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EXISTENCE OF HYPERBOLIC MONOPOLES
WITH ARBITRARY MASS AT INFINITY

L.M. SiBNER! AND R.J. SIBNER?

ABSTRACT. Monopoles on hyperbolic 3-space HP arise naturally (by dimensional
reduction) from 5! -invariant instantons on $%\5?. The hyperbolic monopoles ob-
tained in this way by Atiyah are, however, constrained to have integral mass. The
purpose of this article is to show the existence, on P, of monopoles with arbitrary
mass.

§1. Introduction

Existence theorems for Higgs SU(2) -monopoles (as well as for Yang-Mills in-
stantons) have been obtained in several ways. In the mid 1970’s, by making a
symmetry ansatz, explicit instanton solutions on R* and monopole solutions on R*
were obtained [t'H, BPST, AHDM, PS]. (Earlier, Dirac [Di] had obtained a U(1)
-monopole on R3.) Later Chakrabarti [C] wrote down the “Prasad-Sommerfield”
monopole on hyperbolic 3-space H* (see also [B]). Also, Forgacs, Horvath and Palla
[FHP1, FHP2] exhibited an instanton on R*\R? (which did not extend to R*).

The explicit solutions of the simplest basic type, with charge equal to &1, became
“building blocks” in the next development. With a procedure that has, by now, be-
come standard, Taubes [J7T] constructed monopoles on R?® (with arbitrary charge)
by a “patching” argument - gluing together basic charge one Prasad-Sommerfield
monopoles. By modifying this construction, he was able to obtain instantons on
R*, thus verifying the crucial fact that the moduli space of anti-self-dual instantons
on (appropriate) 4-manifolds was non-empty (cf. [FU]}) and, moreover, obtaining
important information about the ends of this moduli space. Other modifications
have been used by Floer {F|, Ernst [E] and Durenard [Du] in the construction of
monopoles on 3-manifolds with a Euclidean end. The basic idea in these construc-
tions is (for example, for monopoles) to construct an “approximate” monopole and
then perturb it to a true monopole using some version of the implicit function the-
orem. This method gives solutions which are (for given charge) absolute minima of
the action functional (as are the explicit solutions discussed above).

A third method of showing existence again begins by constructing approximate
monopoles (or instantons), but this time a whole loop of such ”configurations”.
One then uses a min-max (i.e. saddle point) argument. (Maximize energy over
configurations on the loop, then maximize over homotopic loops.) Here, also, the

1) Research partially supported by NSF Grant DMS-9200576
2) Research partially supported by PSC-CUNY Grants 6-64241 and 6-65363

Typeset by AaS-TEX



original argument is due to Taubes, who used it to construct non-minimal monopole
solutions on R® [T'2]. These are critical points of the Yang-Mills-Higgs functional
(with coupling constant zero) and hence solutions of the second order equations, but
not solutions of the first order monopole equations which characterize the minima
of the functional. In order to settle the “instanton conjecture” concerning the
existence of non-minimal instantons on $%, the authors, together with K. Uhlenbeck
[SSU] adapted Taubes construction to obtain, on hyperbolic space H*, non minimal
monopole solutions (with arbitrary mass ). By a construction, due to Manton and
Atiyah, which we will review in a moment, these monopoles on H? lift to instantons
on $*\S?. Using the authors codimension two removable singularity theorem [SS1,
SS2], when m is an integer, these solutions extend across the “singular set” S? to
produce, on S$%, a non-minimal critical point of the Yang-Mills functional and hence
a solution of the second order Yang-Mills equation but not the first order (anti-)
self dual equations.

Before discussing the interplay of these ideas and our specific problem, we recall
some basic definitions. In general, a connection on an su(2) vector bundle over a
3-manifold M can be pulled down to an su(2) valued connection 1-form A on M,
and gives rise to a covariant derivative d4 = d+ [A4,-]. (The pullback is done via a
given trivialization, or “gauge”, of the bundle.) A Higgs monopole on M (cf [JT}) is
a configuration pair ¢ = (®, A) which satisfies the Bogomoln’yi monopole equations

where F'4 is the curvature of the connection 1-form A, and ® an su(2) valued
function on M. The solutions of the first order equations (1.1) characterize the
absolute minima of the Yang-Mills-Higgs action functional

(1.2) YMH(c) = %/M Fal? + |da B

(while, more generally, the critical points are solutions of the second order Euler
equations.)

This theory is only interesting if M has an “end” (for example, M = R3 or
H?). Then, natural “boundary conditions” are given by prescribing the mass of the
monopole

(1.3) m= lim |®(z)
|z]—o0

and the magnetic charge

(1.4) b= — /M tr(Fa A da®)

4d7m

On R3, using scaling techniques, one can assume without loss of generality that
m = 1. On H?, even though scaling is not possible, it has often been assumed that
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m is an integer. The reason for this is that one can (see [A]), up to conformal equiv-
alence, consider I® as R*\R?(= $%\5?) modulo a U(1) action leaving R? invariant.
Then any U(1) invariant instanton on R* produces a “hyperbolic monopole’ on
H* with integral m. (In fact, m is the holonomy around the R?; of necessity an
integer.) Conversely it is precisely the hyperbolic monopoles with integral m which
can be lifted to instantons on R* [SS1, $S2]. (The holonomy must be integral for
the connection to extend.)

On the other hand, from the point of view of the 3-manifold H® the restriction
to integral m seems clearly artificial. This is supported by the example [FHP1]
of an instanton on R*\R? which does not extend and also by the results in [SSU]
producing non-minimal solutions on H? for arbitrary mass. Indeed, on H?® it makes
analytic sense to prescribe the mass as any non-negative real number. Our main
result is the following

Theorem. There exists a smooth configuration ¢ = (®,A) on H®, having pre-
scribed magnetic charge k € Z, prescribed mass m > 0 at infinity, and satisfying
the Bogomoln’yi equations (1.1).

It should be noted that this result has been obtained for large mass by McAl-
lister[McA|]. His approach is different, but related to some of the ideas described
above. To understand better this relationship, we briefly outline some develop-
ments since [SS1]. In that paper, we introduced the idea of a singular connection
and its asymptotic holonomy around a codimension two singular set. Our estimates
showed that finite action connections have a well-defined limit holonomy which is
constant along the singular set. Moreover, the L? connections are classified by the
space of flat connections (their asymptotic limits). In the case of $*\S%, the limit
holonomy corresponds (via Atiyah’s construction) to the mass of the corresponding
Higgs configuration on H®, with integral mass corresponding to a connection on
S*\S? that extends across the $*. McAllister considers the H* monopole prob-
lem by converting it to an instanton problem on §*\S%. Here, he uses our result
mentioned above about the existence of limit holonomy. His proof depends upon
estimates of Réde [R]. He requires that the mass m be large.

To prove the theorem, we follow a program similar to the patching argument
developed by Taubes and discussed above. We work directly on the space H® and
do not require any assumption on the magnitude of m.

In section 2 we construct an approximate solution and in section 3 the pertur-
bation problem is derived and a lower bound estimate is obtained for the lincarized
equation. The continuity argument which proves the theorem is then described.

We remark again, that this method of proof is, by now, standard and has
been exploited successfully in many situations in which the lower bound can be
established. However, in our case, the a priori bound is false in the usual L} Sobolev
spaces over H® and, in order to work directly on H?, one must use weighted Sobolev
spaces. The use of weighted Sobolev spaces directly in H® and the elimination of
any restriction on the mass are our main contributions to the problem.

We note also that our proof works equally well over R? and as such, yields a
slightly different proof of Taubes original theorem. It is also somewhat different
than the recent proof over R?® given in [E].
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§2. The Approximate monopole

As discussed above, the basic (charge & = 1) SU(2) m-monopole can be written
down explicitly. To obtain an approximate monopole of given charge k, first choose
k points zi,... ,z, as centers of charge one monopoles, requiring that d = min |z; —
z;j| > 4R where R is a constant to be chosen later. Denoting by B:, a ball of radius
p about z;, we can choose geodesic spherical coordinates (r;,8;, x:) centered at z;
with r; = ¢z — z; and 8; so choosen that the half rays # = 0 and 8 = 7 do not
intersect the closure of any of the sets U = B5,\B% for k # 4.

Let ¢; = (®;, A;) be the basic monopole centered at z;;

®; = (a coth ar; — coth r,-)z

(2.1a) a sinh 7; . i - -
A; = m(dﬂgg + sin 6;dyk) + (1 — cos 8;)dxit

where we havé written o = m 4+ 1.
In the neighborhood of infinity Noo = H*\ UL, B%, we take a U(1)- Dirac
monopole ceo = (Poo, Aco) Where
Do = {(a=1)+ (1 — cothri)+---+ (1 — coth r)}7

(2.1b) '
Ao ={(1 — cosby)dxs =+ (1 — cos Ox)dxr}:

In any system of geodesic polar coordinates (r, 6, x) the metric is given by
ds® = dr? + sinh?rdQ?
= dr? + sinh®rd6® + sinh®rsin®8dy?

so that the volume element is given by d(vol) = sinh?rsinfdrdfdy. In the metric
induced on the cotangent space

(2.2) |dr| = 1, |d6] = (sinh r)™! and |dx| = (sinh r sin §) 7.

While the Higgs action of ¢;,z = 1,---,k, is finite. the action of ce, on H?
is not finite because of the singular behavior of F4_ at the points z;,...,zx.
However the restriction of Fa_ to N does have finite action. In the gauge of
(2.1a) ¢; has a Dirac string singularity along the half ray 6; = =. (Note that
[1 — cos8i||dxi| = oo as 8; = ). However, since the holonomy around the string
is integral, the codimension two removable singularity theorem [SS1, SS2] ensures
that ¢; is gauge equivalent to a smooth configuration. The same is true of ¢ in
Neo _

We emphasize that c., and each of the ¢; are solutions of the Bogomoln’yi
equations:

(23) dA(I’ = *FA.



More precisely, this is true for ¢; on Bé r and ¢ on N, so that if we glue them
together by a partition of unity {A1,..., At, Aeo } subordinate to the covering of H®
by N and the B;R, t=1,...,k, 1 £t <k, weobtain an “approximate monopole”
Cp = (@o, Ag):

4

k
Bo = AooPoo + ) Aid;
(24) =1

k
Ao = NooAoo + 3 _ Nidi.

\ =1

By its construction, cp satisfies the monopole equation (2.3) in each BY and
in Neo\ Ule éR- We need to estimate the deviation of ¢g from a solution in the
intersections UL = BE'R\B}%. Note that, in the partition of unity construction,
at most two A’s can be non-zero simultaneously. In particular, in U} we have
Ai + Ao = 1. Moreover, for z € U}, and k # i, one has rg(z) > d — 2R > 2R. In
Up, *

da,®o — ¥Fa, = )\m(l — /\oo) {[A,‘, P — ‘I’,] + *[A,',A,']}
(2.5) + dAoo (oo — ;) — *(dAoo A (Ao — Ai))

The terms in (2.5) can be estimated, using (2.2), to obtain the pointwise bound
in Uk:

(2.6) |dag®o — #Fa,| < K (€70 4 &%)

This can be done in the subdomain of U} where 0 < 6; < 3T in the gauge in
which the configuration is represented by (2.1ab). In the overlapping region where
7/4 < 8; < = one should choose a gauge in which the string is given by §; = 0.
See [JT] for a discussion of inverting strings and also for the fact that the existence
of local smoothing gauges implies the existence of a global smoothing gauge. (The
estimate (2.6) is gauge invariant.) In computing bounds for each term of (2.5) in
the region U%, one finds that it is the term |Ao, — 4;| that decays most slowly and
gives the upper bound (2.6).

We define the weighted spaces L% on g-forms, as the completion of C§°(A?) in

the norm:
1/p
follna = ([ 5t nsulrrzav)
B

We assume 8 < 1 which ensures that our approximate monopole ¢y has finite
weighted action; namely,

1
YMHg(co) = 5] eXPT(|Fao |2 + |da,®ol?)dV < 0.
H?

We can now easily show



Proposition 2.7. If 3 < m and p > 2, there is a constant ¢ > 0 depending on m
and p, but not on R, such that

dag®o — *Fagllp,s < Ke™F

Proof. Outside US_, Uk, da,®o ~ xF4, vanishes. Using (2.6) in Uk, we see that

2R R 2R 1r
ldao®o — *Fagllps < K (/ e(_a*"“ﬂ“)”dri) +e72R (/ sinhzr.-dr,-)
R R

<K {e—2R+‘2R/p + e(—2(a—1)+2ﬁ)R/2} .

The constant ¢ will have the right sign if —m + 8 < 0. This proves the proposition.

§3. The Perturbation Problem

We now look for solutions of (1.1) of the form ¢ = ¢p + ¢ = (®o + ¢, 4o + a)
with ¢o the approximate monopole of §2. Following Floer [F2], we expand (1.1) in
a Taylor expansion to obtain

(3.1) Le=da® —«F4 = Leg + D¢+ o((, ().

Here, Dy, is the linearization of L at ¢g; 1.e.,

(32) DLC:DL(‘Paa) = —*d/‘loa'l'dAo(p_[q)Oaa]‘
The quadratic term (¢, ¢) is defined by a bilinear map of the tensor bundle A® B A!
into Al

We work in the weighted Sobolev spaces described in §2. Throughout this
section, the mass is a fixed arbitrary positive number and the constant 7 appearing

in the weight factor satisfies 0 < § < m. In the weighted Sobolev space, the adjoint
of the operator d4, on forms w € A7 is :

dYy w=eT2Prdy (e*FTw),

where d7; is the ordinary L? adjoint.
For the sake of ellipticity, we must add a “slice” condition:
(3.3) Dgs( = Ds(p,a) = dTAoa — [®0,] = 0.
This gives an elliptic operator on pairs
§=(Ds,Dy): A = AP A
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defined by

5¢ = (84, — ado)(, )
(3'4) = (dj‘loaa dAo‘P - *dAoa) - ([@0, ‘10]’ [QO, a]) .

A computation shows that the L% adjoint of § 4, is:

JWETINCRY
(3.5) = (dLob, dagth ~ *e—wfdAo(e?ﬁrb))

It follows that

(3.6) 8406, = (Aagth, Aagh) + Tagn = Aag + Tagn

where

(3.7) Taon = (¥[Fao,b], %[ Fa, ] — 28 {*(dr A xda,b) + d (b Adr)}).

Since ad®g is skew adjoint,

(3.8) 8" =81+ add,.

To solve (1.1), we want to find solutions { of

(3.9) 6¢ + (#¢ = Go

where (#( = (0,0((,()) and Gy = (0, —Lcg) is sufficiently small in appropriate
norms.

As in [FU], [T1], we look for a solution perpendicular to the kernel of § by setting
¢ = 6™ and solving for n = (¢,b),% € A° and b € A!,
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We next define the Hilbert space in which this problem will be solved. First,
extend the L% norm to pairs in A° @ Al. Now, let 57, denote the covariant deriv-
ative with respect to a connection u. (In practice, u will either be Ag or the zero
connection.) Then, take #, to be the completion of C§° pairs with respect to the
norm

(3.11) [llae, = lInllz,8 + 1l 7 7llzp + 1| 75 7llz,s-
Note that the norms, ||n]l#,, and ||7||3, are equivalent and that Ho = Lé‘z(Hz‘).

Our objective is to solve (3.10) for n € H4,. We will use a continuity method to
solve, for 0 €t < 1,

(312) Eﬂ]t == 561171 + 61.7](#5?7]1 = tGO
for ny € Ha,-

The main step in the proof is to obtain an L2-lower bound for §6t. It is here that
the weighted norms are required. As shown in Donnelly [D], the scalar Laplacian
A is not invertible on L% one forms over H*. In fact, the spectrum, o(A;) consists
only of essential spectrum and is the interval [0, c0).

The weight factor, €27, which we have introduced in the norm, shifts the spec-
trum of the Laplacian to the right. OQur operator §§' then differs from the weighted
Laplacian by the addition of a first order partial differential operator. A close ex-
amination of this operator reveals that it consists of two kinds of contributions.
The first are non-negative and hence, do not ‘decrease the spectrum. The second
are relatively compact perturbations, so that an extension of the theorem of Weyl
[RS] then shows that the essential spectrum is unchanged. Hence the spectrum
lies in a positive closed subinterval of R. Note that for all operators considered,
Cess = 0, since there is no point spectrum.

The idea of the proof is first to determine the spectra of the scalar versions of
our operators and show a positive lower bound. Here, we use a modification of
Donnelly’s approach which incorporates the weight factor. We will then compare
the Lie algebra valued operators with the scalar operators.

To this end, let A, = d'd + dd' (p = 0 or 1) denote the self-adjoint Laplacian
on scalar p-forms in L5(H*), with the domain of the operator D(A,) = L%’Q(HB).
Also, let 856} be the Floer operator (3.6) at (0,0) acting on scalar pairs. Then,
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Proposition 3.13.

(a) (Do) = [(1+ B)?,00)
(b) o(Ay) = [B?,00)
(c) o(0d]) = [5%,0).

The proof proceeds by showing that the Laplacian and the Floer operator can be
decomposed, using separation of variables, as a sum of ordinary differential opera-
tors which are unitarily equivalent, up to compact perturbation, to multiplication
operators on L?(R*, dx).

We make extensive use of the following proposition which tells us that, as long as
the coefficients tend to zero at infinity, a smooth first order operator C' is relatively -
compact with respect to a self-adjoint second order elliptic operator L; its addition
to L does not change the essential spectrum. We state this in the form in which it
will be applied.

Proposition 3.14. Let L be an elliptic, second order, self-adjoint operator on
L%(M), where M is either the non-negative reals R*, or H*. Assume that the

domain of L is H, = L22# Let C = Sa; - 3.; + b where the coefficients are smooth

functions and T(r) = max|<,(| @ |,| b |) If 7(r) tends to zero as r tends to
infinity then o¢45(L) = 0ess(L + C).

Proof. For some (and hence every) z in the resolvent of L, R = (L — zI)™! is a
bounded operator from L% to ‘H, and, hence,

IRf ., < Kllflrz.

Choose an exhaustion {Bp} of M and cutoff functions u, with suppu, C By,
tn =1 on B,y and | Yu, |— 0 as n — oo. By Rellich’s lemma, D, = v,CR is
compact on L%(M).

Claim. C is relatively compact with respect to L; i.e., D = CR is compact on
L%(M ). This follows from the inequality:

(D = D) fllZ (ary < N1 = un)CRSIZ 5

< | (1 = u,)CRSf |2 e2f7 dvol
M\Bn—l
IR

< ()12 orys

which shows that Dy, converges to ) in norm.

The result now follows from



Theorem. (cf. [RS] Corollary 2, IV p. 113) If L is self-adjoint and 3z € C such
that C(L — 2I)™! is compact, then 0,,,(L) = Oess(L + C).

We shall also make frequent use of the

Raleigh Quotient Theorem. (cf. [Da] Theorem 4.3.1, p. 78) If L is self-adjoint,
then (Lf, f) = ¢||f||? for all f € D(L), if and only if o(L) C [¢, 00).

The prototype of the ordinary differential operators which arise in the Donnelly
decomposition is

(3.15) Df:——:—c-———Z’y—m-l-c(a:)f

where ¢(z) is rapidly decaying, v > 0 is constant, and f € L*(R™, e?"*dz).

Lemma 3.16. Up to compact perturbation, D as defined in (3.15) is unitarily
equivalent to the multiplication operator, (Mf)(z) = (z® + v?)f(z) acting on
L*(R*,dz). Therefore, 0e55(D) = (D) = [y%,0).

To prove this, recall that the change of dependent variable, f = e™ "k = Uk,
defines a unitary transformation U from L%(R*,dz) to L%(R*, e27*dz) under which
Dk = (UT'DU)k = —dzk +(y* + o)k

1h «— - d:l:2 v H
so that D is unitarily equivalent to D, acting on ordinary L*(R*,dz). From propo-
sition 3.14, D; has the same essential spectrum as

Dzk——m-{-"{ k

and, by Fourier transformation, D; is unitarily equivalent to the multiplication
operator M, in the lemma. The conclusion about the spectrum is immediate.

We next turn to the proof of Proposition 3.13. We use d, and d} to denote
exterior differentation and its L? adjoint on S2?. Let A, denote the Laplacian on
S?. For notational simplicity, we write ¢ = sinhr and w = ¢*#". Sometimes, for
clarity, we use the subscript 0 or 1 on the Laplacian to distinguish the domain as
functions or 1-forms.

On H?, the formulas for the weighted Laplacian are: for ¢ € AY,

10



13]
Doy = g Az — g 2w ™! —a; (gzw—q

and for a = a; + azdr € A1,

B Lo/ 0 8 ( 5 40
Aja=g *Aja—w 1-87(10%) —5;(9‘ 2w ]?9?(92“’02)) Adr

99

o, —1
297 5,

(dyag + g~ 2d%ay Adr).

To prove the proposition, we separate variables and expand any p-form in eigen-
expansions on S2. Then, every ¢ € A® is a sum of terms of the form horo (With 7o
an eigenfunction on S?). Using a Hodge decomposition, one sees that every 1-form
on H® is a sum of three terms (corresponding to the eigenvalue A of A,) of the
form:

(3.17) hi(r)r + ha(r)redr + (ha(r)dsTs + hy(r)r3dr)

where 7, is a co-closed eigen 1-form, and ; and 73 are eigenfunctions on S? (with
7, = constant corresponding to A = 0 and 73 occuring only if A # 0). This
decomposition into three types is orthogonal and is preserved both by the Laplacian
and the Floer operator.

Note that the forms under consideration will be in L?}(]HI:‘) if and only if

(3.18) 1Bl :/ R2(r)yi(r)dr < oo i=0,1,2,3,4
0

where 79 = 72 = v4 = ¢g?w and 7, = v3 = w.

In this context, the Laplacian defines ordinary differential operators on the spaces
in (3.18) as follows:

(1) (Doho)to = Ao(homo) = (—g_zw_1% (gzw%?) + )\g_zho) 70

(11) (Dlhl)Tl = Al(hlrl)

Il
—
1
[

|
AN
Ba
——~~
~
<
a-pu
.
A —
+
>
&
I
[ =)
?‘
=
p
-‘
=

11



(i) (Deha)radr = A(lhamadr) = (— & (970 (gPwha)) + Ag~hy) odr

(IV) Dg(h3,h4) = (D1h3 -|- 2g_lg—§h4,D2h4 + 2g_3 %ghg)

The explanation for (iv) is that

d
A] (h3d37'3 4 h4T3dT) = (Dlh;; + 2g_la§h4) dsTg + (D2h4 + 2g*33—ih3) T3d1".

Note that Dy and D, are operators on L*(RY,g%wdr), D) is an operator on
L*(R*,wdr) and Dy acts on LE(R*,wdr) x LR, g*wdr).

It follows immediately that D is of the form (3.15) with 4 = 4. Hence, o(D;) =
8%, 00).

Using Proposition 3.14, we may replace g2 by €27 in Dy and D, without changing
the spectra. This gives us an operator D acting on h € L*(Rt,e2+8)7dr) given
by:

L d —2(J+ﬂ)r'd 2014+ 8)r —2r
Dh=—— (e - (e h) +Ae ¥R,

which is of the form (3.15) with v = 14 3. Hence, o(Dp) = o(D2) = [(1 + B)%, o).

Finally, in the third case, again using Proposition 3.14, it suffices to consider the
spectrum of

Djy(hs, ha) = (Drhs + 2hg, Dby + e7*"hs)

acting on pairs (hs, hy) € L3(RY, e 7dr) x L*(R*, 21 +A7dr). Making the unitary
change of variable (hs, hq) = (€ #7k3, e~ 87k, gives the operator DY = U™ DU
where

—d%ks d*k

D kg, ks) = ( ek ks + 2 "ky, _T'f +(1+8)ks + 2e“’k3)

12



on pairs (k3, k) € L*(R*,dr) x L*(R*,dr). Another application of Proposition
3.14 shows that the spectrum of Dy is

o(Ds) = [#*,00) U[(1 + %), 00) = [§?, 00).

Since up to compact perturbation, A, is unitarily equivalent to sums of the above
operators, we have demonstrated (a) and (b) of proposition 3.13.

To prove (c¢), we show that 5055 differs from the Laplacian on pairs by a compact
perturbation. From (3.6) and (3.7) we have with 4p = 0 and d4, = d,

(3.19) 8083(1,b) = (Dotp, Arb) + (0,T1b)
where
(3.20) Tyb = —28{*(dr A *db) + d* (b A dr)}

Evaluating T} on each of the three types of one forms occuring in (3.17), we find
that 716 = 0 on the subspaces spanned by 7 and 72dr. For b of the third kind, T}
gives rise to the operator

T(hg, h4) = —Qﬁ(h;;, /\g_th)

since Ty(hadsTs + ha7sdr) = —20(hqadsms + Ag~2h37adr). As before, (hs, hy) €
L*(R*,e*rdr) x L*(R*,e* 1A dr). The unitary change of dependent variable
(hs ha) = (e7P7ks, e~ +A)"ky) gives a unitary equivalence of T with

T ks, ka) = (UITU) (ks  ka) = (€ ka, X" g™ 2ks)
acting on L?(RY,dr) x L*(R*,dr).

It follows that T} contributes a compact perturbation to A;, and hence, by Prop
3.14 does not change the spectrum, from which (c) of proposition 3.13 follows.

Now, letting A denote the Laplacian on pairs, the information in proposition
3.13 may be translated (using the Raleigh-Quotient Theorem) into the inequalities:

) B3 5 < (An,n)g
(3.21) () Bk 5 < (5o8n,m)s = (651, 84n)s.

It is now relatively standard to show

13



Proposition 3.22. There is a constant k > 0 such that

slnllao < 1180887)|2,8

and 5053 is invertible.

Proof. First, we note that since 5053 is a self-adjoint operator defined on Hyp, the

inequality implies that the co-kernel is zero and hence, 5063 is not only injective
but surjective with closed range, and hence, invertible.

To prove the inequality, we recall the Weitzenbock formula at a point, for the
standard Laplacian A = dd* + d*d ([FU]):

—v2w=A2w+Ricp(w,-), w €A, p=0,1,

and Ricg = 0.

Letting vtw = ¢728" ¢ (e?’"w), and, recalling that Apw = (dd! + did)w =
ASw + 2f(dw, — *(dr A *dw), we obtain

(3.24) — v yw=A,w+ Ric(w, ) =287 7 Vw — 26(dw, — *(dr A xdw).

An integration by parts and use of (3.21}) gives

I 7 wllzp < (Apw,w) +cf| Twllz gllwliz,s
<1+ C()(Apw,w) + el Vwii,g

from which it follows that

(3.25) Jll 2 < Clapllz,s

Using the Weitzenbock formula once again,
192 wlizp < [Apwllz,s+ Cllwllre < ClAWIE 5
which gives

(3.26) ”“’HLZ" < CllApwll2,g weA? p=0,1

14



Next, recall that on pairs,
5063n = An+ Ty where T = (0,Ty)

and T\ is defined by (3.20).

Using (3.26) and (3.21¢'),

Illno < Cllanllz,s < C (I808nlle,s + | Tobllz,0)
< Clldodgnllz,z + C'lb]l

< Cll6obinll2 s + C(Olnllz + ellnlln
(3.27) < C'|bo8gll2, + ellnllao-

Absorbing the term €||n||#,, proves the inequality of Proposition 3.22.

Finally, letting £ = 867, (cf. (3.4) and (3.8)) we are ready to prove the main
estimate of this paper.

Theorem 3.28. There is a constant a1 > 0 such that

and L is Invertible.

We notice that, as before, £ is self-adjoint on its domain H4, and hence, the
inequality shows invertibility.

To prove the theorem, we compare the various operators evaluated at Ap with
their scalar analogues to show that the lower bounds on spectra do not decrease.

Recall, from (2.1b) that near infinity, ¢co = (@0, Ag) = (Poo, Aco). This configu-
ration decays exponentially in the sense that

(3.29) {d®o|, |Aol, |Fa,| < e 1l for large |z].

15



First, note that for the configuration n = (3,b),
Apn =An+ Sy
where Sn = (Sp, S1b) with
So = d'[Ao, ¥ + #[Ao, *(dip + [Ao, )]

and

S1b = d'[Ao, b] + d(*[Ao, *b))
+ *[Ao, *(db -+ [Ao, b]] + [Ao,dtb -+ *[Ao, *b]]

The bounds in (3.29) and Proposition 3.14, imply

(3.30) Oess(Day) = 0(Ag,) = [B%, ).

Recall from (3.6) and (3.7) that
Sa08hon = (A ay + Tao ).
But T4, = T + R where T = (0,T1) is the operator in (3.20) and
Rn = (*[Fag,b), *[Fag, ¥] + *28{[Ao, *(dr A b)] — dr A x[Ao, b]})

is rapidly decreasing by (3.29).

Comparing,
(3.31)  6aobhn = (Aag +Tao)n = (A+ T+ (R + S)n = (508§ + (B + S))n
where R and S are rapidly decaying at infinity. By Proposition 3.14,

(3.32) Oess(6a08,) = 0(8a06},) = %, 00).

A final computation shows that

8™ = (84, — ad®o)(8Yy + ad®o)
(3.33) = 04,00 — (ad®)* + E

where En = (— * [da,Po, *b), [da, Po, Y] — *[da,Po, b)) is rapidly decaying. Since
—(ad®o)? is non-negative, we obtain

a(86') C [6%,0)

16



and, using the Raleigh-Quotient Theorem,

(3.35) wllnll3, < (68%n,m)p = 116M0ll3

for some x > 2.

To prove the inequality in the theorem, we use the ordinary Weitzenbock formula
(cf [E]) at a point:

(3.36) 66" = — w4, —{Go, '} + { Ric,-} — (ad®)?
which translates for the weighted operators as
(3.37) 56" ==, Va0 +Q

where [Qn] < c(|n] + | V40 71])-

As before,
(3.37) |V a0nll3,s < (680, 1) +(Qu,m)p < (88Tn,m)p+el Taonllz s +C(e)llnll3 6
and therefore,

(3.38) Inll2,8 + | 740 nll2,8 < C’||661n]|2,5-

Using the Weitzenbock formula again gives the bound on second derivatives and
proves the theorem.

Note that because of the explicit knowledge we have about the Chakrabarti
monopole, the decay of the approximate monopole is known for H* and also that the
basic estimate, Theorem 3.28, holds without any assumption that
Leg = da,®o — *Fa, is small. However, this condition will be needed later in
applying the Implicit Function Theorem.

We have also made no assumptions on the magnitude § of the weight factor.
The restriction § < m, required to make Lcy small, will also be used later.

Corollary 3.39. If ||v||s g is sufficiently small, then
L, =L+ vt
is invertible.
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Proof. We use a weighted version of Sobolev’s inequality which says that, for
2<p<8,

(3.40) I7llp.8 < C(Il V40 7l2,8 + l|7ll2,8)-

Using Holder’s inequality,

lv#8™nllz,8 < lIvll6,8118™n]l5,5
< Cliwlls,s(ll Va0 8 ll2,6 + 161 nl2,6)
(3.41) < aqllv|le,glllill9.a, -

Using Theorem 3.28,

(3.42) a1 [lnllaag < L0lk2p < WCunillzp + llv#8Mll2,,

which combined with (3.41) gives, for ||v||¢,s sufficiently small,

(3.43) & Nllaa, S NEvvll2,s-

Invertibility, for ||v|s,g small, follows from the fact that £ is invertible and
1L = Lullz,p < Clivlle,s:

We now (following [FU]) apply the continuity method to the equation
(3.12) Ly = 65"1), + 617]¢#5"m = tGo,

where 0 <t < 1.

To that end, let A < % where a1 and o, are the constants occuring in the

2
inequalities (3.28) and (3.41). Also, assume that ||Gollz,p < €42,

Let
Q= {n€Haollnllas, <A}

and
' J = {t € [0,1] | equation (3.12) has a solution in 2}

18



We show that J is non-empty, open and closed. Clearly, ¢t = 0 belongs to J since
n = 0 is the unique solution.

To show that J is open, let ¢, € J, with 7y the solution of (3.12) belonging to
Q. The linearized operator at 1o is £, with v = 2§Tno. From (3.40) and (3.41) at
28" and the choice of A above, one has |[v#38tn||2 5 < 2, - It follows from
(3.42) that (3.43) holds with o' = % and £, is invertible.

From the Implicit Function Theorem, we conclude that (3.12) has a solution 7,
for ¢ sufficiently close to 2o, and ||n:—7p0li,, < ¢, for € sufficiently small. Estimating
again (as in 3.41), and using the fact that ny € Q, we find, from (3.28)

a1l|mollaa, < lltoGollz,s + |16 n0# 8 0]l2,6
«
(3.44) < fltoGolle,s + - lImolloa,

Using the bound on Gy, we find

1
(3.45) o]l 7.4, < 5/\

so that for n; sufficiently close to 79, which will be the case if ¢ is close to g, we see
that

(3.46) ey < A

Therefore, J is open.

To prove that J is closed, let ¢, € J and converge to ¢g. Then, for each n,
let 7, be a solution of (3.12) corresponding to t,. Since ||9n|l#,, < A, a sub-
sequence converges weakly in H,4, to 1o and by lower semi-continuity with re-
spect to weak convergence, ||[nollu,, < A We claim that L,n0 = to Go. It suf-
fices to show this on any compact subdomain. The linear term 8817, converges
weakly to 68Tny. By Sobolev embedding §tn, converges strongly to 6t in Lz

for p < 6 and therefore, 6'n,#8tn, converges strongly to §Tno#éTne in Lzﬂ, since

16t no#8Tnoll2,8 < [|6tnol|Z 4 and Lebesgue dominated convergence is applicable. It
follows that L, 1, converges weakly to L,10 which is a solution of the equation, as
desired. This shows that J is closed, and completes the proof of our main theorem.
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