DERIVED CATEGORIES AND KUMMER VARIETIES

PAOLO STELLARI

ABsSTRACT. We prove that if two abelian varieties have equivalent derived categories then the
derived categories of the smooth stacks associated to the corresponding Kummer varieties are
equivalent as well. The second main result establishes necessary and sufficient conditions for the
existence of equivalences between the twisted derived categories of two Kummer surfaces in terms
of Hodge isometries between the generalized transcendental lattices of the corresponding abelian
surfaces.

1. INTRODUCTION

The Kummer variety of an abelian variety A is the quotient K(A) := A/(:), where ¢(a) = —a for
any a € A. The singular variety K(A) has an orbifold structure and it admits a minimal crepant
resolution Km(A) if and only if the dimension of A is 2. In this case Km(A) is a K3 surface (i.e.
it is simply connected and its dualizing sheaf is trivial) and it is called the Kummer surface of A.
More generally, we can associate to the global quotient K(A) the smooth quotient stack [A/(¢)].

In [9] Hosono, Lian, Oguiso and Yau proved that,

(A) given two abelian surfaces A and B, DP(A) = DP(B) if and only if
DP(Km(A)) = DP(Km(B)).

Their argument is quite easy: They notice that, due to the geometric construction of the Kummer
surfaces Km(A) and Km(DB), the transcendental lattices of A and B are Hodge-isometric if and
only if the transcendental lattices of Km(A) and Km(B) are Hodge-isometric. Then, they apply a
deep result of Orlov which says that two abelian or K3 surfaces have equivalent derived categories
if and only if their transcendental lattices are Hodge-isometric (see Theorem 2.2). From this it is
evident that (A) can be reformulated in the following way:

(B) given two abelian surfaces A and B, DP(Km(A)) =2 D*(Km(B)) if and only if there exists
a Hodge isometry between the transcendental lattices of A and B.

Since Mukai proved in [18] that two K3 surfaces with Picard number greater than 11 and with
Hodge-isometric transcendental lattices are isomorphic, (A) and (B) are equivalent to the following
statement:

(C) given two abelian surfaces A and B, D”(A) = DP(B) if and only if Km(A) = Km(B).

The aim of this paper is to address (A), (B) and (C) in two more general contexts. Indeed,
Theorem 3.1 shows that if A; and A, are abelian varieties with equivalent derived categories, then
the derived categories of the stacks [A1/(t)] and [A2/(¢)] are equivalent as well. As we will show in
Section 3.3, when we deal with abelian surfaces this result leads to a direct proof of one implication
in (A).

According to (B), Theorem 4.3 proves that the twisted derived categories of two Kummer surfaces
are equivalent if and only if the generalized transcendental lattices of the corresponding abelian
surfaces are Hodge isometric. We will observe that the analogues of (A) and (C) in the twisted
setting are no longer true (see Remark 4.5). Nevertheless we completely generalize the results in [9]
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about the number of Kummer structures on K3 surfaces in the twisted context (Proposition 4.6).
A geometric example involving abelian surfaces with Picard number two is discussed.

2. DERIVED CATEGORIES OF ABELIAN VARIETIES AND K3 SURFACES

In this section we recall some facts and definitions concerning the derived categories of coherent
sheaves on abelian varieties and K3 surfaces. In the following pages DP(X) will always mean the
bounded derived category of coherent sheaves on the smooth projective variety X (we will also use
the same notation for the bounded derived category of coherent sheaves on a smooth quotient stack
according to [14]).

Suppose that X; and X, are smooth projective varieties. Let D?(X;) and DP(X3) be the bounded
derived categories of coherent sheaves on X; and Xj,. Orlov proved in [23] that any equivalence
® : D”(X;) — DP(Xy) is a Fourier-Mukai equivalence, i.e. there exists £ € DP(X; x X») such that,
for any F € DP(X7),

(2.1) D(F) = Rpa.(€ & piF),

where p; : X7 X Xy — X; is the projection and i € {1,2}. The complex & is the kernel of ® and it
is uniquely (up to isomorphism) determined. We write ®¢ for a Fourier-Mukai equivalence whose
kernel is £ and we say that two smooth projective varieties X and Y are Fourier-Mukai partners if
DP(X) = DP(Y). In general, given £ € DP(X; x X3), we write ®¢ for a functor defined as in (2.1)
(notice that ®¢ is not necessarily an equivalence).

2.1. Derived categories of abelian varieties. Assume that A; and A, are abelian varieties of
dimension d. For i € {1,2}, let P; be the Poicaré line bundle on A; x A\i, let p; : A;xA; — A;x A; be
the isomorphism such that (a,b) — (a+b,b) and let ®; := po(id x ®p,). If g : DP(A;) — DP(Ay)
is a Fourier-Mukai equivalence with kernel £, we get the following commutative diagram:

— F, —
(2.2) DP(A; x A;) - DP(Ay x Ajy)
N3 Db(Al X Al) Db(A2 X AQ) 2D
H1x 2%
DexP
DP(A; x Aj) S DP(Ay x As),

where F¢ is the functor completing the diagram, € = £V[d] and ®¢ x Pg, is the Fourier-Mukai
equivalence whose kernel is £ X €. Observe that since ®¢, ®; and ®, are equivalences, ®¢ x Pg,
and Fg are equivalences as well.

For i € {1,2}, the Kiinneth formula yields a decomposition

Hy(A; x A;,7) = Hy(4;,7) & Hy(A;, 7).
Since Hl(ﬁ\i, Z) = Hy(A;,Z)V, the group Hi(A; x ;1\1-, Z) is endowed with a natural quadratic form.
Indeed, if (a1, 1), (ag, a2) € Hi(A; x A;,Z), we define
(a1, 1), (a2, 02))i == o (az) + az(ar),
where i € {1,2}. Consider the set of isomorphisms
U(A1, Ag) := {f € Tsom(A; x Ay, Ay X A3) : {fular, 1), fulag, aa))s = ((a1,a1), (ag, aa))1 }.

Theorem 2.1. ([24], Theorem 2.19 and Proposition 4.12.) Let A; and Ay be abelian varieties.
If ®¢ : DP(A;) — DP(Ay) is an equivalence, then, for any F € DP(A;),

Fe(F) = fe«(F) @ Ne,
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where Fg is the equivalence in (2.2), fe € U(A1,As) and Ng € Pic(As x ;1\2) Moreover, there
ezists a surjective map

(2.3) 7 Eq(D"(41), D (A2)) — U(A1, As)

such that v(®g) = fe, where Eq(DP(A;),DP(Ay)) is the set of the equivalences between DP(A;) and
DP(Ay).

2.2. Hodge structures and derived categories. If X is a smooth projective variety of dimension
d, we denote by H(X, Q) the total cohomology group H*(X, Q) with the weight-2d Hodge structure
defined as follows:

(24) (X)) = @ H(X),

p—q__,.__
3 =r—s

where H™*(X) is the (r, s)-part of the usual Hodge decomposition of H"**(X,C). An equivalent
way to put on H*(X,C) such a Hodge structure could be obtained considering the natural grading
on the Hochschild homology of X (see, for example, [5]).

Suppose now that X is either an abelian or a K3 surface, H>%(X) = (ox) and B is any class in
H?(X,Q). Then

¢ :=exp(B)(ox) =0x + BAox € H*(X,C)® H*(X,C)
is a generalized Calabi-Yau structure on X (for a complete picture see [10]). Let T'(X, B) be the
minimal primitive sublattice of H?(X,Z) ® H*(X,Z) such that ¢ € T(X,B) ® C. The lattice

T(X,B) is the generalized transcendental lattice of ¢ (see [10] and [12]). Let H(X,Z) be the
Z-module H°(X,Z) ® H*(X,Z) ® H*(X,Z) endowed with the Mukai pairing

((ag,a2,a4), (bo,b2,bs)) = az - by —ag - by — ay - by,

where (ao, az, as), (bo, b2, bs) € H?*(X,7) and “” is the cup-product. We write H (X, B,Z) for the
lattice H(X,Z) with the weight-two Hodge structure such that

H*°(X, B) := exp(B)(H"(X))

and H''(X, B) is its orthogonal complement in H2(X,C). It is clear that 7'(X, B) inherits from
H(X,B,Z) a weight-two Hodge structure. By definition, T(X) = T(X,0) is the transcendental
lattice of X and
NS(X) := T(X)* c H*(X,7)

is the Néron-Severi group of X. The number rkNS(X) is the Picard number of X. If L and Lo
are lattices endowed with a weight-k Hodge structure, then an isometry f : L1 — Ly is a Hodge
isometry if it preserves the Hodge structures.

For abelian and K3 surfaces, Orlov proved in [23] (using results of Mukai) the following theorem:

Theorem 2.2. ([23], Theorem 3.3.) Let X; and Xy be either abelian or K3 surfaces. Then the
following two conditions are equivalent:

(i) X1 and Xo are Fourier-Mukai partners;

(ii) there exists a Hodge isometry T'(X;) = T(X2).

3. DERIVED CATEGORIES OF THE SMOOTH STACKS

In this section we prove our first main result:

Theorem 3.1. Let A, and Ay be abelian varieties. If D°(A;) = DP(Ay), then there exists a
Fourier-Mukai equivalence DP([A1/(1)]) = DP([A2/(1)]).

Conwersely, if DP([A1/(1)]) and DP([A2/(t)]) are equivalent, then there is an isomorphism of
Hodge structures H(A,,Q) = H(As,Q).
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As it will turn out, the proof of this theorem, which will be given in Section 3.2, relies on some
results about equivariant derived categories of abelian varieties explained in Section 3.1. In Section
3.3 some geometric applications are discussed.

3.1. Equivariant derived categories and abelian varieties. Consider the simple case of an
abelian variety A with the action of G := Z/27Z induced by the automorphism ¢ : A — A such that
t(a) = —a, for any a € A. A G-linearization for a coherent sheaf £ € Coh(A) is an isomorphism
A€ — *E such that *(A) = A and (*(A) o A= Ao A =id.

Coh®(A) is the abelian category whose objects are the pairs (£, ), where £ € Coh(A) admits
a G-linearization and \ is a G-linearization for £. The morphisms in Coh®(A) are the morphisms
in Coh(A) compatible with the G-linearizations. We define D2(A4) := D"(Coh%(4)) to be the
bounded derived category of Coh®(A). A complete discussion about the general case when G is
any finite group acting on a smooth projective variety can be found in [2].

If A; and A, are abelian varieties and Ga = Z/27Z acts on A; x A via the automorphism ¢ X ¢,
the set of Ga-invariant equivalences has the following description:

Eq(DP(A;),DP(A4,))% = {®g € Eq(D"(A;),D(A4s)) : G € DP(A; x Ay) is Ga-invariant}.
An equivalence ® : D2(4;) 2 D2(As) is a Fourier-Mukai equivalence if it satisfies an equation of

type (2.1), where F € D2(A;) and the kernel & is in D2, (A1 x A2). Eq(D2 (A1), D (A)) is the
set whose elements are the equivalences of this type.

Proposition 3.2. Let A; and Ay be abelian varieties and let G = 7Z/27 act on Ay and As as
above. Then the restriction

7 : Eq(D(A1), D" (42))94 — U(A1, 42)
of the map in (2.8) is surjective and Eq(D% (A1), DR (As)) is non-empty if U(Ay1, As) is non-empty.
Proof. By definition, we can think of any f € U(A;, A2) as represented by a matrix

< Ty > '
cf Wy
Define S(A1, A2) := {f € U(A1, A2) : yy is an isogeny} and let f € S(A1, Ay). Using results from
[17], Orlov proved in [24] (see, in particular, Proposition 4.12) that there exists a vector bundle £
on A; x As with the following properties:

(a) & is simple and ®¢ is an equivalence;

(b) for any (a,b) € Ay x Ag, if T(,4) is the translation with respect to the point (a,b), then

Tap)«€ = E® P for some P € Pic®(A; x Ay);

(c) v(®e) = f.
Consider now the sheaf F := (v x ¢)*E. It is clear that v(®x) = v(Pg) = f.

For a brief proof of this fact, consider the maps ®p, and p; in (2.2). A straightforward calculation
shows that (v x ¢)*P; = P;. Moreover, j; is a morphism of abelian varieties. Hence (v x ¢)* o (id x
Op,)o(exe)* =idx Pp, and (¢ X ¢)* opie0(ext)* = pix. This implies that (¢ x¢)*o®jo (e x )" = &y,
for i € {1,2}. Since ®r = 1* o Pgo* and Pr X Pr, = (1 X 1)* o (Pg x Pg,,) 0 (¢ X 1), we rewrite
the commutative diagram (2.2) in the following way:

Fr
L T
(3.1) DP(A; x A7) —= DP(A; x A7) — > DP(Ay x Ay) —= DP(Ay x Ay)

(exe)* (¢exe)
‘bll ‘Pll ‘%l ‘%l
(exe)* o (exe)*

exXPg
DP(A; x A) —> DP(A; x A;) —>=DP(Ay x Ay) —> DP(Ay x Ay).

Tt
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By Theorem 2.1, for any G € D*(A; x Ay), Fr(G) = fr.(G) ® N, for some fr € U(A;, Ay) and
Nz € Pic(Ag x Ag). Hence, from (3.1) we deduce that

Fr(G) =((tx1)*oFgo(tx1)*)(G)
= ((tx )"0 fexo (L x0)")(G) @ M
= fc‘,'*(g) ®M7

for some M € Pic(Az x :4\2) Observe that the last equality holds true because fg¢ is a morphism of
abelian varieties. This proves that v(®x) = y(t* o ¢ 0 t*) = 7(P¢) which is what we claimed.

Due to this last remark and to Corollary 3.4 in [24], there exist a € A; and « € A; such that
(3'2) F = T(a,O)*g ®p*Pa[i]7

where p : A; X Ay — Aj is the projection, ¢ is an integer and P, is the degree zero line bundle on
Aj corresponding to a. In the following arguments, without loss of generality, we will forget about
the shift [i] in (3.2).

Since & satisfies (b), from (3.2) we get F = £ ® Q, where @ is a degree zero line bundle on
Ay x Ay. Let N € Pic%(A; x A3) be such that N? = Q and consider the sheaf Er=E®N. Itis
easy to see that

(X&) = (X )" (EDN)
ERQ®NY
E®N
=&;.
Due to Proposition 3.3 in [24] and to (c), v(®g,) = v(®s) = f.

Let f € U(A1, Az). Orlov observed in Section 4 of [24] that there exist g1 € S(A1, A2) and
g2 € S(Ag, Ay) such that f = go0g;. From its very definition, the map 7 in Theorem 2.1 preserves
the compositions. Hence v restricts to a surjective map v : Eq(DP(A;), DP(A2))%2 — U(Ay, As).

To prove the second claim in Proposition 3.2, consider the set

Ker(Al,AQ,GA) = {(g, )\) S DgA (A1 X AQ) : (I)g € Eq(Db(Al),Db(AQ))}

1111

Since the group cohomology H?(Z/27Z,C*) is trivial, Theorem 6 in [25] shows the existence of two
maps

Y1 : Ker(Ay, Ay, Ga) — Eq(DP(A;), DP(Ap))%

W2 : Ker(Ar, Az, Ga) — Eq(Dg (A1), D¢ (As2))
such that, for any (G, \) € Ker(A;, As,Ga), ¥1((G, ) = g and ¢2((G,\)) = Py, where H :=
(G @ (1,id)*G, ) and X is the natural (G x G)-linearization induced by A.

We previously proved that for any f € S(Aj, Az), there exists &g, € Eq(DP(A;),DP(Ay))%
such that 7(®¢,) = f. Form [25] it follows that vy is surjective and that the set Ker(A, A2, Ga)
is non-empty if Eq(DP(A;),DP(A2))%2 is non-empty. Hence, there exists ¥; € Ker(A;, A2, Ga)
such that ¢ (¥y) = ®¢,. The functor ¥2(¥y) is in Eq(D (A1), D2 (A2)). O

The special case A; = Ay is also treated in [25].

3.2. Proof of Theorem 3.1. Let A; and As be abelian varieties and suppose that Db(Al) &
DP(A5). Due to Theorem 2.1, the set U(Ajy, As) is non-empty. Therefore, if G = Z/27Z acts on A;
and A, as prescribed at the beginning of Section 3.1, then Proposition 3.2 yields an equivalence
¥ :D2(A;) 2 D2 (A).

Consider the stacks [A4;/G] and [A2/G] (see [7] and [14]). For any i € {1,2}, let DP([A;/G]) be
the bounded derived category of the abelian category Coh([A;/G]) of coherent sheaves on [A;/G]
(see [14]). Obviously D”([4;/G]) = D2(A;), because Coh([4;/G]) = Coh®(4;), for any i € {1,2}.
This implies that ¥ can be rewritten as ® : DP([A4;/G]) = DP([42/G]). Due to [14], ® is of
Fourier-Mukai type (i.e. it is as in (2.1)). Hence, the first part of Theorem 3.1 is proved.
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Assume that an equivalence ® : D([4;/G]) = D"([A3/G]) is given. As before, the results in [14]
imply that we can think of ® as a Fourier-Mukai equivalence whose kernel is a (G x G)-linearized
complex (£, ). Obviously, the inverse ® ! is a Fourier-Mukai equivalence as well. Suppose that
its kernel is (F, ). It is an easy exercise to show that the kernel of the identity functor id =
®od!:D2(A;) — D2(A;) is the (G x G)-linearized sheaf (Oa @ (1,id)*Oa, 1), where u is the
natural linearization and A — A; x A; is the diagonal embedding.

Consider the functors ®¢, @ and P, g(,,id) 0, - Although they are no longer equivalences, they
induce the commutative diagram

¢OA®(L,id)*OA

T

(3.3) DP(A)) — > DP(Ay) —F > DP(A4))

ch( )l ch( )l/ ch( )l/
ol ol
H*(AlaQ)%H*(A27Q)%H*(Ala(@)v

\/

P

H
OAD(1,id)*O A

where ®X : H*(A;,Q) — H*(A2,Q) is such that X (a) = pa.(ch(&) - pi(a)) and p; : A1 x Ay — A;
is the projection. Take analogous definitions for @g and <I>gA B(uid)*On "
Observe that

ch(Oa @ (1,id)*Oa) = 2¢h(On).

Since @gA = id, from (3.3) we deduce that ®X o ®Z = 2id. Hence ®¥ is injective. Exchanging the
roles of ® and @£ in (3.3), we see that <I>§I is an isomorphism of Q-vector spaces. In particular,
dim(A4;) = dim(Az) = n.

The fact that the Hodge structures defined in (2.4) are preserved follows from the standard
argument for Fourier-Mukai equivalences (see [11], Proposition 5.38). Indeed, one just needs to
observe that ch(£) € H22"(A; x Aj). This concludes the proof of Theorem 3.1.

Remark 3.3. Of course, in general, <I>§I does not preserve the Mukai pairing naturally defined on
H*(A;,Q) by means of the cup product ([11], Section 5). Indeed, it is easy to see that the Mukai
pairing is preserved up to a factor 2.

3.3. Geometric applications. Assume that A; and Ay are abelian surfaces. The main result
in [2] produces an equivalence ¥; : DP([4;/(1)]) = DP(Km(4;)), for any i € {1,2}. Thus, if
T : DP(A4;) = DP(Ay) is a Fourier-Mukai equivalence, we immediately get a second Fourier-Mukai
equivalence

(3-4) @ : D"(Km(A)) 25 DP([A1/(0)]) = DP([Az/ (0)]) 22 D" (Km(A2)),

where the middle equivalence is produced by Theorem 3.1 and the kernel of ® can be easily com-
puted using [2]. This leads to a different and explicit proof of the “only if” implication in (A)
without using the lattice theoretical description of the transcendental lattices of an abelian surface
and of the associated Kummer surface.

Let us discuss a second geometric application. Assume that A is an abelian surface. We indicate
with K"(A) the n-th generalized Kummer variety of A. Recalling the construction in [1], we see
that K™(A) is the fiber over 0 with respect to the map ¥ which is the composition of the morphisms
in the following diagram:

U : Hilb" 1 (4) 2 Sym™ 1 (A) -5 A4,
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where p is the Hilbert-Chow morphism and o(aq,...,ap+1) = a1 + ... + ap+1. It is easy to see
that K"(A) is smooth and that K!(A4) = Km(A). Furthermore, in [1] Beauville proved that these
varieties are examples of irreducible symplectic manifolds.

Proposition 3.4. Let A be an abelian surface and let n > 2 be an integer. The number of
generalized Kummer varieties K"(B) birational to K™(A) is finite up to isomorphisms. Moreover
if K"(A) and K™(B) are birational, then Km(A) = Km(B) and A and B are isogenous.

Proof. Let A and Ay be abelian surfaces and let ¢ be a birational morphism between K"(A;) and
K"(Aj3). Obviously, ¢ induces an isomorphism g : H2(K"(A;),Z) & H?(K"(Az),Z). Furthermore,
there exists an isometry of lattices H?(K"(4;),Z) = H?(A;,Z) ® Z[E;], where E; is the restriction
to K™(A) of the exceptional locus of Hilb"™!(A;). The left hand side of the isomorphism is endowed
with the Beauville-Bogomolov form while the quadratic form on H?(A;,Z) is the cup-product (see
[1] and Lemma 4.10 and Proposition 4.11 in [28]).

Since Fy and Ej are algebraic, g yields an isomorphism 7'(A;) = T(Az). Using Theorem 2.2,
we get an equivalence DP(A;) = DP(Ay). To prove that A; is isogenous to A observe that if
DP(A;) = DP(Ay), then A; x ;1\1 >~ Ay x ;1\2 (Theorem 2.1). Hence A; x A; and Ay x Ay are
isogenous and A; and A, are isogenous as well. On the other hand, as there are only finitely
many isomorphism classes of abelian surfaces A such that D(A) = DP(4;) (Proposition 5.3 in
[3]), the number of generalized Kummer varieties K"(Ay) birational to K"(A;) is finite up to
isomorphism. Moreover, Theorem 3.1 yields an equivalence DP([A4;/(1)]) = D®([A2/(:)]). Due to
(3.4) and Theorem 3.1, DP?(Km(A)) = DP(Km(B)) and then Km(A) = Km(B) (see [18]). O

An analogous result for Hilbert schemes of points on K3 surfaces was proved in [25].

Remark 3.5. Observe that, in general, if A and B are abelian surfaces such that Km(A) = Km(B),
then K"(A) and K"(B) are not necessarily birational. Indeed, consider an abelian surface A such
that A 2 A and NS(A) = (H) with H2 = 6. Obviously DP(4) = D"(A). Due to Theorem 3.1,
DP(Km(A)) = DP(Km(A)) and Km(A4) = Km(A) ([18]). On the other hand, Namikawa ([19],
Section 5) proved that K2(A4) and K2(A) are not birational.

Furthermore, Example 4.3 yields very explicit examples of isogenous abelian surfaces A and B
which are not Fourier-Mukai partners. In particular Km(A) 22 Km(B) and K"(A) is not birational
to K"(B) for any positive integer n.

4. DERIVED CATEGORIES OF TWISTED KUMMER SURFACES

In this section we prove the second main result of this paper which relates the existence of
equivalences between the twisted derived categories of two Kummer surfaces and the existence
of Hodge isometries between the generalized transcendental lattices of the corresponding abelian
surfaces. We also discuss a geometric example and an application to the problem of determining
the number of possible twisted Kummer structures on a twisted K3 surface.

4.1. Brauer groups and twisted sheaves. Recall that the Brauer group Br(X) of a smooth
projective variety X is the torsion part of H2(X, O%).

Assume that X is either a K3 or an abelian surface. It is known that any a € Br(X) is
determined (not uniquely) by some B € H?(X,Q) (see Chapter 1 of [4] for the case of K3 surfaces
and use a similar argument to deal with abelian surfaces). This follows from the fact that H?(X,Z)
is unimodular and H;(X,Z) is torsion free. More precisely, we deduce the existence of natural
isomorphisms Br(X) = T(X)" ® Q/Z = Hom(T(X),Q/Z) and for any t € T(X), a: t — ¢t - B
(mod Z), where “-” is the cup-product. From this we get a surjective map

kx : H(X,Q) — Br(X).

Lemma 4.1. If A is an abelian surface, there ezists an isomorphism © 4 : Br(A) — Br(Km(A)).
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Proof. The K3 surface Km(A) is the crepant resolution of K(A) = A/(:). Hence there exists a
rational map 7 : A --» Km(A). Furthermore, as it was observed in Remark 2 of [20] (see also
Section 4 in [15]), the homomorphism 7, induces a Hodge isometry
(4.1) st T(A)(2) — T(Km(A)).
(Recall that, given a lattice L with quadratic form by, the lattice L(m), with m € Z, coincides with
L as a group but its quadratic form by, ) is such that by () (l1,12) = mbr(l1,12), for any I1,l3 € L.)

In particular, we get a natural morphism = : H?(A4,Q) — T(Km(A)) ® Q defined by

2 Y

where p : H*(A,Q) — T(A) ® Q is the orthogonal projection. This yields a morphism ©4 :
Br(A) — Br(Km(A)) of Brauer groups defined by the commutative diagram

(4.2) Z:B+——

(4.3) H%(A,Q) —= T(Km(A)) ® Q
/iAi l’me(A)
Br(A) — 24 Br(Km(A)).

Observe that © 4 is well-defined because, obviously, the restriction fxm(4)|7(km(4))eq 18 still sur-
jective. An easy check then shows that © 4 is an isomorphism. O

Any a € Br(X) can be represented by a Cech 2-cocycle {a;;x € T(U; N U; N Uy, O%)} on
an analytic open cover X = J;c;Ui. An a-twisted coherent sheaf E is a collection of pairs
({Ei}ier, {wij}ijer) where E; is a coherent sheaf on the open subset U; and ¢;; : Ej|UmU]- —
Eilv,nu; is an isomorphism such that ¢;; = id, ¢j; = goi_jl and ©;;j 0 Yk © PR = ji - id. Given
a € Br(X), we indicate with Coh(X, ) the abelian category of a-twisted coherent sheaves on X
while D(X, a) := DP(Coh(X, a)) is the bounded derived category of Coh(X,a) (see [4] and [13]
for details).

If X and Y are smooth projective varieties and o € Br(X) while § € Br(Y), an equivalence
® : DP(X,a) — DP(Y, B) is a twisted Fourier-Mukai equivalence if and only if it satisfies an equation
of type (2.1) whose kernel £ is in DP(X x Y,a~' X 3).

4.2. The second main result. Asin [12], a twisted variety is a pair (X, «), where X is a smooth
projective variety and o € Br(X). An isomorphism f : (X,«) — (Y, ) of the twisted varieties
(X, ) and (Y, ) is an isomorphism f : X — Y such that f*§ = a. In [12] two equivalence relations
were introduced:

Definition 4.2. Let (X;, 1) and (X2, a2) be twisted K3 or abelian surfaces.
(i) They are D-equivalent if there exists a twisted Fourier-Mukai equivalence
®: DP(X1,a1) — DP(Xa, an).
(ii) They are T-equivalent if there exist B; € H?(X;,Q) such that a; = r4,(B;) and a Hodge
isometry
p:T(Xy,B1) — T(Xs9, By).
We use Lemma 4.1 to prove the main result of this section:

Theorem 4.3. Let Ay and Ay be abelian surfaces. Then the following two conditions are equivalent:

(i) there exist a1 € Br(Km(A)) and ag € Br(Km(Az)) such that (Km(A4;), a1) and (Km(As2), a2)
are D-equivalent;
(ii) there exist 31 € Br(A1) and B2 € Br(As) such that (A1, 51) and (A, B2) are T-equivalent.

Furthermore, if one of these two equivalent conditions holds true, then Ay and Ay are isogenous.
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Proof. First of all, observe that, if X is either a K3 or an abelian surface and o € Br(X), the lattice
T(X,«) := ker(a) inherits from 7'(X) a weight-two Hodge structure. Secondly, if © 4, : Br(4;) —
Br(Km(A;)) is the isomorphism in Lemma 4.1(ii), the isometry my. : T(4;)(2) — T(Km(A4;))
defined in (4.1) yields a Hodge isometry f; : T(A4;,a)(2) — T(Km(4;),04,(a)), for any « €
Br(4;) and i € {1,2}.

Proposition 4.7 in [10], originally proved for K3 surfaces, works perfectly in the case of abelian
surfaces as well. Therefore if X is either a K3 or an abelian surface, a € Br(X) and B € H%(X, Q)
is such that a = kx(B), then there exists a Hodge isometry
exp(B) : T(X,a)(k) — T(X,B)(k)

v — (nBA9),

for any k € {1,2}. Given B; € H2%(A;,Q), let B; € H2(Km(A4;),Q) be such that
O, (ka,(By)) = Kcm(a,)(Bi).
Define a; := 04, (ka,(B;)). If g : T(A1,B1) — T(A2, By) is a Hodge isometry, the diagram

(4.4)

T(Ay, B1)(2) ° T(Ag, By)(2)

m (-~ B2)

T(Ay, 4, (B1))(2) — T (A2, £4,(B2))(2)

/| s

T(Km(A;),ar) T(Km(Az), asz)

W W

T(Km(Ar), By) T(Km(Ay), By)

commutes and yields a Hodge isometry f : T(Km(A;), B;) — T(Km(As), By). Conversely, since
©; is an isomorphism (Lemma 4.1), the same diagram and remarks show that any Hodge isometry
between the generalized transcendental lattices of Km(A;) and Km(Ay) determined by some B; €
H?(Km(A;),Q) induces a Hodge isometry of the generalized transcendental lattices of A; and Ag
corresponding to B; € H?(A;, Q) such that k4, (B;) = @ZJ(HKm(Ai)(Ei)) € Br(4)).

Since the Picard number of Km(A;) is greater than 11, the equivalence between item (i) and
item (ii) of Theorem 4.3 follows from Theorem 0.4 in [12]. Indeed such a result proves that, for any
B; € H?*(Km(4;),Q), there exists a twisted Fourier-Mukai equivalence

D (Km(A1), Kicm(ay) (B1)) 22 DP(Km(Ay), K (a,)(B2))

if and only if there exists a Hodge isometry T'(Km(A4;), B1) = T'(Km(A3z), B2).

Due to what we have just proved, any twisted Fourier-Mukai equivalence DP(Km(A;), o) =
DP(Km(Aj3), ) induces a Hodge isometry T(Km(A;)) ® Q = T(Km(A3)) ® Q which extends to a
Hodge isometry H?(A;,Q) = H?(As, Q). Consider the Kuga-Satake varieties KS(A;) and KS(A»)
of A; and Ay (see Section 4 in [16] for the definition). Theorem 4.3 in [16] shows that, for any
ie{l,2},
where “~” denotes an isogeny of abelian varieties. Since there is a Hodge isometry H?(A1, Q)
H?(A3,Q), by construction, KS(A;) ~ KS(A3) and then

(A1 x A7)* ~ (Ay x A)L.

1

In particular, A; and A, are isogenous. O
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Corollary 4.4. (i) (Km(A;),1) is D-equivalent to (Km(Asz),1) if and only if (A1,1) and (Az,1)
are T-equivalent.

(ii) If (A1, 1) and (Aa, ) are D-equivalent twisted abelian surfaces, then (Km(A;),© 4, (a1))
and (Km(Asz),©4,(a2)) are D-equivalent.

Proof. Due to the isomorphism in Lemma 4.1, (i) follows trivially from Theorem 4.3. The machinery
in [12] applied to the case of abelian surfaces shows that if (A1, ;) and (A, ag) are D-equivalent,
then they are T-equivalent as well. Then use Theorem 4.3. O

Notice that part (i) of Corollary 4.4 is exactly (B) in the introduction.

Remark 4.5. (i) Due to Proposition 8.1 in [12], if a; € Br(Km(A;)) is non-trivial for any j € {1,2},
then the existence of an equivalence DP(Km(A1), ;) = DP(Km(A3), ) does not imply that
Km(A;) = Km(As) (see also Example 4.3). This is one of the main differences with the untwisted
case treated by Hosono, Lian, Oguiso and Yau in [9] (see (A) and (C) in the introduction).

(ii) As suggested by Corollary 4.4, we would expect (ii) in Theorem 4.3 to be equivalent to the
existence of a twisted Fourier-Mukai equivalence DP(Ay, £1) = D" (As, 32), where 3; € Br(A;). This
would lead to a twisted version of (A). Actually this is not the case. Indeed, since the period map
is surjective for abelian surfaces ([26]), one can produce a counterexample to this expectation by
adapting Example 4.11 in [12].

(iii) Let A; and As be two abelian surfaces with NS(A4;) = (H;) and NS(Ag) = (Hy). If there
exist a; € Br(Km(A1)) and ay € Br(Km(As)) such that DP(Km(A;), ;) = DP(Km(A3), o) then
H?/H?2 is a square in Q. Indeed, by Theorem 4.3 (and by Section 7 in [12]), if D"(Km(A;), a1) =
DP(Km(A3), ) then there exists an isogeny ¢ : A; — A, inducing a Hodge isometry ¢* :
H?(A2,Q) — H?(A;,Q) such that ¢*(Hs) = qHj, for some q € Q. In particular H3 = ¢*>H?.

4.3. An explicit example. In this example, we use Theorem 4.3 to establish a connection between
the twisted derived categories of some nice Kummer surfaces with Picard number 2. Recall that
the lattices U and U(n) are the free abelian group Z @ Z endowed respectively with the quadratic
forms represented by the matrices

(Vo) = (05)

Let A be an abelian surface such that NS(A) = U(n), for some positive integer n. We first show
that there exist two elliptic curves E and F' and a subgroup C,, = Z/nZ of E x F such that either
A~ (ExF)/C, or A~ (E x F)/C,.

To see this, let us first observe that, since NS(A) = U(n), the transcendental lattice T'(A) is
isometric to U(n) @ U. Indeed for any abelian surface A, H?(A,Z), endowed with the cup-product,
is isometric to the lattice U @ U @ U (see [15] for more details).

We choose a basis (e, ea, f1, fo) = U @ U(n) — U3, an isometry ¢ : H?>(A,Z) — U? and ¢ € C
such that

(4.5) p(coa) = e1 — nwiwaes + wy f1 + wa fo,

where H?Y(A) = (04). We define in C the lattices Ty = Z + w1Z and I's = Z + wsZ and the
elliptic curves E := C/I'y and F := C/T'5. Notice that, since T(4) 2 U(n) ® U and ¢4 = 0, 1,
w1, wy and wiwy are linearly independent over Q. So, in particular, £ and F' are not isogenous. If
Hy(E x F,Z) = (71,72, 01,92), then we consider the subgroup C,, of E x F such that

+6
n - 1772,51,52>-

Let S := (F x F')/C,,. In terms of the dual bases of the bases of Hi(E x F,Z) and H;(S,Z) just
described, we write H'(S,7Z) = (dz,dzs, dwy,dws) and HY(E x F,Z) = (dx1,dzs,dyr,dys). If

H(E % F)/Co,2) =
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7: E x F — S is the natural surjection, the map 0 := 7* : H!(S,Z) — H'(E x F,Z) is such that:

0(dz;) = ndzq, 0(dwy) = —dzy + dyy,
(9((12’2) = dJIg, H(dwg) = dyg.

Observe that NS(E x F') = (dz1 A dxg,dy; A dys). Furthermore, due to the properties in (4.6)

2 2
which characterize the morphism A 6 : H%(S,Z) — H?*(E x F,7) and due to the fact that A @
preserves the Hodge structures on H?(S,Z) and H?(E x F,7Z),

NS(S) = (dz; Adzy,ndw; A dws + dz; A dws),
T(S) = (dz Adwi,dzy A dws,dz; A dwy, —ndwi A dzg + dz; A dw,).

In particular, NS(S) 2 U(n) and T(S) =2 U & U(n).
Consider the two cohomology classes

(4.6)

opxr = dzy Adyr +wadzy Adys +widre A dyy + wiwadxs A dys;
os = dz; Adwy + wadzy A dwg 4+ wi(ndwy A dzg — dzy A dws) + nwiwadzg A dws.

Obviously, opxr € T(E x F)® C and 05 € T(S) ® C. Since (0pxr) = H*%(E x F) and since an

easy calculation shows that i 0(o0s) = nopxr, (0s) = H*(S). This implies that, due to (4.5),
there exists an isometry n : H2(S,Z) — U?® such that n=' o : H?(A,Z) — H?(S,Z) is a Hodge
isometry (see [26]). The Torelli Theorem for abelian surfaces shows that either A = (E x F)/C,
or A2 (E x F)/Ch.

Observe that, since NS(A) = U(n), the abelian surface A is principally polarized if and only if
n = 1. This means that, if n # 1, (E' x F)/C,, and its dual are not isomorphic. Furthermore, A and
E x F are isogenous but T(A) % T(E x F). Therefore, due to Theorem 2.2, D?(A) 2 D?(E x F).
This proves that there are isogenous abelian surfaces which are not (untwisted) Fourier-Mukai
partners (see Remark 3.5).

Choose the standard basis {g1, g2, k1, k2 } for U@ U. Due to the explicit description of T'(A) that
we have previously given, it is straightforward to see that there exists an inclusion i1 : T(A) — UdU
where i1(e;) = g; (4 € {1,2}), i1(f1) = nk; and i1(f2) = nko. Let 0 :=i(04) € U? ® C. Due to
(4.5), we can write 0 = g1 — nwiwags + nwihy + wahe.

Consider in C the lattice I's = Z + nw1Z and the elliptic curve F; := C/T'3. Of course, E and
F are isogenous. Reasoning as before and using the surjectivity of the period map and the Torelli
Theorem for abelian surfaces ([26]), we get an isometry ¢; : T'(F; x F) — U? fitting in the following
commutative diagram:

T(E, x F)

0 \ / 0
T(A) P1 Z/nZ
N TN

0 UaoU 0.
Of course, i preserves the Hodge structures and o € Br(E; x F'). Proposition 4.7 in [10] yields
B € H?(E x F,Q) such that (A4,0) and (E x F,B) are T-equivalent. By Theorem 4.3, there

exist 8 € Br(Km(E; x F)) of order n and a twisted Fourier-Mukai equivalence DP(Km(A)) =
DP(Km(E; x F), 3).

4.4. The number of twisted Kummer structures. As an easy corollary of Lemma 4.1, we get
a surjective map

U : {Twisted abelian surfaces}/isom — {Twisted Kummer surfaces}/isom
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which sends the isomorphism class [(A, )] to the isomorphism class [(Km(A),©4(«))]. The main
result in [9] proves that the preimage of [(Km(A),1)] is finite, for any abelian surface A and
1 € Br(A) the trivial class (see Theorem 0.1 in [9]). On the other hand [9] shows that the cardinality
of the preimages of ¥ can be arbitrarily large. This answers an old question by Shioda. Namely,
there can be many non-isomorphic (untwisted) abelian surfaces giving rise to isomorphic (untwisted)
Kummer surfaces (a partial result is also contained in [8]). This is usually rephrased saying that
on a K3 surface one can put many non-isomorphic (untwisted) Kummer structures.
The picture in [9] can be completely generalized to the twisted case.

Proposition 4.6. (i) For any twisted Kummer surface (Km(A), ), the preimage ¥~ ([(Km(4), a)])
18 finite.

(ii) For positive integers N and n, there exists a twisted Kummer surface (Km(A), «) with « of
order n in Br(Km(A)) and such that |V~ ([(Km(A),)])| > N.

Proof. Suppose that U([(A1,a1)]) = ¥([(A2, a2)]) = [(Km(A), )], i.e. suppose that there exists an
isomorphism f : Km(A) = Km(A4;) such that f*©4,(o;) = a. In particular,

D" (Km(A1), 0.4, (a1)) = D" (Km(Az), ©.4,(a2)).

Due to Theorem 4.3, the proof of (i) amounts to show that, up to isomorphisms, there are finitely
many T-equivalent twisted abelian surfaces (A’, §) such that U([(4’, 3)]) = [(Km(A), «)]. Since, up
to isomorphisms, there are just finitely many abelian surfaces A’ with D(A’) = DP(A) (Proposition
5.3 in [3]), we can just fix a Fourier-Mukai partner A’ of A and show that, up to isomorphisms,
there exists a finite number of 3’ € Br(A’) such that (4’, 3) and (A’, 3’) are T-equivalent. But this
is the content of Proposition 3.4 in [12] for the case of abelian surfaces.

Applying the results in [22] and [27] to abelian surfaces, we see that, for any positive integer
N, there exist N non-isomorphic abelian surfaces Aj, ..., Ay such that DP(4;) = DP(A;) (4,5 €
{1,...,N}). Due to Theorem 4.3, for any i € {2,..., N}, there is a Hodge isometry g¢; : T(A;) —
T(A;). Take By € T(A;) ® Q such that oy := ka,(B1) and O4,(aq) are not trivial in Br(A4;)
and Br(Km(A;)) respectively. We can also choose a; such that the order of ©4,(ay) is n in
Br(Km(A;)). Then, for any i € {2,...,N}, define o; := k4,(9:(B1)). Obviously, (A;, ;) and
(Aj,a;) are T-equivalent when ¢,j € {1,..., N}. Theorem 4.3 implies that (Km(A4;), 0 4,(;)) and
(Km(A;),©4,(y;)) are D-equivalent.

For any ¢ € {2,..., N}, the isometry g; induces a Hodge isometry f; : T(Km(A;)) — T(Km(4;))
which (due to Theorem 1.14.4 in [21]) extends to a Hodge isometry h; : H?(Km(A1),Z) —
H?(Km(A;),Z). The Torelli Theorem yields an isomorphism ¢; : Km(A4;) — Km(A4;) such that
©¥ (04, (a;)) = O4,(a1) (possibly changing o; with a;!), for any i € {2,..., N}. This concludes
the proof of (ii). O

In other words, Proposition 4.6 shows that on a twisted K3 surface we can put just a finite number
of non-isomorphic twisted Kummer structures. Nevertheless, such a number can be arbitrarily large
even when the twist is non-trivial and has any possible order.
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