S-OO(II4 X V x n x IR1+n+q),

tbe so-ca1led symbol pusb-forward. Furtbermore, ((1 x X).)-l = (1 X X-I ) •.
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Analogous statements are valid in the dass of holomorphic Mellin symbols. The symbol hx E
§~(R+ x V x n x C x JIrl+q) associated to h E §~(IR+ x V x n x C x lRn+q) is defined in the
same way as pX'

Remark 3.10 From the Mellin quantization (5), it is obvious that p E S~(IR+ x V x n x
IRl+n+q ) and h =m(p) E S~(II4 x V x n x C x IRn+q) implies m(Px) = hx' Thus, understood
as operations on the corresponding equivalence classes, Mellin quantization and symbol push­
forward are commuting, Le.

mo (1 x X). = (1 x X). 0 m.

Let" us fix again an open covering {Ul,"" UN} of X by coordinates neighbourhoods. Further
let {Xl, ... ,XN} be the corresponding charts and {~l,"" tPN}, {Wb.'" 1/JN} as in Remark
3.2.

Definition 3.11 The set of complete symbols of order IJ E IR is defined as

Here the symbol push-forward corresponding to Xj 0 XiI: Xi(Ui n Uj) -t Xj(Ui n Uj) is as in
Lemma 3.9.

Taking into account the previous remark, we can associate to a complete symbol (PI, ... ,PN)
the tuple (hl , ... , hN ) via formula (5) in a convenient way.

At present, we turn to a dass of operator-valued symbols that are parameter dependent families
of pseudo-differential operators On the infinite cone X".

Definition 3.12 For" IJ E IR let

be the space of all

with

N .

ah(y,1/) = L ~j (1 X Xjl). t-I-'opr~(oPx(hj))(y,1]) Wj
j=l

N

ap {y,1]) = L ~j (1 x xj I). t-l-'oPt,x(Pj )(y, 1]) Wj,

j=1

(13)

(14)

where (PI, ... ,PN) E EI-', (h 1, ... , hN) the correspondin:g holomorphic tuple, 4>j and Wj are
the multiplicators with <Pj and Wj, and 9 E Rd (n x JR'l, (" , - IJ)). Further, Wi E Or(IR+) are
arbitrary cut-off functions satisfying wo(1 - wt} = 0, W2(1 - wo) = O. Such an element a(y,1])
ia called edge symbol (without asymptotics).
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Constructing to (Pl' .." ,PN) an edge symbol as above (without Green remainder) we obtain a
map

Op : Eil -+ RII(O X R'l, (')'" - ~)).

Our next aim is to prove the following:

Theorem 3.13 The mapping Op induees an isomorphism

Eil /E-oo -+ RII(O x JIrl, (')', ')' - ~) )/Rd{O x JRtl, (" ')' - ~)) (15)

The inverse is denoted by a ll . It associates to an equivalenee dass oE edge symbols tbe Ioeal
pseudo---1iiferential symbols oE a representative.

Ta this end we need some further results.

Remark 3.14 For')' E IR the mapping S-y : Clf{I!4 x r) -+ C~{IRl+n),

( !!.±l)(S-yu)(r, x) = e -y- ~ ru(e-r, x),

induces isomorphisms 'H""(iR+ x JRn) --+ H" (JRl+n) for all s E IR. Ir h{t, t', x, x', z, €) E

coo (IR~ X IR2n X r~_, x IRn ), a (formal) computation shows that opli n
/
2 (oPx (h) ) =

S.yloPr.x(h,)S-y with

h( 1 1 t) h( -r -,-I '!!±l . t)'-r T, r ,X, x ,T, ~ = e , e , x, x ,~ - ')' + lT, ~ .

We now define S~(IR~ X jR2n X r !!{-!._, x IRn ) as the space of a11 such h with

for all k, k' ,I E No, ß, ß', a E ~, and the supremum being taken over all (t, t') E ~, (x, x') E
IR2n , (T, €) E IR1+n . This is a FrEkhet space. Then the Calder6n-Vai11ancourt Theorem for

global pseudo-differential operators in IRl+n implies that op1{n/2(opx(')) induces continuous
mappings

for each s E IR. In particular, the operator-norm.of op1i
n

/2(oPx(h)) can be estimated from
above by a finite number of semi-norms introduced before.

Then for each s, r E IR

and for each compact set K c n and 811 multi-indices Cl, ß
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far all y E K, fl E JR:'l, with a canstant C = C(8, T, u, ß, K).

PROOF. Since t-Jj : 1-l~''Y (114 X JR1l) -+ 1-l~.'Y-Jj (~ xr) is continuaus, and K~]t-JJ~['1l = [fl]Jjt-Jj,
without loss of generality we can assume that JJ = O.

Setting

h1(y, '7, t, t', x, x', z, {) = w(t)wo(t['7])Wl (t'['7])w(t')cP(x)1/J(x')h(t, X, y, z, {, '7),

we" obtain that h1 E COO (f2 x R'l, S~(a;. x JR2n X r ~-'Y X IRn)). Hence (i) holds in view of

H(y,fl) = oplin
/

2 (oPx(hd)(Y,'7) and Remark 3.14. Now let h be associated with hand define
h2(Y, fl, t, f, X, x', z, e) by

Then K~jH(y, '7)~['1J = opli n
/
2(oPx(h2 ) )(y, '7). The norm of the latter operator is estimated

from abo'{e by a finite number of terms

where the supremum is taken over all t E supp Wo, x E supp 4>, y E K, ('T, ~,1J) E jRl+n+q , and
C is a constant independent of h. Since

" (tad L(/ (t[1J] -1 , t'7['7]-l)) = L tk+1a1 aka (1J)(ai~ f)( t[1]] -1, t'7[1]] -1)

k+lol5L

with certain ako. E SO(JRQ), the above supremum can be estimated in terms of semi-norms
of h in SJJ(IR+ x IRn x f2 x C x IR"+q). This shows (ii) for u = ß = O. The general case is
treated analogously with help of Leibniz formula. Note that ~ generates a factor t lal , and
l'l:~jtlal1\;['1l = [1J]-lo.lt lal . 0

Remark 3.16 If SJJ,m(JRfl X IRn x JR'l) denotes the Frechet space of all symbols pE COO(IR" x
IR" x IR") with

sup {Iag~aep(x,x',e)l(x)IßI-m ({)IOI-JJ} < 00
x,x',{ERn

for all u, ß, ß' E ~, then op(·) induces for each 8,8 E IR continuous mappings

SJJ,m(R" X Rn X Rn) -+ .c(H~,6 (IRn), H"-JJ,o-m (Rn)),

Le., the operator norm can be estimated in terms of semi-norms of the symbol.

Lemma 3.17 Let pE §-OO(lR.+ x IRn x f2 X lR.1+n+q ) and <P,1/J E C~(IR"). Set

Tben for each 8,8, v, m E IR
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and for each compact set K C n and all multi-indices 0., ß

for a1l y E K, fJ E }RQ, with a constant c = c(s, eS, v, m, o.,ß, K).

PROOF. The calculations are similar to those of the previous lemma. We first define
pt{y, fJ, t, x, t', x', r, e) by

t-~w(t)(l - Wo (t[fJ]) )(1 - WI (t'[fJ]))w(t')tP(x)1/J(x')p(t, X, y, r, e, fJ),

then PI E Coo(O x}RQ, S-oo,-oo(IR},~n X ~/:; x JRI+n)) due to the compact support in (t, x, t', x');
besides P(y, fJ) = oPt,x(Pd (y, 1]). The assertion (i) then follows from Remark 3.16. For the
estimates in (ii) we have to consider the symbol P2(Y, fJ, t, x, t', x', r, e) given by

where p is the non-degenerate symbol associated to p. It is again smoothing like PI, so
in particular, 112 E Coo(O x 'IRQ, sv,m(JRI+n X JRI+n X JRl+n)) for every v, m E IR. Further,
~~JP(y, fJ)K[711 = OPt,xU>2)(y, fJ), and the operator-norm can be majorized by a finite number
of expressions like

c sup {lat~a;.agW(t[7]]-I)(l- wo(t))t- Jlp(t[1J]-l, x, y, tr, e, tfJ[7]]-l) [
t,X,'T,~

(16)

where c > 0 is independent of p, and t runs over [Cl, 00) for Cl > O. Looking first at the
t-derivatives we observe

8t[W(t{fJ]-I) (1 - wo(t))t-Jlp(t[!11~1, X, y, tr,. ~,tfJ[fJ]-I)]
k ,:".:::: ',. /:': ,-

= L Cjka:-
j [w(t[17]-~)(1 - Wo (t))t- Jl l&lP(t[17]-1 ,x, y, tr, {, tf7{fJ]-l).

j:::o

Moreover,

a;p(t[17]-I, x, y, tr,~, tfJ[fJ]-I) = L a..,(17)r'2 (82T'11P)(t[fJ]-I, x, y, tr, {, t17[7]]-I),
bl5.i

where a..,(7]) E sl(JRQ) and, = (,1,,2,')'3) E ~+l+q. Combining these two formulas with the
symbol estimates of p as an element in S-L, L > 0, we obtain that t,he quantities (16) are
dominated by a finite SUffi of terms of the form
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where e > 0, eb l!2 E IR, and c.p(t) is compactly supported or has at most polynomial growth at
infinity. If we choose L big enough, the claim follows for er = ß = 0 onee we use the elementary
inequality

(tr, e, t1J[1J]-I) -L-p (t, e)Pl :5 C(T, e, t) -L-(! (t, e)Ul :5 c(t) -L+ll3

with U3 E IR.. The case of arbitrary er and ß follows similarly. 0

Let a =wOahwl + (1 - wo)ap (1 - wd + 9 be an edge symbol, cf. Definition 3.12. On the one
hand, ap is defined via pull-backs under 1 x Xj of operators op(Pj), on the other hand, the
cone Sobolev spaces are formulated. (away from t = 0) via the push-forward under K.j. Hence,
to obtain continuity of ap between cone Sobolev spaces, one can consider the push-forward of
op(Pj) under K.j 0 (1 X Xjl) (inverse polar coordinates). For our purposes it is more convenient

to analyze the behaviour of weigbted Sobolev spaces in IR1+n under this change of coordinates.
To this end we fix tbe following notations:

Let V C V be open set"s in IRn such that V is relatively compact in 'Cf. Let 0 : 'Cf -+ Ü C
sn be a diffeomorphism and set 8(t, x) = t9(x) : IR.r x V ~ R,1+n. Note that 8-1(y) =
(IYl, 0- 1(IYI-1y)). For € > 0 set V~ =]€, oo[xV and ~~ = {t9(x} I t > €, X E V}.
For an open set U C JRl+n let fJ 6 ,6(U) denote the closure of Cr(U) in H",6(JR1+n ). Then, for
s E~, we have

Il u llh•.6 (U) '" L lIDO((·r~ u}lIi2(U)'

101:5"

(17)

Lemma 3.18 For each integer s, and 0 E IR tbe pusb-forward oE functions by e and 8-1,

respectively, induces continuous maps

8. : H",6(Ve)~ H",6-n/2+min(O,,,)(V~.6),

8;1 : Jf",6(Ve.6)~ H",6+n/2-max(O,,,) (Ve).

P ROOF. Since Y is bounded, (t, x) '" (t) '" (e (t, x)) on ll4 x Y. Furthermore

IDtD~e(t, x)l ~ c (t, x)

uniformlyon ll4 x V.' If we denote with D8 the Jacobian of e, we obtain

det De(t, x) = tn f(x),

with a function f E C6'(V). In particular,

ID~D~(detne(t, x))1 ~ c (t, x)n

uniformlyon II4 x V. "On y.6 the functions Y f-4 0-1(1111- 111) and Y t-t IYl are homogeneous of
degree 0 and 1, respectively. Then (8- 1(11)) '" (11) on ~6 and

IDOe- 1(y)l ~ c(y)I- lol , [D O (detDe- 1(y))1 $ c(y)-n-lo l

uniformlyon V!.6. For s E No the lemma now follows from elementary calculations, using the
norm representation (17). For s < 0 note that the L 2 scalar product induces a dual pairing
H",6 (IR1+n ) X H-"'-cf(JRl+n) ~ C. Th~n the result follows from

(8.u, v)v~ = (u, (e;-l v)1 det Del)v~, (S;-lv, U)L2 = (v, (8.u)1 det DS-1l)cz

for u E er (Ve) , v E Cd(~~)' and the fact that Idet Dei : H",6(v~) -+ H",cf-n(Vf;),
Idet Da-li : H",6(v!~) ~ H",6+n(v~~) are continuous. 0
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Remark 3.19 A eoqsequenee of Lemma 3.18 is that a linear operator A : CÖ(Vt:) -t CÖ(V,~;}

extends eontinuously to operators H"'ö (V~) -1 Hr,Q(V';;) for all real s, r, 0, (! if and only if 6 .. A
extencls to continuous operators jj6,6(V/:::') -t jjr,Q(Ve.6.) for all s, r,o, (!. This behaviour carries
over to families A(y,1]), where we now require smooth dependence on (y,1]) as a funetion with
values in continuous operators between weighted Sobolev spaces.

Theorem 3.20 Let (PI, ... ,PN) E ~-oo. Then the edge symbol c(y,Tl) = Op(PI, ... ,PN) as
in Dennition 3.12 belangs to R~(n x Rtl, (" I - 1-')).

PROOF. To (PI,'" ,PN) E E~oo we associate (h l , ... , hN) and observe that hj E S-oo(IR+ x
Vi x !l x Cx IRn+q) for all j. The edge symbol c(y, 1J) is in Coo(0, L -00 (X1\; JRf1) ), and in view of
the loeal considerations in Lemma 3.15 and Lemma 3.17 it satisfies (i) and (ii) ofOefinition 3.6.
At last the property (iii) holds since the loeal interior symbols of the formal adjoint c:'(y,1])
are of the form

(t') -JSw(t')wo(t'[1]])Wl (t [l1])W(t)<j>(x')1jJ(x )h(t', x', y, n + 1 - z, e, 1]),

(t')-JS+n/2 t -n/2w(t')(1 - Wo (t' [11]) )(1 - WI (t[1])) )w(t)~(x')~(x)p(t', x', y, T, e, 1]),

and the calculations are similar. o

Proof of Theorem 3.13.

Clearly the map is surjeetive. Now let (PI, ... ,PN) E EJS and the associated edge symbol a(y, 1])
be an element ofR6(!l xIRtl, (;, '-J1.)). Then, in partieular, a E COO(!l, L-OO(Xl\j IRI1)). In view
of Theorem 2.3, formula (3), the standard theory implies that Pj E 8-00(~ x Vi x !l X IRI+n+q )
for all j = 1, ... ,N. Hence (PI, ... ,PN) E E-OO because of Lemma 3.7. Finally Theorem 3.20
provides the injectivity, which completes the proof. 0
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