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Abstract

We introduce Schur multiple zeta functions which interpolate both the multiple zeta and
multiple zeta-star functions of the Euler-Zagier type combinatorially. We first study their
basic properties including a region of absolute convergence and the case where all variables
are the same. Next, under an assumption on variables, some determinant formulas coming
from theory of Schur functions such as the Jacobi-Trudi, Giambelli and dual Cauchy formula
are established with the help of Macdonald’s ninth variation of Schur functions. Finally, we
investigate the quasi-symmetric functions corresponding to the Schur multiple zeta functions.
We obtain the similar results as above for them and, moreover, describe the images of them
by the antipode of the Hopf algebra of quasi-symmetric functions explicitly.
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1 Introduction

The multiple zeta function and the multiple zeta-star function (MZF and MZSF for short) of

the Euler-Zagier type are respectively defined by the series

ζ(sss) =
∑

m1<···<mn

1

ms1
1 · · ·msn

n
, ζ?(sss) =

∑
m1≤···≤mn

1

ms1
1 · · ·msn

n
,

where sss = (s1, . . . , sn) ∈ Cn. These series converge absolutely for <(s1), . . . ,<(sn−1) ≥ 1 and

<(sn) > 1 (see, e.g., [Mat] for more precise description about the region of absolute convergence).

One easily sees that a MZSF can be expressed as a linear combination of MZFs, and vice versa.

For instance,

ζ?(s1, s2) = ζ(s1, s2) + ζ(s1 + s2),

ζ(s1, s2) = ζ?(s1, s2)− ζ?(s1 + s2),

ζ?(s1, s2, s3) = ζ(s1, s2, s3) + ζ(s1 + s2, s3) + ζ(s1, s2 + s3) + ζ(s1 + s2 + s3),

ζ(s1, s2, s3) = ζ?(s1, s2, s3)− ζ?(s1 + s2, s3)− ζ?(s1, s2 + s3) + ζ?(s1 + s2 + s3),

where ζ(s) = ζ?(s) is the Riemann zeta function. More generally, we have

(1.1) ζ?(sss) =
∑
ttt�sss

ζ(ttt), ζ(sss) =
∑
ttt�sss

(−1)n−`(ttt)ζ?(ttt),

where, for ttt = (t1, . . . , tm) ∈ Cm, `(ttt) = m and ttt � sss means that ttt is obtained from sss by

combining some of its adjacent parts. The special value of ζ(s1, . . . , sn) and ζ?(s1, . . . , sn) at

positive integers were first introduced by Euler [E] for n = 2, and by Hoffman [H1] and Zagier

[Za] for general n, independently. Many different types of relations among such values have been

studied in references such as [Zl, Mu, IKOO, OZ].

The purpose of the present paper is to introduce a generalization of both MZF and MZSF,

which we call a Schur multiple zeta function, from the viewpoint of n-ple zeta functions. Indeed,

it is defined similarly to the tableau expression of the Schur function as follows. For a partition

λ of a positive integer n, let T (λ,X) be the set of all Young tableaux of shape λ over a set X

and, in particular, SSYT(λ) ⊂ T (λ,N) the set of all semi-standard Young tableaux of shape λ

(see Section 2 for precise definitions). Recall that M = (mij) ∈ T (λ,N) is called semi-standard
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if mi1 ≤ mi2 ≤ · · · for all i and m1j < m2j < · · · for all j. For sss = (sij) ∈ T (λ,C), the Schur

multiple zeta function (SMZF for short) associated with λ is defined by the series

ζλ(sss) =
∑

M∈SSYT(λ)

1

Msss
,

where Msss =
∏

(i,j)∈D(λ)m
sij
ij for M = (mij) ∈ SSYT(λ) with D(λ) being the Young diagram of

λ. It is shown in Lemma 2.1 that the above series converges absolutely whenever sss ∈Wλ where

Wλ =

{
sss = (sij) ∈ T (λ,C)

∣∣∣∣∣ <(sij) ≥ 1 for all (i, j) ∈ D(λ) \ C(λ)

<(sij) > 1 for all (i, j) ∈ C(λ)

}

with C(λ) being the set of all corners of λ. If (1n) and (n) are denoted by the one column and

one row partitions of n, then it is clear that ζ(1n)(sss) (sss ∈ T ((1n),C)) and ζ(n)(sss) (sss ∈ T ((n),C))

are nothing but MZF and MZSF, respectively. This shows that SMZFs actually interpolate both

MZFs and MZSFs combinatorially. Remark that such interpolation multiple zeta functions were

first mentioned in [Y] from the study of the multiple Dirichlet L-values.

In this paper, we study fundamental properties of SMZFs and establish some relations among

them, which can be regard as analogues of those for Schur functions. Indeed, we obtain the

following Jacobi-Trudi formulas for SMZFs, which is one of our main result of the paper. To

describe the result, we need the set

W diag
λ = Wλ ∩ T diag(λ,C),

where, for a set X, T diag(λ,X) = {T = (tij) ∈ T (λ,X) | tij = tkl if j − i = l − k}. For a tableau

sss = (sij) ∈W diag
λ , we always write ak = si,i+k for k ∈ Z (and for any i ∈ N). For example, when

λ = (4, 3, 3, 2), sss = (sij) ∈W diag
(4,3,3,2) implies that sss is of the form of

sss =

s11 s12 s13 s14

s21 s22 s23

s31 s32 s33

s41 s42

=

a0 a1 a2 a3

a−1 a0 a1

a−2 a−1 a0

a−3 a−2

.

Theorem 1.1. Let λ = (λ1, . . . , λr) be a partition and λ′ = (λ′1, . . . , λ
′
s) the conjugate of λ.

Assume that sss = (sij) ∈W diag
λ .

(1) Assume further that <(si,λi) > 1 for all 1 ≤ i ≤ r. Then, we have

(1.2) ζλ(sss) = det
[
ζ?(a−j+1, a−j+2, . . . , a−j+(λi−i+j))

]
1≤i,j≤r .

Here, we understand that ζ?( · · · ) = 1 if λi − i+ j = 0 and 0 if λi − i+ j < 0.

(2) Assume further that <(sλ′i,i) > 1 for all 1 ≤ i ≤ s. Then, we have

(1.3) ζλ(sss) = det
[
ζ(aj−1, aj−2, . . . , aj−(λ′i−i+j))

]
1≤i,j≤s

.

Here, we understand that ζ( · · · ) = 1 if λ′i − i+ j = 0 and 0 if λ′i − i+ j < 0.
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As is the case of Schur functions, we call (1.2) and (1.3) of H-type and E-type, respectively.

From these formulas, as corollaries, one can obtain many algebraic relations given by determi-

nants among MZFs and MZSFs. For example, considering the case λ = (1n) and λ = (n), we

have the following identities.

Corollary 1.2. For s1, . . . , sn ∈ C with <(s1), . . . ,<(sn) > 1, we have

ζ(s1, . . . , sn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ζ?(s1) ζ?(s2, s1) · · · · · · ζ?(sn, . . . , s2, s1)
1 ζ?(s2) · · · · · · ζ?(sn, . . . , s2)

1
. . .

...
. . . 1 ζ?(sn−1) ζ?(sn, sn−1)

0 1 ζ?(sn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

ζ?(s1, . . . , sn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ζ(s1) ζ(s2, s1) · · · · · · ζ(sn, . . . , s2, s1)
1 ζ(s2) · · · · · · ζ(sn, . . . , s2)

1
. . .

...
. . . 1 ζ(sn−1) ζ(sn, sn−1)

0 1 ζ(sn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Moreover, just combining (1.2) and (1.3), we obtain a family of relations among MZFs and

MZSFs. For example, considering the cases λ = (2, 2, 1) and its conjugate λ′ = (3, 2), we have

ζλ


a b

c a

d

 =

∣∣∣∣∣∣
ζ?(a, b) ζ?(c, a, b) ζ?(d, c, a, b)
ζ?(a) ζ?(c, a) ζ?(d, c, a)

0 1 ζ?(d)

∣∣∣∣∣∣ =

∣∣∣∣ ζ(a, c, d) ζ(b, a, c, d)
ζ(a) ζ(b, a)

∣∣∣∣ ,
ζλ′

(
a c d

b a

)
=

∣∣∣∣ ζ?(a, c, d) ζ?(b, a, c, d)
ζ?(a) ζ?(b, a)

∣∣∣∣ =

∣∣∣∣∣∣
ζ(a, b) ζ(c, a, b) ζ(d, c, a, b)
ζ(a) ζ(c, a) ζ(d, c, a)

0 1 ζ(d)

∣∣∣∣∣∣ ,
where a, b, c, d ∈ C with <(a),<(b),<(d) > 1 and <(c) ≥ 1. As you can see in the above examples

and Corollary 1.2, these kind of relations hold even if we replace ζ with ζ? and vice versa.

It is also worth mentioning that both (1.2) and (1.3) give meromorphic continuations of ζλ(sss)

to T diag(λ,C) ( = Cs+r−1 where s = λ1 and r = λ′1) as a function of ak for 1 − r ≤ k ≤ 1 + s

because both MZFs and MZSFs admit meromorphic continuations to the whole complex space

(see, e.g., [AET]).

The assumption on variables on the same diagonal lines is crucial. Actually, in Section 4, we

find out that our SMZF, which can be easily generalized to the skew type, with the assumption

is realized as (the limit of) a specialization of Macdonald’s ninth variation of Schur function

studied by Nakagawa, Noumi, Shirakawa and Yamada [NNSY]. Based on this fact, we present

some results such as the Jacobi-Trudi formula of skew type, the Giambelli formula and the dual

Cauchy formula for SMZFs. Notice that if we work for such formulas without the assumption,

then we encounter extra terms (see Remark 3.10), which will be clarified in our future study.

Furthermore, in Section 5, we study SMZFs in a more general framework, that is, in the

Hopf algebra QSym of quasi-symmetric functions studied by Gessel [G]. For a skew Young

diagram ν, we define a special type of quasi-symmetric function Sν(ααα), which we call a Schur

type quasi-symmetric function, similarly to SMZFs. (Note that there is a different type of
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quasi-symmetric functions, called quasi-symmetric Schur functions defined by Haglund, Mason,

Luoto and Willigenburg [HLMW], as a basis of QSym, which arise from the combinatorics of

Macdonald polynomials and refine Schur functions in a natural way.) Then, we also prove the

Jacobi-Trudi formulas of both H-type and E-type for such quasi-symmetric functions under the

same assumption as above. Notice that the former corresponds to (1.2) with entries in the es-

sential quasi-symmetric functions and the latter to (1.3) with in the monomial quasi-symmetric

functions. Remark that when ν is the one column and one row partitions, the corresponding

formulas can be also respectively obtained by calculating the images of the essential and mono-

mial quasi-symmetric functions by the antipode S of QSym in two different ways, as shown

by Hoffman ([H2, Theorem 3.1]). More generally, for any skew Young diagram ν, we calculate

the image of Sν(ααα) by S and see that it is essentially equal to the Schur type quasi-symmetric

function again associated with ν#, the anti-diagonal transpose of ν.

2 Schur multiple zeta functions

2.1 Combinatorial settings

We first set up some notions of partitions. A partition λ = (λ1, . . . , λr) of a positive integer n

is a non-decreasing sequence of positive integers such that |λ| =
∑r

i=1 λi = n. We call |λ| and

`(λ) = r the weight and length of λ, respectively. If |λ| = n, then we write λ ` n. We sometimes

express λ ` n as λ = (1m1(λ)2m2(λ) · · ·nmn(λ)) where mi(λ) is the multiplicity of i in λ. We

identify λ ` n with its Young diagram D(λ) = {(i, j) ∈ Z2 | 1 ≤ i ≤ r, 1 ≤ j ≤ λi}, depicted

as a collection of n square boxes with λi boxes in the ith row. We say that (i, j) ∈ D(λ) is a

corner of λ if (i + 1, j) /∈ D(λ) and (i, j + 1) /∈ D(λ) and denote by C(λ) ⊂ D(λ) the set of all

corners of λ. For example, C((4, 3, 3, 2)) = {(1, 4), (3, 3), (4, 2)}. A conjugate λ′ = (λ′1, . . . , λ
′
s)

of λ is defined by λ′i = #{j |λj ≥ i}. Namely, λ′ is the partition whose Young diagram is the

transpose of that of λ. For example, (4, 3, 3, 2)′ = (4, 4, 3, 1).

Let X be a set. For a partition λ, a Young tableau T = (tij) of shape λ over X is a filling of

D(λ) obtained by putting tij ∈ X into (i, j) box of D(λ). Similarly to the above, the conjugate

tableau of T is defined by T ′ = (tji) whose shape is λ′. We denote by T (λ,X) the set of all

Young tableaux of shape λ over X, which is sometimes identified with X |λ|. Moreover, we put

T diag(λ,X) = {(tij) ∈ T (λ,X) | tij = tkl if j − i = l − k} ,

which is identified with Xλ1+`(λ)−1. By a semi-standard Young tableau, we mean a Young

tableau over the set of positive integers N such that the entries in each row are weakly increasing

from left to right and those in each column are strictly increasing from top to bottom. We denote

by SSYT(λ) the set of all semi-standard Young tableaux of shape λ.

2.2 Definition of Schur multiple zeta functions

For sss = (sij) ∈ T (λ,C), define

(2.1) ζλ(sss) =
∑

M∈SSYT(λ)

1

Msss
,

where Msss =
∏

(i,j)∈D(λ)m
sij
ij for M = (mij) ∈ SSYT(λ). We also define ζλ = 1 for the empty

partition λ = ∅. We call ζλ(sss) a Schur multiple zeta function (SMZF for short) associated with
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λ and sometimes write it shortly as sss if there is no confusion. Clearly, this is an extension of

both MZFs and MZSFs. Actually, one sees that

ζ(s1, . . . , sn) = ζ(1n)


s1
...

sn

 =

s1
...

sn

, ζ?(s1, . . . , sn) = ζ(n)

(
s1 · · · sn

)
= s1 · · · sn .

We first discuss a region where the series (2.1) is absolutely convergent.

Lemma 2.1. Let

Wλ =

{
sss = (sij) ∈ T (λ,C)

∣∣∣∣∣ <(sij) ≥ 1 for all (i, j) ∈ D(λ) \ C(λ)

<(sij) > 1 for all (i, j) ∈ C(λ)

}
.

Then, the series (2.1) converges absolutely if sss ∈Wλ.

Proof. Write C(λ) = {(i1, j1), . . . , (ik, jk)}. Then, it can be written as λ = (j
i′k
k j

i′k−1

k−1 · · · j
i′1
1 )

where i′l = il − il−1 with i0 = 0. Since <(sij) ≥ 1 for (i, j) ∈ D(λ) \ C(λ), we have

∑
M∈SSYT(λ)

∣∣∣∣ 1

Msss

∣∣∣∣ ≤ k∏
l=1

∑
(mij)∈SSYT(j

i′
l
l )

il∏
i=1

jl∏
j=1

1

m
<(sij)
ij

≤
k∏
l=1

∞∑
Nl=1

Ci′l,jl(Nl)

N
<(sil,jl )

l

,

where Ca,b(N) is a finite sum defined by

Ca,b(N) =
∑

(mij)∈SSYT(ba)

ma,b=N

a∏
i=1

b∏
j=1

(i,j) 6=(a,b)

1

mij
.

It is well known that, for any ε > 0, there exists a constant Cε > 0, which is not dependent on

N , such that
∑N

m=1
1
m < CεN

ε. Hence

|Ca,b(N)| ≤
a∏
i=1

b∏
j=1

(i,j) 6=(a,b)

N∑
mij=1

1

mij
< Cab−1

ε N ε(ab−1)

and therefore ∑
M∈SSYT(λ)

∣∣∣∣ 1

Msss

∣∣∣∣ ≤ k∏
l=1

∞∑
Nl=1

C
i′ljl−1
ε N

ε(i′ljl−1)

l

N
<(sil,jl )

l

=

k∏
l=1

C
i′ljl−1
ε ζ

(
<(sil,jl)− ε(i′ljl − 1)

)
.

This ends the proof because <(sil,jl) > 1 for 1 ≤ l ≤ k and ε can be taken sufficiently small.

Remark 2.2. The condition sss ∈ Wλ is a sufficient condition that the series (2.1) converges

absolutely. It seems to be interesting to determine the region of absolute convergence of (2.1)

with full description. See e.g., [Mat] for the cases of λ = (1n) and (n), that is, the cases of MZFs

and MZSFs.
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It should be noted that a SMZF can be also written as a linear combination of MZFs or

MZSFs. In fact, for λ ` n, let F(λ) be the set of all bijections f : D(λ)→ {1, 2, . . . , n} satisfying

the following two conditions:

(i) for all i, f((i, j)) < f((i, j′)) if and only if j < j′,

(ii) for all j, f((i, j)) < f((i′, j)) if and only if i < i′.

Moreover, for T = (tij) ∈ T (λ,X), put

V (T ) =
{(
tf−1(1), tf−1(2), . . . , tf−1(n)

)
∈ Xn

∣∣ f ∈ F(λ)
}
.

Furthermore, when X has an addition +, we write www � T for www = (w1, w2, . . . , wm) ∈ Xm

if there exists (v1, v2, . . . , vn) ∈ V (T ) satisfying the following: for all 1 ≤ k ≤ m, there exist

1 ≤ hk ≤ m and lk ≥ 0 such that

(i) wk = vhk + vhk+1 + · · ·+ vhk+lk ,

(ii) there are no i and i′ such that i 6= i′ and tij , ti′j ∈ {vhk , vhk+1, . . . , vhk+lk} for some j,

(iii)
⊔m
k=1{hk, hk + 1, . . . , hk + lk} = {1, 2, . . . , n}.

Then, by the definition, we have

(2.2) ζλ(sss) =
∑
ttt�sss

ζ(ttt).

This clearly includes the first equation in (1.1) as the case λ = (n). Moreover, by an inclusion-

exclusion argument, one can also obtain its ”dual” expression

(2.3) ζλ(sss) =
∑
ttt�sss′

(−1)n−`(ttt)ζ?(ttt),

which does the second one in (1.1) as the case λ = (1n).

Example 2.3. (1) For sss = (sij) ∈ T ((3, 1),C), we have

V (sss) = {(s11, s12, s13, s21), (s11, s12, s21, s13), (s11, s21, s12, s13)}.

One sees that ttt � sss if and only if ttt is one of the followings:

(s11, s12, s13, s21), (s11 + s12, s13, s21), (s11, s12 + s13, s21), (s11, s12, s13 + s21),

(s11 + s12 + s13, s21), (s11 + s12, s13 + s21), (s11, s12 + s13 + s21), (s11, s12, s21, s13),

(s11 + s12, s21, s13), (s11, s12 + s21, s13), (s11, s21, s12, s13), (s11, s21, s12 + s13).

This shows that when sss ∈W(3,1)

s11 s12 s13

s21

= ζ(s11, s12, s13, s21) + ζ(s11 + s12, s13, s21) + ζ(s11, s12 + s13, s21)

+ ζ(s11, s12, s13 + s21) + ζ(s11 + s12 + s13, s21) + ζ(s11 + s12, s13 + s21)

+ ζ(s11, s12 + s13 + s21) + ζ(s11, s12, s21, s13) + ζ(s11 + s12, s21, s13)

+ ζ(s11, s12 + s21, s13) + ζ(s11, s21, s12, s13) + ζ(s11, s21, s12 + s13)

= ζ?(s11, s21, s12, s13)− ζ?(s11 + s21, s12, s13)− ζ?(s11, s21 + s12, s13),

+ ζ?(s11, s12, s21, s13)− ζ?(s11, s12, s21 + s13) + ζ?(s11, s12, s13, s21).

Notice that the second equality follows from the discussion in (2).
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(2) For sss = (sij) ∈ T ((2, 1, 1),C), we have

V (sss) = {(s11, s12, s21, s31), (s11, s21, s12, s31), (s11, s21, s31, s12)}.

One sees that ttt � sss if and only if ttt is one of the followings:

(s11, s12, s21, s31), (s11 + s12, s21, s31), (s11, s12 + s21, s31),

(s11, s21, s12, s31), (s11, s21, s12 + s31), (s11, s21, s31, s12).

This shows that when sss ∈W(2,1,1)

s11 s12

s21

s22

= ζ(s11, s12, s21, s31) + ζ(s11 + s12, s21, s31) + ζ(s11, s12 + s21, s31),

+ ζ(s11, s21, s12, s31) + ζ(s11, s21, s12 + s31) + ζ(s11, s21, s31, s12)

= ζ?(s11, s21, s31, s12)− ζ?(s11 + s21, s31, s12)− ζ?(s11, s21 + s31, s12)

− ζ?(s11, s21, s31 + s12) + ζ?(s11 + s21 + s31, s12) + ζ?(s11 + s21, s31 + s12)

+ ζ?(s11, s21 + s31 + s12) + ζ?(s11, s21, s12, s31)− ζ?(s11 + s21, s12, s31)

− ζ?(s11, s21 + s12, s31) + ζ?(s11, s12, s21, s31)− ζ?(s11, s12, s21 + s31).

Notice that the second equality follows from the discussion in (1).

Remark 2.4. By the definitions, it is clear that if ttt = (t1, t2, . . . , tm) � sss ∈ T (λ,C), then tm is

expressed as a sum of sij where at least one of (i, j) is in C(λ). This together with the expression

(2.2) or (2.3) also leads Lemma 2.1.

2.3 A special case

We now consider a special case of variables; sss = {s}λ (s ∈ C) where {s}λ = (sij) ∈ T (λ,C) is

the tableau given by sij = s for all (i, j) ∈ D(λ). In this case, one sees that our SMZF is realized

as a specialization of the Schur function. Actually, for variables xxx = (x1, x2, . . .), let

sλ = sλ(xxx) =
∑

(mij)∈SSYT(λ)

∏
(i,j)∈D(λ)

xmij

be the Schur function associated with λ. Then, for s ∈ C with <(s) > 1, we have

ζλ({s}λ) = e(s)sλ = sλ(1−s, 2−s, . . .),

where e(s) is the function sending xi to 1
is . This means that ζλ({s}λ) can be written as a

polynomial in ζ(s), ζ(2s), . . ..

Proposition 2.5. Let λ ` n. Then, for s ∈ C with <(s) > 1, we have

(2.4) ζλ({s}λ) =
∑
µ`n

χλ(µ)

zµ

`(µ)∏
i=1

ζ(µis).

Here, zµ =
∏
i≥1 i

mi(µ)mi(µ)! and χλ(µ) ∈ Z is the value of the character χλ attached to the

irreducible representation of the symmetric group Sn of degree n corresponding to λ on the

conjugacy class of Sn of the cycle type µ ` n.
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Proof. For a partition µ, let pµ = pµ(xxx) be the power-sum symmetric function defined by

pµ =
∏`(µ)
i=1 pµi where pr = pr(xxx) =

∑∞
i=1 x

r
i . We know that the Schur function can be written

as a linear combination of power-sum symmetric functions (see [Mac]) as

sλ =
∑
µ`n

χλ(µ)

zµ
pµ.

Hence, one obtains the desired expression by noticing e(s)pr = pr(1
−s, 2−s, . . .) = ζ(rs).

Remark 2.6. For variables xxx = (x1, x2, . . .), let en = en(xxx) and hn = hn(xxx) be the elementary

and complete symmetric functions of degree n, which are respectively defined by

en =
∑

i1<···<in

xi1 · · ·xin , hn =
∑

i1≤···≤in

xi1 · · ·xin .

Then, noticing s(1n) = en and s(n) = hn with χ(1n)(µ) = |µ| − `(µ) and χ(n)(µ) = 1, we have

ζ(s, . . . , s) = e(s)en = en(1−s, 2−s, . . .) =
∑
µ`n

(−1)n−`(µ)

zµ

`(µ)∏
i=1

ζ(µis),

ζ?(s, . . . , s) = e(s)hn = hn(1−s, 2−s, . . .) =
∑
µ`n

1

zµ

`(µ)∏
i=1

ζ(µis).

It is shown in e.g., [H1, Za, Mu] that ζ(2k, . . . , 2k), ζ?(2k, . . . , 2k) ∈ Qπ2kn. These can be

generalized to the Schur multiple zeta “values” as follows.

Corollary 2.7. It holds that ζλ({2k}λ) ∈ Qπ2k|λ| for k ∈ N.

Proof. This is a direct consequence of the expression (2.4) together with the fact ζ(2k) ∈ Qπ2k

obtained by Euler (and hence the rational part can be explicitly written in terms of the Bernoulli

numbers).

Example 2.8. When n = 3, we have

s s s =
1

6
ζ(s)3 +

1

2
ζ(2s)ζ(s) +

1

3
ζ(3s) = ζ?(s, s, s),

s s

s
=

2

6
ζ(s)3 +

0

2
ζ(2s)ζ(s) +

−1

3
ζ(3s),

s

s

s

=
1

6
ζ(s)3 +

−1

2
ζ(2s)ζ(s) +

1

3
ζ(3s) = ζ(s, s, s).

Special values of ζλ({2k}λ) for λ ` 3 with small k are given as follows:

ζλ({2k}λ) k = 1 k = 2 k = 3 k = 4

2k 2k 2k
31π6

15120
4009π12

3405402000
223199π18

194896477400625
2278383389π24

1938427890852062610000

2k 2k

2k
π6

840
493π12

5108103000
86π18

4331032831125
116120483π24

24230348635650782625000

2k

2k

2k

π6

5040
π12

681080400
2π18

64965492466875
38081π24

48460697271301565250000
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Example 2.9. When n = 4, we have

s s s s =
1

24
ζ(s)4 +

1

4
ζ(2s)ζ(s)2 +

1

8
ζ(2s)2 +

1

3
ζ(3s)ζ(s) +

1

4
ζ(4s) = ζ?(s, s, s, s),

s s s

s
=

3

24
ζ(s)4 +

1

4
ζ(2s)ζ(s)2 +

−1

8
ζ(2s)2 +

0

3
ζ(3s)ζ(s) +

1

4
ζ(4s),

s s

s s
=

2

24
ζ(s)4 +

0

4
ζ(2s)ζ(s)2 +

2

8
ζ(2s)2 +

−1

3
ζ(3s)ζ(s) +

0

4
ζ(4s),

s s

s

s

=
3

24
ζ(s)4 +

−1

4
ζ(2s)ζ(s)2 +

−1

8
ζ(2s)2 +

0

3
ζ(3s)ζ(s) +

1

4
ζ(4s),

s

s

s

s

=
1

24
ζ(s)4 +

−1

4
ζ(2s)ζ(s)2 +

1

8
ζ(2s)2 +

1

3
ζ(3s)ζ(s) +

−1

4
ζ(4s) = ζ(s, s, s, s).

Special values of ζλ({2k}λ) for λ ` 4 with small k are given as follows:

ζλ({2k}λ) k = 1 k = 2 k = 3 k = 4

2k 2k 2k 2k
127π8

604800
13739π16

1136785104000
1202645051π24

1009597859818782609375
3467913415992313π32

27995618815818008860855350000000

2k 2k 2k

2k
67π8

362880
58489π16

8931882960000
3670606169π24

6057587158912695656250
49743652304257π32

799874823309085967453010000000

2k 2k

2k 2k

11π8

302400
113π16

1838917080000
14074π24

43895559122555765625
30650383π32

15570422033269192914825000000

2k 2k

2k

2k

11π8

362880
29π16

1786376592000
98642π24

3028793579456347828125
332561213π32

3999374116545429837265050000000

2k

2k

2k

2k

π8

362880
π16

12504636144000
4π24

432684797065192546875
13067π32

9331872938606002953618450000000

3 Jacobi-Trudi formulas

The aim of this section is to give a proof of Theorem 1.1. To do that, we need some basic concepts

in combinatorial method. Namely, we try to understand SMZF as a sum of weights of patterns

on the Z2 lattice, similarly to Schur functions (more precisely, see, e.g., [LP, HG, Ste, Zi]).

Now, we work on not SMZF itself but a truncated sum of SMZF, which may correspond to

the Schur polynomial in theory of Schur functions. For N ∈ N, let SSYTN (λ) be the set of all

(mij) ∈ SSYT(λ) such that mij ≤ N for all i, j. Define

ζNλ (sss) =
∑

M∈SSYTN (λ)

1

Msss
.
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In particular, put

ζN (s1, . . . , sn) = ζN(1n)


s1
...

sn

 , ζN?(s1, . . . , sn) = ζN(n)

(
s1 · · · sn

)
.

Notice that lim
N→∞

ζNλ (sss) = ζλ(sss) when sss ∈Wλ. Similarly to (1.1), we have the expressions

(3.1) ζN?(sss) =
∑
ttt�sss

ζN (ttt), ζN (sss) =
∑
ttt�sss

(−1)n−`(ttt)ζN?(ttt).

3.1 A proof of the Jacobi-Trudi formula of H-type

3.1.1 Rim decomposition of partition

A skew Young diagram θ is a diagram obtained as a set difference of two Young diagrams of

partitions λ and µ satisfying µ ⊂ λ, that is µi ≤ λi for all i. In this case, we write θ = λ/µ. It is

called a ribbon if it is connected and contains no 2× 2 block of boxes. Let λ be a partition. The

maximal outer ribbon of λ is called the rim of λ. We can peel the diagram λ off into successive

rims θt, θt−1, . . . , θ1 beginning from the outside of λ. We call Θ = (θ1, . . . , θt) a rim decomposition

of λ. In other words, we consider a sequence of Young diagrams ∅ = λ(0), λ(1), . . . , λ(t) = λ such

that λ(i−1) ⊂ λ(i) and λ(i)/λ(i−1) is the ribbon θi for all 1 ≤ i ≤ t.
Example 3.1. The following Θ = (θ1, θ2, θ3, θ4) is a rim decomposition of λ = (4, 3, 3, 2);

Θ =

1 1 3 3

2 3 3

2 3 4

3 3

,

which means that θ1 = , θ2 = , θ3 = and θ4 = .

Write λ = (λ1, . . . , λr). We call a rim decomposition Θ = (θ1, . . . , θr) of λ an H-rim

decomposition if each θi starts from (i, 1) for all 1 ≤ i ≤ r. Here, we permit θi = ∅. We denote

Rimλ
H by the set of all H-rim decompositions of λ.

Example 3.2. The following Θ = (θ1, θ2, θ3, θ4) is an H-rim decomposition of λ = (4, 3, 3, 2);

Θ =

1 1 3 3

3 3 3

3 4 4

4 4

,

which means that θ1 = , θ2 = ∅ , θ3 = and θ4 = . Note that the rim

decomposition appeared in Example 3.1 is not an H-rim decomposition.

Remark 3.3. The H-rim decompositions are also appeared in [ELW], where they are called

the flat special rim-hooks. They are used to compute the coefficients of the linear expansion of

a given symmetric function via Schur functions.
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3.1.2 Patterns on the Z2 lattice

Fix N ∈ N. For a partition λ = (λ1, . . . , λr), let ai and bi be lattice points in Z2 respectively

given by ai = (r + 1 − i, 1) and bi = (r + 1 − i + λi, N) for 1 ≤ i ≤ r. Put A = (a1, . . . , ar)

and B = (b1, . . . , br). An H-pattern corresponding to λ is a tuple L = (l1, . . . , lr) of directed

paths on Z2, whose directions are allowed only to go one to the right or one up, such that li
starts from ai and ends to bσ(i) for some σ ∈ Sr. We call such σ ∈ Sr the type of L and denote

it by σ = type(L). Note that the type of an H-pattern does not depend on N . The number of

horizontal edges appearing in the path li is called the horizontal distance of li and is denoted

by hd(li). When type(L) = σ, we simply write L : A → Bσ where Bσ = (bσ(1), . . . , bσ(r)) and

li : ai → bσ(i). It is easy to see that hd(li) = λσ(i) − σ(i) + i and
∑r

i=1 hd(li) = |λ|.
Let HNλ be the set of all H-patterns corresponding to λ and SλH = {type(L) ∈ Sr |L ∈ HNλ }.

The following is a key lemma of our study, which is easily verified.

Lemma 3.4. For Θ = (θ1, . . . , θr) ∈ Rimλ
H , there exists L = (l1, . . . , lr) ∈ HNλ such that

hd(li) = |θi| for all 1 ≤ i ≤ r. Moreover, the map τH : Rimλ
H → SλH given by τH(Θ) = type(L)

is a bijection.

Example 3.5. Let λ = (4, 3, 3, 2). Then, we have τH(Θ) = (1243) ∈ S4 where Θ is the H-rim

decomposition of λ appeared in Example 3.2.

3.1.3 Weight of patterns

Fix sss = (sij) ∈ T (λ,C). We next assign a weight to L = (l1, . . . , lr) ∈ HNλ via the H-rim

decomposition of λ as follows. Take Θ = (θ1, . . . , θr) ∈ Rimλ
H such that τH(Θ) = type(L).

Then, when the kth horizontal edge of li is on the jth row, we weight it with 1
jspq where

(p, q) ∈ D(λ) is the kth component of θi. Now, the weight wNsss (li) of the path li is defined to be

the product of weights of all horizontal edges along li. Here, we understand that wNsss (li) = 1 if

θi = ∅. Moreover, we define the weight wNsss (L) of L ∈ HNλ by

wNsss (L) =

r∏
i=1

wNsss (li).

Example 3.6. Let λ = (4, 3, 3, 2). Consider the following L = (l1, l2, l3, l4) ∈ H4
(4,3,3,2);

1

2

3

4

a4 a3 a2 a1

(1, 1) (2, 1) (3, 1) (4, 1)

(3, 4) (5, 4) (6, 4) (8, 4)

b4 b3 b2 b1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 1: L = (l1, l2, l3, l4) ∈ H4
(4,3,3,2)
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Since type(L) = (1243), the corresponding H-rim decomposition of λ is nothing but the one

appeared in Example 3.2.

Let sss =

a b c d

e f g

h i j

k l

∈ T ((4, 3, 3, 2),C). Then, the weight of li are given by

w4
sss(l1) =

1

1a2b
, w4

sss(l2) = 1, w4
sss(l3) =

1

3h3e3f3g3c4d
, w4

sss(l4) =
1

2k2l2i2j
.

In particular, when sss =

a0 a1 a2 a3

a−1 a0 a1

a−2 a−1 a0

a−3 a−2

∈ T diag((4, 3, 3, 2),C), these are equal to

w4
sss(l1) =

1

1a02a1
, w4

sss(l2) = 1, w4
sss(l3) =

1

3a−23a−13a03a13a24a3
, w4

sss(l4) =
1

2a−32a−22a−12a0
.

Notice that, in this case, from the definition of the weight, the tuple of indexes of the exponent

of the denominator of w4
sss(li) along li should be equal to (a1−i, a1−i+1, a1−i+2, . . .) for all i.

3.1.4 Proof

A proof of (1.2) is given by calculating the sum

XN
λ (sss) =

∑
L∈HNλ

εtype(L)w
N
sss (L) =

∑
σ∈SλH

εσ
∑

L:A→Bσ
wNsss (L),

where εσ is the signature of σ ∈ Sr. First, the inner sum can be calculated as follows.

Lemma 3.7. For σ ∈ SλH , let Θσ = (θσ1 , . . . , θ
σ
r ) ∈ Rimλ

H be the H-rim decomposition such that

τH(Θσ) = σ. Then, we have

∑
L:A→Bσ

wNsss (L) =
r∏
i=1

ζN? (θσi (sss)) .

Here, for Θ = (θ1, . . . , θr) ∈ Rimλ
H , θi(sss) ∈ C|θi| is the tuple obtained by reading contents of the

shape restriction of sss to θi from the bottom left to the top right.

Proof. Let L = (l1, . . . , lr) ∈ HNλ be an H-pattern of type σ. Then li is a path from ai to

bσ(i) with hd(li) = λσ(i) − σ(i) + i = |θσi |. For simplicity, write ki = λσ(i) − σ(i) + i and

θσi (sss) = (si,1, . . . , si,ki). Suppose that li has nj steps on the jth row for 1 ≤ j ≤ N . Then, from

the definition of the weight, we have

wNsss (li) =
1

1si,1
· · · 1

1si,n1︸ ︷︷ ︸
n1 terms

1

2si,n1+1
· · · 1

2si,n1+n2︸ ︷︷ ︸
n2 terms

· · · 1

N si,n1+···+nN−1+1
· · · 1

N si,n1+···+nN︸ ︷︷ ︸
nN terms
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with n1 + · · ·+ nN = ki. This shows that

∑
L:A→Bσ

wNsss (L) =

r∏
i=1

∑
li:ai→bσ(i)

wNsss (li)

=
r∏
i=1

∑
1≤m1≤···≤mki≤N

1

m
si,1
1 · · ·msi,ki

ki

=
r∏
i=1

ζN?(si,1, . . . , si,ki).

From Lemma 3.7, we have

(3.2) XN
λ (sss) =

∑
σ∈SλH

εσ

r∏
i=1

ζN? (θσi (sss)) .

Let HNλ,0 be the set of all L = (l1, . . . , lr) ∈ HNλ such that any distinct pair of li and lj has no

intersection. Define

XN
λ,0(sss) =

∑
L∈HNλ,0

εtype(L)w
N
sss (L), XN

λ,1(sss) =
∑

L∈HNλ \H
N
λ,0

εtype(L)w
N
sss (L).

Clearly we have XN
λ (sss) = XN

λ,0(sss) + XN
λ,1(sss). Moreover, since type(L) = id for all L ∈ HNλ,0

where id is the identity element of Sr and id corresponds to the trivial H-rim decomposition

(θ1, . . . , θr) = ((λ1), . . . , (λr)), employing the well-known identification between non-intersecting

lattice paths and semi-standard Young tableaux, we have

XN
λ,0(sss) =

∑
L∈HNλ,0

wNsss (L) = ζNλ (sss).

Therefore, from (3.2), we reach the expression

ζNλ (sss) =
∑
σ∈Sλ

εσ

r∏
i=1

ζN? (θσi (sss))−XN
λ,1(sss).(3.3)

Now, one can obtain (1.2) by taking the limit N → ∞ of (3.3) under suitable assumptions

on sss described in Theorem 1.1 together with the following proposition.

Proposition 3.8. Assume that sss = (sij) ∈ T diag(λ,C). Write ak = si,i+k for k ∈ Z.

(1) We have

(3.4) XN
λ (sss) = det

[
ζN?(a−j+1, a−j+2, . . . , a−j+(λi−i+j))

]
1≤i,j≤r .

(2) It holds that

(3.5) XN
λ,1(sss) = 0.
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Proof. We first notice that, if sss = (sij) ∈ T diag(λ,C), then we have

θσi (sss) = (a1−i, a1−i+1, . . . , a1−i+(λσ(i)−σ(i)+i)−1)

for all 1 ≤ i ≤ r. Therefore, understanding that ζN(k) = 0 for k < 0, from (3.2), we have

XN
λ (sss) =

∑
σ∈Sλ

εσ

r∏
i=1

ζN? (θσi (sss))

=
∑
σ∈Sr

εσ

r∏
i=1

ζN?(a1−i, a1−i+1, . . . , a1−i+(λσ(i)−σ(i)+i)−1)

= det
[
ζN?(a1−i, a1−i+1, . . . , a1−i+(λj−j+i)−1)

]
1≤i,j≤r

= det
[
ζN?(a−i+1, a−j+2, . . . , a−j+(λi−i+j))

]
1≤i,j≤r .

Hence, we obtain (3.4).

We next show the second assertion. To do that, we employ the well-known involution L 7→ L

on HNλ \ HNλ,0 defined as follows. For L = (l1, . . . , lr) ∈ HNλ \ HNλ,0 of type σ, consider the first

(rightmost) intersection point appearing in L, at which two paths say li and lj cross. Let L be an

H-pattern that contains every paths in L except for li and lj and two more paths li and lj . Here,

li (resp. lj) follows li (resp. lj) until it meets the first intersection point and after that follows lj
(resp. li) to the end. Notice that, if sss = (sij) ∈ T diag(λ,C), then we have wNsss (L) = wNsss (L) since

there is no change of horizontal edges between L and L. Moreover, we have type(L) = −type(L)

because the end points of L and L are just switched. These imply that

XN
λ,1(sss) =

∑
L∈HNλ \H

N
λ,0

εtype(L)w
N
sss (L)

= −
∑

L∈HNλ \H
N
λ,0

εtype(L)w
N
sss (L)

= −XN
λ,1(sss)

and therefore lead (3.5).

Remark 3.9. When sss ∈ T diag(λ,C), (3.3) can be also written in terms of the H-rim decompo-

sition as follows;

(3.6) ζNλ (sss) =
∑

Θ=(θ1,θ2,...,θr)∈Rimλ
H

εH(Θ)ζN? (θ1(sss)) ζN? (θ2(sss)) · · · ζN? (θr(sss)) ,

where εH(Θ) = ετH(Θ). Note that ε(Θ) = (−1)n−#{i | θi 6=∅} when λ = (1n).

Remark 3.10. In some cases, XN
λ (sss) actually has a determinant expression without the as-

sumption on variables;

XN
(2,2)

(
a b

c d

)
=

∣∣∣∣ ζN?(a, b) ζN?(c, d, b)
ζN?(a) ζN?(c, d)

∣∣∣∣ ,

XN
(2,2,1)


a b

c d

e

 =

∣∣∣∣∣∣
ζN?(a, b) ζN?(c, d, b) ζN?(e, c, d, b)
ζN?(a) ζN?(c, d) ζN?(e, c, d)

0 1 ζN?(e)

∣∣∣∣∣∣ .
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However, in general, XN
λ (sss) can not be written as a determinant. For example, we have

XN
(2,2,2)


a b

c d

e f

 = ζN?(a, b)ζN?(c, d)ζN?(e, f)− ζN?(a, b)ζN?(c)ζN?(e, f, d)

− ζN?(c, a)ζN?(e, f, d, b)− ζN?(a)ζN?(c, d, b)ζN?(e, f)

+ ζN?(c, a, b)ζN?(e, f, d) + ζN?(a)ζN?(c)ζN?(e, f, d, b)

and see that the righthand side does not seem to be expressed as a determinant (but is close to

the determinant).

Similarly, XN
λ,1(sss) does not vanish in general. For example,

X2
(2,2),1

(
a b

c d

)
=

(
1

1a1b1c1d
+

1

1a1b1c2d
+

1

1a2b1c1d
+

1

1a2b1c2d

1

1a2b2c2d
+

1

2a2b1c1d
+

1

2a2b1c2d
+

1

2a2b2c2d

)
−
(

1

1a1b1c1d
+

1

1a2b1c1d
+

1

1a2b1c2d
+

1

1a2b2c2d

+
1

2a1b1c1d
+

1

2a2b1c1d
+

1

2a2b1c2d
+

1

2a2b2c2d

)
=

1

1a1b1c2d
− 1

2a1b1c1d
,

which actually vanishes when a = d.

3.2 A proof of the Jacobi-Trudi formula of E-type

To prove (1.3), we need to consider another type of patterns on the Z2 lattice. Because the

discussion are essentially the same as the previous subsection, we omit all proofs of the results

in this subsection.

Let λ = (λ1, . . . , λr) be a partition and λ′ = (λ′1, . . . , λ
′
s) the conjugate of λ. A rim de-

composition Θ = (θ1, . . . , θs) of λ is called an E-rim decomposition if each θi starts from (1, i)

for all 1 ≤ i ≤ s. Here, we again permit θi = ∅. We denote by Rimλ
E the set of all E-rim

decompositions of λ.

Example 3.11. The following Θ = (θ1, θ2, θ3, θ4) is an E-rim decomposition of λ = (4, 3, 3, 2);

Θ =

1 2 3 4

1 2 3

1 3 3

3 3

,

which means that θ1 = , θ2 = , θ3 = and θ4 = .

Fix N ∈ N. Let ci and di be lattice points in Z2 respectively given by ci = (s + 1 − i, 1)

and di = (s + 1 − i + λ′i, N + 1) for 1 ≤ i ≤ s. Put C = (c1, . . . , cs) and D = (d1, . . . , ds).
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An E-pattern corresponding to λ is a tuple L = (l1, . . . , ls) of directed paths on Z2, whose

directions are allowed only to go one to the northeast or one up, such that li starts from ci
and ends to dσ(i) for some σ ∈ Ss. We also call such σ ∈ Ss the type of L and denote it by

σ = type(L). The number of northeast edges appearing in the path li is called the northeast

distance of li and is denoted by ned(li). When type(L) = σ, we simply write L : C → Dσ where

Dσ = (dσ(1), . . . , dσ(s)) and li : ci → dσ(i). It is easy to see that ned(li) = λ′σ(i) − σ(i) + i and∑s
i=1 ned(li) = |λ|.
Let ENλ be the set of all E-patterns corresponding to λ and SλE = {type(L) ∈ Ss |L ∈ ENλ }.

Lemma 3.12. For Θ = (θ1, . . . , θs) ∈ Rimλ
E, there exists L = (l1, . . . , ls) ∈ ENλ such that

ned(li) = |θi| for all 1 ≤ i ≤ s. Moreover, the map τE : Rimλ
E → SλE given by τE(Θ) = type(L)

is a bijection.

Fix sss = (sij) ∈ T (λ,C). A weight on L = (l1, . . . , ls) ∈ ENλ is similarly defined via the E-rim

decomposition of λ as follows. Take Θ = (θ1, . . . , θs) ∈ Rimλ
E such that τE(Θ) = type(L). Then,

when the kth northeast edge of li lies from the jth row to (j + 1)th row, we weight it with
1

jspq where (p, q) ∈ D(λ) is the kth component of θi. Now, the weight wNsss (li) of the path li is

defined to be the product of weights of all northeast edges along li. Here, we understand that

wNsss (li) = 1 if θi = ∅. Moreover, we define the weight wNsss (L) of L ∈ ENλ by

wNsss (L) =
s∏
i=1

wNsss (li).

Example 3.13. Let λ = (4, 3, 3, 2). Consider the E-rim decomposition Θ ∈ Rimλ
E of λ appeared

in Example 3.11. It is easy to see that τE(Θ) = (123) ∈ S4 via the following L = (l1, l2, l3, l4) ∈
E6

(4,3,3,2);

1

2

3

4

5

6

7

c4 c3 c2 c1

(1, 1) (2, 1) (3, 1) (4, 1)

(2, 7) (5, 7) (7, 7) (8, 7)

d4 d3 d2 d1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2: L = (l1, l2, l3, l4) ∈ E6
(4,3,3,2)
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Let sss =

a b c d

e f g

h i j

k l

∈ T ((4, 3, 3, 2),C). Then, the weight of li are given by

w4
sss(l1) =

1

1a5e6h
, w4

sss(l2) =
1

3b5f
, w4

sss(l3) =
1

1c2g3j4i5l6k
, w4

sss(l4) =
1

3d
.

In particular, when sss =

a0 a1 a2 a3

a−1 a0 a1

a−2 a−1 a0

a−3 a−2

∈ T diag((4, 3, 3, 2),C), these are equal to

w4
sss(l1) =

1

1a05a−16a−2
, w4

sss(l2) =
1

3a15a0
, w4

sss(l3) =
1

1a22a13a04a−15a−26a−3
, w4

sss(l4) =
1

3a3
.

Notice that, in this case, from the definition of the weight, the tuple of indexes of the exponent

of the denominator of w4
sss(li) along li should be equal to (a−1+i, a−1+i−1, a−1+i−2, . . .) for all i.

We similarly give a proof of (1.3) by calculating the sum

Y N
λ (sss) =

∑
L∈ENλ

εtype(L)w
N
sss (L) =

∑
σ∈SλE

εσ
∑

L:C→Dσ
wNsss (L),

Lemma 3.14. For σ ∈ SλE, let Θσ = (θσ1 , . . . , θ
σ
s ) ∈ Rimλ

E be the E-rim decomposition such that

τE(Θσ) = σ. Then, we have

∑
L:C→Dσ

wNsss (L) =
s∏
i=1

ζN (θσi (sss)) .

Here, for Θ = (θ1, . . . , θs) ∈ Rimλ
E, θi(sss) ∈ C|θi| is the tuple obtained by reading contents of the

shape restriction of sss to θi from the top right to the bottom left.

From Lemma 3.14, we have

(3.7) Y N
λ (sss) =

∑
σ∈SλE

εσ

s∏
i=1

ζN (θσi (sss)) .

Define ENλ,0 similarly to HNλ,0 and also Y N
λ,0(sss) and Y N

λ,1(sss). It holds that

Y N
λ,0(sss) =

∑
L∈ENλ,0

wNsss (L) = ζNλ (sss).

Hence, from (3.7), we reach the expression

ζNλ (sss) =
∑
σ∈SλE

εσ

s∏
i=1

ζN (θσi (sss))− Y N
λ,1(sss).(3.8)

Now, (1.3) is obtained by taking the limit N →∞ of (3.8) under suitable assumptions on sss

described in Theorem 1.1 together with the following proposition.
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Proposition 3.15. Assume that sss = (sij) ∈ T diag(λ,C). Write ak = si,i+k for k ∈ Z.

(1) We have

Y N
λ (sss) = det

[
ζN (aj−1, aj−2, . . . , aj−(λ′i−i+j))

]
1≤i,j≤s

.

(2) It holds that

Y N
λ,1(sss) = 0.

Remark 3.16. When sss ∈ T diag(λ,C), (3.8) can be also written in terms of the E-rim decom-

position as follows;

(3.9) ζNλ (sss) =
∑

Θ=(θ1,θ2,...,θs)∈Rimλ
E

εE(Θ)ζN (θ1(sss)) ζN (θ2(sss)) · · · ζN (θs(sss)) ,

where εE(Θ) = ετE(Θ). Note that εE(Θ) = (−1)n−#{i | θi 6=∅} when λ = (n).

4 Schur multiple zeta functions as variations of Schur functions

4.1 Schur multiple zeta functions of skew type

Our SMZFs are naturally extended to those of skew type as follows. Let λ and µ be partitions

satisfying µ ⊂ λ. We use the same notations D(λ/µ), T (λ/µ,X), T diag(λ/µ,X) for a set X,

SSYT(λ/µ) and SSYTN (λ/µ) for a positive integer N ∈ N as the previous sections.

Let sss = (sij) ∈ T (λ/µ,C). We define a skew SMZF associated with λ/µ by

(4.1) ζλ/µ(sss) =
∑

M∈SSYT(λ/µ)

1

Msss

and its truncated sum

ζNλ/µ(sss) =
∑

M∈SSYTN (λ/µ)

1

Msss
,

where Msss =
∏

(i,j)∈D(λ/µ)m
sij
ij for M = (mij) ∈ SSYT(λ/µ). As we have seen in Lemma 2.1,

the series (4.1) converges absolutely if sss ∈ Wλ/µ where Wλ/µ is also similarly defined as Wλ

(note that C(λ/µ) ⊂ C(λ)). We have again

(4.2) ζλ/µ(sss) =
∑
ttt�sss

ζ(ttt), ζλ/µ(sss) =
∑
ttt�sss′

(−1)|λ/µ|−`(ttt)ζ?(ttt),

where � is naturally generalized to the skew types.

Example 4.1. (1) For sss = (sij) ∈W(2,2,2)/(1,1), we have

s12

s22

s31 s32

= ζ(s31, s12, s22, s32) + ζ(s31 + s12, s22, s32) + ζ(s12, s31 + s22, s32),

+ ζ(s12, s31, s22, s32) + ζ(s12, s22, s31 + s32) + ζ(s12, s22, s31, s32)

= ζ?(s31, s12, s22, s32)− ζ?(s31 + s12, s22, s32)− ζ?(s31, s12 + s22, s32)

− ζ?(s31, s12, s22 + s32) + ζ?(s31 + s12 + s22, s32) + ζ?(s31 + s12, s22 + s32)

+ ζ?(s31, s12 + s22 + s32) + ζ?(s12, s31, s22, s32)− ζ?(s12, s31, s22 + s32)

+ ζ?(s12, s22, s31, s32)− ζ?(s12 + s22, s31, s32)− ζ?(s12, s22 + s31, s32).



20 M. Nakasuji, O. Phuksuwan and Y. Yamasaki

(2) For sss = (sij) ∈W(3,3)/(2), we have

s13

s21 s22 s23

= ζ(s13, s21, s22, s23) + ζ(s13 + s21, s22, s23) + ζ(s13, s21 + s22, s23)

+ ζ(s13, s21, s22 + s23) + ζ(s13 + s21 + s22, s23) + ζ(s13 + s21, s22 + s23)

+ ζ(s13, s21 + s22 + s23) + ζ(s21, s13, s22, s23) + ζ(s21, s13 + s22, s23)

+ ζ(s21, s13, s22 + s23) + ζ(s21, s22, s13, s23) + ζ(s21 + s22, s13, s23)

= ζ?(s13, s21, s22, s23)− ζ?(s13 + s21, s22, s23)− ζ?(s21, s13 + s22, s23),

+ ζ?(s21, s13, s22, s23)− ζ?(s21, s22, s23 + s13) + ζ?(s21, s22, s13, s23).

As the same discussion performed in Section 2.3, one sees that ζλ/µ({s}λ/µ) = e(s)sλ/µ =

sλ/µ(1−s, 2−s, . . .) for s ∈ C with <(s) > 1 where sλ/µ is the skew Schur function associate with

λ/µ (see [Mac]). In particular, since sλ/µ is a symmetric function and hence can be expressed as a

linear combination of the power-sum symmetric functions, we have ζλ/µ({2k}λ/µ) ∈ Qπ2k(|λ|−|µ|)

for k ∈ N. Notice that it is shown in [Sta] that ζλ/µ({2k}λ/µ) for a special choice of λ/µ with

k = 1, 2, 3 is involved with fλ/µ; the number of standard Young tableaux of shape λ/µ.

4.2 Macdonald’s ninth variation of Schur functions

Let W diag
λ/µ = Wλ/µ∩T diag(λ/µ,C). We now show that, when sss ∈W diag

λ/µ , the skew SMZF ζλ/µ(sss)

is realized as (the limit of) a specialization of the ninth variation of skew Schur functions studied

by Nakagawa, Noumi, Shirakawa and Yamada [NNSY]. As in the previous discussion, we write

ak = si,i+k for k ∈ Z (and for any i ∈ N) for sss = (sij) ∈W diag
λ/µ .

Let r and s be positive integers. Put η = r+ s. Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µr) be

partitions satisfying µ ⊂ λ ⊂ (sr) (we here allow λi = 0 or µi = 0) and J = {j1, j2, . . . , jr} with

ja = λr+i−a + a and I = {i1, i2, . . . , ir} with ib = µr+i−b + b the corresponding Maya diagrams,

respectively. Notice that I and J are subsets of {1, 2, . . . , η} satisfying j1 < j2 < · · · < jr
and i1 < i2 < · · · < ir. Then, Macdonald’s ninth variation of skew Schur function S

(r)
λ/µ(X)

associated with a general matrix X = [xij ]1≤i,j≤η of size η is defined by

S
(r)
λ/µ(X) = ξIJ(X+).

Here, we have used the Gauss decomposition X = X−X0X+ of X where X−, X0 and X+ are

lower unitriangular, diagonal and upper unitriangular matrices, respectively, which are deter-

mined uniquely as matrices with entries in the field of rational functions in the variables xij for

1 ≤ i, j ≤ η. Moreover, ξIJ(X+) is the minor determinant of X+ corresponding to I and J . Put

e(r)
n (X) = S

(r)
(1n)(X) = ξ1,...,r

1,...,r−1,r+n(X+),

h(r)
n (X) = S

(r)
(n)(X) = ξ1,...,r

1,..., ̂r−n+1,r+1
(X+),

which are variations of the elementary and complete symmetric polynomials, respectively. Here
̂r − n+ 1 means that we ignore r − n + 1. For convenience, we put e

(r)
0 (X) = h

(r)
0 (X) = 1 and

e
(r)
n (X) = h

(r)
n (X) = 0 for n < 0.

For N ∈ N, let U = U (N) be an upper unitriangular matrix of size η defined by U =

U1U2 · · ·UN where

Uk =
(
Iη + u

(1)
k E12

)(
Iη + u

(2)
k E23

)
· · ·
(
Iη + u

(η−1)
k Eη−1,η

)
.
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Here, u
(i)
k are variables for 1 ≤ k ≤ N and 1 ≤ i ≤ η − 1 and Iη and Eij are the identity and

unit matrix of size η, respectively. The following is crucial in this section.

Lemma 4.2. Let sss = (sij) ∈ T diag(λ/µ,C). Write ak = si,i+k for k ∈ Z. If u
(i)
k = k−ai−r , then

we have

(4.3) ζNλ/µ(sss) = S
(r)
λ/µ(U).

Proof. It is shown in [NNSY] that S
(r)
λ/µ(U) has a tableau representation

(4.4) S
(r)
λ/µ(U) =

∑
(mij)∈SSYTN (λ/µ)

∏
(i,j)∈D(λ/µ)

u(r−i+j)
mij .

Hence the claim immediately follows because u
(r−i+j)
mij = m

−aj−i
ij = m

−sij
ij if u

(i)
k = k−ai−r .

As corollaries of the results in [NNSY], we obtain the following formulas for skew SMZFs.

4.3 Jacobi-Trudi formulas

It is shown in [NNSY] that S
(r)
λ/µ(X) satisfies the Jacobi-Trudi formulas

S
(r)
λ/µ(X) = det

[
h

(µj+r−j+1)
λi−µj−i+j (X)

]
1≤i,j≤r

,(4.5)

S
(r)
λ/µ(X) = det

[
e

(r−1−µ′j+j)
λ′i−µ′j−i+j

(X)

]
1≤i,j≤s

,(4.6)

where λ′ = (λ′1, . . . , λ
′
s) and µ′ = (µ′1, . . . , µ

′
s) are the conjugates of λ and µ, respectively (we

again allow λ′i = 0 or µ′i = 0).

Theorem 4.3. Retain the above notations. Assume that sss = (sij) ∈W diag
λ/µ .

(1) Assume further that <(si,λi) > 1 for all 1 ≤ i ≤ r. Then, we have

(4.7) ζλ/µ(sss) = det
[
ζ?(aµj−j+1, aµj−j+2, . . . , aµj−j+(λi−µj−i+j))

]
1≤i,j≤r

.

Here, we understand that ζ?( · · · ) = 1 if λi − µj − i+ j = 0 and 0 if λi − µj − i+ j < 0.

(2) Assume further that <(sλ′i,i) > 1 for all 1 ≤ i ≤ s. Then, we have

(4.8) ζλ/µ(sss) = det
[
ζ(a−µ′j+j−1, a−µ′j+j−2, . . . , a−µ′j+j−(λ′i−µ′j−i+j))

]
1≤i,j≤s

.

Here, we understand that ζ( · · · ) = 1 if λ′i − µ′j − i+ j = 0 and 0 if λ′i − µ′j − i+ j < 0.

Proof. From (4.4), we have

e(r)
n (U) =

∑
m1<m2<···<mn≤N

u(r)
m1
u(r−1)
m2

· · ·u(r−n+1)
mn ,

h(r)
n (U) =

∑
m1≤m2≤···≤mn≤N

u(r)
m1
u(r+1)
m2

· · ·u(r+n−1)
mn .
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Now, write r′ = µj + r− j + 1 and k′ = λi− µj − i+ j for simplicity. Then, we have u
(r′+i−1)
mi =

m
−aµj−j+i
i if u

(i)
k = k−ai−r and hence

h
(µj+r−j+1)
λi−µj−i+j (U) =

∑
m1≤m2≤···≤mk′≤N

u(r′)
m1
u(r′+1)
m2

· · ·u(r′+k′−1)
mk′

=
∑

m1≤m2≤···≤mk′≤N
m
−aµj−j+1

1 m
−aµj−j+2

2 · · ·m
−aµj−j+k′
k′

= ζN?(aµj−j+1, aµj−j+2, . . . , aµj−j+(λi−µj−i+j)).

This shows that (4.7) follows from (4.5) by letting N → ∞. Similarly, (4.6) is obtained from

(4.8) via the expression

e
(r−1−µ′j+j)
λ′i−µ′j−i+j

(U) = ζN (a−µ′j+j−1, a−µ′j+j−2, . . . , a−µ′j+j−(λ′i−µ′j−i+j)).

Example 4.4. When λ/µ = (4, 3, 2)/(2, 1), we have

a2 a3

a0 a1

a−2 a−1

=

∣∣∣∣∣∣
ζ?(a2, a3) ζ?(a0, a1, a2, a3) ζ?(a−2, a−1, a0, a1, a2, a3)

1 ζ?(a0, a1) ζ?(a−2, a−1, a0, a1)
0 1 ζ?(a−2, a−1)

∣∣∣∣∣∣ ,
a2 a3

a0 a1

a−2 a−1

=

∣∣∣∣∣∣∣∣
ζ(a−2) ζ(a0, a−1, a−2) ζ(a2, a1, a0, a−1, a−2) ζ(a3, a2, a1, a0, a−1, a−2)

1 ζ(a0, a−1) ζ(a2, a1, a0, a−1) ζ(a3, a2, a1, a0, a−1)
0 1 ζ(a2, a1) ζ(a3, a2, a1)
0 0 1 ζ(a3)

∣∣∣∣∣∣∣∣ .
4.4 Giambelli formula

For a partition λ, we define two sequences of indices p1, . . . , pt and q1, . . . , qt by pi = λi − i+ 1

and qi = λ′i − i for 1 ≤ i ≤ t where t is the number of diagonal entries of λ. Notice that

p1 > p2 > · · · > pt > 0 and q1 > q2 > · · · > qt ≥ 0 and λ = (p1 − 1, . . . , pt − 1 | q1, . . . , qt) is the

Frobenius notation of λ. It is shown in [NNSY] that S
(r)
λ (X) satisfies the Giambelli formula

(4.9) S
(r)
λ (X) = det

[
S

(r)

(pi,1
qj )

(X)
]

1≤i,j≤t
.

Theorem 4.5. Retain the above notations. Assume that sss = (sij) ∈ W diag
λ . Moreover, assume

further that <(si,λi) = <(api−1) > 1 and <(sλ′i,i) = <(a−qi) > 1 for 1 ≤ i ≤ t. Then, we have

ζλ(sss) = det
[
ζ(pi,1

qj )(sssi,j)
]

1≤i,j≤t
,

where sssi,j =

a0 a1 a2 · · · api−1

a−1

...

a−qj

∈W(pi,1
qj ).
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Proof. Putting u
(i)
k = k−ai−r , from (4.3) and (4.9), we have

ζNλ (sss) = S
(r)
λ (U) = det

[
S

(r)

(pi,1
qj )

(U)
]

1≤i,j≤t
= det

[
ζN(pi,1qj )(sssi,j)

]
1≤i,j≤t

.

This leads the desired equation by letting N →∞.

Example 4.6. When λ = (4, 3, 3, 2) = (3, 1, 0 | 3, 2, 0), we have

a0 a1 a2 a3

a−1 a0 a1

a−2 a−1 a0

a−3 a−2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3

a−1

a−2

a−3

a0 a1 a2 a3

a−1

a−2

a0 a1 a2 a3

a0 a1

a−1

a−2

a−3

a0 a1

a−1

a−2

a0 a1

a0

a−1

a−2

a−3

a0

a−1

a−2

a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

4.5 Dual Cauchy formula

It is shown in [N1] (see also [N2]) that the dual Cauchy formula

(4.10)
∑
λ⊂(sr)

(−1)|λ|S
(r)
λ (X)S

(s)
λ∗ (Y ) = Ψ(r,s)(X,Y )

holds for X = [xij ]1≤i,j≤η and Y = [yij ]1≤i,j≤η. Here, for a partition λ = (λ1, . . . , λr) ⊂ (sr),

λ∗ = (s− λ′s, . . . , s− λ′1) and Ψ(r,s)(X,Y ) is the dual Cauchy kernel defined by

Ψ(r,s)(X,Y ) =
ξ1,...,r+s

1,...,r+s(Z)

ξ1,...,r
1,...,r(X)ξ1,...,s

1,...,s(Y )
, Z =



x11 x12 · · · x1η
...

...
...

xr1 xr2 · · · xrη
y11 y12 · · · y1η
...

...
...

ys1 ys2 · · · ysη


.

Remark that when both X and Y are unitriangular, we have Ψ(r,s)(X,Y ) = det(Z).

We now show an analogue of (4.10) for SMZFs. To do that, we first simplify the formula

(4.10) in the case where X = U and Y = V . Here, for M ∈ N, V = V (M) is an upper

unitriangular matrix of size η similarly defined as U , that is, V = V1V2 · · ·VM where

Vk =
(
Iη + v

(1)
k E12

)(
Iη + v

(2)
k E23

)
· · ·
(
Iη + v

(η−1)
k Eη−1,η

)
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with v
(i)
k being variables for 1 ≤ k ≤M and 1 ≤ i ≤ η − 1.

Write U = [uij ]1≤i,j≤η and V = [vij ]1≤i,j≤η. We first show that

(4.11) uij =

{
h

(i)
j−i(U) i ≤ j,

0 i > j,
vij =

{
h

(i)
j−i(V ) i ≤ j,

0 i > j.

Since these are clearly equivalent, let us show only the former. Because U is an upper unitian-

gular matrix, we have uij = 0 unless i ≤ j. When i ≤ j, we have

uij =

η∑
l1,...,lN−1=1

(U1)i,l1(U2)l1,l2 · · · (UN )lN−1,j .

Here, for a matrix A, we denote by (A)i,j the (i, j) entry of A. Since

(Uk)a,b =


b−a−1∏
h=0

u
(a+h)
k a ≤ b,

0 a > b,

we have

uij =
∑

i≤l1≤···≤lN−1≤j

l1−i−1∏
h1=0

u
(i+h1)
1

l2−l1−1∏
h2=0

u
(l1+h2)
2

 · · ·
j−lN−1−1∏

hN=0

u
(lN−1+hN )
N

 .

Furthermore, writing j = i+ p, we have

ui,i+p =
∑

i≤l1≤···≤lN−1≤i+p

l1−i−1∏
h1=0

u
(i+h1)
1

l2−l1−1∏
h2=0

u
(l1+h2)
2

 · · ·
i+p−lN−1−1∏

hN=0

u
(lN−1+hN )
N


=

∑
1≤m1≤···≤mp≤N

u(i)
m1
u(i+1)
m2

· · ·u(i+p−1)
mp

= h(i)
p (U),

whence we obtain the claim.

When X = U and Y = V , from (4.11), (4.10) can be written as follows.

Corollary 4.7. It holds that

(4.12)

∑
λ⊂(sr)

(−1)|λ|S
(r)
λ (U)S

(s)
λ∗ (V ) = det



1 h
(1)
1 (U) h

(1)
2 (U) · · · h

(1)
r (U) · · · h

(1)
η−1(U)

0 1 h
(2)
1 (U) · · · h

(2)
r−1(U) · · · h

(2)
η−2(U)

...
. . .

. . .
. . .

...
...

0 · · · 0 1 h
(r)
1 (U) · · · h

(r)
η−r(U)

1 h
(1)
1 (V ) h

(1)
2 (V ) · · · h

(1)
s (V ) · · · h

(1)
η−1(V )

0 1 h
(2)
1 (V ) · · · h

(2)
s−1(V ) · · · h

(2)
η−2(V )

...
. . .

. . .
. . .

...
...

0 · · · 0 1 h
(s)
1 (V ) · · · h

(s)
η−s(V )


.
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Theorem 4.8. Assume that sss = (sij) ∈ W diag
(sr) and ttt = (tij) ∈ W diag

(rs) with ak = si,i+k and

bk = ti,i+k for k ∈ Z. Moreover, assume that <(srj) > 1 for all 1 ≤ j ≤ s and <(tsj) > 1 for all

1 ≤ j ≤ r. Then, we have

(4.13)∑
λ⊂(sr)

(−1)|λ|ζλ (sss|λ) ζλ∗ (ttt|λ∗)

= det



1 ζ?(a1−r) ζ?(a1−r, a2−r) · · · ζ?(a1−r, . . . , a0) · · · ζ?(a1−r, . . . , aη−1−r)
0 1 ζ?(a2−r) · · · ζ?(a2−r, . . . , a0) · · · ζ?(a2−r, . . . , aη−1−r)
...

. . .
. . .

. . .
...

...
0 · · · 0 1 ζ?(a0) · · · ζ?(a0, . . . , aη−1−r)

1 ζ?(b1−s) ζ?(b1−s, b2−s) · · · ζ?(b1−s, . . . , b0) · · · ζ?(b1−s, . . . , aη−1−s)
0 1 ζ?(b2−s) · · · ζ?(b2−s, . . . , a0) · · · ζ?(b2−s, . . . , aη−1−s)
...

. . .
. . .

. . .
...

...
0 · · · 0 1 ζ?(b0) · · · ζ?(b0, . . . , bη−1−s)


.

Here, sss|λ ∈W diag
λ and ttt|λ∗ ∈W diag

λ∗ are the shape restriction of sss and ttt to λ and λ∗, respectively.

Proof. Putting u
(i)
k = k−ai−r and v

(i)
k = k−bi−r , we have

h
(i)
k (U) =

∑
m1≤···≤mk≤N

u(i)
m1
u(i+1)
m2

· · ·u(i+k−1)
mk

=
∑

m1≤···≤mk≤N
m
−ai−r
1 m

−ai+1−r
2 · · ·m−ai+k−1−r

k

= ζN?(ai−r, ai+1−r, . . . , ai+k−1−r)

and similarly

h
(i)
k (V ) = ζM?(bi−s, bi+1−s, . . . , bi+k−1−s).

Therefore, (4.12) immediately yields (4.13) by letting N,M →∞.

Example 4.9. When r = 2 and s = 3, we have

(LHS of (4.13)) = −
a0 a1 a2

a−1 a0 a1

· 1−
a0 a1 a2

a−1 a0

· b0 +
a0 a1 a2

a−1

·
b0

b−1

− a0 a1 a2 ·
b0

b−1

b−2

+
a0 a1

a−1 a0

· b0 b1 −
a0 a1

a−1

·
b0 b1

b−1

+ a0 a1 ·
b0 b1

b−1

b−2

+
a0

a−1

·
b0 b1

b−1 b0
− a0 ·

b0 b1

b−1 b0

b−2

+ 1 ·
b0 b1

b−1 b0

b−2 b−1

.
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On the other hand, we have

(RHS of (4.13)) = det


1 ζ?(a−1) ζ?(a−1, a0) ζ?(a−1, a0, a1) ζ?(a−1, a0, a1, a2)

0 1 ζ?(a0) ζ?(a0, a1) ζ?(a0, a1, a2)

1 ζ?(b−2) ζ?(b−2, b−1) ζ?(b−2, b−1, b0) ζ?(b−2, b−1, b0, b1)

0 1 ζ?(b−1) ζ?(b−1, b0) ζ?(b−1, b0, b1)

0 0 1 ζ?(b0) ζ?(b0, b1)

 .

5 Schur type quasi-symmetric functions

We finally investigate SMZFs from the view point of the quasi-symmetric functions introduced

by Gessel [G].

5.1 Quasi-symmetric functions

Let ttt = (t1, t2, . . .) be variables and P a subalgebra of Z[[t1, t2, . . . ]] consisting of all formal power

series with integer coefficients of bounded degree. We call p = p(ttt) ∈ P a quasi-symmetric

function if the coefficient of tα1
k1
tα2
k2
· · · tαnkn of p is the same as that of tα1

h1
tα2
h2
· · · tαlhn of p whenever

k1 < k2 < · · · < kn and h1 < h2 < · · · < hn. The algebra of all quasi-symmetric functions is

denoted by Qsym. For a composition ααα = (α1, α2, . . . , αn) of a positive integer, define the mono-

mial quasi-symmetric function Mααα and the essential quasi-symmetric function Eααα respectively

by

Mααα =
∑

m1<m2<···<mn
tα1
m1
tα2
m2
· · · tαnmn , Eααα =

∑
m1≤m2≤···≤mn

tα1
m1
tα2
m2
· · · tαnmn .

We know that these respectively form integral basis of Qsym. Notice that

(5.1) Eααα =
∑
βββ�ααα

Mβββ, Mααα =
∑
βββ�ααα

(−1)n−`(βββ)Eβββ.

5.2 Relation between quasi-symmetric functions and multiple zeta values

A relation between the multiple zeta values and the quasi-symmetric functions is studied by

Hoffman [H2] (remark that the notations of MZF and MZSF in [H2] are different from ours; they

are ζ(sn, sn−1, . . . , s1) and ζ?(sn, sn−1, . . . , s1), respectively, in our notations). Let H = Z〈x, y〉
be the noncommutative polynomial algebra over Z. We can define a commutative and associative

multiplication ∗, called a ∗-product, on H. We call (H, ∗) the (integral) harmonic algebra. Let

H1 = Z1 + yH, which is a subalgebra of H. Notice that every w ∈ H1 can be written as an

integral linear combination of zα1zα2 · · · zαn where zα = yxα−1 for α ∈ N. For each N ∈ N,

define the homomorphism φN : H1 → Z[t1, t2, . . . , tN ] by φN (1) = 1 and

φN (zα1zα2 · · · zαn) =


∑

m1<m2<···<mn≤N
tα1
m1
tα2
m2
· · · tαnmn n ≤ N,

0 otherwise,

and extend it additively to H1. There is a unique homomorphism φ : H1 → P such that πNφ =

φN where πN is the natural projection from P to Z[t1, t2, . . . , tN ]. We have φ(zα1zα2 · · · zαn) =

M(α1,α2,...,αn). Moreover, as is described in [H2], φ is an isomorphism between H1 and Qsym.
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Let e be the function sending ti to 1
i . Moreover, define ρN : H1 → R by ρN = eφN . For a

composition ααα, we have

ρNφ
−1(Mααα) = ζN (ααα), ρNφ

−1(Eααα) = ζN?(ααα).

Here, the second formula follows from the first equations of (3.1) and (5.1). Define the map

ρ : H1 → RN by ρ(w) = (ρN (w))N∈N for w ∈ H1. Notice that if w ∈ H0 = Z1 + yHx, which is a

subalgebra of H1, then we may understand that ρ(w) = limN→∞ ρN (w) ∈ R. In particular, for

a composition ααα = (α1, α2, . . . , αn) with αn ≥ 2, we have

(5.2) ρφ−1(Mααα) = ζ(ααα), ρφ−1(Eααα) = ζ?(ααα).

5.3 Schur type quasi-symmetric functions

Now, one easily reaches the definition of the following Schur type quasi-symmetric functions (of

skew type). For partitions λ, µ satisfying µ ⊂ λ ⊂ (sr) and ααα = (αij) ∈ T (λ/µ,N), define

Sλ/µ(ααα) =
∑

(mij)∈SSYT(λ)

∏
(i,j)∈D(λ/µ)

t
αij
mij ,

which is actually in Qsym. Clearly we have

S(1n)


α1
...

αn

 = M(α1,...,αn), S(n)

(
α1 · · · αn

)
= E(α1,...,αn).

Hence Sλ/µ(ααα) interpolates both the monomial and essential quasi-symmetric functions. More-

over, one sees that this is the quasi-symmetric function corresponding to the Schur multiple zeta

value in the sense of (5.2).

Lemma 5.1. Let

Iλ/µ = {ααα = (αij) ∈ T (λ/µ,N) |αij ≥ 2 for all (i, j) ∈ C(λ/µ)} .

Then, for ααα ∈ Iλ/µ, we have

ρφ−1(Sλ/µ(ααα)) = ζλ/µ(ααα).

Proof. This follows from one of the following expressions

(5.3) Sλ/µ(ααα) =
∑
uuu�ααα

Muuu, Sλ/µ(ααα) =
∑
uuu�ααα′

(−1)|λ/µ|−`(uuu)Euuu,

similarly obtained as (4.2), together with (4.2) and (5.2).

Remark 5.2. There is another important class of quasi-symmetric functions called the funda-

mental or ribbon quasi-symmetric function defined by Fααα =
∑

βββ�αααMβββ for a composition ααα. We

remark that they are not in the class of Schur type quasi-symmetric functions.
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We again concentrate on the case ααα = (αij) ∈ T diag(λ/µ,N). Write ak = αi,i+k for k ∈ Z
(and for any i ∈ N). Then, from the tableau expression (4.4) of the ninth variation of the Schur

function S
(r)
λ/µ(U), if we put u

(i)
k = t

ai−r
k , then we have u

(r−i+j)
mij = t

αij
mij and hence

S
(r)
λ/µ(U) =

∑
(mij)∈SSYTN (λ/µ)

∏
(i,j)∈D(λ/µ)

u(r−i+j)
mij

=
∑

(mij)∈SSYTN (λ/µ)

∏
(i,j)∈D(λ/µ)

t
αij
mij

= φNφ
−1(Sλ/µ(ααα)).

This shows that, when ααα ∈ T diag(λ/µ,N), the Schur type quasi-symmetric function Sλ/µ(ααα)

is also realized as (the limit of) a specialization of the ninth variation of the Schur functions,

whence we can similarly obtain the Jacobi-Trudi, Giambelli and dual Cauchy formulas for such

quasi-symmetric functions. Notice that the following formulas actually hold in the algebra of

formal power series, which means that we do not need any further assumptions on variables such

as appeared in the corresponding results in the previous section for SMZFs.

Theorem 5.3. Assume that ααα = (αij) ∈ T diag(λ/µ,N) and write ak = αi,i+k for k ∈ Z.

(1) We have

(5.4) Sλ/µ(ααα) = det
[
E(aµj−j+1,aµj−j+2,...,aµj−j+(λi−µj−i+j))

]
1≤i,j≤r

.

Here, we understand that E( ··· ) = 1 if λi − µj − i+ j = 0 and 0 if λi − µj − i+ j < 0.

(2) We have

(5.5) Sλ/µ(ααα) = det

[
M(a−µ′

j
+j−1,a−µ′

j
+j−2,...,a−µ′

j
+j−(λ′

i
−µ′

j
−i+j))

]
1≤i,j≤s

.

Here, we understand that M( ··· ) = 1 if λ′i − µ′j − i+ j = 0 and 0 if λ′i − µ′j − i+ j < 0.

Theorem 5.4. Let λ = (p1 − 1, . . . , pt − 1 | q1, . . . , qt) be a partition written in the Frobenius

notation. Assume that ααα = (αij) ∈ T diag(λ,N) and write ak = αi,i+k for k ∈ Z. Then, we have

Sλ(ααα) = det
[
S(pi,1

qj )(αααi,j)
]

1≤i,j≤t
,

where αααi,j =

a0 a1 a2 · · · api−1

a−1

...

a−qj

∈ T ((pi, 1
qj ),N).

Theorem 5.5. Assume that ααα = (αij) ∈ T diag((sr),N) and βββ = (βij) ∈ T diag((rs),N) with
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ak = αi,i+k and bk = βi,i+k for k ∈ Z. Write η = r + s. Then, we have

∑
λ⊂(sr)

(−1)|λ|Sλ (ααα|λ)Sλ∗ (βββ|λ∗)(5.6)

= det



1 E(a1−r) E(a1−r,a2−r) · · · E(a1−r,...,a0) · · · E(a1−r,...,aη−1−r)

0 1 E(a2−r) · · · E(a2−r,...,a0) · · · E(a2−r,...,aη−1−r)
...

. . .
. . .

. . .
...

...
0 · · · 0 1 E(a0) · · · E(a0,...,aη−1−r)

1 E(b1−s) E(b1−s,b2−s) · · · E(b1−s,...,b0) · · · E(b1−s,...,bη−1−s)

0 1 E(b2−s) · · · E(b2−s,...,b0) · · · E(b2−s,...,bη−1−s)
...

. . .
. . .

. . .
...

...
0 · · · 0 1 E(b0) · · · E(b0,...,bη−1−s)


.

Here, ααα|λ ∈ T diag(λ,N) and βββ|λ∗ ∈ T diag(λ∗,N) are the shape restriction of ααα and βββ to λ and

λ∗, respectively.

Remark 5.6. In [MR], a more general type of quasi-symmetric function is defined by a set

of equality and inequality conditions. One can see that this includes both the Schur type

quasi-symmetric functions and the fundamental quasi-symmetric functions as special cases and

actually leads a generalized multiple zeta function via ρφ−1. However, because it is too com-

plicated in general, it seems to be difficult to expect that such generalized quasi-symmetric and

multiple zeta functions satisfy the similar kind of determinant formulas as above.

We know that Qsym has a commutative Hopf algebra structure (see [H2, K, MM, Sw]). The

antipode S, which is an automorphism of Qsym satisfying S2 = id, is explicitly given as follows.

Theorem 5.7 ([H2, Theorem 3.1]). For a composition ααα = (α1, α2, . . . , αn), we have

(1) S(Mααα) =
∑

ααα1 tααα2 t ··· tαααm=ααα

(−1)mMααα1Mααα2 · · ·Mαααm.

(2) S(Mααα) = (−1)nEααα.

Here, ααα1 tααα2 t · · · tαααm is just the juxtaposition of non-empty compositions ααα1,ααα2, . . . ,αααm and

ααα = (αn, αn−1, . . . , α1).

Combining these formulas, we reach the expressions

Mααα =
∑

ααα1 tααα2 t ··· tαααm=ααα

(−1)n−mEααα1Eααα2 · · ·Eαααm ,(5.7)

Eααα =
∑

ααα1 tααα2 t ··· tαααm=ααα

(−1)n−mMααα1Mααα2 · · ·Mαααm .(5.8)
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One sees by induction on n that (5.7) and (5.8) are respectively equivalent to the formulas

M(α1,...,αn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

E(α1) E(α2,α1) · · · · · · E(αn,...,α2,α1)

1 E(α2) · · · · · · E(αn,...,α2)

1
. . .

...
. . . 1 E(αn−1) E(αn,αn−1)

0 1 E(αn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

E(α1,...,αn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

M(α1) M(α2,α1) · · · · · · M(αn,...,α2,α1)

1 M(α2) · · · · · · M(αn,...,α2)

1
. . .

...
. . . 1 M(αn−1) M(αn,αn−1)

0 1 M(αn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which are obtained from the Jacobi-Trudi formulas (5.4) and (5.5), respectively.

Example 5.8. When n = 3, we have

M(α1,α2,α3) = E(α3,α2,α1) − E(α3,α2)E(α1) − E(α3)E(α2,α1) + E(α3)E(α2)E(α1)

=

∣∣∣∣∣∣
E(α1) E(α2,α1) E(α3,α2,α1)

1 E(α2) E(α3,α2)

0 1 E(α3)

∣∣∣∣∣∣ ,
E(α1,α2,α3) = M(α3,α2,α1) −M(α3,α2)M(α1) −M(α3)M(α2,α1) +M(α3)M(α2)M(α1)

=

∣∣∣∣∣∣
M(α1) M(α2,α1) M(α3,α2,α1)

1 M(α2) M(α3,α2)

0 1 M(α3)

∣∣∣∣∣∣ .
For a skew Young diagram ν, we denote by ν# the transpose of ν with respect to the

anti-diagonal. Similarly, the anti-diagonal transpose of a skew Young tableaux T ∈ T (ν,X) is

denoted by T# ∈ T (ν#, X). In the following discussion, we also encounter (T#)′ ∈ T ((ν#)′, X),

the conjugate of T#. For example,

α11α12α13

α21

#

=

α13

α12

α21α11

,

 α11α12α13

α21

#
′ = α21

α13α12α11

Namely, (T#)′ is just the rotation of T by π around the center of ν. Now, the image of the

Schur type quasi-symmetric functions by the antipode S is explicitly calculated as follows.

Theorem 5.9. For a skew Young diagram ν, we have

(5.9) S(Sν(ααα)) = (−1)|ν|Sν#(ααα#).

Moreover, when ααα ∈ T diag(ν,N), we have

S(Sν(ααα)) = (−1)|ν|
∑

Θ=(θ1,θ2,...,θr)∈Rimν#
H

εH(Θ)Eθ1(ααα#)Eθ2(ααα#) · · ·Eθr(ααα#),(5.10)

S(Sν(ααα)) = (−1)|ν|
∑

Θ=(θ1,θ2,...,θs)∈Rimν#
E

εE(Θ)Mθ1(ααα#)Mθ2(ααα#) · · ·Mθs(ααα#).(5.11)
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Proof. From (5.3) and Theorem 5.7 (2), we have

S(Sν(ααα)) =
∑
uuu�ααα

S(Muuu)

=
∑
uuu�ααα

(−1)`(uuu)Euuu

= (−1)|ν|
∑

uuu� (ααα#)′

(−1)|ν|−`(uuu)Euuu

= (−1)|ν|Sν#(ααα#).

Notice that, in the third equality, we have used the fact that uuu � ααα if and only if uuu � (ααα#)′,

which can be verified directly. This shows (5.9). Now, the rest of assertions are immediately

obtained from

Sν(ααα) =
∑

Θ=(θ1,θ2,...,θr)∈Rimν
H

εH(Θ)Eθ1(ααα)Eθ2(ααα) · · ·Eθr(ααα),

Sν(ααα) =
∑

Θ=(θ1,θ2,...,θs)∈Rimν
E

εE(Θ)Mθ1(ααα)Mθ2(ααα) · · ·Mθs(ααα),

which are similarly obtained as (3.6) and (3.9) (hence we need the assumption ααα ∈ T diag(ν,N))

and lead the Jacobi-Trudi formulas (5.4) and (5.5) for the Schur type quasi-symmetric functions.

This completes the proof.

Remark 5.10. The formula (5.11) with ν = (1n) is nothing but the one in Theorem 5.7 (1).

Example 5.11. When ν = (3, 1), we have from (5.9)

S

(
S(3,1)

(
α11α12α13

α21

))
= S(2,2,2)/(1,1)


α13

α12

α21α11


= E(α21,α13,α12,α11) − E(α21+α13,α12,α11) − E(α21,α13+α12,α11)

− E(α21,α13,α12+α11) + E(α21+α13+α12,α11) + E(α21+α13,α12+α11)

+ E(α21,α13+α12+α11) + E(α13,α21,α12,α11) − E(α13,α21,α12+α11)

+ E(α13,α12,α21,α11) − E(α13+α12,α21,α11) − E(α13,α12+α21,α11)

= M(α21,α13,α12,α11) +M(α21+α13,α12,α11) +M(α13,α21+α12,α11)

+M(α13,α21,α12,α11) +M(α13,α12,α21+α11) +M(α13,α21+α12,α11).

Here, the second and third equations are similarly obtained as in Example 4.1. On the other

hand, we have from (5.10)

S

(
S(3,1)

(
α11α12α13

α21

))
= E(α13)E(α12)E(α21,α11) − E(α12,α13)E(α21,α11)

− E(α13)E(α21,α11,α12) + E(α21,α11,α12,α13)
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where each term corresponds to the H-rim decomposition
1
2

3 3
,

2
2

3 3
,

1
3

3 3
and

3
3

3 3
of (3, 1)# =

(2, 2, 2)/(1, 1), respectively, and from (5.11)

S

(
S(3,1)

(
α11α12α13

α21

))
= M(α21)M(α13,α12,α11) −M(α13,α12,α11,α21),

where each term to the E-rim decomposition
2
2

1 2
and

2
2

2 2
, respectively.

Remark 5.12. The equation (5.9) is essentially obtained by Malvenuto and Reutenauer [MR,

Theorem 3.1] for their quasi-symmetric functions. Notice that ν# is called the conjugate of ν

in their notion. If Jacobi-Trudi formulas are obtained for such quasi-symmetric functions, then

one may also establish the similar kind of expressions like (5.10) and (5.11) for them.

Using Theorem 5.9, one automatically gets another relation from a given relation among

quasi-symmetric functions by mapping it by the antipode S. For instance, from (5.6), we obtain

the following equation.

Corollary 5.13. Assume that ααα = (αij) ∈ T diag((sr),N) and βββ = (βij) ∈ T diag((rs),N) with

ak = αi,i+k and bk = βi,i+k for k ∈ Z. Write η = r + s. Then, we have∑
λ⊂(rs)

(−1)|λ|S(rs)/λ

(
(ααα|λ∗)#

)
S(sr)/λ∗

(
(βββ|λ)#

)

= det



1 −M(a1−r) M(a2−r,a1−r) · · · (−1)rM(a0,...,a1−r) · · · (−1)η−1M(aη−1−r,...,a1−r)

0 1 −M(a2−r) · · · (−1)r−1M(a0,...,a2−r) · · · (−1)η−2M(aη−1−r,...,a2−r)
...

. . .
. . .

. . .
...

...
0 · · · 0 1 −M(a0) · · · (−1)η−rM(aη−1−r,...,a0)

1 −M(b1−s) M(b2−s,b1−s) · · · (−1)sM(b0,...,b1−s) · · · (−1)η−1M(bη−1−s,...,b1−s)

0 1 −M(b2−s) · · · (−1)s−1M(b0,...,b2−s) · · · (−1)η−2M(bη−1−s,...,b2−s)
...

. . .
. . .

. . .
...

...
0 · · · 0 1 −M(b0) · · · (−1)η−sM(bη−1−s,...,b0)


.

Here, ααα|λ∗ ∈ T diag(λ∗,N) and βββ|λ ∈ T diag(λ,N) are the shape restriction of ααα and βββ to λ∗ and

λ, respectively.

Remark that mapping this equation by ρφ−1 under suitable convergence assumptions, one

obtains the corresponding relation among the Schur multiple zeta values.
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