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S

Let Q*O be the oriented cobordism ring and A any commutative Q-algebra .

An elliptic genus over A , as originally defined in [14], i8 a ring homomorphism

qp:n§0—-»A

satisfying

Y o [€p,] u¥ = (1-20® + ety /2.
i>0

Here
§ = p[CP,] and £=¢ [HP,]
are two parameters in A which determine ¢ completely.

In the most interesting universal examples, A is the ring Q[[q]] of formal
power series over Q , and for any oriented manifold V, ¢[V] is the g—expansion of

a level 2 modular form whose values at the two cusps are, up to an inessential factor, the
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A-genus A[V] and the signature (V) (cf. [9], [5], [10], [23], [8])-

Though defined for oriented manifolds, the elliptic genera reveal their most striking
properties, such as rigidity (constancy) under compact Lie group actions ([3], [15]) or
integrality ([6]), on spin manifolds. Both rigidity and integrality rely on the fact
noticed by E. Witten ([22]) that in the universal examples, the coefficients of ¢[V]

are indices of twisted Dirac operators, therefore KO—characteristic numbers.
In this paper we consider a refined elliptic genus
By P — KO, [[q]]

whose values are g—expansions of level 2 modular forms over the coefficient ring KO,
of the real K—theory . In dimensions divisible by 4, ﬂq [V] is essentially the above
universal genus @[V] . On the other hand, in dimensions 8m + 1, 8m + 2, ;Sq [V]
i8 a modular form over [, (in the sense of J.—P. Serre [18]), and can be expressed as a

2
polynomial in the basic form £ = 2 q(2n—1) :
n>1

B VI=ay+aE+..+ a e -

It turns out that ay is the Atiyah invariant while a  is the KO-part of the

Brown—Kervaire invariant of V.

Being a refinement of an elliptic genus, ﬂq retains at least a few of the properties
of the latter. For example, M. Bendersky ([2]) recently proved that ﬁq [V] =0 fora

spin manifold V admitting an odd type semi—free circle action, which implies the
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vanishing of both the Atiyah invariant and the KO-—part of the Brown—Kervaire
inva.riant*). It seems very likely that Beridersky’s theorem can be reversed: we
conjecture that ﬁq [V] =0 if and only if V is spin cobordant to (or at least has the
same KO-characteristic numbers as) a spin manifold admitting an odd type semi—free

circle action.

I would like to thank W. Hoyt, N. Katz and D. Rohrlich for helpful advice on
modular forms. I am grateful to F. Hirzebruch and R. Stong for their interest in my
work. I am particularly indebted to M. Bendersky, P. Landweber and H. Miller for their

useful comments.

1. Definition of ﬁq . Let E be a real vector bundle over X . Writing Ai(E) and Si(E)

respectively for the exterior and the symmetric powers of E , and

A(E)= Y AEM,
20

s(E) =} S(E},
i>0

one defines the Witten characteristic class © q ([22], cf. [10]) by

04(E) = ngl (A_qgn_l(E) ® ngn(E)) :

*
) Fora proof valid for all odd type actions see [16].
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For any E, Gq(E) is a formal power series in q whose coefficients are virtual vector

bundles over X . Moreover, one has
eq(E) =1-E-q+ ..
and
eq(EeF) = Gq(E) . Gq(F) .
Therefore Gq canonically extends to KO(X) :
G)q : KO(X) — KO(X) [[q]] -

Let ﬁq(E) be defined by

ﬁq(E) = Gq(E —dim E) .
Then
ﬁq(E) = bO(E) + bl(E)q + ...
where

by(E) = 1

b,(E) « KO(X) (i >0)



and

B(E®F) =4 (E) - A(F).

It is easy to see that bi(i >0) are stable KO-—characteristic classes and can be

expressed as polynomials in the Pontrjagin classes x, defined by (cf. [21]):

% m(E)u' = A(E - dim E),

where
u= ;2' .
(14t)
For example

_ 2
and, more generally,

b, = (- 1)i1ri + lower terms .
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Let now V" be a closed spin manifold, and [V"] eKOn(Vn) be the

fundamental class of V" in real K—theory .
Definition:

B, [V"] = B(TV)[V"] = § b[V"Id,
i>0

where TV is the tangent bundle of V" and
b, [V"] =b(TV)[V"] € KO_=KO_ (point)
is the KO-characteristic number corresponding to b, .
One can easily see that ﬁq defines a ring homomorphism (genus)
B,: AP — KO [[a]] .

Considered as #Z/8—graded , the ring KO, is generated by two elements 7 and
w of degree 1 and 4 respectively subject to the relations

2q=1)3=17w=0, WP=4.
Clearly, ﬂq preserves the degree mod 8 .

Let
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* *%
ph: KO (X)— H (X;Q)
be the Pontrjagin character defined as the composition

KO*(X) L K*(X) Chern ChaI._} H**(X;Q) )

* **
For X = point one has KO (X)~¥KO, and H (X;Q)~Q, and ph is entirely

determined by
ph(n) =0, ph(w) =2.
In particular, ph is integral:
ph: KO, — 1.
Composing ﬂq with ph leads to a genus
¢ =Phof QfPt 7 [q])

such that

0V = Y ob(b;[V"])a' = § sh(b(TV)ATV)[V"Id',
i>0 i>0

where r,.;I(TV) is the total Y—class of V® . In particular, the constant term of
q [V®] is the A—genus A[Vn] :
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Theorem 1 ([10], [23]). q is the restriction to Qgpin of an elliptic genus
g 220 —q[[q]]

with parameters

1
f=-5-3 Y () d) o
n>1l d|n
d odd

€= 2 ( 2 d3) Q" D
n21 d|n
n/d od

2. Modular forms over graded rings. It turns out that ﬂq [V®] can be interpreted as a
modular form of degree n over the graded ring KO, .

If T is a subgroup of SLz(ﬂ) of finite index, let M{,‘(I) be the graded ring of
modular forms over € for T . Thus M‘I;(dl) is the group of forms of weight w . We
will always identify a modular form from ME(C) with its qg—expansion . This way
M,I.:(C) becomes a subring in C[[ql/ h]] , where h is the smallest positive integer

such that [ 1 h] belongs to T'.
01

Let now ME(H) be the subring of ME(C) of forms having integral gq—expansions

Mi(m) = mi(©) n[a!/™] .
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For any graded commutative ring with unit

R,=®R_,
n n
the canonical injection
mL(@) — 2[[}/?]]

extends to a ring homomorphism
r 1/h
Ry ®7 My(Z) — R« [[q / 11.

We define MP(R*) to be the image of this homomorphism, and will call its elements
modular forms over Ry for T .

Notice that MP(R*) is canonically a graded R,—algebra :

MI(R,) =@M (R ),

where Mr(Rn) is the set of forms from MP(R*) whose coefficients are in R . We
refer to the elements of MF(Rn) as forms of degree n .

If for a certain n, R, has no torsion, then

T r
R, ®M(l) — M (R)
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is an isomorphism. In this case,
T T
w
where
r ~ r
Mw(Rn) n R.n @ Mw(ll) .
We will say that forms from M\Pv(Rn) have weight w.

In the general situation, a form F e Mr(Rn) may come from integral forms of
different weights, and the weight of F cannot be defined correctly. Instead, one defines
an increasing filtration of Mr(Rn) as follows: a form F e MP(Rn) has filtration <f if

F is the image of an element of

R ® [WZ M‘I;(H)] ,

i.e. if

F=%Yr.F.
Ity

where F.i € ME(H) are forms of weight <f.
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3. Modular forms over KO, . From now on I' will designate the group 1‘0(2) of

matrices

[‘* :] ¢ SL.(I)

c

such that ¢ =0(mod 2) . The series § and € of theorem 1 are the basic examples of

modular forms for I‘O(2) . More precisely, let
6,=—86 =1+ 24q + 24° + 96¢° + ...
Proposition 1 (cf. [8], Anhang I).
(i) 6, € My(T), € e My(T) ;
(ii) M (T) = T [§y.e] - o
Consider now MP(KO*) . For n =0(mod 4) , one has KO ~ 7. Thus
MP(ko_) ¥ KO_®ML(T).
It follows that:

(a) a modular form of degree n = 8m and weight w over KO, can be written in a

unique way as a polynomial P(60,e) of weight w with integer coefficients;
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(b) a modular form of degree n =8m + 4 and weight w over KO, can be written
in a unique way as wP(f,c) , where P(f,,€) is a polynomial of weight w with

integer coefficients.

Notice now that one has 6;=1(mod 2) . Let & be the reduction mod 2 of
ee I[[q]] . It is easy to see that

2
= 2 q(2:1—1) =q+q9+q25+...
n>1

For n = 8m + r(r = 1,2) , one has KO = IF21f and the map
r
KO, ® My(Z) — KO_ [{a]]

is essentially the reduction mod 2 :
7" ® P(8,,6) =— 1 P(L,8)

where P(§;,e) is a polynomial with integer coefficients and P is its reduction mod 2.

As e =q + ..., the powers of £ are linearly independent over F, . Therefore:

(c) amodular form F of degree n =8m + r(r = 1,2) and filtration <f over KO,

can be written in a unique way as % Q() , where

Qe)=ay+ace+..+ asEs (3; € Fy)
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and 4s < f. The filtration of F is exactly 4s if and onlyif a_ #0.

The additive structure of MF(KO,..) is completely described by (a), (b), and (c).

The ring structure is given by the following theorem.
Theorem 2.
(i) The kernel of
KO, ® Mi(Z) — M (KO,)
is the principal ideal generated by 7 ® (60 -1).

(ii) The commutative KO,—algebra MP(KO*) is generated by &, and ¢
subject to the single relation 7% 60 =17.

The proof is immediate from the above description of

KOy ® M3(Z) — KO, [ [q]] -
4 B, [V®] as a modular form. We will now see that B, [V"] is a modular form of

degree n over KOy .
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Theorem 3.

(i) If n=4s,then ﬂq(szin) is the set of all modular forms of degree n and

weight 2s over KO, .

(ii) I n=8m+r(r=12), then ﬁq(ﬂgpin) i the set of all modular forms of

degree n and filtration < 4m over KO, .
spiny . . r 2
(iii) ﬂq(Q* ) is8 the subring of M" (KO,) generated by 7, wdy, 6y and €.
Proof. Part (iii) clearly follows from (i), (ii) and the above description of MP(KO*) .

Part (i) is a simple consequence of the definition of Yq the description of ph and

the following theorem:

Theorem 4 ([6], cf. [10]). For any spin manifold v » ¥q [V4s] is a modular form
from Mgs(l) . More precisely,

spiny _ 4,
i T

8m+4

The proof of the remaining part (ii) relies on the following construction due to

R.E. Stong (cf. [21], p. 341, for the details):

Let S1 be the circle equipped with its non—trivial spin structure. S1 represents
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the non—zero element of Qipin ~F,.If V isan (8m + 2)—dimensional spin manifold,

then gl x V is the boundary of a compact spin manifold U . On the other hand, 251
is the boundary of a compact spin manifold M2 . Therefore one can form a closed
(8m + 4)—dimensional spin manifold T(V) by glueing together two copies of U and
—-M2xvV along

2U) = 251 x V= o(M2 x V) .

Though involving arbitrary choices of M? and U , this construction induces a

well-defined homomorphism
.o8Ppin spin
T Q8m+2 - Q8m+4 ®F,.
Let
t: KO, — KO, ®F,

be the isomorphism which sends n2 to w®1.

Proposition 2 (cf. [21], p. 343). If £ is a polynomial in the Pontrjagin classes L
then one has in KO4'® F,:

E[T(V)] @1=14({[V]). o

Roughly speaking, £[V] is the reduction mod 2 of £[T(V)] .
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Let I, C nipin be the ideal of classes with vanishing Pontrjagin

KO-—characteristic numbers. Proposition 2 implies that T induces a homomorphism

T.qSPin spin
T:%mi2/Tgmi2 = (Vgmys /Igm i ) OF,-
Proposition 3 (cf. [21], p. 344). T is an isomorphism. 0

The coefficients of ﬁq [V] are Pontrjagin KO-—characteristic numbers. Therefore

one has:
B,IT(V)] 1 = (8, [V])
in (KO 4 ® IF2) [[q]] - By theorem 3 (i),
By [T(V)] = aP(5ye)

where P(6,€) is a polynomial of weight 4m + 2 in §ye with integer coefficients.

Therefore

9
is a modular form of degree 8m + 2 and filtration < 4m over KO, . Proposition 3

implies that all such forms can be obtained from spin manifolds V , and this settles the

case of manifolds of dimension 8m + 2.

The proof in the case of (8m + 1)—dimensional manifolds is similar. Instead of T
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one considers the multiplication by S1 homomorphism

.QBpPin __ o8pin
$:0%m — gmyr1-

If ¢ is a polynomial in the classes T, then

£[s'x M) =7+ ¢[M]

for any spin manifold M . Thus S induces a homomorphism

spm 8P
[ lgm — Qam+1 [ Tgm+1 -

Proposition 4 (cf. [21], p. 344). S is onto. o
It follows that
i 8
B R 4T) =7 B (9gR™)

and the result follows from (i) and the description of M (KO*)

5. Characteristic classes a, . Let h(q) =q+ .. be any series from 7| [q]] whose

reduction mod 2 is

2
2 q(zn"l) =q+q + q25 + ...

n>1
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For example, one can take h(q) =&(q) . Another possible choice for h(q) is the

Ramanujan series

*
AlQ)=q ] T(1 — M2 = q - 2492 + 25945 — ... )
n>1

For any real vector bundle E over X define

ay(E) e KO(X)[[t]]

at(E) =Aﬁq(E) )
where
t =h(q) .

Since the leading term of h(q) is q , this series is invertible in Z[[q]] , therefore
a t(E) is well-defined. Clearly, one has

a,(E®F) = at(E)at(F) .

*
) It is an amusing exercise to show that A =¢(mod 2) and even, as noticed by P.
Landweber, A =e(mod 16) .
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2
a,(E) = a)(E) + a;(E)t + ap(E)t" + ...,
then ai(E) is a polynomial in the Pontrjagin classes 1ri(E) such that
N »
3(E) e KO(X) (i>0)
and
a,(E) = (~ 1)'n(E) + lower terms .

Notice that while a,(E) depends on the choice of h(q) , its reduction mod 2, that is

its image in KO(X) ® [F, is independent of any choice.
By definition of a, , for any spin manifold V" one has:
B IV™] =35 [V™] + 2  [VP]t + a5 [V 2+ ..,
where
a, [V'] = a,(TV)[V"] .
On the other hand, the reduction mod 2 of ﬁq [V"] is of the form (cf. Section 3):

= -m
ao + ale+ et a €,
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where 8, ¢ KO ®F, and m = [n/8] . Comparing these two expressions leads to the

following:

Theorem 5.

(i) For i > [n/8] , one has ai[an ®1=0 in KO ®F,.
(ii) One hasin (KO ®F,)[[q]] :

8, [V?] =2,[V"] +8,[V'IE+... +a [V"]IE",
where m = [n/8] .
6. The Brown—Kervaire invariant. Notice that for n = 8m + 2 , the constant term

ag[V"] =1[V"] is the so—called Atiyah invariant ([1]). We will see now that

A [V"] has an interpretation in terms of the Brown—Kervaire invariant of V© .

Let V', n=8m + 2, be a spin manifold. As mentioned earlier, s V=4Uu,
where U is a compact spin manifold. It is shown in [13] that the signature o(U) is
divisible by 8, and that

k(V) = o(U)/8 < F,

is a spin cobordism invariant satisfying
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k(S x S! x M) = ¢(M) mod 2

for all 8m—dimensional spin manifolds M . For a large class of manifolds, including all
complex—spin manifolds ([20]), k(V) agrees with the Brown—Kervaire invariant

([4]). For a general spin manifold V, k(V) can be thought of as the KO—part of the

Brown—Kervaire invariant (cf. [13] for the details).

More generally, one defines an invariant & (V"?) e KO ®F, by

[ o(V) ,0=0 (mod 8)
k(;1 x V)3 ,n=1 (mod 8)

k(V) 72 ,n=2 (mod 8)
L (¢(V)/16)ws ,n=4 (mod8)

The multiplicative properties of k are summarized by saying that x defines a ring

homomorphism

K: Qipin — KO, GIF2 .
A new proof of this will be given later.
Theorem 6. Let V" be a spin manifold. Then

a, [V'] =5 (V")
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in KO ®F,, where m = [n/8] .
Proof. Consider first the case when n = 8m + 4 . According to theorem 3,
B, (V"] = wlaghs™ ! + a0 e + .+ 2 ™),
where a € Z . Then
0 V'] = 2agsm ! 4 a-légm_le + ot a 6™

If we consider Pq 2880 elliptic genus over I [d,€] , the signature o(V") is obtained

by specializing 6=1, e=1,0r 60=—8, € = 1. Thus,
o(V") = 2(ag(~ 8! 4 2 (-8 1 4 L 4 a_(~8)
=162 (mod 32),
and
K (VY = aI‘nw mod 2 .
On the other hand, by theorem 5,
a w=a, [V']mod 2,

therefore
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K(V) =a_ [V']mod2.
If n =8m + 2, proposition 2 gives
t(a, [V"]) = a [T(V)]mod 2
= (¢(T(V))/16)w mod 2
by the previous case.
By definition,

T(V) = (20) U (= M2 x V),

where U = gl x V. Thus
o(T(V)) = 20(U) .
On the other hand,
k(V)=£&m=‘TT VD) mod 2.
Comparing with the above expression for t(a [V"]), we obtain:

ay (V™) = K(VP)? = s (V).
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Ifn=8m+1,
a_ [V:n=a_[8!x V%] = k(s! x VO)s?,
therefore
a_[V"] = k(s' x VP)p = 5 (V)

since the multiplication by # is an isomorphism KO1 —= KO2 .

Finally, if n = 8m, then

a [VP]n? = a_[8' x 8! x V] = k(s x 8" x V)2 = o(V®)9? and
a [V!] = ¢ (V") (mod 2) o

Corollary 1. &: Qipin — KO, ® [F2 is & ring homomorphism.

Proof. Let vy and Vo be two spin manifolds of dimension n; and n, respectively,

and let

m, = [n,/8] , m, = [n,/8] , m= [(n; +n,)/8] .

By theorem 6,
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KV xVy)=a_ [V, xV,] = ) ail[vl] %, Vo] .
ijHo=m
Notice that m > m; + m, . If m =m, + m,, then theorem 5 (i) and theorem 6 imply:
K(Vy*xVy)= aml (V] am2 [Vol =& (Vs (V,) .

If m>m, +m,, then theorem 5 (i) gives

K(V;%xV,)=0
and one has to check that

k(VIe(Vy)=0.
But m > m,; + m, is possible only in one of the following cases:
(1) B, =n, = 4(mod 8) . In this case

K{V)s(Vy) =0
since & = O(mod 2) .
(2) n, = 5,6,7(mod 8) or n, = 5,6,7(mod 8) .

In this case & (V) or &(V,) is zero. o
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Corollary 2. Let V®, n=8m+r(r=12) be a spin manifold. The filtration of
ﬂq [VD] is exactly 4m if and only if x(V®)#0.

This follows from theorem 6 and the description of MI‘(KO8111 +r) in section 3. O

7. The SU-case. Theorem 3 describes the subring My = ﬂq(ﬂipin) C MP(KO*) .

Using the results of [6] one can easily determine the image of the special unitary

cobordism ring Q§U under ﬁq . We will focus on the dimensions 8m + 1, 8m + 2

leaving the easier remaining cases to the reader.
Theorem 7.

(1) If n=8m+ 1, then ﬁq(QgU) C ﬂq(ggpin) is the subgroup of forms of the

form 1;P(52) where P is a polynomial of degree < m/2 over [, .
s _ SU, _ spin
(ii) If n=8m+ 2, then ﬂq(ﬂn )= ,Bq(Qn ).
Corollary. If M- , n=8m + 1, i8 an SU—manifold , then
n —
a3, [M7]} =0
for all odd i . For instance,
w]_ [Mn] =0 )

(1g+ P)[M"] = 0.
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Proof.

(i) According to [6], an element from ¢ (QSU) can be written as

2P(626) + Q(62€D) ,
where P, Q are two polynomials with integer coefficients. On the other hand, one has

oSV

“1.  SU
sm+1= (5] " Qg

where 8! is the circle S equipped with it8 non—trivial SU—structure (cf. [21], chap.
X). Therefore,

By Ogmyr) =7 * By Pg)
and the result follows.

Part (ii) is an immediate consequence of the following proposition.

Proposition 5. The canonical map

U

8P
8m+2 — — QgF

gm+2 ! Tgmya

is onto. In other words, any spin manifold of dimension 8m + 2 has the same

KO—characteristic numbers as an SU—manifold .
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Proof. Notice first that the homomorphism T used in the proof of theorem 4 can be

defined using SU-manifolds : there is a homomorphism

¢ SU . _SU
T Qgmte = Ugm+a ®Fy

which preserves the mod 2 KO-characteristic numbers. Let 12 C Q§U be the ideal of

classes with vanishing KO—characteristic numbers. Then T® induces a homomorphism

T¢ . QSU

SU
8m+ t

C Cc
o/ lgmyo — (gmya/ Igmia ) BFys

and there is a commutative diagram

SU c T¢ SU ¢
Q8m+2 / I8m+2 (98m+4 / 18m+4) @[F2

/\l ) l#

spin T s8pin
O8m+e / Tgmeos — (gmig / Igmta) ®Fo

in which A and p are induced by the forgetful homomorphism. One has to show that
A is onto. It is well known (cf. [19]) that

SU gpin

. spin
is onto. As I 8m+4 °

8m-+ this implies that z is onto. Thus to prove the

4= Tors 2

~N
proposition, it will suffice to show that T® is onto.
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Let B, C 030/Tors be the subring of classes represented by U—manifolds with
spherical determinant. According to Stong ([21], p. 282), By is a polynomial algebra
SU c .
and 98m+4 / Igm+q € Bgyyg i exactly the subgroup 2Bg ., .
Let M®®*% pe an SU-manifold , and let WS™*? be a U—manifold with
spherical determinant such that [M] =2[W] in B
of W gives an SU-manifold v8+2 2n4d we have

8m+4 - Dualizing the determinant

W=UU-D%xV)

where U is an SU—manifold with boundary S!x V , namely the complement of a

tubular neighbourhood of V in W (cf. [13]).

By definition, TY([V]) is represented by the manifold Z = (2U) U (= M2 x V),

where M2 is an SU-manifold such that M2 =25' . Itis easy to see that Z is
cobordant to 2W as a U-—manifold . Therefore Z and 2W have the same rational

Pontrjagin numbers. Hence Z and M have the same KO-—characteristic numbers, that

SU /IC

is represent the same element in 98 m+4 ! 1gm44

]
8. Final remarks. 1°. According to theorem 6, the reduction mod 2 of the class a
measures the KO—part of the Brown—Kervaire invariant in dimension 8m + 2 . For

instance,
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K(vi0) = " (vi0s
k(V1®) = (my + =) [VI®]
k(V?) = (n + %) [V¥0] .

Other sequences a8y - having the same property have been comstructed in [13].

For example,

3
3, = Lzm(ﬂl, ,1r2m) + (xl + m 7 + 13)1‘2111—2(”1’ "'T2m—2) ,

where L2m is the reduced mod 2 Hirzebruch’s polynomial, is such a sequence. A
simple comparison of the first few terms shows that the new classes a0 have far fewer
terms. Besides, they have better multiplicative properties. The classes & have been

used in [17] to represent k(V) as the index of a twisted Dirac operator on V.

Notice that the mod 2 reduction of h(q) is of the form q + o(qs) . Therefore one

a, =b_(mod 2)

for m<8 . Thus in dimensions n< 71, x(V) is measured by the Witten class

®n/8]
. The genus

o: 030 . Ml(z[1/2])
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was used by Landweber, Ravenel and Stong ( [12] ) to construct an elliptic (co)homology
theory E2€, ([10] , [11]). Namely they showed that

Eety() = 03°() 8, M ([1/2]) [™"]
is a homology theory. Here ML (Z[1/2]) is considered as an Q5° — module via .
By analogy with the Conner—Floyd isomorphism ([7])
KO,( ) » 05P( ) ® KO,
one can ask whether the functor

ofP()e, M),
q

where M, C MF(KO*) is the image of ﬂq described in Theorem 3 (iii), is & homology
theory. A positive answer to this question would provide a way of eliminating the

undesirable 1/2 in the definition of ELL4 ().
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A VANISHING THEOREM FOR THE ELLIPTIC GENUS
by

Serge Ochamnine

Let
¢ n§0 — Q [6:5]
be the universal rational elliptic genus defined by

Y oltPylul = (12607 + ety /2.
20

1t is a simple consequence of the rigidity theorem of Bott and Taubes [3] that ¢o[V] =0
for any spin manifold V admitting an odd type circle action. Indeed, substituting for &
and ¢ two algebraically independent complex numbers gives an embedding Q[8,e] = €
hence a non degenerate elliptic genus over € . The corresponding equivariant genus

¢ 1[V] is an elliptic function ¢(u) for any oriented sl-manifold V (cf. [5])-
S

Moreover, if V is a spin manifold and the action is odd, then

ofu + v) = — ¢ln)
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for a certain half period w ([5], proposition 7 (ii)). On the other hand, according to [3],

p(u) is constant. Therefore p[V] =¢ ,[V] =0.
S

In the present note we extend the above vanishing theorem to the refined elliptic

genus

By : BB — K04 [ [q]]

introduced in [6]. The first results in this direction were obtained by M. Bendersky [1]
who proved that ﬂq [V] =0 for any spin manifold V admitting an odd type semifree
circle action. Bendersky’s proof follows from a detailed study of Borsari’s exact sequence
[2]. Our proof, valid for any odd type action, is based on a simple geometrical

construction and on the strict multiplicativity of elliptic genera.

We recall briefly the definition of 8 ” (cf. [6]). Let E be any real vector bundle
over X . The Witten characteristic class 8 q(E) e KO(X)[[q}] is defined by

B(E)= @ (A E)®S E)),
where

A(E)= Y A(EW

and



-3—
s(E)= Y S(E)X.
0
If V is a closed spin n—manifold , ﬁq [V] is defined by
8,IV] = 8(TV ~)[V] ¢ KO, [[]],
where KO =KO_(point) . One has

ﬁq [V] = bO(TV) [V] + bl(TV) [Vlgq+ ..,

where b, € KO(BSO) are certain stable KO—characteristic classes and bi(TV) [V] are

the corresponding characteristic numbers. The map
VB [V]
defines a ring homomorphism {genus)
By MR — KO, [[d]],
which is a refinement of a rational elliptic genus in the following sense. Let
ph: KOy — I

be the Pontrjagin character, i.e. the composition of the complexification KOy — Ky

and the Chern character. Then



— 4 —
@q=pbo B : AP — Z[[q]]

is the restriction to N3P'™ of an elliptic genus over Q[[q]] with invariants

n2l d|n
~d odd
3, n
e= ) () &g
n>1 d|n
n/d odd

Let now V be any connected closed spin n—manifold .
Theorem. If V admits an odd type circle action, then ﬁq [V]=0.

Proof. The vanishing of the universal genus ¢ implies the vanishing of q [V] . As
q vl = ph(ﬁq [V]), this in turn implies ﬁq [V] =0 for n =0(mod 4) , for

ph: KO, [[a]] — Z[[q]]
is then injective.
The case of dimensions n = 1(mod 8) is easily reduced to that of dimensions
n = 2(mod 8) by multiplying V by the circle with its non—trivial spin structure and

trivial Sl—a.ction .

The proof in dimensions n = 8m + 2 is based on the following construction. Let

Msm‘*'4 be a closed oriented manifold and suppose we are given an embedding



D2

x V =< M and a spin structure on
W=M —‘int(Dz x V)
inducing the non—trivial spin structure on each circle
slx{p}cstxv=ow.
Then V has a canonical spin structure and we have:
Propogition (cf. [4], § 16). For any a € KO(BSO) one has
a[V] = (ph(a(TM)}ATM)[M]) - 7°
where ‘il(TM) is the total ﬁl—cla.ss of M and ne KO1 = IT-2 is the generator.
In fact, M admits a spinc—structure and the coefficient of n2 is an integer.
Let now VS™T2 be a connected spin manifold with an odd type circle action

p:Sle——;V.

Consider M = S3 X1 V , the total space of the fiber bundle associated with the Hopf
S

bundle §3 — 52 , and fiber V. M can be obtained by glueing together two copies of

D2x V,say D2

i V and DE x V , using the map



f:81xv—sslxv
given by

f(z,p) = (z»ﬂ(z:P)) ‘
The manifold
W=D2xV=M-—int(D2
=D" = —1nt(D+XV)

has a unique 8pin structure compatible with the given spin structure on V . The map f

restricted to the circle S! = S x {p} is given by

2 = (z,4(2,p)) -

It can therefore be viewed as the inclusion of an orbit of the diagonal circle action on

sl x V.= 8 W . This action is even type. Indeed, the standard circle action on st
equipped with the trivial spin structure is odd type, and so is the given actionon V . It
follows that the spin structure on W induces the non—trivial spin structure on each circle
s x {p} C @ W . On the other hand, it obviously induces the given spin structure on V .

The proposition above gives

a[V] = (ph(a(TM))2(TM)[M]) - 7

for any a € KO(BSO) ; in particular, one has:

2
B,IV1 = ¢ [M] - 7.



The rigidity theorem of Bott and Taubes [3] implies the strict multiplicativity of elliptic
genera over Q—algebras (cf. [5]), therefore

2
M| = . =
9 [M] = ¢, [57] - ¢ [V] =0
and
V] =0.
8,IV] :
Corollary. If a spin manifold VE™+2 admits an odd type circle action, then both the

Atiyah invariant a(V) and the KO—part of the Brown—Kervaire invariant, k(V),

vanish.

Indeed, a(V) and k(V) are two of the coefficients of ﬁq [V] when expressed as a

polynomial in the series

2
= E q(2n—1)

n>1

(cf. [6])-
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