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III. PLÜCKER MAP
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Abstract. We use the m-plücker map between grassmannians in order to study basic aspects of classic
geometries.

1. Introduction

This paper links the (pseudo-)riemannian geometry of the nondegenerate piece Gr0K(k, V ) of a grass-
mannian to the structures discussed in [AGr] and [AGoG]. It is merely intended to illustrate how do
the methods from the previous papers work in the differential geometry of grassmannians. Many of
the presented results are known in particular cases.1 We believe that our treatment provides additional
clarity even in those cases.

It follows a brief description of the results. The m-plücker map is a minimal isometric embedding.
The gauss equation provides the curvature tensor in the form of the (2, 1)-symmetrization of the triple
product exactly as in the projective case. Gr0K(k, V ) is proven to be einstein. Generic geodesics in
Gr0K(k, V ) are described. Finally, we illustrate how a grassmannian classic geometry unexpectedly
shows up in relation to convexity in real hyperbolic space.

It turns out that the hermitian metric actually plays no role in most of the proofs. The tangent
vectors can usually be taken as footless or as observed from different points. Therefore, many definitions,
for instance, those of isometric or minimal embeddings and of the gauss equation, may be restated in the
terms of the product. This must be fruitful since the product embodies different (pseudo-)riemannian
concepts in a single simple structure. In the spirit of [AGoG], it would be nice to understand what
remains from these concepts after arriving at the absolute.

To prevent a possible scepticism of the reader, we have to say that the pseudo-riemannian metrics
play a fundamental role in the study of the riemannian classical geometries: basic geometrical objects
almost never form riemannian spaces. To illustrate this remark, the beautiful article [GuK] is to be
mentioned, where the authors work in an ambient that in fact falls into our settings.

The differential geometry of grassmannians is a rather vast field (see, for instance, the survey [BoN]).
We believe that it is reasonable to redemonstrate known facts in the area by using the language of our
papers. Of course, we recognize that such a project involves a huge amount of work, but is probably worth
the candle: besides giving each fact an appropriate generality, it would provide a better understanding
of particular problems in classic geometries.
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2. Plücker-and-play

We assume that the reader is familiar with the notation from the beginning of [AGoG, Section 2].
Our purpose is to study the m-plücker embedding

Em : GrK(k, V ) → GrK

((

k
m

)

,
∧m

V
)

, p 7→
∧m

p,

where the vector space
∧m

V is equipped with the hermitian form given by the rule

〈v1 ∧ · · · ∧ vm, w1 ∧ · · · ∧ wm〉 := det〈vi, wj〉.

Let p ∈ M . It is not difficult to see that the differential of the map M → LinK

(
∧m

P,
∧m

V
)

at

p sends the tangent vector t ∈ Tp M = LinK(p, V ) to Emt ∈ LinK

(
∧m

p,
∧m

V
)

defined by the rule

Emt : p1 ∧ · · · ∧ pm 7→
∑m

i=1 p1 ∧ · · · ∧ tpi ∧ · · · ∧ pm for all p1, . . . , pm ∈ p. Therefore, we can describe
the differential of Em at p as

Em : LinK(p, V/p) → LinK

(
∧m

p,
∧m

V/
∧m

p
)

,

Emt : p1 ∧ · · · ∧ pm 7→

m
∑

i=1

p1 ∧ · · · ∧ tpi ∧ · · · ∧ pm +
∧m

p

for all t : p → V/p and p1, . . . , pm ∈ p, where t : p → V is an arbitrary lift of t.
Given p ∈ Gr0K(k, V ), we have the orthogonal decomposition

(2.1)
∧m

V =

m
⊕

i=0

∧i
p⊥ ∧

∧m−i
p.

In particular, taking p ∈ Gr0K(k, V ) and t ∈ Tp Gr0K(k, V ) = LinK(p, p⊥), we obtain

(2.2) Emt : p1 ∧ · · · ∧ pm 7→

m
∑

i=1

p1 ∧ · · · ∧ tpi ∧ · · · ∧ pm

for all p1, . . . , pm ∈ p. Note that (2.2) makes sense for an arbitrary t : V → V .
Define the linear map B(t1, t2) :

∧m
V →

∧m
V by the rule

B(t1, t2)(v1 ∧ · · · ∧ vm) :=
∑

i6=j

v1 ∧ · · · ∧ t1vi ∧ · · · ∧ t2vj ∧ · · · ∧ vm

for all v1, . . . , vm ∈ V , where t1, t2 : V → V . (In the above sum, t2vj appears before t1vi if i > j.)

2.3. Lemma. Let p ∈ GrK(k, V ) and let t, t1, t2 : V → V . Then

〈

Emt(p ∧ · · · ∧ pm), q ∧ v2 ∧ · · · ∧ vm

〉

= 〈p1 ∧ · · · ∧ pm, t∗q ∧ v2 ∧ · · · ∧ vm〉,

〈

B(t1, t2)(p1 ∧ · · · ∧ pm), q1 ∧ q2 ∧ v3 ∧ · · · ∧ vm

〉

=

= 〈p1 ∧ · · · ∧ pm, t∗1q1 ∧ t∗2q2 ∧ v3 ∧ · · · ∧ vm〉 + 〈p1 ∧ · · · ∧ pm, t∗2q1 ∧ t∗1q2 ∧ v3 ∧ · · · ∧ vm〉

for all q, q1, q2 ∈ p⊥, p1, . . . , pm ∈ p, and v2, . . . , vm ∈ V .
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Proof is based on simple known identities involving determinants (marked with † and left without
proof). We have

〈

Emt(p1 ∧ · · · ∧ pm), q ∧ v2 ∧ · · · ∧ vm

〉

=
m

∑

i=1

det



















0 〈p1,v2〉 ··· 〈p1,vm〉

...
...

. . .
...

0 〈pi−1,v2〉 ··· 〈pi−1,vm〉

〈tpi,q〉 〈tpi,v2〉 ··· 〈tpi,vm〉

0 〈pi+1,v2〉 ··· 〈pi+1,vm〉

...
...

. . .
...

0 〈pm,v2〉 ··· 〈pm,vm〉



















†
=

†
= det





〈tp1,q〉 〈p1,v2〉 ··· 〈p1,vm〉

...
...

. . .
...

〈tpm,q〉 〈pm,v2〉 ··· 〈pm,vm〉



 = det





〈p1,t∗q〉 〈p1,v2〉 ··· 〈p1,vm〉

...
...

. . .
...

〈pm,t∗q〉 〈pm,v2〉 ··· 〈pm,vm〉



 =〈p1∧· · ·∧pm, t∗q∧v2∧· · ·∧vm〉

and

〈

B(t1, t2)(p1 ∧ · · · ∧ pm), q1 ∧ q2 ∧ v3 ∧ · · · ∧ vm

〉

=
∑

i6=j

det

































0 0 〈p1,v3〉 ··· 〈p1,vm〉

...
...

...
. . .

...
0 0 〈pi−1,v3〉 ··· 〈pi−1,vm〉

〈t1pi,q1〉 〈t1pi,q2〉 〈t1pi,v3〉 ··· 〈t1pi,vm〉

0 0 〈pi+1,v3〉 ··· 〈pi+1,vm〉

...
...

...
. . .

...
0 0 〈pj−1,v3〉 ··· 〈pj−1,vm〉

〈t2pj ,q1〉 〈t2pj ,q2〉 〈t2pj ,v3〉 ··· 〈t2pj ,vm〉

0 0 〈pj+1,v3〉 ··· 〈pj+1,vm〉

...
...

...
. . .

...
0 0 〈pm,v3〉 ··· 〈pm,vm〉

































†
=

†
= det





〈t1p1,q1〉 〈t2p1,q2〉 〈p1,v3〉 ··· 〈p1,vm〉

...
...

...
. . .

...
〈t1pm,q1〉 〈t2pm,q2〉 〈pm,v3〉 ··· 〈pm,vm〉



 + det





〈t2p1,q1〉 〈t1p1,q2〉 〈p1,v3〉 ··· 〈p1,vm〉

...
...

...
. . .

...
〈t2pm,q1〉 〈t1pm,q2〉 〈pm,v3〉 ··· 〈pm,vm〉



 =

= det





〈p1,t∗1q1〉 〈p1,t∗2q2〉 〈p1,v3〉 ··· 〈p1,vm〉

...
...

...
. . .

...
〈pm,t∗1q1〉 〈pm,t∗2q2〉 〈pm,v3〉 ··· 〈pm,vm〉



 + det





〈p1,t∗2q1〉 〈p1,t∗1q2〉 〈p1,v3〉 ··· 〈p1,vm〉

...
...

...
. . .

...
〈pm,t∗2q1〉 〈pm,t∗1q2〉 〈pm,v3〉 ··· 〈pm,vm〉



 =

= 〈p1 ∧ · · · ∧ pm, t∗1q1 ∧ t∗2q2 ∧ v3 ∧ · · · ∧ vm〉 + 〈p1 ∧ · · · ∧ pm, t∗2q1 ∧ t∗1q2 ∧ v3 ∧ · · · ∧ vm〉 �

Let t ∈ LinK(p, p⊥) ⊂ LinK(V, V ). It follows from (2.2) and Lemma 2.3 that the only nonvanishing

component of (Emt)∗ related to the decomposition (2.1) has the form (Emt)∗ : p⊥ ∧
∧m−1

p →
∧m

p,

(2.4) (Emt)∗ : q ∧ p2 ∧ · · · ∧ pm 7→ t∗q ∧ p2 ∧ · · · ∧ pm,

where q ∈ p⊥ and p2, . . . , pm ∈ p. In other words, (Emt)∗ = Emt∗. Similar arguments are applicable to
B(t1, t2) with t1, t2 ∈ LinK(p, p⊥) ⊂ LinK(V, V ).

2.5. Proposition (compare to [BoN, Assertions 1–2]). The m-plücker embedding provides an hermit-

ian (hence, pseudo-riemannian) embedding Em : Gr0K(k, V ) → Gr0K
((

k
m

)

,
∧m

V
)

, assuming the metric

on Gr0K(k, V ) reescaled by the factor
(

k−1
m−1

)

.
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Proof. Let p ∈ Gr0K(k, V ) and let t1, t2 : p → p⊥ be tangent vectors at p. By (2.2) and (2.4),

(Emt1)
∗Emt2 : p1 ∧ · · · ∧ pm 7→

m
∑

i=1

p1 ∧ · · · ∧ t∗1t2pi ∧ · · · ∧ pm

for all p1, . . . , pm ∈ p. As is easy to see, tr(Emϕ) =
(

k−1
m−1

)

tr ϕ for every linear map ϕ : p → p and the

map Emϕ :
∧m

p →
∧m

p defined as in (2.2). Hence,

〈Emt1, E
mt2〉 = tr

(

(Emt1)
∗Emt2

)

= tr
(

Em(t∗1t2)
)

=
(

k−1
m−1

)

tr(t∗1t2) =
(

k−1
m−1

)

〈t1, t2〉 �

Given p ∈ Gr0K(k, V ), denote by π′[p] and π[p] the orthogonal projectors corresponding to the decom-
position V = p ⊕ p⊥. For t ∈ LinK(V, V ), define the tangent vector tp := π[p]tπ′[p] at p.

Let U ⊂ M be a saturated and nondegenerate open set. This means that U GLK P = U and πU ⊂
Gr0K(k, V ), where π : M → GrK(k, V ) stands for the quotient map. A smooth map X : U → LinK(V, V )
is said to be a lifted field over U if X(p)p = X(p) and X(pg) = X(p) for all p ∈ U and g ∈ GLK P .

In other words, π maps X onto a correctly defined smooth tangent field over the open πU ⊂ Gr0K(k, V ).
For t ∈ LinK(V, V ), define

∇tX(p) :=
( d

dε

∣

∣

∣

ε=0
X

(

(1 + εt)p
)

)

p
.

Since π′[pg] = π′[p] and π[pg] = π[p] for all p ∈ U and g ∈ GLK P , the field p 7→ ∇Y (p)X is lifted
for arbitrary lifted fields X and Y over U . Obviously, ∇ enjoys the properties of an affine connection;
we assume Gr0K(k, V ) equipped with this intrinsic connection.

2.6. Proposition. The connection induced by the m-plücker embedding coincides with the intrinsic

one and the map

B(t1, t2) : TpGr0K(k, V ) × TpGr0K(k, V ) →
(

EmTpGr0K(k, V )
)⊥

is the second fundamental form of the embedding.

Proof. Let p ∈ Gr0K(k, V ) and let t ∈ LinK(p, p⊥) ⊂ LinK(V, V ). First, we need to establish some
auxiliary formulae.

Denote g(ε) := 1 + εt. Since g−1(ε)g(ε) = 1 for small ε,
d

dε

∣

∣

∣

ε=0
g(ε) = t and

d

dε

∣

∣

∣

ε=0

(

g−1(ε)
)∗

= −t∗.

The projectors
π′(ε) := π′

[
∧m

g(ε)p
]

, π(ε) := π
[
∧m

g(ε)p
]

satisfy
π′(ε)

(

g(ε)p1 ∧ · · · ∧ g(ε)pm

)

= g(ε)p1 ∧ · · · ∧ g(ε)pm,

π(ε)
(

(

g−1(ε)
)∗

q ∧ g(ε)p2 ∧ · · · ∧ g(ε)pm

)

=
(

g−1(ε)
)∗

q ∧ g(ε)p2 ∧ · · · ∧ g(ε)pm

for all q ∈ p⊥ and p1, . . . , pm ∈ p because
(

g−1(ε)
)∗

q ∈
(

g(ε)p
)⊥

. Taking derivatives, we obtain

d

dε

∣

∣

∣

ε=0
π′(ε)(p1 ∧ · · · ∧ pm) + π′

[
∧m

p
]

m
∑

i=1

p1 ∧ · · · ∧ tpi ∧ · · · ∧ pm =

m
∑

i=1

p1 ∧ · · · ∧ tpi ∧ · · · ∧ pm

and

d

dε

∣

∣

∣

ε=0
π(ε)(q ∧ p2 ∧ · · · ∧ pm) + π

[
∧m

p
] d

dε

∣

∣

∣

ε=0

(

(

g−1(ε)
)∗

q ∧ g(ε)p2 ∧ · · · ∧ g(ε)pm

)

=
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=
d

dε

∣

∣

∣

ε=0

(

(

g−1(ε)
)∗

q ∧ g(ε)p2 ∧ · · · ∧ g(ε)pm

)

.

From t∗q ∈ p and from

d

dε

∣

∣

∣

ε=0

(

(

g−1(ε)
)∗

q ∧ g(ε)p2 ∧ · · · ∧ g(ε)pm

)

= −t∗q ∧ p2 ∧ · · · ∧ pm +

m
∑

i=2

q ∧ p2 ∧ · · · ∧ tpi ∧ · · · ∧ pm,

we conclude that

(2.7)
d

dε

∣

∣

∣

ε=0
π′(ε)(p1 ∧ · · · ∧ pm) =

m
∑

i=1

p1 ∧ · · · ∧ tpi ∧ · · · ∧ pm,

(2.8)
d

dε

∣

∣

∣

ε=0
π(ε)(q ∧ p2 ∧ · · · ∧ pm) = −t∗q ∧ p2 ∧ · · · ∧ pm.

Let X be a lifted field over a neighbourhood of p. Denote X(ε) := X
(

g(ε)p
)

and s := X(0) = X(p).
Define

E(ε) :
∧m

V →
∧m

V, v1 ∧ · · · ∧ vm 7→

m
∑

i=1

v1 ∧ · · · ∧ X(ε)vi ∧ · · · ∧ vm.

Clearly, EmX(ε) = π(ε)E(ε)π′(ε). We conclude from (2.7), (2.8), and st = 0 that

∇EmtE
mX(p1 ∧ · · · ∧ pm) =

( d

dε

∣

∣

∣

ε=0
π(ε)E(ε)π′(ε)

)

V

m p
p1 ∧ · · · ∧ pm =

= π(0)
( d

dε

∣

∣

∣

ε=0
π(ε)E(0) +

d

dε

∣

∣

∣

ε=0
E(ε) + E(0)

d

dε

∣

∣

∣

ε=0
π′(ε)

)

p1 ∧ · · · ∧ pm =

= π(0)
(

−
m

∑

i=1

p1 ∧ · · · ∧ t∗spi ∧ · · · ∧ pm +
m

∑

i=1

p1 ∧ · · · ∧
d

dε

∣

∣

∣

ε=0
X(ε)pi ∧ · · · ∧ pm+

+
∑

i6=j

p1∧· · ·∧spi∧· · ·∧ tpj ∧· · ·∧pm

)

=
m

∑

i=1

p1∧· · ·∧π[p]
d

dε

∣

∣

∣

ε=0
X(ε)pi∧· · ·∧pm +B(s, t)p1∧· · ·∧pm

(in the terms of the connection in Gr0K
((

k
m

)

,
∧m

V
)

). In other words,

∇EmtE
mX = Em∇tX + B

(

X(p), t
)

.

The first term is tangent to the image of the m-plücker embedding and the second one is orthogonal
to it �

2.9. Corollary. The intrinsic connection is hermitian (pseudo-riemannian).

Proof. Taking m = k, the fact follows from Propositions 2.5, 2.6, and [AGr, Proposition 4.3] �

2.10. Corollary. Let p ∈ Gr0K(k, V ) and let t, t1, t2 : p → p⊥ be tangent vectors to Gr0K(k, V ) at p.

The curvature tensor is given by

R(t1, t2)t = tt∗1t2 + t2t
∗
1t − tt∗2t1 − t1t

∗
2t.
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Proof. Since the above formula provides the curvature tensor in the projective case [AGr, Subsec-

tion 4.4], it suffices to show that the curvature tensors in Gr0K(k, V ) and in Gr0K
((

k
m

)

,
∧m

V
)

given by
this formula satisfy the gauss equation (see [KoN, Proposition VII.4.1]) related to the embedding Em.

Let t, t1, t2 : p → p⊥ be tangent vectors. Then, by Lemma 2.3,

Emt(Emt1)
∗Emt2(p1 ∧ · · · ∧ pm) = Emt

m
∑

i=1

p1 ∧ · · · ∧ t∗1t2pi ∧ · · · ∧ pm =

=
∑

i6=j

p1 ∧ · · · ∧ tpi ∧ · · · ∧ t∗1t2pj ∧ · · · ∧ pm +

m
∑

i=1

p1 ∧ · · · ∧ tt∗1t2pi ∧ · · · ∧ pm.

for all p1, . . . , pm ∈ p. The last sum is exactly Em(tt∗1t2)(p1 ∧ · · · ∧ pm). Hence,

(

Emt(Emt1)
∗Emt2 −Em(tt∗1t2)

)

(p1 ∧ · · · ∧ pm) =
∑

i6=j

p1 ∧ · · · ∧ tpi ∧ · · · ∧ t∗1t2pj ∧ · · · ∧ pm = B(t, t∗1t2).

Therefore, the gauss equation takes the form2

〈

Emw,B(t, t∗1t2) + B(t2, t
∗
1t) − B(t, t∗2t1) − B(t1, t

∗
2t)

〉

=
〈

B(t1, w), B(t2, t)
〉

−
〈

B(t2, w), B(t1, t)
〉

,

where w : p → p⊥. So, it suffices to show that

(Emw)∗B(t, t∗1t2) + (Emw)∗B(t2, t
∗
1t) =

(

B(t1, w)
)∗

B(t2, t),

(Emw)∗B(t, t∗2t1) + (Emw)∗B(t1, t
∗
2t) =

(

B(t2, w)
)∗

B(t1, t).

We prove only the first identity. By Lemma 2.3,

(Emw)∗B(t, t∗1t2)(p1 ∧ · · · ∧ pm) =
∑

i6=j

p1 ∧ · · · ∧ w∗tpi ∧ · · · ∧ t∗1t2pj ∧ · · · ∧ pm,

(Emw)∗B(t2, t
∗
1t)(p1 ∧ · · · ∧ pm) =

∑

i6=j

p1 ∧ · · · ∧ w∗t2pi ∧ · · · ∧ t∗1tpj ∧ · · · ∧ pm,

and

(B(t1, w))∗B(t2, t)(p1 ∧ · · · ∧ pm) =
(

B(t1, w)
)∗ ∑

i6=j

p1 ∧ · · · ∧ t2pi ∧ · · · ∧ tpj ∧ · · · ∧ pm =

=
∑

i6=j

p1 ∧ · · · ∧ t∗1t2pi ∧ · · · ∧ w∗tpj ∧ · · · ∧ pm +
∑

i6=j

p1 ∧ · · · ∧ w∗t2pi ∧ · · · ∧ t∗1tpj ∧ · · · ∧ pm �

2.11. Corollary (compare to [BoN, Assertions 1–2]). The m-plücker embedding is minimal.

Proof. Let e1, . . . , ek and f1, . . . , fn−k be orthonormal bases in p and p⊥. We define tijej := fi and
tijem := 0 if m 6= j, getting in this way an orthonormal basis in the tangent space at p. As is easy
to see, B(tij , tij) = 0. It remains to apply [dCa, Definition 2.10] �

2Strictly speaking, we should take the (pseudo-)riemannian metric in the equality. However, the gauss equation turns
out to be valid in a sense which is even stronger than the hermitian one.
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2.12. Corollary (compare to [BoN, pp. 53 and 63]). Gr0K(k, V ) is einstein. The corresponding

constant is n − 2 in the case of K = R and 2n in the case of K = C, where n = dimK V .

Proof. We use the following elementary fact: Let T : V → V be an R-linear map. Then trR T =
2Re trC T if T is C-linear and trR T = 0 if T is C-antilinear.

The ricci tensor is given by ricci(t1, t) := tr
(

t2 7→ R(t1, t2)t
)

, where t, t1, t2 : p → p⊥. Considering
each term of the curvature tensor in Corollary 2.10, it is easy to see that

tr(t2 7→ tt∗1t2) = k tr(tt∗1) = k tr(t∗t1), tr(t2 7→ t2t
∗
1t) = (n − k) tr(t∗1t) = (n − k) tr(t∗t1),

tr(t2 7→ tt∗2t1) = tr(t2 7→ t1t
∗
2t) = tr(t∗t1)

in the case of K = R and that

trC(t2 7→ tt∗1t2) = k tr(tt∗1), trC(t2 7→ t2t
∗
1t) = (n − k) tr(t∗1t),

trR(t2 7→ tt∗1t2) = 2k Re tr(t∗t1), trR(t2 7→ t2t
∗
1t) = 2(n − k)Re tr(t∗t1),

trR(t2 7→ tt∗2t1) = trR(t2 7→ t1t
∗
2t) = 0

in the case of K = C �

2.13. Generic geodesics. Let p ∈ Gr0K(k, V ) and let t ∈ LinK(p, p⊥) ⊂ LinK(V, V ) be a tangent
vector at p. Assume that t∗t : p → p has no isotropic eigenvectors. We are going to describe the geodesic
determined by t.

Since the map t∗t : p → p is self-adjoint and has no isotropic eigenvectors, there exists an orthonormal
basis p1, . . . , pk in p formed by eigenvectors of t∗t and the corresponding eigenvalues λ1, . . . , λk are real.
Put Wj := Rpj + Rtpj . The Wj ’s are pairwise orthogonal because the tpj ’s are pairwise orthogonal.
Being restricted to Wj , the form is real and does not vanish. So, Wj provides a geodesic Gj ⊂ PKV
if tpj 6= 0. By [AGr, Lemma 2.1], Gj is respectively spherical, hyperbolic, or euclidean exactly when
λj > 0, λj < 0, or λj = 0. (If tpj = 0, Gj is a single point in PKV .)

Let tj be the tangent vector to Gj at pj given by tj : pj 7→ tpj . Every geodesic Gj admits a local
uniformly parameterized lift pj(s) to V with respect to tj . This means that the tangent vector pj(s) 7→
ṗj(s) at pj(s) is the parallel displacement of tj from pj(0) = pj to pj(s) along Gj (in particular, ṗj(s) ∈
pj(s)

⊥ ∩ Wj) and that
〈

pj(s), pj(s)
〉

is constant in s. If Gj is not euclidean, such a parameterization
is readily obtainable from those in [AGr, Subsection 3.2]. In the euclidean case, pj(s) := pj + stpj is
the desired parameterization [AGr, Corollary 5.9]. Note that p̈j(s) ∈ Rpj(s). This is obvious in the
euclidean case and is otherwise implied by the fact that

〈

ṗj(s), ṗj(s)
〉

is constant and p̈j(s) ∈ Wj .
As in [AGoG, Section 2], we fix a k-dimensional K-vector space P . Let b1, . . . , bk ∈ P be a basis and

let p(s) : P → V be the linear map given by the rule p(s) : bj 7→ pj(s).

2.13.1. Lemma. The curve G : s 7→ p(s) is a geodesic in Gr0K(k, V ) and t is its tangent vector at p.

Proof. The tangent vector to G at p(s) is given by the linear map t(s) ∈ LinK

(

p(s), p(s)⊥
)

⊂

LinK(V, V ), t(s) : pj(s) 7→ ṗj(s), because ṗj(s) ∈ p(s)⊥ and the Wj ’s are pairwise orthogonal.
In the definition of ∇, taking the derivative of X

(

c(ε)
)

at ε = 0, where c(ε) := (1 + εt)p, amounts to

taking the derivative of X
(

p(s)
)

at s because ċ(0) = ṗ(s). Therefore, ∇Ġ(s)Ġ(s) = π
[

p(s)
]

ṫ(s)π′
[

p(s)
]

.

Taking the derivative of t(s)pj(s) = ṗj(s), we obtain ṫ(s)pj(s)+ t(s)ṗj(s) = p̈j(s). Since t(s)
(

p(s)⊥
)

= 0

and ṗj(s) ∈ p(s)⊥, we have π
[

p(s)
]

ṫ(s)pj(s) = π
[

p(s)
]

p̈j(s) = 0 due to p̈j(s) ∈ Rpj(s) �

We call Gj a spine of G. We may interpret a point G(s) as a linear subspace in PKV spanned by

the pj(s)
′s. Moving along the geodesic G in Gr0K(k, V ) is the same as moving along the spines with

velocities given by3
√

|λj |. The equality tpj = 0 says that Gj is a point fixed during the movement.

3Well, involving an euclidean spine is more subtle.
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A generic tangent vector t provides a choice of a basis formed by the eigenvectors of t∗t. In other
words, if 2k ≤ n, the intention of moving in some generic direction automatically chooses a certain
reference frame.

2.14. Comments and questions. Many of the above facts admit a form not involving the hermitian
metric.

• The first formula displayed in the proof of Proposition 2.5 says that (Emt1)
∗Emt2 = Em(t∗1t2).

• The gauss equation in Corollary 2.10 follows from the much simpler one (Emw)∗B(t, t∗1t2) +

(Emw)∗B(t2, t
∗
1t) =

(

B(t1, w)
)∗

B(t2, t).

• The proof of minimality actually does not require the self-adjoint operator Sη from [dCa, Defini-
tion 2.10].

• What is the geometrical meaning of the other two symmetrizations of the trilinear product tt∗2t1 ?

• What about other functors in place of
∧m

?

3. Convexity of some real hyperbolic polyhedra

This section illustrates how grassmannians appear in a typical situation that does not seem to involve
them at the first glance. Here we deal with the real hyperbolic geometry H

4
R
, that is, with PRV , where

V is an R-vector space and the form has signature + + + +−. (The calculus in what follows may seem
a little bit concise. On the other hand, it requires no specific knowledge in the area.)

A known problem on real hyperbolic disc bundles is to find the greatest value of |e/χ|, where e stands
for the Euler number of the bundle and χ, for the Euler characteristic of the base closed surface [GLT].
By now, the best value |e/χ| = 1/2 [Kui], [Luo] is obtained via constructing a fundamental polyhedron
without faces of codimension > 2 that is strongly convex in the sense that its disjoint faces lie in disjoint
totally geodesic hypersurfaces. It is worthwhile trying polyhedra that are convex in the usual sense.

Such a polyhedron can be described in the terms of a finite number of positive points p1, . . . , pn ∈ PRV .
The face Fi is a segment in the hyperplane Hi := p⊥i ∩BV , i.e., the part of Hi between the disjoint planes
Ei−1 and Ei, where Ei := Fi ∩Fi+1 = Span(pi, pi+1)

⊥ ∩BV for all i (the indices are modulo n). In the
terms of the gramian matrix U(p1, . . . , pn) := [uij ], uij := 〈pi, pj〉, assuming that uii = 1, the strong
convexity means |ui(i+1)| < 1 < |uij | for all j 6= i − 1, i, i + 1. In what follows, we obtain a criterion of
the usual convexity.

It is convenient to use the following notation:

(3.1) 〈i1i2, j1j2〉 := det

(

ui1j1 ui1j2

ui2j1 ui2j2

)

, 〈i1i2i3, j1j2j3〉 := det





ui1j1 ui1j2 ui1j3

ui2j1 ui2j2 ui2j3

ui3j1 ui3j2 ui3j3



 .

The fact that Hi ∩ Hi+1 6= ∅ can be written as
〈

i(i + 1), i(i + 1)
〉

> 0. The fact that Ei−1 and Ei

are disjoint is equivalent to Span(pi−1, pi, pi+1)
⊥ ∩ BV = ∅, i.e., to

〈

(i − 1)i(i + 1), (i − 1)i(i + 1)
〉

< 0
by the Sylvester criterion.

3.2. Lemma. The segment Fi can be described as

Fi =
{

x ∈ Hi |
〈

(i − 1)i, i(i + 1)
〉

〈x, pi−1〉〈pi+1, x〉 ≥ 0
}

.

Proof. During the proof, we deal only with the points pi−1, pi, pi+1. We change these points keeping
Ei−1, Fi, Ei the same. The expression

〈

(i− 1)i, i(i + 1)
〉

does not change if we substitute pi−1 and pi+1

respectively by pi−1 + r1pi and pi+1 + r2pi, r1, r2 ∈ R. Also,
〈

(i − 1)i, i(i + 1)
〉

〈x, pi−1〉〈pi+1, x〉 does
not change if we alter the sign of pi−1. So, we can assume that u(i−1)i = ui(i+1) = 0, u(i−1)(i−1) =
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uii = u(i+1)(i+1) = 1, and u(i−1)(i+1) ≥ 0. It follows from
〈

(i − 1)i(i + 1), (i − 1)i(i + 1)
〉

< 0 that
u(i−1)(i+1) > 1. The closed 3-ball Hi is fibred over the hyperbolic geodesic Gi := Span(pi−1, pi+1) by

the closed discs Sp := Span(p, pi)
⊥ ∩ BV called slices, p ∈ Gi \BV . The end slices Ei−1 and Ei of Fi

correspond to p = pi−1 and p = pi+1. Since u(i−1)(i+1) > 0, the segment Fi is formed by the slices Sp

with p = (1 − t)pi−1 + tpi+1, t ∈ [0, 1]. Note that Span(pi−1, pi+1) = Span(pi+1pi−1,
pi−1pi+1) because

u(i−1)(i+1) > 1.

Let x ∈ Hi. Then x = w − t1
pi+1pi−1 + t2

pi−1pi+1 for suitable w ∈ Span(pi−1, pi+1)
⊥, t1, t2 ∈ R,

t1 ≥ 0. We have

〈

(i − 1)i, i(i + 1)
〉

〈x, pi−1〉〈pi+1, x〉 = u(i−1)(i+1)(u
2
(i−1)(i+1) − 1)2t1t2

and 〈t2pi−1 + t1pi+1, x〉 = 0. It follows from x ∈ BV that t2pi−1 + t1pi+1 /∈ BV and that t1 6= 0 or
t2 6= 0. So, x ∈ St2p0+t0p2

and the claim easily follows �

In the sequel, we frequently use the above decomposition of Hi into slices over the hyperbolic geo-
desic Gi.

The usual convexity is equivalent to the condition Fi ∩ Hj = ∅ for j 6= i − 1, i, i + 1. We fix i and j
and express this condition by considering the following cases:

• 〈ij, ij〉 < 0. This implies Hi ∩ Hj = ∅, hence, Fi ∩ Hj = ∅.

• 〈ij, ij〉 = 0. First, we require pj 6= pi (implied by Fi ∩ Hj = ∅). Under these conditions, the

isotropic point uiipj − ujipi is the only point in Span(pi, pj)
⊥ ∩ BV . By Lemma 3.2, the condition

Fi ∩ Hj = ∅ is equivalent to

(3.3)
〈

ij, (i − 1)i
〉〈

(i − 1)i, i(i + 1)
〉〈

i(i + 1), ij
〉

> 0

It obviously implies that pj 6= pi.

• 〈ij, ij〉 > 0. Define

q1 :=
uiipi−1 − u(i−1)ipi

√

uii

〈

(i − 1)i, (i − 1)i
〉

, q2 :=
uiipi+1 − u(i+1)ipi

√

uii

〈

(i + 1)i, (i + 1)i
〉

, q3 :=
uiipj − ujipi
√

uii〈ij, ij〉
,

and vkl := 〈qk, ql〉. As is easy to see, qk ∈ p⊥i and vkk = 1 for all k. The facts that Span(q1, q2, pi) =
Span(pi−1, pi, pi+1) has signature + + − and that pi is positive imply |v12| > 1. The slices of Fi have
the form Sq(t), where

q(t) := (1 − t)q1 + σtq2, t ∈ [0, 1],

and σ :=
v12

|v12|
. The condition Fi ∩ Hj = ∅ is equivalent to the requirement that Span

(

q(t), q3

)

has

signature +− for all t ∈ [0, 1]. It can be written as

f(t) := t2
(

(v13 − σv23)
2 + 2|v12| − 2

)

− 2t
(

v2
13 − σv13v23 + |v12| − 1

)

+ v2
13 − 1 > 0

by Sylvester’s criterion.
Writing f(t) = t2a− 2tb + c, we have a > 0, f(0) = c = v2

13 − 1, and f(1) = v2
23 − 1. The polynomial

f(t) attains its minimum at t = b/a. Clearly, f(b/a) > 0 if and only if ac > b2. Hence, the condition
Fi ∩ Hj = ∅ is equivalent to v2

13, v
2
23 > 1 and 0 < b < a =⇒ ac > b2. One readily verifies that

ac − b2 = 1 + 2v12v23v31 − v2
12 − v2

23 − v2
31 = detU(q1, q2, q3)
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and that 0 < b < a is equivalent to

v2
13 − 1 > σ(v13v32 − v12), v2

23 − 1 > σ(v13v32 − v12).

The inequality ac > b2 is impossible because Span(q1, q2, q3) contains a negative point belonging to
Gi = Span(q1, q2). Therefore, Fi ∩ Hj = ∅ is equivalent to v2

13, v
2
23 > 1 and v2

13 − 1 ≤ σ(v13v32 − v12)
or v2

23 − 1 ≤ σ(v13v32 − v12). Either of the last two inequalities implies σ(v13v32 − v12) > 0, that is,
σv13v32 > |v12|, i.e.,

(3.4) v12v23v31 > v2
12.

Clearly, (3.4) implies σ(v13v32 − v12) > 0. Assuming that (3.4) is true, we can rewrite the condition
v2
13 − 1 ≤ σ(v13v32 − v12) or v2

23 − 1 ≤ σ(v13v32 − v12) in the form

(3.5) (v2
13 − 1)2 ≤ (v13v32 − v12)

2 or (v2
23 − 1)2 ≤ (v13v32 − v12)

2.

In fact, the meaning of the inequalities v2
13, v

2
23 > 1 is that Span(pi−1, pi, pj) and Span(pi+1, pi, pj) have

signature + + −, that is,

〈

(i − 1)ij, (i − 1)ij
〉

< 0,
〈

i(i + 1)j, i(i + 1)j
〉

< 0.

Under these conditions, (3.5) takes the form

(3.6) min(v2
13 − 1, v2

23 − 1) ≤ |v13v32 − v12|

By straightforward calculus, we have

v12 = −

〈

(i − 1)i, i(i + 1)
〉

√

〈

(i − 1)i, (i − 1)i
〉〈

i(i + 1), i(i + 1)
〉

, v23 =

〈

i(i + 1), ij
〉

√

〈

i(i + 1), i(i + 1)
〉

〈ij, ij〉
,

v13 = −

〈

(i − 1)i, ij
〉

√

〈

(i − 1)i, (i − 1)i
〉

〈ij, ij〉
.

Hence, (3.4) takes the form

(3.7)

〈

(i − 1)i, ij
〉〈

ij, i(i + 1)
〉

〈

(i − 1)i, i(i + 1)
〉 > 〈ij, ij〉.

Note that (3.7) is equivalent to (3.3) in the case of 〈ij, ij〉 = 0 because
〈

(i − 1)i, i(i + 1)
〉

= 0 would
imply v12 = 0, that is, 〈pipi−1,

pipi+1〉 = 0, contradicting Ei−1 ∩ Ei = ∅.
Since

v13v32 − v12 =

〈

(i − 1)i, i(i + 1)
〉

〈ij, ij〉 −
〈

(i − 1)i, ij
〉〈

i(i + 1), ij
〉

〈ij, ij〉
√

〈

(i − 1)i, (i − 1)i
〉〈

i(i + 1), i(i + 1)
〉

=

=
uii

〈

(i − 1)ij, i(i + 1)j
〉

〈ij, ij〉
√

〈

(i − 1)i, (i − 1)i
〉〈

i(i + 1), i(i + 1)
〉

,
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v2
13 − 1 =

〈

(i − 1)i, ij
〉〈

(i − 1)i, ij
〉

−
〈

(i − 1)i, (i − 1)i
〉

〈ij, ij〉
〈

(i − 1)i, (i − 1)i
〉

〈ij, ij〉
= −

uii

〈

(i − 1)ij, (i − 1)ij
〉

〈ij, ij〉
〈

(i − 1)i, (i − 1)i
〉 ,

v2
23 − 1 =

〈

i(i + 1), ij
〉〈

i(i + 1), ij
〉

−
〈

i(i + 1), i(i + 1)
〉

〈ij, ij〉
〈

i(i + 1), i(i + 1)
〉

〈ij, ij〉
= −

uii

〈

i(i + 1)j, i(i + 1)j
〉

〈ij, ij〉
〈

i(i + 1), i(i + 1)
〉 ,

uii > 0, and 〈ij, ij〉 > 0, (3.6) takes the form

(3.8)

∣

∣

∣

〈

(i − 1)ij, i(i + 1)j
〉

∣

∣

∣

√

〈

(i − 1)i, (i − 1)i
〉〈

i(i + 1), i(i + 1)
〉

+ max

(

〈

(i − 1)ij, (i − 1)ij
〉

〈

(i − 1)i, (i − 1)i
〉 ,

〈

i(i + 1)j, i(i + 1)j
〉

〈

i(i + 1), i(i + 1)
〉

)

≥ 0.

It follows from Ei−1 ⊂ Fi and Fi ∩Hj = ∅ that Ei−1 ∩Hj = ∅ for j 6= i− 1, i, i + 1. In other words,
Hi−1 ∩ Hi ∩ Hj = ∅, that is,

〈

(i − 1)ij, (i − 1)ij
〉

< 0.

Summarizing, we arrive at the

3.9. Criterion of convexity. The polyhedron formed by segments of hyperplanes given by p1, . . . , pn

∈ V is convex (hence, simple) if and only if the following conditions written in the terms of (3.1), where

uij := 〈pi, pj〉, hold (the indices are modulo n):

• The inequalities uii > 0 are valid for all i.
• The inequalities

〈

(i − 1)i, (i − 1)i
〉

> 0 and
〈

(i − 1)ij, (i − 1)ij
〉

< 0 are valid for all j 6= i − 1, i.
• The inequalities (3.7) are valid for all j 6= i − 1, i, i + 1 such that 〈ij, ij〉 ≥ 0.

• The inequalities (3.8) are valid for all j 6= i − 1, i, i + 1 such that 〈ij, ij〉 > 0 �

Note that
〈i1i2, j1j2〉 = 〈gi1i2 , gj1j2〉, 〈i1i2i3, j1j2j3〉 = 〈gi1i2i3 , gj1j2j3〉,

where gi1i2 := pi1 ∧ pi2 and gi1i2i3 := pi1 ∧ pi2 ∧ pi3 represent respectively
∧2

Span(pi1 , pi2) ∈ PR

∧2
V

and
∧3

Span(pi1 , pi2 , pi3) ∈ PR

∧3
V . So, Criterion 3.9 deals with the usual projective invariants.
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