COORDINATE-FREE CLASSIC GEOMETRIES

III. PLÜCKER MAP

Sasha Anan'in and Carlos H. Grossi

Abstract

We use the m-plücker map between grassmannians in order to study basic aspects of classic geometries.

1. Introduction

This paper links the (pseudo-)riemannian geometry of the nondegenerate piece $\operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$ of a grassmannian to the structures discussed in [AGr] and [AGoG]. It is merely intended to illustrate how do the methods from the previous papers work in the differential geometry of grassmannians. Many of the presented results are known in particular cases. ${ }^{1}$ We believe that our treatment provides additional clarity even in those cases.

It follows a brief description of the results. The m-plücker map is a minimal isometric embedding. The gauss equation provides the curvature tensor in the form of the $(2,1)$-symmetrization of the triple product exactly as in the projective case. $\operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$ is proven to be einstein. Generic geodesics in $\operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$ are described. Finally, we illustrate how a grassmannian classic geometry unexpectedly shows up in relation to convexity in real hyperbolic space.

It turns out that the hermitian metric actually plays no role in most of the proofs. The tangent vectors can usually be taken as footless or as observed from different points. Therefore, many definitions, for instance, those of isometric or minimal embeddings and of the gauss equation, may be restated in the terms of the product. This must be fruitful since the product embodies different (pseudo-)riemannian concepts in a single simple structure. In the spirit of [AGoG], it would be nice to understand what remains from these concepts after arriving at the absolute.

To prevent a possible scepticism of the reader, we have to say that the pseudo-riemannian metrics play a fundamental role in the study of the riemannian classical geometries: basic geometrical objects almost never form riemannian spaces. To illustrate this remark, the beautiful article [GuK] is to be mentioned, where the authors work in an ambient that in fact falls into our settings.

The differential geometry of grassmannians is a rather vast field (see, for instance, the survey [BoN]). We believe that it is reasonable to redemonstrate known facts in the area by using the language of our papers. Of course, we recognize that such a project involves a huge amount of work, but is probably worth the candle: besides giving each fact an appropriate generality, it would provide a better understanding of particular problems in classic geometries.

[^0]
2. Plücker-and-play

We assume that the reader is familiar with the notation from the beginning of [AGoG, Section 2]. Our purpose is to study the m-plücker embedding

$$
E^{m}: \operatorname{Gr}_{\mathbb{K}}(k, V) \rightarrow \mathrm{Gr}_{\mathbb{K}}\left(\binom{k}{m}, \bigwedge^{m} V\right), \quad p \mapsto \bigwedge^{m} p,
$$

where the vector space $\bigwedge^{m} V$ is equipped with the hermitian form given by the rule

$$
\left\langle v_{1} \wedge \cdots \wedge v_{m}, w_{1} \wedge \cdots \wedge w_{m}\right\rangle:=\operatorname{det}\left\langle v_{i}, w_{j}\right\rangle
$$

Let $p \in M$. It is not difficult to see that the differential of the map $M \rightarrow \operatorname{Lin}_{\mathbb{K}}\left(\bigwedge^{m} P, \bigwedge^{m} V\right)$ at p sends the tangent vector $\bar{t} \in \mathrm{~T}_{p} M=\operatorname{Lin}_{\mathbb{K}}(p, V)$ to $E^{m} \bar{t} \in \operatorname{Lin}_{\mathbb{K}}\left(\Lambda^{m} p, \bigwedge^{m} V\right)$ defined by the rule $E^{m} \bar{t}: p_{1} \wedge \cdots \wedge p_{m} \mapsto \sum_{i=1}^{m} p_{1} \wedge \cdots \wedge \bar{t} p_{i} \wedge \cdots \wedge p_{m}$ for all $p_{1}, \ldots, p_{m} \in p$. Therefore, we can describe the differential of E^{m} at p as

$$
\begin{gathered}
E^{m}: \operatorname{Lin}_{\mathbb{K}}(p, V / p) \rightarrow \operatorname{Lin}_{\mathbb{K}}\left(\bigwedge^{m} p, \bigwedge^{m} V / \bigwedge^{m} p\right), \\
E^{m} t: p_{1} \wedge \cdots \wedge p_{m} \mapsto \sum_{i=1}^{m} p_{1} \wedge \cdots \wedge \bar{t} p_{i} \wedge \cdots \wedge p_{m}+\bigwedge^{m} p
\end{gathered}
$$

for all $t: p \rightarrow V / p$ and $p_{1}, \ldots, p_{m} \in p$, where $\bar{t}: p \rightarrow V$ is an arbitrary lift of t.
Given $p \in \mathrm{Gr}_{\mathbb{K}}^{0}(k, V)$, we have the orthogonal decomposition

$$
\begin{equation*}
\bigwedge^{m} V=\bigoplus_{i=0}^{m} \bigwedge^{i} p^{\perp} \wedge \bigwedge^{m-i} p \tag{2.1}
\end{equation*}
$$

In particular, taking $p \in \operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$ and $t \in \mathrm{~T}_{p} \operatorname{Gr}_{\mathbb{K}}^{0}(k, V)=\operatorname{Lin}_{\mathbb{K}}\left(p, p^{\perp}\right)$, we obtain

$$
\begin{equation*}
E^{m} t: p_{1} \wedge \cdots \wedge p_{m} \mapsto \sum_{i=1}^{m} p_{1} \wedge \cdots \wedge t p_{i} \wedge \cdots \wedge p_{m} \tag{2.2}
\end{equation*}
$$

for all $p_{1}, \ldots, p_{m} \in p$. Note that (2.2) makes sense for an arbitrary $t: V \rightarrow V$.
Define the linear map $B\left(t_{1}, t_{2}\right): \bigwedge^{m} V \rightarrow \bigwedge^{m} V$ by the rule

$$
B\left(t_{1}, t_{2}\right)\left(v_{1} \wedge \cdots \wedge v_{m}\right):=\sum_{i \neq j} v_{1} \wedge \cdots \wedge t_{1} v_{i} \wedge \cdots \wedge t_{2} v_{j} \wedge \cdots \wedge v_{m}
$$

for all $v_{1}, \ldots, v_{m} \in V$, where $t_{1}, t_{2}: V \rightarrow V$. (In the above sum, $t_{2} v_{j}$ appears before $t_{1} v_{i}$ if $i>j$.)
2.3. Lemma. Let $p \in \operatorname{Gr}_{\mathbb{K}}(k, V)$ and let $t, t_{1}, t_{2}: V \rightarrow V$. Then

$$
\begin{gathered}
\left\langle E^{m} t\left(p \wedge \cdots \wedge p_{m}\right), q \wedge v_{2} \wedge \cdots \wedge v_{m}\right\rangle=\left\langle p_{1} \wedge \cdots \wedge p_{m}, t^{*} q \wedge v_{2} \wedge \cdots \wedge v_{m}\right\rangle \\
\left\langle B\left(t_{1}, t_{2}\right)\left(p_{1} \wedge \cdots \wedge p_{m}\right), q_{1} \wedge q_{2} \wedge v_{3} \wedge \cdots \wedge v_{m}\right\rangle= \\
=\left\langle p_{1} \wedge \cdots \wedge p_{m}, t_{1}^{*} q_{1} \wedge t_{2}^{*} q_{2} \wedge v_{3} \wedge \cdots \wedge v_{m}\right\rangle+\left\langle p_{1} \wedge \cdots \wedge p_{m}, t_{2}^{*} q_{1} \wedge t_{1}^{*} q_{2} \wedge v_{3} \wedge \cdots \wedge v_{m}\right\rangle
\end{gathered}
$$

for all $q, q_{1}, q_{2} \in p^{\perp}, p_{1}, \ldots, p_{m} \in p$, and $v_{2}, \ldots, v_{m} \in V$.

Proof is based on simple known identities involving determinants (marked with \dagger and left without proof). We have

$$
\begin{aligned}
& \left\langle E^{m} t\left(p_{1} \wedge \cdots \wedge p_{m}\right), q \wedge v_{2} \wedge \cdots \wedge v_{m}\right\rangle=\sum_{i=1}^{m} \operatorname{det}\left(\begin{array}{cccc}
0 & \left\langle p_{1}, v_{2}\right\rangle & \cdots & \left\langle p_{1}, v_{m}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
0 & \left\langle p_{i-1}, v_{2}\right\rangle & \cdots & \left\langle p_{i-1}, v_{m}\right\rangle \\
\left\langle t p_{i}, q\right\rangle & \left\langle t p_{i}, v_{2}\right\rangle & \cdots & \left\langle\left\langle p_{i}, v_{m}\right\rangle\right. \\
0 & \left\langle p_{i+1}, v_{2}\right\rangle & \cdots & \left\langle p_{i+1}, v_{m}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
0 & \left\langle p_{m}, v_{2}\right\rangle & \cdots & \left\langle p_{m}, v_{m}\right\rangle
\end{array}\right) \stackrel{\dagger}{=} \\
& \stackrel{\dagger}{=} \operatorname{det}\left(\begin{array}{cccc}
\left\langle t p_{1}, q\right\rangle & \left\langle p_{1}, v_{2}\right\rangle & \cdots & \left\langle p_{1}, v_{m}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle t p_{m}, q\right\rangle & \left\langle p_{m}, v_{2}\right\rangle & \cdots & \left\langle p_{m}, v_{m}\right\rangle
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
\left\langle p_{1}, t^{*} q\right\rangle & \left\langle p_{1}, v_{2}\right\rangle & \cdots & \left\langle p_{1}, v_{m}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle p_{m}, t^{*} q\right\rangle\left\langle p_{m}, v_{2}\right\rangle & \cdots & \left\langle p_{m}, v_{m}\right\rangle
\end{array}\right)=\left\langle p_{1} \wedge \cdots \wedge p_{m}, t^{*} q \wedge v_{2} \wedge \cdots \wedge v_{m}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
& \stackrel{\dagger}{=} \operatorname{det}\left(\begin{array}{ccccc}
\left\langle t_{1} p_{1}, q_{1}\right\rangle & \left\langle t_{2} p_{1}, q_{2}\right\rangle & \left\langle p_{1}, v_{3}\right\rangle & \cdots & \left\langle p_{1}, v_{m}\right\rangle \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left\langle t_{1} p_{m}, q_{1}\right\rangle & \left\langle t_{2} p_{m}, q_{2}\right\rangle & \left\langle p_{m}, v_{3}\right\rangle & \cdots & \left\langle p_{m}, v_{m}\right\rangle
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccccc}
\left\langle t_{2} p_{1}, q_{1}\right\rangle & \left\langle t_{1} p_{1}, q_{2}\right\rangle & \left\langle p_{1}, v_{3}\right\rangle & \cdots & \left\langle p_{1}, v_{m}\right\rangle \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left\langle t_{2} p_{m}, q_{1}\right\rangle & \left\langle t_{1} p_{m}, q_{2}\right\rangle & \left\langle p_{m}, v_{3}\right\rangle & \cdots & \left\langle p_{m}, v_{m}\right\rangle
\end{array}\right)= \\
& =\operatorname{det}\left(\begin{array}{ccccc}
\left\langle p_{1}, t_{1}^{*} q_{1}\right\rangle & \left\langle p_{1}, t_{2}^{*} q_{2}\right\rangle & \left\langle p_{1}, v_{3}\right\rangle & \cdots & \left\langle p_{1}, v_{m}\right\rangle \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left\langle p_{m}, t_{1}^{*} q_{1}\right\rangle & \left\langle p_{m}, t_{2}^{*} q_{2}\right\rangle & \left\langle p_{m}, v_{3}\right\rangle & \cdots & \left\langle p_{m}, v_{m}\right\rangle
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccccc}
\left\langle p_{1}, t_{2}^{*} q_{1}\right\rangle & \left\langle p_{1}, t_{1}^{*} q_{2}\right\rangle & \left\langle p_{1}, v_{3}\right\rangle & \cdots & \left\langle p_{1}, v_{m}\right\rangle \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left\langle p_{m}, t_{2}^{*} q_{1}\right\rangle & \left\langle p_{m}, t_{1}^{*} q_{2}\right\rangle & \left\langle p_{m}, v_{3}\right\rangle & \cdots & \left\langle p_{m}, v_{m}\right\rangle
\end{array}\right)= \\
& =\left\langle p_{1} \wedge \cdots \wedge p_{m}, t_{1}^{*} q_{1} \wedge t_{2}^{*} q_{2} \wedge v_{3} \wedge \cdots \wedge v_{m}\right\rangle+\left\langle p_{1} \wedge \cdots \wedge p_{m}, t_{2}^{*} q_{1} \wedge t_{1}^{*} q_{2} \wedge v_{3} \wedge \cdots \wedge v_{m}\right\rangle
\end{aligned}
$$

Let $t \in \operatorname{Lin}_{\mathbb{K}}\left(p, p^{\perp}\right) \subset \operatorname{Lin}_{\mathbb{K}}(V, V)$. It follows from (2.2) and Lemma 2.3 that the only nonvanishing component of $\left(E^{m} t\right)^{*}$ related to the decomposition (2.1) has the form $\left(E^{m} t\right)^{*}: p^{\perp} \wedge \bigwedge^{m-1} p \rightarrow \bigwedge^{m} p$,

$$
\begin{equation*}
\left(E^{m} t\right)^{*}: q \wedge p_{2} \wedge \cdots \wedge p_{m} \mapsto t^{*} q \wedge p_{2} \wedge \cdots \wedge p_{m} \tag{2.4}
\end{equation*}
$$

where $q \in p^{\perp}$ and $p_{2}, \ldots, p_{m} \in p$. In other words, $\left(E^{m} t\right)^{*}=E^{m} t^{*}$. Similar arguments are applicable to $B\left(t_{1}, t_{2}\right)$ with $t_{1}, t_{2} \in \operatorname{Lin}_{\mathbb{K}}\left(p, p^{\perp}\right) \subset \operatorname{Lin}_{\mathbb{K}}(V, V)$.
2.5. Proposition (compare to [BoN, Assertions 1-2]). The m-plücker embedding provides an hermitian (hence, pseudo-riemannian) embedding $E^{m}: \operatorname{Gr}_{\mathbb{K}}^{0}(k, V) \rightarrow \operatorname{Gr}_{\mathbb{K}}^{0}\left(\binom{k}{m}, \bigwedge^{m} V\right)$, assuming the metric on $\operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$ reescaled by the factor $\binom{k-1}{m-1}$.

Proof. Let $p \in \mathrm{Gr}_{\mathbb{K}}^{0}(k, V)$ and let $t_{1}, t_{2}: p \rightarrow p^{\perp}$ be tangent vectors at p. By (2.2) and (2.4),

$$
\left(E^{m} t_{1}\right)^{*} E^{m} t_{2}: p_{1} \wedge \cdots \wedge p_{m} \mapsto \sum_{i=1}^{m} p_{1} \wedge \cdots \wedge t_{1}^{*} t_{2} p_{i} \wedge \cdots \wedge p_{m}
$$

for all $p_{1}, \ldots, p_{m} \in p$. As is easy to see, $\operatorname{tr}\left(E^{m} \varphi\right)=\binom{k-1}{m-1} \operatorname{tr} \varphi$ for every linear map $\varphi: p \rightarrow p$ and the $\operatorname{map} E^{m} \varphi: \bigwedge^{m} p \rightarrow \bigwedge^{m} p$ defined as in (2.2). Hence,

$$
\left\langle E^{m} t_{1}, E^{m} t_{2}\right\rangle=\operatorname{tr}\left(\left(E^{m} t_{1}\right)^{*} E^{m} t_{2}\right)=\operatorname{tr}\left(E^{m}\left(t_{1}^{*} t_{2}\right)\right)=\binom{k-1}{m-1} \operatorname{tr}\left(t_{1}^{*} t_{2}\right)=\binom{k-1}{m-1}\left\langle t_{1}, t_{2}\right\rangle
$$

Given $p \in \operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$, denote by $\pi^{\prime}[p]$ and $\pi[p]$ the orthogonal projectors corresponding to the decomposition $V=p \oplus p^{\perp}$. For $t \in \operatorname{Lin}_{\mathbb{K}}(V, V)$, define the tangent vector $t_{p}:=\pi[p] t \pi^{\prime}[p]$ at p.

Let $U \subset M$ be a saturated and nondegenerate open set. This means that $U \mathrm{GL}_{\mathbb{K}} P=U$ and $\pi U \subset$ $\operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$, where $\pi: M \rightarrow \operatorname{Gr}_{\mathbb{K}}(k, V)$ stands for the quotient map. A smooth map $X: U \rightarrow \operatorname{Lin}_{\mathbb{K}}(V, V)$ is said to be a lifted field over U if $X(p)_{p}=X(p)$ and $X(p g)=X(p)$ for all $p \in U$ and $g \in \mathrm{GL}_{\mathbb{K}} P$. In other words, π maps X onto a correctly defined smooth tangent field over the open $\pi U \subset \operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$.

For $t \in \operatorname{Lin}_{\mathbb{K}}(V, V)$, define

$$
\nabla_{t} X(p):=\left(\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} X((1+\varepsilon t) p)\right)_{p}
$$

Since $\pi^{\prime}[p g]=\pi^{\prime}[p]$ and $\pi[p g]=\pi[p]$ for all $p \in U$ and $g \in \mathrm{GL}_{\mathbb{K}} P$, the field $p \mapsto \nabla_{Y(p)} X$ is lifted for arbitrary lifted fields X and Y over U. Obviously, ∇ enjoys the properties of an affine connection; we assume $\operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$ equipped with this intrinsic connection.
2.6. Proposition. The connection induced by the m-plücker embedding coincides with the intrinsic one and the map

$$
B\left(t_{1}, t_{2}\right): \mathrm{T}_{p} \operatorname{Gr}_{\mathbb{K}}^{0}(k, V) \times \mathrm{T}_{p} \operatorname{Gr}_{\mathbb{K}}^{0}(k, V) \rightarrow\left(E^{m} \mathrm{~T}_{p} \operatorname{Gr}_{\mathbb{K}}^{0}(k, V)\right)^{\perp}
$$

is the second fundamental form of the embedding.
Proof. Let $p \in \operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$ and let $t \in \operatorname{Lin}_{\mathbb{K}}\left(p, p^{\perp}\right) \subset \operatorname{Lin}_{\mathbb{K}}(V, V)$. First, we need to establish some auxiliary formulae.

Denote $g(\varepsilon):=1+\varepsilon t$. Since $g^{-1}(\varepsilon) g(\varepsilon)=1$ for small $\varepsilon,\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} g(\varepsilon)=t$ and $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left(g^{-1}(\varepsilon)\right)^{*}=-t^{*}$. The projectors

$$
\pi^{\prime}(\varepsilon):=\pi^{\prime}\left[\bigwedge^{m} g(\varepsilon) p\right], \quad \pi(\varepsilon):=\pi\left[\bigwedge^{m} g(\varepsilon) p\right]
$$

satisfy

$$
\begin{aligned}
\pi^{\prime}(\varepsilon)\left(g(\varepsilon) p_{1}\right. & \left.\wedge \cdots \wedge g(\varepsilon) p_{m}\right)
\end{aligned}=g(\varepsilon) p_{1} \wedge \cdots \wedge g(\varepsilon) p_{m}, \quad \begin{aligned}
& \\
& \pi(\varepsilon)\left(\left(g^{-1}(\varepsilon)\right)^{*} q \wedge g(\varepsilon) p_{2} \wedge \cdots \wedge g(\varepsilon) p_{m}\right)
\end{aligned}=\left(g^{-1}(\varepsilon)\right)^{*} q \wedge g(\varepsilon) p_{2} \wedge \cdots \wedge g(\varepsilon) p_{m} .
$$

for all $q \in p^{\perp}$ and $p_{1}, \ldots, p_{m} \in p$ because $\left(g^{-1}(\varepsilon)\right)^{*} q \in(g(\varepsilon) p)^{\perp}$. Taking derivatives, we obtain

$$
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \pi^{\prime}(\varepsilon)\left(p_{1} \wedge \cdots \wedge p_{m}\right)+\pi^{\prime}\left[\wedge^{m} p\right] \sum_{i=1}^{m} p_{1} \wedge \cdots \wedge t p_{i} \wedge \cdots \wedge p_{m}=\sum_{i=1}^{m} p_{1} \wedge \cdots \wedge t p_{i} \wedge \cdots \wedge p_{m}
$$

and

$$
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \pi(\varepsilon)\left(q \wedge p_{2} \wedge \cdots \wedge p_{m}\right)+\left.\pi\left[\bigwedge^{m} p\right] \frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left(\left(g^{-1}(\varepsilon)\right)^{*} q \wedge g(\varepsilon) p_{2} \wedge \cdots \wedge g(\varepsilon) p_{m}\right)=
$$

$$
=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left(\left(g^{-1}(\varepsilon)\right)^{*} q \wedge g(\varepsilon) p_{2} \wedge \cdots \wedge g(\varepsilon) p_{m}\right)
$$

From $t^{*} q \in p$ and from

$$
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left(\left(g^{-1}(\varepsilon)\right)^{*} q \wedge g(\varepsilon) p_{2} \wedge \cdots \wedge g(\varepsilon) p_{m}\right)=-t^{*} q \wedge p_{2} \wedge \cdots \wedge p_{m}+\sum_{i=2}^{m} q \wedge p_{2} \wedge \cdots \wedge t p_{i} \wedge \cdots \wedge p_{m}
$$

we conclude that

$$
\begin{equation*}
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \pi^{\prime}(\varepsilon)\left(p_{1} \wedge \cdots \wedge p_{m}\right)=\sum_{i=1}^{m} p_{1} \wedge \cdots \wedge t p_{i} \wedge \cdots \wedge p_{m} \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \pi(\varepsilon)\left(q \wedge p_{2} \wedge \cdots \wedge p_{m}\right)=-t^{*} q \wedge p_{2} \wedge \cdots \wedge p_{m} \tag{2.8}
\end{equation*}
$$

Let X be a lifted field over a neighbourhood of p. Denote $X(\varepsilon):=X(g(\varepsilon) p)$ and $s:=X(0)=X(p)$. Define

$$
E(\varepsilon): \bigwedge^{m} V \rightarrow \bigwedge^{m} V, \quad v_{1} \wedge \cdots \wedge v_{m} \mapsto \sum_{i=1}^{m} v_{1} \wedge \cdots \wedge X(\varepsilon) v_{i} \wedge \cdots \wedge v_{m}
$$

Clearly, $E^{m} X(\varepsilon)=\pi(\varepsilon) E(\varepsilon) \pi^{\prime}(\varepsilon)$. We conclude from (2.7), (2.8), and st $=0$ that

$$
\begin{gathered}
\nabla_{E^{m} t} E^{m} X\left(p_{1} \wedge \cdots \wedge p_{m}\right)=\left(\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \pi(\varepsilon) E(\varepsilon) \pi^{\prime}(\varepsilon)\right)_{\wedge^{m} p} p_{1} \wedge \cdots \wedge p_{m}= \\
=\pi(0)\left(\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \pi(\varepsilon) E(0)+\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} E(\varepsilon)+\left.E(0) \frac{d}{d \varepsilon}\right|_{\varepsilon=0} \pi^{\prime}(\varepsilon)\right) p_{1} \wedge \cdots \wedge p_{m}= \\
=\pi(0)\left(-\sum_{i=1}^{m} p_{1} \wedge \cdots \wedge t^{*} s p_{i} \wedge \cdots \wedge p_{m}+\left.\sum_{i=1}^{m} p_{1} \wedge \cdots \wedge \frac{d}{d \varepsilon}\right|_{\varepsilon=0} X(\varepsilon) p_{i} \wedge \cdots \wedge p_{m}+\right. \\
\left.+\sum_{i \neq j} p_{1} \wedge \cdots \wedge s p_{i} \wedge \cdots \wedge t p_{j} \wedge \cdots \wedge p_{m}\right)=\left.\sum_{i=1}^{m} p_{1} \wedge \cdots \wedge \pi[p] \frac{d}{d \varepsilon}\right|_{\varepsilon=0} X(\varepsilon) p_{i} \wedge \cdots \wedge p_{m}+B(s, t) p_{1} \wedge \cdots \wedge p_{m}
\end{gathered}
$$

(in the terms of the connection in $\left.\operatorname{Gr}_{\mathbb{K}}^{0}\left(\binom{k}{m}, \bigwedge^{m} V\right)\right)$. In other words,

$$
\nabla_{E^{m} t} E^{m} X=E^{m} \nabla_{t} X+B(X(p), t)
$$

The first term is tangent to the image of the m-plücker embedding and the second one is orthogonal to it
2.9. Corollary. The intrinsic connection is hermitian (pseudo-riemannian).

Proof. Taking $m=k$, the fact follows from Propositions 2.5, 2.6, and [AGr, Proposition 4.3]
2.10. Corollary. Let $p \in \mathrm{Gr}_{\mathbb{K}}^{0}(k, V)$ and let $t, t_{1}, t_{2}: p \rightarrow p^{\perp}$ be tangent vectors to $\mathrm{Gr}_{\mathbb{K}}^{0}(k, V)$ at p. The curvature tensor is given by

$$
R\left(t_{1}, t_{2}\right) t=t t_{1}^{*} t_{2}+t_{2} t_{1}^{*} t-t t_{2}^{*} t_{1}-t_{1} t_{2}^{*} t .
$$

Proof. Since the above formula provides the curvature tensor in the projective case [AGr, Subsection 4.4], it suffices to show that the curvature tensors in $\operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$ and in $\operatorname{Gr}_{\mathbb{K}}^{0}\left(\binom{k}{m}, \Lambda^{m} V\right)$ given by this formula satisfy the gauss equation (see [KoN, Proposition VII.4.1]) related to the embedding E^{m}.

Let $t, t_{1}, t_{2}: p \rightarrow p^{\perp}$ be tangent vectors. Then, by Lemma 2.3,

$$
\begin{aligned}
& E^{m} t\left(E^{m} t_{1}\right)^{*} E^{m} t_{2}\left(p_{1} \wedge \cdots \wedge p_{m}\right)=E^{m} t \sum_{i=1}^{m} p_{1} \wedge \cdots \wedge t_{1}^{*} t_{2} p_{i} \wedge \cdots \wedge p_{m}= \\
= & \sum_{i \neq j} p_{1} \wedge \cdots \wedge t p_{i} \wedge \cdots \wedge t_{1}^{*} t_{2} p_{j} \wedge \cdots \wedge p_{m}+\sum_{i=1}^{m} p_{1} \wedge \cdots \wedge t t_{1}^{*} t_{2} p_{i} \wedge \cdots \wedge p_{m}
\end{aligned}
$$

for all $p_{1}, \ldots, p_{m} \in p$. The last sum is exactly $E^{m}\left(t t_{1}^{*} t_{2}\right)\left(p_{1} \wedge \cdots \wedge p_{m}\right)$. Hence,

$$
\left(E^{m} t\left(E^{m} t_{1}\right)^{*} E^{m} t_{2}-E^{m}\left(t t_{1}^{*} t_{2}\right)\right)\left(p_{1} \wedge \cdots \wedge p_{m}\right)=\sum_{i \neq j} p_{1} \wedge \cdots \wedge t p_{i} \wedge \cdots \wedge t_{1}^{*} t_{2} p_{j} \wedge \cdots \wedge p_{m}=B\left(t, t_{1}^{*} t_{2}\right)
$$

Therefore, the gauss equation takes the form ${ }^{2}$

$$
\left\langle E^{m} w, B\left(t, t_{1}^{*} t_{2}\right)+B\left(t_{2}, t_{1}^{*} t\right)-B\left(t, t_{2}^{*} t_{1}\right)-B\left(t_{1}, t_{2}^{*} t\right)\right\rangle=\left\langle B\left(t_{1}, w\right), B\left(t_{2}, t\right)\right\rangle-\left\langle B\left(t_{2}, w\right), B\left(t_{1}, t\right)\right\rangle
$$

where $w: p \rightarrow p^{\perp}$. So, it suffices to show that

$$
\begin{aligned}
& \left(E^{m} w\right)^{*} B\left(t, t_{1}^{*} t_{2}\right)+\left(E^{m} w\right)^{*} B\left(t_{2}, t_{1}^{*} t\right)=\left(B\left(t_{1}, w\right)\right)^{*} B\left(t_{2}, t\right), \\
& \left(E^{m} w\right)^{*} B\left(t, t_{2}^{*} t_{1}\right)+\left(E^{m} w\right)^{*} B\left(t_{1}, t_{2}^{*} t\right)=\left(B\left(t_{2}, w\right)\right)^{*} B\left(t_{1}, t\right) .
\end{aligned}
$$

We prove only the first identity. By Lemma 2.3,

$$
\begin{aligned}
& \left(E^{m} w\right)^{*} B\left(t, t_{1}^{*} t_{2}\right)\left(p_{1} \wedge \cdots \wedge p_{m}\right)=\sum_{i \neq j} p_{1} \wedge \cdots \wedge w^{*} t p_{i} \wedge \cdots \wedge t_{1}^{*} t_{2} p_{j} \wedge \cdots \wedge p_{m} \\
& \left(E^{m} w\right)^{*} B\left(t_{2}, t_{1}^{*} t\right)\left(p_{1} \wedge \cdots \wedge p_{m}\right)=\sum_{i \neq j} p_{1} \wedge \cdots \wedge w^{*} t_{2} p_{i} \wedge \cdots \wedge t_{1}^{*} t p_{j} \wedge \cdots \wedge p_{m}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(B\left(t_{1}, w\right)\right)^{*} B\left(t_{2}, t\right)\left(p_{1} \wedge \cdots \wedge p_{m}\right)=\left(B\left(t_{1}, w\right)\right)^{*} \sum_{i \neq j} p_{1} \wedge \cdots \wedge t_{2} p_{i} \wedge \cdots \wedge t p_{j} \wedge \cdots \wedge p_{m}= \\
= & \sum_{i \neq j} p_{1} \wedge \cdots \wedge t_{1}^{*} t_{2} p_{i} \wedge \cdots \wedge w^{*} t p_{j} \wedge \cdots \wedge p_{m}+\sum_{i \neq j} p_{1} \wedge \cdots \wedge w^{*} t_{2} p_{i} \wedge \cdots \wedge t_{1}^{*} t p_{j} \wedge \cdots \wedge p_{m}
\end{aligned}
$$

2.11. Corollary (compare to [BoN, Assertions 1-2]). The m-plücker embedding is minimal.

Proof. Let e_{1}, \ldots, e_{k} and f_{1}, \ldots, f_{n-k} be orthonormal bases in p and p^{\perp}. We define $t_{i j} e_{j}:=f_{i}$ and $t_{i j} e_{m}:=0$ if $m \neq j$, getting in this way an orthonormal basis in the tangent space at p. As is easy to see, $B\left(t_{i j}, t_{i j}\right)=0$. It remains to apply [dCa, Definition 2.10]

[^1]2.12. Corollary (compare to [BoN, pp. 53 and 63$]) . \mathrm{Gr}_{\mathbb{K}}^{0}(k, V)$ is einstein. The corresponding constant is $n-2$ in the case of $\mathbb{K}=\mathbb{R}$ and $2 n$ in the case of $\mathbb{K}=\mathbb{C}$, where $n=\operatorname{dim}_{\mathbb{K}} V$.

Proof. We use the following elementary fact: Let $T: V \rightarrow V$ be an \mathbb{R}-linear map. Then $\operatorname{tr}_{\mathbb{R}} T=$ $2 \operatorname{Re} \operatorname{tr}_{\mathbb{C}} T$ if T is \mathbb{C}-linear and $\operatorname{tr}_{\mathbb{R}} T=0$ if T is \mathbb{C}-antilinear.

The ricci tensor is given by ricci $\left(t_{1}, t\right):=\operatorname{tr}\left(t_{2} \mapsto R\left(t_{1}, t_{2}\right) t\right)$, where $t, t_{1}, t_{2}: p \rightarrow p^{\perp}$. Considering each term of the curvature tensor in Corollary 2.10, it is easy to see that

$$
\begin{gathered}
\operatorname{tr}\left(t_{2} \mapsto t t_{1}^{*} t_{2}\right)=k \operatorname{tr}\left(t t_{1}^{*}\right)=k \operatorname{tr}\left(t^{*} t_{1}\right), \quad \operatorname{tr}\left(t_{2} \mapsto t_{2} t_{1}^{*} t\right)=(n-k) \operatorname{tr}\left(t_{1}^{*} t\right)=(n-k) \operatorname{tr}\left(t^{*} t_{1}\right) \\
\operatorname{tr}\left(t_{2} \mapsto t t_{2}^{*} t_{1}\right)=\operatorname{tr}\left(t_{2} \mapsto t_{1} t_{2}^{*} t\right)=\operatorname{tr}\left(t^{*} t_{1}\right)
\end{gathered}
$$

in the case of $\mathbb{K}=\mathbb{R}$ and that

$$
\begin{gathered}
\operatorname{tr}_{\mathbb{C}}\left(t_{2} \mapsto t t_{1}^{*} t_{2}\right)=k \operatorname{tr}\left(t t_{1}^{*}\right), \quad \operatorname{tr}_{\mathbb{C}}\left(t_{2} \mapsto t_{2} t_{1}^{*} t\right)=(n-k) \operatorname{tr}\left(t_{1}^{*} t\right), \\
\operatorname{tr}_{\mathbb{R}}\left(t_{2} \mapsto t t_{1}^{*} t_{2}\right)=2 k \operatorname{Retr}\left(t^{*} t_{1}\right), \quad \operatorname{tr}_{\mathbb{R}}\left(t_{2} \mapsto t_{2} t_{1}^{*} t\right)=2(n-k) \operatorname{Re} \operatorname{tr}\left(t^{*} t_{1}\right), \\
\operatorname{tr}_{\mathbb{R}}\left(t_{2} \mapsto t t_{2}^{*} t_{1}\right)=\operatorname{tr}_{\mathbb{R}}\left(t_{2} \mapsto t_{1} t_{2}^{*} t\right)=0
\end{gathered}
$$

in the case of $\mathbb{K}=\mathbb{C}$
2.13. Generic geodesics. Let $p \in \operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$ and let $t \in \operatorname{Lin}_{\mathbb{K}}\left(p, p^{\perp}\right) \subset \operatorname{Lin}_{\mathbb{K}}(V, V)$ be a tangent vector at p. Assume that $t^{*} t: p \rightarrow p$ has no isotropic eigenvectors. We are going to describe the geodesic determined by t.

Since the map $t^{*} t: p \rightarrow p$ is self-adjoint and has no isotropic eigenvectors, there exists an orthonormal basis p_{1}, \ldots, p_{k} in p formed by eigenvectors of $t^{*} t$ and the corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ are real. Put $W_{j}:=\mathbb{R} p_{j}+\mathbb{R} t p_{j}$. The W_{j} 's are pairwise orthogonal because the $t p_{j}$'s are pairwise orthogonal. Being restricted to W_{j}, the form is real and does not vanish. So, W_{j} provides a geodesic $\mathrm{G}_{j} \subset \mathbb{P}_{\mathbb{K}} V$ if $t p_{j} \neq 0$. By [AGr, Lemma 2.1], G_{j} is respectively spherical, hyperbolic, or euclidean exactly when $\lambda_{j}>0, \lambda_{j}<0$, or $\lambda_{j}=0$. (If $t p_{j}=0, \mathrm{G}_{j}$ is a single point in $\mathbb{P}_{\mathbb{K}} V$.)

Let t_{j} be the tangent vector to G_{j} at p_{j} given by $t_{j}: p_{j} \mapsto t p_{j}$. Every geodesic G_{j} admits a local uniformly parameterized lift $p_{j}(s)$ to V with respect to t_{j}. This means that the tangent vector $p_{j}(s) \mapsto$ $\dot{p}_{j}(s)$ at $p_{j}(s)$ is the parallel displacement of t_{j} from $p_{j}(0)=p_{j}$ to $p_{j}(s)$ along G_{j} (in particular, $\dot{p}_{j}(s) \in$ $\left.p_{j}(s)^{\perp} \cap W_{j}\right)$ and that $\left\langle p_{j}(s), p_{j}(s)\right\rangle$ is constant in s. If G_{j} is not euclidean, such a parameterization is readily obtainable from those in [AGr, Subsection 3.2]. In the euclidean case, $p_{j}(s):=p_{j}+s t p_{j}$ is the desired parameterization [AGr, Corollary 5.9]. Note that $\ddot{p}_{j}(s) \in \mathbb{R} p_{j}(s)$. This is obvious in the euclidean case and is otherwise implied by the fact that $\left\langle\dot{p}_{j}(s), \dot{p}_{j}(s)\right\rangle$ is constant and $\ddot{p}_{j}(s) \in W_{j}$.

As in [AGoG, Section 2], we fix a k-dimensional \mathbb{K}-vector space P. Let $b_{1}, \ldots, b_{k} \in P$ be a basis and let $p(s): P \rightarrow V$ be the linear map given by the rule $p(s): b_{j} \mapsto p_{j}(s)$.
2.13.1. Lemma. The curve $\mathrm{G}: s \mapsto p(s)$ is a geodesic in $\operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$ and t is its tangent vector at p.

Proof. The tangent vector to G at $p(s)$ is given by the linear map $t(s) \in \operatorname{Lin}_{\mathbb{K}}\left(p(s), p(s)^{\perp}\right) \subset$ $\operatorname{Lin}_{\mathbb{K}}(V, V), t(s): p_{j}(s) \mapsto \dot{p}_{j}(s)$, because $\dot{p}_{j}(s) \in p(s)^{\perp}$ and the W_{j} 's are pairwise orthogonal.

In the definition of ∇, taking the derivative of $X(c(\varepsilon))$ at $\varepsilon=0$, where $c(\varepsilon):=(1+\varepsilon t) p$, amounts to taking the derivative of $X(p(s))$ at s because $\dot{c}(0)=\dot{p}(s)$. Therefore, $\nabla_{\dot{\mathrm{G}}(s)} \dot{\mathrm{G}}(s)=\pi[p(s)] \dot{t}(s) \pi^{\prime}[p(s)]$. Taking the derivative of $t(s) p_{j}(s)=\dot{p}_{j}(s)$, we obtain $\dot{t}(s) p_{j}(s)+t(s) \dot{p}_{j}(s)=\ddot{p}_{j}(s)$. Since $t(s)\left(p(s)^{\perp}\right)=0$ and $\dot{p}_{j}(s) \in p(s)^{\perp}$, we have $\pi[p(s)] \dot{t}(s) p_{j}(s)=\pi[p(s)] \ddot{p}_{j}(s)=0$ due to $\ddot{p}_{j}(s) \in \mathbb{R} p_{j}(s)$

We call G_{j} a spine of G . We may interpret a point $\mathrm{G}(s)$ as a linear subspace in $\mathbb{P}_{\mathbb{K}} V$ spanned by the $p_{j}(s)^{\prime} s$. Moving along the geodesic G in $\operatorname{Gr}_{\mathbb{K}}^{0}(k, V)$ is the same as moving along the spines with velocities given by ${ }^{3} \sqrt{\left|\lambda_{j}\right|}$. The equality $t p_{j}=0$ says that G_{j} is a point fixed during the movement.

[^2]A generic tangent vector t provides a choice of a basis formed by the eigenvectors of $t^{*} t$. In other words, if $2 k \leq n$, the intention of moving in some generic direction automatically chooses a certain reference frame.
2.14. Comments and questions. Many of the above facts admit a form not involving the hermitian metric.

- The first formula displayed in the proof of Proposition 2.5 says that $\left(E^{m} t_{1}\right)^{*} E^{m} t_{2}=E^{m}\left(t_{1}^{*} t_{2}\right)$.
- The gauss equation in Corollary 2.10 follows from the much simpler one $\left(E^{m} w\right)^{*} B\left(t, t_{1}^{*} t_{2}\right)+$ $\left(E^{m} w\right)^{*} B\left(t_{2}, t_{1}^{*} t\right)=\left(B\left(t_{1}, w\right)\right)^{*} B\left(t_{2}, t\right)$.
- The proof of minimality actually does not require the self-adjoint operator S_{η} from [dCa, Definition 2.10].
- What is the geometrical meaning of the other two symmetrizations of the trilinear product $t t_{2}^{*} t_{1}$?
- What about other functors in place of Λ^{m} ?

3. Convexity of some real hyperbolic polyhedra

This section illustrates how grassmannians appear in a typical situation that does not seem to involve them at the first glance. Here we deal with the real hyperbolic geometry $\mathbb{H}_{\mathbb{R}}^{4}$, that is, with $\mathbb{P}_{\mathbb{R}} V$, where V is an \mathbb{R}-vector space and the form has signature ++++- . (The calculus in what follows may seem a little bit concise. On the other hand, it requires no specific knowledge in the area.)

A known problem on real hyperbolic disc bundles is to find the greatest value of $|e / \chi|$, where e stands for the Euler number of the bundle and χ, for the Euler characteristic of the base closed surface [GLT]. By now, the best value $|e / \chi|=1 / 2[\mathrm{Kui}]$, [Luo] is obtained via constructing a fundamental polyhedron without faces of codimension >2 that is strongly convex in the sense that its disjoint faces lie in disjoint totally geodesic hypersurfaces. It is worthwhile trying polyhedra that are convex in the usual sense.

Such a polyhedron can be described in the terms of a finite number of positive points $p_{1}, \ldots, p_{n} \in \mathbb{P}_{\mathbb{R}} V$. The face F_{i} is a segment in the hyperplane $H_{i}:=p_{i}^{\perp} \cap \overline{\mathrm{B}} V$, i.e., the part of H_{i} between the disjoint planes E_{i-1} and E_{i}, where $E_{i}:=F_{i} \cap F_{i+1}=\operatorname{Span}\left(p_{i}, p_{i+1}\right)^{\perp} \cap \overline{\mathrm{B}} V$ for all i (the indices are modulo n). In the terms of the gramian matrix $U\left(p_{1}, \ldots, p_{n}\right):=\left[u_{i j}\right], u_{i j}:=\left\langle p_{i}, p_{j}\right\rangle$, assuming that $u_{i i}=1$, the strong convexity means $\left|u_{i(i+1)}\right|<1<\left|u_{i j}\right|$ for all $j \neq i-1, i, i+1$. In what follows, we obtain a criterion of the usual convexity.

It is convenient to use the following notation:

$$
\left\langle i_{1} i_{2}, j_{1} j_{2}\right\rangle:=\operatorname{det}\left(\begin{array}{ll}
u_{i_{1} j_{1}} & u_{i_{1} j_{2}} \tag{3.1}\\
u_{i_{2} j_{1}} & u_{i_{2} j_{2}}
\end{array}\right), \quad\left\langle i_{1} i_{2} i_{3}, j_{1} j_{2} j_{3}\right\rangle:=\operatorname{det}\left(\begin{array}{lll}
u_{i_{1} j_{1}} & u_{i_{1} j_{2}} & u_{i_{1} j_{3}} \\
u_{i_{2} j_{1}} & u_{i_{2} j_{2}} & u_{i_{2} j_{3}} \\
u_{i_{3} j_{1}} & u_{i_{3} j_{2}} & u_{i_{3} j_{3}}
\end{array}\right) .
$$

The fact that $H_{i} \cap H_{i+1} \neq \varnothing$ can be written as $\langle i(i+1), i(i+1)\rangle>0$. The fact that E_{i-1} and E_{i} are disjoint is equivalent to $\operatorname{Span}\left(p_{i-1}, p_{i}, p_{i+1}\right)^{\perp} \cap \overline{\mathrm{B}} V=\varnothing$, i.e., to $\langle(i-1) i(i+1),(i-1) i(i+1)\rangle<0$ by the Sylvester criterion.
3.2. Lemma. The segment F_{i} can be described as

$$
F_{i}=\left\{x \in H_{i} \mid\langle(i-1) i, i(i+1)\rangle\left\langle x, p_{i-1}\right\rangle\left\langle p_{i+1}, x\right\rangle \geq 0\right\}
$$

Proof. During the proof, we deal only with the points p_{i-1}, p_{i}, p_{i+1}. We change these points keeping E_{i-1}, F_{i}, E_{i} the same. The expression $\langle(i-1) i, i(i+1)\rangle$ does not change if we substitute p_{i-1} and p_{i+1} respectively by $p_{i-1}+r_{1} p_{i}$ and $p_{i+1}+r_{2} p_{i}, r_{1}, r_{2} \in \mathbb{R}$. Also, $\langle(i-1) i, i(i+1)\rangle\left\langle x, p_{i-1}\right\rangle\left\langle p_{i+1}, x\right\rangle$ does not change if we alter the sign of p_{i-1}. So, we can assume that $u_{(i-1) i}=u_{i(i+1)}=0, u_{(i-1)(i-1)}=$
$u_{i i}=u_{(i+1)(i+1)}=1$, and $u_{(i-1)(i+1)} \geq 0$. It follows from $\langle(i-1) i(i+1),(i-1) i(i+1)\rangle<0$ that $u_{(i-1)(i+1)}>1$. The closed 3-ball H_{i} is fibred over the hyperbolic geodesic $\mathrm{G}_{i}:=\operatorname{Span}\left(p_{i-1}, p_{i+1}\right)$ by the closed discs $S_{p}:=\operatorname{Span}\left(p, p_{i}\right)^{\perp} \cap \overline{\mathrm{B}} V$ called slices, $p \in \mathrm{G}_{i} \backslash \overline{\mathrm{~B}} V$. The end slices E_{i-1} and E_{i} of F_{i} correspond to $p=p_{i-1}$ and $p=p_{i+1}$. Since $u_{(i-1)(i+1)}>0$, the segment F_{i} is formed by the slices S_{p} with $p=(1-t) p_{i-1}+t p_{i+1}, t \in[0,1]$. Note that $\operatorname{Span}\left(p_{i-1}, p_{i+1}\right)=\operatorname{Span}\left({ }^{p_{i+1}} p_{i-1},{ }^{p_{i-1}} p_{i+1}\right)$ because $u_{(i-1)(i+1)}>1$.

Let $x \in H_{i}$. Then $x=w-t_{1}{ }^{p_{i+1}} p_{i-1}+t_{2}{ }^{p_{i-1}} p_{i+1}$ for suitable $w \in \operatorname{Span}\left(p_{i-1}, p_{i+1}\right)^{\perp}, t_{1}, t_{2} \in \mathbb{R}$, $t_{1} \geq 0$. We have

$$
\langle(i-1) i, i(i+1)\rangle\left\langle x, p_{i-1}\right\rangle\left\langle p_{i+1}, x\right\rangle=u_{(i-1)(i+1)}\left(u_{(i-1)(i+1)}^{2}-1\right)^{2} t_{1} t_{2}
$$

and $\left\langle t_{2} p_{i-1}+t_{1} p_{i+1}, x\right\rangle=0$. It follows from $x \in \overline{\mathrm{~B}} V$ that $t_{2} p_{i-1}+t_{1} p_{i+1} \notin \overline{\mathrm{~B}} V$ and that $t_{1} \neq 0$ or $t_{2} \neq 0$. So, $x \in S_{t_{2} p_{0}+t_{0} p_{2}}$ and the claim easily follows

In the sequel, we frequently use the above decomposition of H_{i} into slices over the hyperbolic geodesic G_{i}.

The usual convexity is equivalent to the condition $F_{i} \cap H_{j}=\varnothing$ for $j \neq i-1, i, i+1$. We fix i and j and express this condition by considering the following cases:

- $\langle i j, i j\rangle<0$. This implies $H_{i} \cap H_{j}=\varnothing$, hence, $F_{i} \cap H_{j}=\varnothing$.
- $\langle i j, i j\rangle=0$. First, we require $p_{j} \neq p_{i}$ (implied by $F_{i} \cap H_{j}=\varnothing$). Under these conditions, the isotropic point $u_{i i} p_{j}-u_{j i} p_{i}$ is the only point in $\operatorname{Span}\left(p_{i}, p_{j}\right)^{\perp} \cap \overline{\mathrm{B}} V$. By Lemma 3.2, the condition $F_{i} \cap H_{j}=\varnothing$ is equivalent to

$$
\begin{equation*}
\langle i j,(i-1) i\rangle\langle(i-1) i, i(i+1)\rangle\langle i(i+1), i j\rangle>0 \tag{3.3}
\end{equation*}
$$

It obviously implies that $p_{j} \neq p_{i}$.

- $\langle i j, i j\rangle>0$. Define

$$
q_{1}:=\frac{u_{i i} p_{i-1}-u_{(i-1) i} p_{i}}{\sqrt{u_{i i}\langle(i-1) i,(i-1) i\rangle}}, \quad q_{2}:=\frac{u_{i i} p_{i+1}-u_{(i+1) i} p_{i}}{\sqrt{u_{i i}\langle(i+1) i,(i+1) i\rangle}}, \quad q_{3}:=\frac{u_{i i} p_{j}-u_{j i} p_{i}}{\sqrt{u_{i i}\langle i j, i j\rangle}},
$$

and $v_{k l}:=\left\langle q_{k}, q_{l}\right\rangle$. As is easy to see, $q_{k} \in p_{i}^{\perp}$ and $v_{k k}=1$ for all k. The facts that $\operatorname{Span}\left(q_{1}, q_{2}, p_{i}\right)=$ $\operatorname{Span}\left(p_{i-1}, p_{i}, p_{i+1}\right)$ has signature ++- and that p_{i} is positive imply $\left|v_{12}\right|>1$. The slices of F_{i} have the form $S_{q(t)}$, where

$$
q(t):=(1-t) q_{1}+\sigma t q_{2}, \quad t \in[0,1]
$$

and $\sigma:=\frac{v_{12}}{\left|v_{12}\right|}$. The condition $F_{i} \cap H_{j}=\varnothing$ is equivalent to the requirement that $\operatorname{Span}\left(q(t), q_{3}\right)$ has signature +- for all $t \in[0,1]$. It can be written as

$$
f(t):=t^{2}\left(\left(v_{13}-\sigma v_{23}\right)^{2}+2\left|v_{12}\right|-2\right)-2 t\left(v_{13}^{2}-\sigma v_{13} v_{23}+\left|v_{12}\right|-1\right)+v_{13}^{2}-1>0
$$

by Sylvester's criterion.
Writing $f(t)=t^{2} a-2 t b+c$, we have $a>0, f(0)=c=v_{13}^{2}-1$, and $f(1)=v_{23}^{2}-1$. The polynomial $f(t)$ attains its minimum at $t=b / a$. Clearly, $f(b / a)>0$ if and only if $a c>b^{2}$. Hence, the condition $F_{i} \cap H_{j}=\varnothing$ is equivalent to $v_{13}^{2}, v_{23}^{2}>1$ and $0<b<a \Longrightarrow a c>b^{2}$. One readily verifies that

$$
a c-b^{2}=1+2 v_{12} v_{23} v_{31}-v_{12}^{2}-v_{23}^{2}-v_{31}^{2}=\operatorname{det} U\left(q_{1}, q_{2}, q_{3}\right)
$$

and that $0<b<a$ is equivalent to

$$
v_{13}^{2}-1>\sigma\left(v_{13} v_{32}-v_{12}\right), \quad v_{23}^{2}-1>\sigma\left(v_{13} v_{32}-v_{12}\right) .
$$

The inequality $a c>b^{2}$ is impossible because $\operatorname{Span}\left(q_{1}, q_{2}, q_{3}\right)$ contains a negative point belonging to $\mathrm{G}_{i}=\operatorname{Span}\left(q_{1}, q_{2}\right)$. Therefore, $F_{i} \cap H_{j}=\varnothing$ is equivalent to $v_{13}^{2}, v_{23}^{2}>1$ and $v_{13}^{2}-1 \leq \sigma\left(v_{13} v_{32}-v_{12}\right)$ or $v_{23}^{2}-1 \leq \sigma\left(v_{13} v_{32}-v_{12}\right)$. Either of the last two inequalities implies $\sigma\left(v_{13} v_{32}-v_{12}\right)>0$, that is, $\sigma v_{13} v_{32}>\left|v_{12}\right|$, i.e.,

$$
\begin{equation*}
v_{12} v_{23} v_{31}>v_{12}^{2} \tag{3.4}
\end{equation*}
$$

Clearly, (3.4) implies $\sigma\left(v_{13} v_{32}-v_{12}\right)>0$. Assuming that (3.4) is true, we can rewrite the condition $v_{13}^{2}-1 \leq \sigma\left(v_{13} v_{32}-v_{12}\right)$ or $v_{23}^{2}-1 \leq \sigma\left(v_{13} v_{32}-v_{12}\right)$ in the form

$$
\begin{equation*}
\left(v_{13}^{2}-1\right)^{2} \leq\left(v_{13} v_{32}-v_{12}\right)^{2} \quad \text { or } \quad\left(v_{23}^{2}-1\right)^{2} \leq\left(v_{13} v_{32}-v_{12}\right)^{2} . \tag{3.5}
\end{equation*}
$$

In fact, the meaning of the inequalities $v_{13}^{2}, v_{23}^{2}>1$ is that $\operatorname{Span}\left(p_{i-1}, p_{i}, p_{j}\right)$ and $\operatorname{Span}\left(p_{i+1}, p_{i}, p_{j}\right)$ have signature ++- , that is,

$$
\langle(i-1) i j,(i-1) i j\rangle<0, \quad\langle i(i+1) j, i(i+1) j\rangle<0 .
$$

Under these conditions, (3.5) takes the form

$$
\begin{equation*}
\min \left(v_{13}^{2}-1, v_{23}^{2}-1\right) \leq\left|v_{13} v_{32}-v_{12}\right| \tag{3.6}
\end{equation*}
$$

By straightforward calculus, we have

$$
\begin{gathered}
v_{12}=-\frac{\langle(i-1) i, i(i+1)\rangle}{\sqrt{\langle(i-1) i,(i-1) i\rangle\langle i(i+1), i(i+1)\rangle}}, \quad v_{23}=\frac{\langle i(i+1), i j\rangle}{\sqrt{\langle i(i+1), i(i+1)\rangle\langle i j, i j\rangle}}, \\
v_{13}=-\frac{\langle(i-1) i, i j\rangle}{\sqrt{\langle(i-1) i,(i-1) i\rangle\langle i j, i j\rangle}}
\end{gathered}
$$

Hence, (3.4) takes the form

$$
\begin{equation*}
\frac{\langle(i-1) i, i j\rangle\langle i j, i(i+1)\rangle}{\langle(i-1) i, i(i+1)\rangle}>\langle i j, i j\rangle . \tag{3.7}
\end{equation*}
$$

Note that (3.7) is equivalent to (3.3) in the case of $\langle i j, i j\rangle=0$ because $\langle(i-1) i, i(i+1)\rangle=0$ would imply $v_{12}=0$, that is, $\left\langle{ }^{p_{i}} p_{i-1},{ }^{p_{i}} p_{i+1}\right\rangle=0$, contradicting $E_{i-1} \cap E_{i}=\varnothing$.

Since

$$
\begin{aligned}
v_{13} v_{32}-v_{12} & =\frac{\langle(i-1) i, i(i+1)\rangle\langle i j, i j\rangle-\langle(i-1) i, i j\rangle\langle i(i+1), i j\rangle}{\langle i j, i j\rangle \sqrt{\langle(i-1) i,(i-1) i\rangle\langle i(i+1), i(i+1)\rangle}}= \\
& =\frac{u_{i i}\langle(i-1) i j, i(i+1) j\rangle}{\langle i j, i j\rangle \sqrt{\langle(i-1) i,(i-1) i\rangle\langle i(i+1), i(i+1)\rangle}}
\end{aligned}
$$

$$
\begin{aligned}
& v_{13}^{2}-1=\frac{\langle(i-1) i, i j\rangle\langle(i-1) i, i j\rangle-\langle(i-1) i,(i-1) i\rangle\langle i j, i j\rangle}{\langle(i-1) i,(i-1) i\rangle\langle i j, i j\rangle}=-\frac{u_{i i}\langle(i-1) i j,(i-1) i j\rangle}{\langle i j, i j\rangle\langle(i-1) i,(i-1) i\rangle}, \\
& v_{23}^{2}-1=\frac{\langle i(i+1), i j\rangle\langle i(i+1), i j\rangle-\langle i(i+1), i(i+1)\rangle\langle i j, i j\rangle}{\langle i(i+1), i(i+1)\rangle\langle i j, i j\rangle}=-\frac{u_{i i}\langle i(i+1) j, i(i+1) j\rangle}{\langle i j, i j\rangle\langle i(i+1), i(i+1)\rangle},
\end{aligned}
$$

$u_{i i}>0$, and $\langle i j, i j\rangle>0$, (3.6) takes the form

$$
\begin{equation*}
\frac{|\langle(i-1) i j, i(i+1) j\rangle|}{\sqrt{\langle(i-1) i,(i-1) i\rangle\langle i(i+1), i(i+1)\rangle}}+\max \left(\frac{\langle(i-1) i j,(i-1) i j\rangle}{\langle(i-1) i,(i-1) i\rangle}, \frac{\langle i(i+1) j, i(i+1) j\rangle}{\langle i(i+1), i(i+1)\rangle}\right) \geq 0 . \tag{3.8}
\end{equation*}
$$

It follows from $E_{i-1} \subset F_{i}$ and $F_{i} \cap H_{j}=\varnothing$ that $E_{i-1} \cap H_{j}=\varnothing$ for $j \neq i-1, i, i+1$. In other words, $H_{i-1} \cap H_{i} \cap H_{j}=\varnothing$, that is, $\langle(i-1) i j,(i-1) i j\rangle<0$.

Summarizing, we arrive at the
3.9. Criterion of convexity. The polyhedron formed by segments of hyperplanes given by p_{1}, \ldots, p_{n} $\in V$ is convex (hence, simple) if and only if the following conditions written in the terms of (3.1), where $u_{i j}:=\left\langle p_{i}, p_{j}\right\rangle$, hold (the indices are modulo n):

- The inequalities $u_{i i}>0$ are valid for all i.
- The inequalities $\langle(i-1) i,(i-1) i\rangle>0$ and $\langle(i-1) i j,(i-1) i j\rangle<0$ are valid for all $j \neq i-1, i$.
- The inequalities (3.7) are valid for all $j \neq i-1, i, i+1$ such that $\langle i j, i j\rangle \geq 0$.
- The inequalities (3.8) are valid for all $j \neq i-1, i, i+1$ such that $\langle i j, i j\rangle>0$

Note that

$$
\left\langle i_{1} i_{2}, j_{1} j_{2}\right\rangle=\left\langle g_{i_{1} i_{2}}, g_{j_{1} j_{2}}\right\rangle, \quad\left\langle i_{1} i_{2} i_{3}, j_{1} j_{2} j_{3}\right\rangle=\left\langle g_{i_{1} i_{2} i_{3}}, g_{j_{1} j_{2} j_{3}}\right\rangle
$$

where $g_{i_{1} i_{2}}:=p_{i_{1}} \wedge p_{i_{2}}$ and $g_{i_{1} i_{2} i_{3}}:=p_{i_{1}} \wedge p_{i_{2}} \wedge p_{i_{3}}$ represent respectively $\Lambda^{2} \operatorname{Span}\left(p_{i_{1}}, p_{i_{2}}\right) \in \mathbb{P}_{\mathbb{R}} \Lambda^{2} V$ and $\bigwedge^{3} \operatorname{Span}\left(p_{i_{1}}, p_{i_{2}}, p_{i_{3}}\right) \in \mathbb{P}_{\mathbb{R}} \bigwedge^{3} V$. So, Criterion 3.9 deals with the usual projective invariants.

4. References

[AGr] S. Anan'in, Carlos H. Grossi, Coordinate-free Classic Geometries. I. Projective Case, preprint http://arxiv.org/abs/math/0702714
[AGoG] S. Anan'in, Eduardo C. Bento Gonçalves, Carlos H. Grossi, Coordinate-free Classic Geometries. II. Conformal Structure, in preparation
[BoN] A. A. Borisenko, Yu. A. Nikolaevskii, Grassmann manifolds and the Grassmann image of submanifolds, Russian Math. Surveys, No. 46 (1991), 45-94.
[dCa] M. P. do Carmo, Riemannian Geometry, Mathematics: Theory \& Applications, Birkhäuser, Boston, 1992. vi +300 pp.
[GuK] B. Guilfoyle, W. Klingenberg, Proof of the Caratheodory Conjecture by Mean Curvature Flow in the Space of Oriented Affine Lines, preprint http://arxiv.org/abs/0808.0851
[KNo] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Volume II, Interscience Tracts in Pure and Applied Mathematics. Interscience Publishers. John Wiley \& Sons, 1969. xv+470 pp.
[Kui] N. H. Kuiper, Hyperbolic 4-manifolds and tessellations, Inst. Hautes Études Sci. Publ. Math., No. 68 (1988), 47-76.
[Luo] F. Luo, Constructing conformally flat structures on some Seifert fibred 3-manifolds, Math. Ann. 294 (1992), No. 3, 449-458.

Departamento de Matemática, Imecc, Universidade Estadual de Campinas, 13083-970-Campinas-SP, Brasil

E-mail address: Ananin_Sasha@yahoo.com
Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: grossi-ferreira@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 53A20 (53A35, 51M10).
 First author partially supported by the Institut des Hautes Études Scientifiques (IHÉS).
 Second author supported by the Max-Planck-Gesellschaft.
 ${ }^{1}$ If the hermitian form on V is definite, the classic geometry is sort of elliptic. Most of the known facts deal with this case. The hermitian algebra of the indefinite form requires additional effort thus making it nontrivial the case of 'hyperbolic' classic geometries.

[^1]: ${ }^{2}$ Strictly speaking, we should take the (pseudo-)riemannian metric in the equality. However, the gauss equation turns out to be valid in a sense which is even stronger than the hermitian one.

[^2]: ${ }^{3}$ Well, involving an euclidean spine is more subtle.

