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ON THE MUMFORD - TATE
CONJECTURE FOR ABELIAN VARIETIES*

S.G.TANKEEV

ABSTRACT. In this paper we prove the Mumford - Tate conjecture for absolutely
simple abelian variety J of non-exceptional dimension over a number field k£ under
the following assumption: J has many ordinary reductions, Cent(End(J @ k)) = Z,
(dimgJ=2(mod 4) and End(J ® k) = Z ) or (dimzJ=4(mod 8) and End®(J @ k) is

a quaternion division algebra over Q).

§0. INTRODUCTION

0.1. Let J be an abelian variety over a number field k C C, {k : Q] < co. Suppose
that [ is a prime number,

pr: Gal(k/k) — GL(HL(J®E, Q1))

is the natural [-adic representation.

It is well known that p; is unramified outside a finite set T of non-Archimedean
places of k. We denote by Fy € Gal(k/k) the Frobenius element associated with
a place T of Q lying over an unramified place v of k. It is well known that the
conjugacy class of p;(Fo ') depends only on v, the characteristic polynomial of
pi(F1) lies in Z[t)C Qu[t], and all its roots are of absolute value (Normy jq(v))!/2.

Let S be a set of non-Archimedean places of k. We recall that the Dirichlet
density of S in the set of all non-Archimedean places of k is defined as

lo

lim g:'J"Ca.rd{v € § | Normyg(v) < z}

E—00 T

(if such limit exists). It is well known that the density of {v | Norm,g(v) = p.}
equals 1 (4, ch.8, sect.2.4].

The following result is well known.

0.2. J.-P. Serre theorem{5,sect.6]. Let J be a simple abelian variety over a
number field k . If dimiJ is an odd integer and End(J ® k) = Z, then the Hodge
(8],[9], Tate [18] and Mumford - Tate conjectures [10] hold for J.

The survey of Serre’s technique is contained in [5).

We want to extend Serre theorem into the area of even dimensions.

Let A be the set of all eigenvalues of p(Fy ') (without counting multiplicities).
The Galois group Gal(Q/Q) acts in a natural way on A and on A - A. For each
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2 S.G. TANKEEV

element 7 € A - A we define amap T, : A — Q" by the formula Ty(8) = né~L.
This map is a modification of the corresponding map T_? A - @x in [5,sect.5.2],
which is defined by the formula T.?(J) = ~428~! for v € A. It is evident that for
each o € Gal(Q/Q)

Card(T, () (A) NV A) = Card(T, () (0(A)) No(A)) = Card(T,(A) N A),
and hence for any constant ¢ the set
{n € A-AlCard(T,(A) N A) = c}is Gal(Q/Q) — invariant. (0.2.1)

So we have a good instrument of computing the Gal(Q/Q)-invariant subsets of
A-A.

0.3. We recall that J has an ordinary reduction at a non-Archimedean place v
of k with a residue field k(v) = F,, of characteristic p, < the special fibre J, of
the Neron minimal model of J is an abelian variety and the following equivalent
conditions hold:

(0.3.1) py-rank of J, equals dimgy)Jy;

(0.3.2) for any eigenvalue ¢ of the Frobenius endomorphism of [-adic Tate module
Ti(Jy Qk(v) k(v))(I # py) and for any place w of Q over p, the following relation
holds:

w(f)

w(gy)

€ {0,1}

[6,sect.2].

0.4. Definition. An abelian variety J over a number field £ has many ordinary
reductions & there exists a set S of non-Archimedean places of k such that .J has
an ordinary reduction at each place v € S and the density of S is positive.

It is well known that an abelian variety J of dimension < 2 has many ordinary
reductions. Moreover, in this case we may assume that the density of S is equal to
1[12].

0.5. Yu.G.Zarhin theorem[19,th.4.2]. Suppose that an abelian variety J over
a number field k has many ordinary reductions. Then each simple factor g of the
reductive Lie algebra Lie Im(p;) ® Q; 13 a classical Lie algebra of type A, Bm,Cm
or D, and the highest weight of any irreducible g-submodule V. C Vi @ Q; is a
minuscule weight(microweight) in Bourbaki’s terminology [3)].

This theorem is proved in [19] under the assumption that S has density 1. We
have remarked that the positivity of the density is sufficient [17,th.1.13].

0.6. We denote by N* = {1,2,3,...} the set of all positive natural numbers. We
also define the binomial coefficient by the usual formula

(o) = iy

We introduce some sets of exceptional numbers
174142
Ex(1) = {4, —( *

2m—1
5 Lo+ 1) ,281m+41—4m—3’41(m + 1)21-{-1 | l,?TL € N+} —
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={4,10,16,32,64,108,126,256,500,512,864,1024,1372,1716,2048,2916,3888,
4000,4096,5324,6912,8192,8788,10976,13500,16384,19652,23328,24310,27436,
32000,37044,42592,48668,50000,55296,62500,65536,70304,78732,87808,97556,
108000,119164,124416,131072,139968,143748,157216,171500,186624,202612,
219488,237276,256000,262144,268912,275684,296352,318028,340736,352716,
364500,389344,415292,442368,470596,500000,524288,530604,562432,595508,
629856,665500,702464,740772,780448,821516,864000,907924,044784,953312,

Y

i 21
4dm + 4 4dm 4 2
— 141 I+1
Ea(3) = {476, (2m+2> ’ <2m+1) ’

2(4m—1)l’4l(m + 2)2l,2l+1(m +4)l+1 | l,m € N+} =

={ 8,16,36,64,70,100,128,144,196,216,256,324,400,484,512,576,676,784,

900,024,1000,1024,1156,1296,1444,1600,1728,1764,1936,2048,2116,2304,

2500,2704,2744,2916,3136,3364,3600,3844,4096,... }.

It is evident that the density of Ez(1) U Exz(3) in the set N is equal to zero.

According to Albert’s classification [11] the division algebra End®(J¢) belongs
to one of the following types:

Type 1. End®(J¢) = K = Kp is a totally real field of algebraic numbers, e =
[K : Q] divides dim Jc.

Type 2. K = Ky, End®(J¢) is a quaternion division algebra over K such that
for any embedding o : K = R

End®(J¢) ®k,s R = My(R).

Type 3. K = Ky, End®(J¢) is a quaternion division algebra over K such that
for any embedding o : K &+ R

End®(Jg) ®Kk,e R=K
is the algebra of classical quaternions.
Type 4. K is an imaginary quadratic extension of a totally real field Ky and for
any embedding o : o = R
End®(J¢) ®k,,0 R = My(C).
0.7. We introduce here some new sets of exceptional numbers:

Ezd™(1) = {221+ 1)? |l e N*} =

={18,50,98,162,242,338,450,578,722,882,1058,1250,1458,1682,1922,2178,2450,2738,
3042,3362,3698,4050,4418,4802,5202,5618,6050,6498,... },

s 2r+2 2r+2 +
Ez®?(1) = {(2r+1),m(2r+1) |r € N7,
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2:--]-2

(3r+1)
2r+2-2 2r+2-2
Gl + G 570
is an odd integer for some natural number n € [2,2"%!] or

r+2
(3r 1)

m =

m =

is an odd integer for some natural number n € [1,2"! — 2]} =
={70,490,12870,16563690,27606150,601080390,...}.
It is evident that the density of the set Ez(1) U Ex?*"(1) U Ez;¥(1) in N* is
equal to zero.
Now we are able to extend Serre theorem 0.2 into the area of even dimensions.
0.8. Main Theorem. Suppose that J is an absolutely simple abelian variety
over a number field k, [k : Q< co. Assume that J has many ordinary reductions
and Cent(End (J @ k)) = Z.
1) If J @ k 1s an abelian variety of the 1st type by Albert’s classification,
dimgJ=2(mod 4) and

dimyJ ¢ Ez(1) U Ez{*"(1) U Ez,"(1)

then the Hodge, Tate and Mumford - Tate conjectures hold for J.
2) If J @k s an abelian variety of the 2nd type by Albert’s classification,
dimgJ=4(mod 8) and

dimyJ ¢ 2{Ez(1) U Ez7*"(1) U Ez}7(1)}

then the Hodge, Tate and Mumford - Tate conjectures hold for J.
3) If J®k is an abelian variety of the 3d type by Albert’s classification,
dimgJ=4(mod 8) and

dimgJ ¢ Ez(3) U2{E=z]"(1)}
then the Mumford - Tate conjecture holds for J.

§1. SOME PROPERTIES OF [-ADIC REPRESENTATIONS

1.1. We start to prove the main theorem.

First of all we recall some facts from the theory of linear representations of simple
Lie algebras over an algebraically closed field of characteristic zero.

If g is a simple Lie algebra of type A,(m > 1), then in N.Bourbaki’s notations

7
m -+ 1

wi=¢€ + ...+ € — (e1 + ...+ €m+1),

Weyl group W (R) is the group of all permutations of {€1, ..., €m+1} [3,ch.6,sect.4.7],
dim E(w,) = (™}") [3,ch.8,table 2],
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E(wy) is symplectic or orthogonal & r = 241 [3 ch.8 table 1] and in this case

1
Wy = 5(61 + ves + 6(m+])/2 - E(m+3)/2 —_ .. — em+1),
chE(w,) = chE(Wmsnyj2) = Y 1 ot am g1 L
a;€{x1}

al+...+am+1=0

_ Z ealq—_?ﬁ'—l-i-...-}-am(——m;;"ﬁ.

a;e{£1}
a1+...+am {1}

If g is a simple Lie algebra of type By,(m > 2), then dim E(w,) = 2™ [3,ch.8,
table 2], .

1
Wy = 5(61 + .o+ €m),

chE(wm) = Z el FHtam g
a;€{%1}
[3,ch.6,sect.4.5].
If g is a simple Lie algebra of type Cy(m > 2), then dim E(w;) = 2m [3,ch.8,
table 2], w1 = €,

chE(wy) = Z et

[3,ch.6,sect.4.6].
If g is a simple Lie algebra of type Dy, (m > 3), then dim E(w;) = 2m [3,ch.8,
table 2], wy = €,

chE(w) = Z e®i®t

a"e{il}
f€{1,...,m}
dim E(wy,-1) = dim E(wy,) = 2™,
chE(wm_l) — Z e -§L+...+am-§“-’
a;e{£1}
Card{ila;=—1}=1{mod 2)
L3N [4
chE(wm) — Z %12 +..tam -
a;e{x1}
Card{¢|a;=—1}=0(mod 2)

[3,ch.6,sect.4.8].

1.2. Lemmal[l5,sect.4.8.1]. Let vy : Q% — Z be the standard 2-adic valuation of
the field Q. Assume that g 1s a simple Lie algebra of type A; and the highest weight
of an irreducible representation p : g = End E is the minuscule weight. Then:

1) if p is an orthogonal representation, then [ =4m — 1,

deg(p) = (;:Z) :
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va(deg(p)) = x(m)
is the number of units in the binary representation of m; therefore va(deg(p)) > 1
and va(deg(p)) = 1 & 1 = 2"+ —1(r € N*) & deg(p) € {(%5r ) | r € N*} =
{6,70,12870,601080390, ...} ;
2) if p 1s a symplectic representation and | > 2, then l = 4m + 1,
4m + 2
d =

v2(deg(p)) = x(m) +1 2 2,

therefore deg (p)=0(mod 4).
1.3. Let Gy; be the algebraic envelope of Im(p;) CGL(V;), where

‘/I = Hét(J®Ea Ql)

By F.A.Bogomolov theorem [1] Lie Im(p;)=Lie(Gy;) and Gy, containes the group
Gm of homotheties. By G.Faltings theorems [7] Gy, is reductive and

Endg,, (Vi) = End(J) @ Q.

Let g;=Lie Im(p;). We shall denote by ¢7° the semisimple part of g;. By J.-P.Serre
theorem [5,th.3.10] the rank of Gy, (resp.¢: ) is independent of {. In the case
under consideration we may assume that Gy, =Sy, G, , where Sy, =[Gy, Gy] is
the commutator subgroup of Gy, [5, sect.1.2.2b].

1.4. Assume that v is a non-Archimedean place of k& at which J has a good
reduction. Let ¥ be any extension of v to k and let Fy € Gal(k/k) be the corre-
sponding Frobenius element. It is well known that the characteristic polynomial
of pi(Fo 1} coincides with the characteristic polynomial of the Frobenius endomor-
phism 7, of the reduction J, of J at v. We denote by A the set of all eigenvalues
of pi(Fy ') (without counting multiplicities). Let T', be a multiplicative subgroup

of @~ generated by A.

It is well known that Q[=,]=][] Ki, K; are number fields. The multiplicative
group Q[r,]* defines a Q-torus T, = [[ Rg;/¢(Gmk,), where R, q are the Weil
restrictions of scalar functors. Let H, be the smallest algebraic subgroup of T,
defined over Q, such that =, € H,(Q). As is well-known, H, is a group of multiplica-
tive type. The connected component of the identity in H, is called the Frobenius
torus T,. It can be regarded as the (-model of the connected component of 1 in
the Zariski closure of the set {p)(Fs')"|n € Z} in Gy, [5, sect.3b.

1.5. As an easy consequence of [5, prop.3.6, 5.2.1, lemma 2.1, cor.3.8] we have
the following result.

After replacing k by some finite extension we may assume that for some set S
of density 1 in the set of all non-Archimedean places of k and for each v € S the
following conditions hold:

1) for a fized integer n > 2 such that 1™ > (2dimiJ)?%, the [™-torsion points of
J(k) are rational points over k ;

2) py =char(k(v)) > (2dimgJ)%;
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3) Normk/Q(v) = Py}

4) the Frobenius trace Tr(pi(Fy')) is not divisible by po;

5) Ty is torsion-free, Gy, 1s connected and pi(Fy') € To(Qi);
6) the Frobenius torus T, is a mazimal torus of Gy, and

rank(T',) = dim(7,) = rank(Gy,).

By the condition of the theorem J has many ordinary reductions. Hence, we
may assume that the following additional condition holds:
7) for each element § € A and for any place w of Q@ over p, we have

w(é)
w(py)

(because in virtue of the condition (3) above k(v) = Fp, ). In this case we have the
following important relation

€ {0,1}

—’“"ff(;z?) c 0,51, (1.5.8)

§2. PROOF OF THE MAIN THEOREM FOR ABELIAN
VARIETY WITHOUT COMPLEX MULTIPLICATION

2.1. We assume that J ® k is an abelian variety of the 1st type by Albert’s
classification. It is well known that V; ® @ is an irreducible symplectic gf* ® Q-
module. Let d =dimJ.

Assume that the Lie algebra ¢/* ® @Q; is simple. Theorem 0.5 and the relation
dimyJ ¢ Ez(1) imply that ¢f* ® Q; is the Lie algebra of type Cy [16,sect.1.3-1.8].
On the other hand, Lie Hg(Jc)®Q: C sp(Vi ® Q;). By Piatetski-Shapiro -Deligne -
Borovoi theorem [13],[2] there exists a canonical embedding

Lie Im(p;) C Lie]MT(Jc)(Qi)] = Qi x Lie[Hg(Jc)(Qi)].
So there exists a canonical isomorphism of Lie algebras
Lie Im(p;) ~ Lie[]MT(Jc)(Q:)]-

2.2. Now we may assume that the Lie algebra ¢gf* ® @ is not simple.

Let f: 5= Sy ®@; be the universal covering, where $ = 51 x Sy X ... x Sy is a
product of simple simply connected algebraic Q-groups. An isogeny f extends to
an isogeny

f:Gmxslx...xSq—)Gm~(Sw®@)=Gv‘®@,

defined by the formula f((a,s)) = a- f(s) fora € Gp,s € 51 x ... X 5.
By (1.5.6) the Frobenius torus T, is a maximal torus of G'v;. Hence

T = (f_l(T,, ®@[_))0 CGm x5 x...% Sq
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is a maximal subtorus. Consider the canonical projections
pro . GTH X S] X cen X Sq _) Gyn

pr;: Gm x 51 x... x S, = Si
It is evident that T = pry(T) x pry(T) x ... x pr (T).
On the other hand, o
VieQ=W,Q..0W,

where W is an irreducible G, x S;-module, W is an irreducible S;-module,..., W,
1s an irreducible S;-module. Let

Pl Gm X Sl —> GL(Wl),

pi: Si = GL(W)(: > 2)

are the corresponding representations. We have a commutative diagram
G X Sy % ... x §, &P GLW, @ ... 0@ W,)

f |

GvQ C GL(W; ® ... @ W,)
By (1.5.5) pi(F=') € T(Qu), hence there exists an element

75 = (T0, 15+, Tq) € Pro(T) x pry(T) x ... x pr,(T)

such that
(1@ ... ® pg)rs) = f(r5) = p(F7 ).

We see that each eigenvalue of pi(Fo ') is of the form ,\'E,O)(Tg) -Xgl)(ﬁ)...xgq)(rq),

where X(km) € X(pr,,(T)) are some characters.

2.3. By (1.5.1) Im(p;)C {2 €End TW(J ® k) |z € 1 +I"End T}(J @ k)}. Hence
for any ¢ €Im(p;) the l-adic logarithm log z is defined.

Let ¢ be the Haar measure on Im(p;) normalized by the equality p(Im(p;)) = 1.
It is well known that X = {z € Im(p;) | logz is a regular element in Lie Im(p;)} is
open and everywhere dense in Im(p;). Its boundary 0X is a closed analytic subset.
So p(0X) = 0 [14, sect.2.2]. Moreover, the set X is invariant under conjugation
in Im(p;). By Chebotarev theorem the density of {v|p(Fy ') € X} is equal to
p(X) =1 - p(0X) = 1 [14, sect.2.2, corollary 2]. Hence we may assume that
for v the conditions (1.5.1)-(2.5.7) hold and log pi(F ') is a regular element in Lie
Im(p;).

Let A = xgo)(ro). According to the results of sections 0.5, 1.1, 2.2 we may assume
that for Lie algebra LieS; we have:

for type Am(m > 1) : xsl)(‘rl) =af'...a’r(a; € {£1},a1 + ... + am € {£1});

for type Bp(m > 2): Xgl)("rl) = a;'..adm(a; € {£1});
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for type Cm(m > 2):x{" (1) = af (a5 € {£1},5 € {1,...,m});

for type Dp(m > 3): Y(])(Tl) = a;’ (a; € {£1},5 € {1,...,m})

or x\V(m) = a'...a% (a; € {£1},Card{j | a; = —1} =1(mod 2))

or x( (r) = al..abn (a; € {£1},Card{j | a; = =1} =0(mod 2)),

where aq,...,0, € @x are multiplicatively independent (in other words,these

numbers generate the multiplicative subgroup in Q" of rank m).
2.4. By the condition of the theorem dimiJ =2(mod 4). It follows from the
results of sections 1.1-1.2 that 2 divides dimQ W;. Hence § = Sy x S, is a product

of two simple simply connected algebraic Q;-groups,
vg(dimﬁl W))=1(=1,2). (2.4.1)

We may assume that W; is a symplectic S;-module and W; is an orthogonal S;-
module. From (2.4.1) it follows that Lie S; is not an algebra of type Bn(n > 2).
If Lie S; is an algebra of type Dp(n > 3) then W; = E(wy),7 = 2. In virtue of
lemma 1.2 Lie Sy is not an algebra of type A,(n > 2). Hence a pair (type of
9#° @ Qi, Vi ® Q) assumes one of the following values:

(Cm % Dy B! +0P))(m > 1,n > 3),

(Con % Agarr_1, BV + WlPW)(m > 1,4 > 1),

where an index (i) shows that the corresponding fundamental weight relates to the
i-th factor.

2.5. Assume that g¢*®Q is a semisimple Lie algebra of type Cyy x Dp(m > 1,n >
3, Vi@ Qi = E(w, () w(z))(we recall that A; = C;). In this case dimzJ = 2mn,
where m,n are odd integers. We may assume that each element § € A is of the
form /\a?‘ﬁ?", where a;,b; € {£1} and A\ au,...a0m, B1,...0n are multiplicatively
independent. This structure of A does not distinguish the cases C,, x D, and
Cn X Dy,. So,we may assume that m < n. On the other hand, we have to assume

that m # n (hence dimgJ ¢ Ez{*"(1)), because we want to use the following
lemma.

2.6. Lemma. Suppose that m < n. Then
ne€ {\eaf?|i=1,..,m} & Card(T,(A) N A) = 2n.
Proof. Let n € A - A. We may assume that
n € {A% Al Majag, N2 0], N7, Ny BT, A2 51 B2, Mol B1 B2, N a1 B2 ).
If § € A, then T(8) = nd~!, hence
Th2(0)e A de A,

Thag2() €A 6 € DB |j=1,...,n},
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Trray0,(8) € A & 8 € {de1fF | j =1,...,n},
Tyepa(8) €A S € {daf' B |i=1,..,m},
Th2a2p2(6) € A & 8 € {henfi},
Ty2g,0,62(8) € A 8 € {Aoy2fn},
Trep,p,(8) €A S € N Big|i=1,..,m},
Thza2p,8,(0) € A & 8 € {Da1f 2},
Tx2a;028:82(8) € A & 8 € {Nay 201 2).

Note that m,n are odd integers, 1 < m < n. So the statement of the lemma
follows from the relations above.

2.7. Lemma 2.6 and (0.2.1) imply that the set {M\?aF? | i = 1,..,m} is
Gal(Q/Q)-invariant. From (1.5.8) it follows that for any place w of Q over p,

we have
w(/\;)‘a?) 1

-, 1}.
Suppose that
w(Aal) 0
w(p3)

for some place w. Then for each ¢ € Gal(Q/Q)

(ew)(e(X? o))
(ow)(p})

=0,

hence from the relation

o(Ma?) e {Naf? |i=1,..,m}
obtained above and from the transitivity of a natural action of Gal(Q/Q) on { w | w
is a place of @ over p, } it follows that Yw | p, IN2a?* (a; € {£1},7 € {1,...,m})

such that w(A?a?%) = 0.
So, Yw | py

. 1 . -
0 = w(\ad®) = 2 {w(Vad® ) + w(\*al ).
Since both summands in the last brackets are nonnegativé, we have the relation
w(Aa?* BE) = w( e B %) = 0.

So w(fB;) = 0 for all w | py. It follows that B is a root of 1 [19,sublemma
3.4.0] contrary to the assumption that A, o,...,am,f, ..., fn are multiplicatively
independent.
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Suppose that
w(A?a?)
w(p})

for some place w. Let p bea complex conjugation defined by some fixed embedding
Q c C. It is well known that

=1

w(Mof) | (pw)(Aaf)

w(p?) (pw)(p2) !

[16,(3.16.2)]. So in our situation we have the impossible relation

(pw)(\ad)

o))

Hence
w(A2aF?) 1
w(pd) 2
for all places w | p,. It follows that o is a root of 1 [19,sublemma 3.4.0] contrary
to the assumption that A, oy, ..., am, /1, ..., B are multiplicatively independent. So
g;°® ®@ Q; is not a Lie algebra of type Cn x Dy.

2.8. Suppose that ¢f* ® Q; is a Lie algebra of type Cn X Agati_y,
VieQ = Ew” +wi)(m 1,02 1).

It is well known that Az ~ D3. So we may assume that g=r+1> 2,7 € N*,m is

. b,r
an odd integer, each element é§ € A is of the form Aa?'ﬁf‘...ﬁzfﬁi'll ,where a;,b; €

{£1},b) + ... + byr+2_; € {£1} and M a1,...am,b1,...02r+2_1 are multiplicatively
independent.
2.9. Lemma. Suppose that dimgJ ¢ Exi*"(1) U Ez{F(1). Then .

o . ) 2r+2
ne {z\zafhla;tl |7,7 € {1,....,m},i # 7} & Card(TH(A)NA) = 2(2r+]).

Proof. Let n € A - A. We may assume that
ne {’\2) )\20-'?: ’\20-'10‘2; )\2[3;2,1\20‘1?,812, AzalaZBlz; '\233/33;3;3-1 "'B‘z_nz-—h
A QABE BB Bt N B BEB B (2 Sn < 2T,
N2 BEBE . B N Y BEBE B Ny oY BBty B
(1<n<2™t -1}
If § € A, then T, (6) = nd~', hence

Tv:(5) €A s€A,
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) 2r+2 2r+2
Card(Ty2(A) N A) = Card(A) = 2dimgJ = 2m <2r+1) # 2(2r+1>

in virtue of the relations

2r+2
dimgJ ¢ {(2r+1) |r € Nt} c Ez{"(1)

(in particular, m # 1). On the other hand,

Ty:02(f) EA &6 € {Aa]ﬁfl...ﬁ;’ﬁﬁ"_-; |b; € {£1},by + ... + byrsa_y € {£1}},

) 2) 2r+2 2r+2
Card(Thzz(A) N A) = dimgy B(wyria) = <2r+l> # 2(2r+1);
byr
Trzoqaa(8) € A & & € A1 2Bl 520070 | b € {£1},b1 + oo + byryay € {£1}],
dimg- @) =2( 2
Card(Tazay0,(8) N A) = 2dimgg B(wy ) = 2( 5y )-
It is clear that

barta_q

Tz\zﬁf((s) EASI= ’\a?tlﬁlﬂgz"'ﬁgr:;z_l »
where 1 € {1,...,m},b; € {£1},1+ by + ... + byr+2_; € {£1}. It is evident that
we can get (b, ..., byr+3_1) from (1,..,1,=1,...,=1) (2! — 1 times 1 and 2"t} — 1

times —1) or from (1,..,1,—1,...,—1) (27t! =2 times 1 and 2"*! times —1) by some
permutation of coordinates. Hence we have

ort+2 _ 9 ort2 _ 9
Card(Txﬂﬂf(A) NA)= Zm{ (2r+1 _ 1) + (2r+1 _ 2)} =

1 2r+2 2r+2 2r+2
2m - 5 (2r+1) =m (2r+1) # 2(2r+1)

because m is an odd integer.
On the other hand,

byr 2.1
Thag242(8) € A & & = Ao fr 328,000
r4+2 2r+2 -9
Card(T)‘nafﬂ?(A) NA)= (;r+l _ i) + ( ) =

ar+l _ 9
1 2r+2 2r+2
() )

borsa_
T/\zalﬁzﬂf(é) c A E=4 5 = Aa1,2ﬁ1ﬁ32---ﬂzf+§ill,
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or+2 _ 9 ort+z _ 9
Card(Txza, 0,52 (8) N D) = 2{ (2""1 - 1) * <2r+1 - 2) } B

2r+2 2r+2
(5rea) # 2o )

+1 -1 —1  pban  pbarta_
TA’*’ﬂ?...ﬂﬁﬂ;L...ﬂ;f_l(6) EAS =N\ ﬁl'-ﬂnﬁn+1~--ﬁ2n-1ﬁgz ...ﬁ23+2_11,

It is clear that

where i € {1,...,m},b; € {£1},1 4 by + ... + byr42_; € {£1}. It is evident that
we can get (ban,...,bpr4+2_q) from (1,..,1,—1,...,=1) (2! —n times 1 and 2" —n
times —1) or from (1,..,1,—1,...,—1) (27! —n — 1 times 1 and 2"*! —n + 1 times
—1) by some permutation of coordinates, 2 < n < 271, Hence we have

272 _ 9 2rt2 _9n
Card(T,\2,8§...ﬁgﬁ;jl...ﬁ;f_l(A) NA)= 2m{ ( or+1 _ n) + (2r+1 —n— 1) } #

21’+2
)
because dimgJ ¢ Ex{’(1).
It is clear that

— - ban b r42.
Tyaa2p2..p2672,..652,(0) €A &6 = A1y BBty Bono1 Ban - Byrss 1

where b; € {£1},1+ b + ... + byr42_y € {£1}. So,

or+2 _ o or+2 _ op
Card(Tyaazp2. p2572,..652 (D) N A) = (2r+1 _n ) * (2*‘+1 —n— 1) #

2r+2
(23

because n > 2.
On the other hand,

- - boyrya_
T)\201a2.312~..ﬂ£18:-:1v-.ﬁ;n2_1(6) EA& = Aamﬁl--oﬁnﬁnil---ﬁznl—ﬁgi"---ﬁzfgf-]lv
ort2 _ op or+2 _ 2
Ca'rd(TAzalagﬂ?...ﬁ?‘ﬁ;j_l...ﬁ;nz_l(A) ﬂ A) = 2{ ( 27’+1 —_ n) + (21"+1 — 7 - 1) }

or+2 _ r+2 r+2 r+2
<af? 2n <4 2 2\ _o(? 1 e '
or+l or+1 _ 1 or+1 J(2r+2 — 1)(27+! 4+ 1) 9r1

It is clear that

- —1 pbon borta_
T,\Q,Hf...,ﬁﬁﬂ;jl...ﬁ;f(é) €EAed= )‘aftlﬁl"ﬂnﬁn-il-l"- 2nlﬁ2721-:]1'“/822+2_.11 ’



14 S5.G. TANKEEV
where i € {1,...,m},b; € {£1},ban41 + ... + bar42_y € {£1}. It is evident that we
can get (bant1y -, bar+2_y) from (1,..,1,-1,...,—1) (2"t —n times 1 and 271 —n—1

times —1) or from (1,..,1,—1,...,—1) (2"t! —n — 1 times 1 and 2"! —~n times —1)
by some permutation of coordinates, 1 < n < 2! — 1. Hence we have

27t _2n—1 2mtZ —2n -1
CMd(Tv,ef...ﬂgﬁ;jl...ﬁ;ﬂ’(A) na)= 2m{( or+l _ g ) + (2r+1 —-n—-1 ) } =

2rt2 _ 9 — 1 272
() 2

otherwise for n = 27! — 1 we would have:

2r+2
dm = 2(2r+1) 3

1 (9r+?
m=3 (2r+1)

2r+2
2r+1

is an odd integer,

dimzJ = m( ) =2m? € Ez{*"(1)

contrary to the assumption of lemma; for 1 < n < 2™ —~ 2 we would have:

(3ran)

25

m =

is an odd integer for some natural number n € [1,2"! — 2],

2r+2
dimgJ = m(2r+l) € Ez"(1)

contrary to the assumption of lemmma.
It is evident that

- n borta_
Tyaazpr..s26m2,..552(8) € A 6 8= Xaufuofufity ) Borii - BZ i
where b; € {£1},bans1 + ... + byr+2_y € {£1}. Hence,

272 _9p — 1 PA
Ca,rd(T)‘z 2ﬁ2 ﬁ‘)ﬂn+l ,;_?(A) n A) = 2( 21‘"‘] —n ) ?é 2(21‘-{-1)’

because n > 1.
On the other hand,

bon 4.1 2"-6-2——1

-1
T,\ﬂa,agﬂf...ﬂg ;fl...ﬂ;,?(‘s) €A & d=Aa2B...00 nt1-Pan ﬂ2n+1 Byrsa s
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where b; € {£1},ban41 + ... + byr42_1 € {£1}. Hence,

27t —9n—1 27+ 3
Card(Txﬂalazﬂf...ﬁgﬂ;jl...ﬂ;,f(/—\‘) NA)= 4( or+l _p ) = 4(2r+] — 1) -

2r+2 2r+l 2r+2
(2r+1) o2 —1 < (2r+1)'
Lemma 2.9 is proved.

2.10. By lemma 2.9 and (0.2.1) the set {)\Qaf:lajil | 3,7 € {1,....,m},1 # 5} is
Gal(Q/Q)-invariant.
From (1.5.8) it follows that for any place w of Q over p, we have

w( N aaz) 1
Suppose that
w(/\za]ag) -0
w(p3)

for some place w. Then for each o € Gal(Q/Q)

(cw)(o(N araz))
(cw)(p3)

=0,

hence from the relation
c(Mayaz) € {/\za?ﬂa.’fl 3,7 € {1,...,m},i#j}

obtained above and from the transitivity of a natural action of Gal(Q/Q) on the
set {w | w is a place of Q over p, } it follows that Vw | p, Elx\zaf‘a';"(a,',aj €
{£1},7,7 € {1,...,m},7 # j) such that w(/\za?‘a;") = 0.

So, Yw | py

a; @; 1 a; 4aj a; 0§ 4—
0= w(/\zai'aj’) = —2-{w()\2a,~‘aj ﬁf) +w(/\2ai'aj’ﬁ] O}
On the other hand,

Nalial i e A A,

Consequently both summands in the last brackets are nonnegative and we have the
relation _
w(Mafal 8]) = w(\ai'a} f7?) =0.

So w(fy) = 0 for all w | p,. It follows that B, is a root of 1 [19,sublemma 3.4.0]
contrary to the assumption that A, ay,...,am,B1,...,02r+2_; are multiplicatively

independent.
It

w()\zalag) -1
w(p?) ’
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then we have the impossible relation

(pw)(A\ oy )

(pw)(p2) o

Hence,
w(Meflaf') 1
w(pl) 2
for all places w | py. It follows that )y is a root of 1 {19,sublemma 3.4.0] contrary
to the assumption that A,ai,...,am,B1, .., B2r+2_; are multiplicatively indepen-
dent. So g7* ® Q is not a Lie algebra of type Cp X Agat1_y.

§3. PROOF OF THE MAIN THEOREM FOR ABELIAN VARIETY
OF THE 2ND OR THE 3D TYPE BY ALBERT’S CLASSIFICATION

3.1. We assume that J ® k is an abelian variety of the 2nd type by Albert’s
classification. From the well known relations

M,(Q) ~ End®(J @ k) @ Qi ~ End , o Vi @ @, (3.1.1)

NS(J @ F) @ T ~ /\H (J®F Q)@ Q)i % (3.1.2)

and from Schur’s lemma it follows that V; ® @; is the direct sum of two copies
of an irreducible symplectic ¢/° ® Qr-module. Since each eigenvalue § € A has
multiplicity 2 we can deduce the statement of the theorem by the same procedure
as above.

3.2. We assume that J @ k is an abelian variety of the 3d type by Albert’s
classification. From the relations (3.1.1)-(3.1.2) and from Schur’s lemma it follows

that V; @ Q; is the direct sum of two copies of an irreducible orthogonal 9’ ® Q:-
module W.

Assume that a Lie algebra ¢f* ® Q is simple. From the relation dimyJ ¢ Ez(3)
it follows that g7* ® Q is a Lie algebra of type Dyjq ,where d = dimJ {16,sect.1.3-
1.8]. On the other hand, Lie Hg(Jc)®Q: C so(W). By Piatetski-Shapiro -Deligne

- Borovoi theorem [13],[2] there exists a canonical embedding

Lie Im(p;) C Lie[]MT(Jc)(Q:)] = Qi x Lie[Hg(Jc)(Q:)].
So there exists a canonical isomorphism of Lie algebras
Lie Im(p;) =~ Lie[MT(Jc)(Q1)].

3.3. Now we may assume that a Lie algebra g* ® Q; is not simple. By the
condition of the theorem dimyJ =4(mod 8). It follows from the results of sections
.1.1-1.2 that W = W; @ W, and 2 divides dim(—)‘ W; . Hence S = S x 57 is a product

of two simple simply connected algebraic Q;-groups,

vp(dimg, Wi) = 1(i = 1,2). (3.3.1)
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From (3.3.1) it follows that Lie S; is not an algebra. of type Bn(n > 2). If Lie

S is an algebra of type D,(n > 3) then W; = E(w] ) Hence a pair (type of
'QQL,ViI® Q;) assumes one of the following values:

(Cm % Cr, B! + )8 (m > 1,0 > 1),

(D % Dy, E(@) 4 0®)92)(m > 3 n > 3),
(Dm X Agesi_1, BlwV + w{)®2)(m > 3,¢ > 1),
(Agrs1_1 X Agarr_1, Bwld) + wi)®)(p > 1,4 > 1),

where m,n are odd integers.

On the other hand, it is easy to see that 2 Ez{*"(1) C Ez(3). Hence dimyJ ¢
2 Ezi*"(1).

3.4. Assume that ¢{* @ Q; is a semisimple Lie algebra of type Cm x Cy,(m >
Ln>1L,ViQQ = E(wgl) + w(z))632 In this case dimiJ = 4mn, where m,n are
odd integers. We may assume that m < n. On the other hand, we have to assume
that dimgJ = 4 or m # n because dimgJ ¢ 2 Ez{*"(1). If dimyJ = 4 then

®Q; is a semisimple Lie algebra of type C; x €} = Dy and the Mumford - Tate
conjecture holds for J.

We assume that 1 < m < n. Then we can exclude the variant (Cy, X Cp, E(wy (1) +
wP)®2)(m > 1,n > 1) by the arguments of sections 2.6-2.7.

3.5. Assume that g° ® Q; is a semisimple Lie algebra of type Dy x Dp(m >
3,n>3),VieQ = E(wil) + w§2))®2. The structure of A does not distinguish the
cases D, x D, and Cy, x C,. Hence we may exclude this variant as above.

3.6. The variant (D, X Age+1_1, B(w (1)+w(2))®2)(m > 3,q > 1) can be excluded
by the arguments of sections 2.8-2.10 because dimgJ ¢ 2 - {Ea:ge"(l) U EziP(1)}.

3.7. Consider the variant (Agp+1_y X A2q+1_1,E(w§},) + 23))65'2)(13 >1,q2>1).
From the relation dimgJ ¢ 2 - Ez{*"(1) it follows that p # ¢q. So we may assume
that p < q. Since A3 ~ D3 we may assume that 2 <p=r+1< ¢=3s- 1, where
r,s € Nt, r < s. Each element § € A has the form

a Qgr42_, b boat2_,
/\a] . 2,-+2_] s --~ﬁ2'+2_1 b

where a;,b; € {£1}, a1 + ... + agr+2_; € {F1}, by + ... + byeva_y € {1} and
A, Q1 ey @or+2_1, B1, ..., Bpe+a_; are multiplicatively independent.
3.8. Lemma. Let n € A- A. We have n € {N(afaj?)*!|i £ 5} &

2r+2 _ 3\ (2042 2" 2rH2\ (2042
Card(T,(A)N D) = 2(2r+1 _ 1) (25+1) T o2 _ 1 (Qr-H) (23-!-1)'

Proof. We may assume that n = A2v;vy, where
2 2 2 -2 +1 2 _—2 ~2
v € {L,ad,adalar? ol (2 < n <2 ofadar a0

(1<n<2™ — 1)},
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v2 € {1, 87, 81 BBy - Bim— (2 S m < 2770, 6181 BE - B
(1<m<2*t — 1)),
It is easy to see that Card(T,(A) N A) = ¢1(v1) - c2(v2), where

2r+2
Cl(l) = (2r+1>’
2y - or+Z _ 2 272 _ 9 1 /27+2
ci(ay) = (2r+1 _ 1) + <2r+1 - 2) - _2-(2r+1)
_ _ 272 — 2n 272 —2n
Cl(ag"'aianil”'a23——l) = (2r+1 — n) + (2’”"'1 — nl— 1)’
_ _ 272 _9n -1
ai(ef..oqarty0p,) = 2( or+l _ )
23-}-2
cr(1) = (23+1)’
98+2 _ 9 28+2 .9 1/2%%2
2 . —
02(ﬁ1) - (23+1 _ 1) + (23-{-1 - 2) - § (23+1>
2542 _ o 2% —2m
2 2 n—2 =2 —
C2(!81"'J6m16m+1"'ﬁ2m-1) - (234.1 __ m) + (23+1 —m - 1)’

_ _ 2842 _2m -1
c2(B%...65, mﬁ-l"' 213;):2( 99+1 _ oy )

For example,

Card(TAg 2 2

al...aﬁa:+l...a;:_lﬂf
22 _9n 272 _9n 1 /252
or+1 _g ) Tlori_n 1) {2 0o )
Using these calculations, the relations
2r+2 -9 2r+2 -9 1 2r+2
(e 22) * (3 22) = 20
2r+2 -3 2r—1 2r+‘2
(2r+1 _ 1) = 2r+2 -1 ’ (2r+])7

or+2 _ 4 or—1 or+l _ 1 9r+2
(21--{—1 _ 2) T ort2_ 1 o9r+z_3 (2r+1)

(A)NA) =

and similar relations with s instead of r we can deduce the statermnent of lemma

from the inequality » < s and elementary properties of decreasing function

f(r) = %(note that 3_2(:) < 0).




ON THE MUMFORD - TATE CONJECTURE 19

Indeed, for n > 2
_ _ 2m2 _ 2 272 _ 2n 272 _2n
alal..adarl .ol )= (2r+1 B n) + (2r+] o 1) < 2(2r+1 o )
2r+2 —4 2r+2 -3 2r+1 -1 21‘+2 -3
= 2(2r+1 - 2) = 2(2r+1 - 1) gz _g < 2(2r+1 - 1)’
- - 272 _9n —1 2rt2 5 272 3
G (a?"'aianil'"a2nz) = 2( or+l _ o, ) S 2(2r+1 _ 2) < 2(2r+1 - 1)’

hence we may assume that v, € {1,a},a?a;%}.
It is evident that 1 # A%. On the other hand, if n = A\?3? then

or 2r+2 23-1-2 2r+2 1 25+2
oy (3m) (3m0) = () 37 (500

and we get the impossible relation

27 1
or¥2 -1 2
If n=X\2p2..82% ;il 2 _, then we have

ort2 { 28+2 _ 9y 929+2 _ oy B or gr+2 9s+2
ort1 I\ 2o+ _m ) Tl 1) [ T o1 \ortr J oo )
2" 2012 202 — 2m 2°*2 —2m <9 2°12 —2m <
o7z =1 \ost1) T\ ost1 _pp ) Thlosti 1) % Loy / S
2a+2 —4 _ 99 2s+1 -1 23+2
2 \get1_g) T T pro3 (2o )

2r 23 23-{-1 -1 23
f(7) = or+2 _ 1 S 2942 _ ] .23+2_3 < 23+2_1=f(3)

contrary to the assumption that r < s.
Ifn=A\BE. 0285, . Brre then we have

2r+2 2.9+2 —2m =1 or 2r+2 23-!-2
(2r+1) ‘2 ( 98+l _m; ) T oz _ 1 <2r+1) (23-!-1)’
or 2s+2 _s 2a+2 — 9% —1 <o 2s+2 -3 3 28 23+2
or+2 — 1 \9s+1) ~ 7\ ost1 ) =T \get1 1) T 2sF2 _q\9sH1 )

T 23
£0) = 5mr— < g = 1)

contrary to the assumption that r < s.
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If n = Aa? then
1 /or+2\ /9s+2 o7 or+2\ /9s+2
slon) (o) =577 (o) (a0
and we get the impossible relation

Al __l
or+2 _ 1 5

If n = A2a?4? then
1 /927+2\ 1 /98+2 or or+2\ /9s+2
L) - i )
and we get the impossible relation
2" 1

or+2_1 4

If n=Ma?B?.. 8600 Pra_y then we have

1 /ort+e { 28+2 _ om 28+2 _ 9y 9r ort2 93+2

E (21‘-&-1) (23-}-1 _ m) + (2s+] S 1) = 2r+2 - 1 ’ (2r+1) (23+1)a
or 2712\ 1 { 2942 _ o 2+ —om \ | _ (22 - 2m

51 \2o+1) T3 \ ot mm ) T ot i) [ S oot oy

< 2a+2 —4 _ 2.9—1 23+1 -1 2s+2 < 23—1 2.s+2
= \gs+1 9] T 9427 952 _3 \9s+1) = 9542 _ 1\ 9s+1 )’

and we get the impossible relation

27 2¢—1 1 1
f(T) = or+2 _ 1 < 2s+2 _ 1 = Ef(S) < §f(1")

If n = Aa}f}...0% Brmi1--Boms then
1 /9r+2 23+2 —9%m —1 or 2r+2 95+2
5(2r+1) 2 ( 99+1 _ o ) T otz _ 1 (2r+1).(23+1)’

or 25+2 23+2 —29m -1 23+2 -5 2.9—-1 23+2
or+2 _ 1 (23+1) = ( 9541 _m ) < (23+1 - 1) = ostz _ (23-{-1);

and we get the impossible relation

r 23—1
F0) = e < goar— = 5(9) < 5 (0)
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If vy € {B%,B%..0%5,, m+1 IBZm 18 m+1 2_3;} then

2a+2
62(U2) < (zs-H)

and Card(Tya,2,-2,,(8) N A) = arafaz?) - ep(1a) =

ort+2 _ 3 or+2 _ g os+2
2(2r+1 — 1) ' Cz(Vz) < 2<2r+1 _ 1) (23+1) :
Lemma 3.8 is proved.

3.9. By lemma 3.8 the set {/\Q(oz?ajfz)il | i # 3} is Gal(Q/Q)-invariant.
From (1.5.8) it follows that for any place w of Q over p, we have

(/\201% )

1
wh) Ot

Suppose that
w(Xa}a;?)
w(p?)
for some place w. Then for each o € Gal(Q/Q)

(ow)(o(Najay )
(ow)(py)

=0

=0,

hence from the relation
o(Najaz?) € (N (afa]?)F |i# 5}

obtained above and from the transitivity of a natural action of Gal(Q/Q) on the set
{w | w is a place of Q over p,, } it follows that Vw | p, AIN*(afaj?)*(a € {£1},i # j)
such that w(A\%(c?a ;'2) )y=0.

So, Yw | py

0 =w(1\2(a?a;2) )= —{w(,\z(a ay 5261 + w(A\(o? oy H"BH)).

On the other hand,
N(aZaf?) B e A A.

Consequently both summands in the last brackets are nonnegative and we have the
relation

w(M(afa;?)B]) = w(\(afaj?)*)Br?) =0

So w(B;) = 0 for all w | py,. It follows that By is a root of 1 [19,sublemma
3.4.0] contrary to the assumption that A ai,...,agr+2_1, 581, ..., Bos+2_, are multi-
plicatively independent.
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If
w(Maloy?) ]
w(p?) ’
then we have the impossible relation
(pw)(N’atas™)
5 = 0.
(pw)(p})

Hence,
w(M(afez®)*) 1

w(p?) T2
for all places w | py. It follows that e?a;? is a root of 1 [19,sublemma 3.4.0] contrary

to our assumptions. So gi* ® Q; is not a Lie algebra of type Agpt1_y X Agati_;.
Theorem 0.8 is proved.
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