ON THE MUMFORD - TATE CONJECTURE FOR ABELIAN VARIETIES

S. G. Tankeev

Vladimir State Technical University ul. Gorkogo, 87 600029 Vladimir

RUSSIA

Max-Planck-Institut für Mathematik
Gottfried-Claren-Str. 26
D-53225 Bonn
GERMANY

ON THE MUMFORD - TATE CONJECTURE FOR ABELIAN VARIETIES*

S.G.Tankeev

Abstract

In this paper we prove the Mumford - Tate conjecture for absolutely simple abelian variety J of non-exceptional dimension over a number field k under the following assumption: J has many ordinary reductions, $\operatorname{Cent}(\operatorname{End}(J \otimes \bar{k}))=\mathbb{Z}$, $\left(\operatorname{dim}_{k} J=2(\bmod 4)\right.$ and $\left.\operatorname{End}(J \otimes \bar{k})=\mathbb{Z}\right)$ or $\left(\operatorname{dim}_{k} J=4(\bmod 8)\right.$ and $\operatorname{End}^{0}(J \otimes \bar{k})$ is a quaternion division algebra over \mathbb{Q}).

§0. Introduction

0.1 . Let J be an abelian variety over a number field $k \subset \mathbb{C},[k: \mathbb{Q}]<\infty$. Suppose that l is a prime number,

$$
\rho_{l}: \operatorname{Gal}(\bar{k} / k) \rightarrow \operatorname{GL}\left(H_{e t}^{1}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right)\right)
$$

is the natural l-adic representation.
It is well known that ρ_{l} is unramified outside a finite set T of non-Archimedean places of k. We denote by $F_{\bar{v}} \in \operatorname{Gal}(\bar{k} / k)$ the Frobenius element associated with a place \bar{v} of $\overline{\mathbb{Q}}$ lying over an unramified place v of k. It is well known that the conjugacy class of $\rho_{l}\left(F_{\bar{v}}^{-1}\right)$ depends only on v, the characteristic polynomial of $\rho_{l}\left(F_{\bar{v}}^{-1}\right)$ lies in $\mathbb{Z}[t] \subset \mathbb{Q}_{l}[t]$, and all its roots are of absolute value $\left(\operatorname{Norm}_{k / \mathbb{Q}}(v)\right)^{1 / 2}$.

Let S be a set of non-Archimedean places of k. We recall that the Dirichlet density of S in the set of all non-Archimedean places of k is defined as

$$
\lim _{x \rightarrow \infty} \frac{\log x}{x} \operatorname{Card}\left\{v \in S \mid \operatorname{Norm}_{k / \mathbf{Q}}(v) \leq x\right\}
$$

(if such limit exists). It is well known that the density of $\left\{v \mid \operatorname{Norm}_{k / \mathbb{Q}}(v)=p_{v}\right\}$ equals 1 [4, ch. 8 , sect.2.4].

The following result is well known.
0.2. J.-P. Serre theorem[5,sect.6]. Let J be a simple abelian variety over a number field k. If $\operatorname{dim}_{k} J$ is an odd integer and $\operatorname{End}(J \otimes \bar{k})=\mathbb{Z}$, then the Hodge [8],[9], Tate [18] and Mumford - Tate conjectures [10] hold for J.

The survey of Serre's technique is contained in [5].
We want to extend Serre theorem into the area of even dimensions.
Let Δ be the set of all eigenvalues of $\rho_{l}\left(F_{\bar{v}}^{-1}\right)$ (without counting multiplicities). The Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts in a natural way on Δ and on $\Delta \cdot \Delta$. For each

[^0]element $\eta \in \Delta \cdot \Delta$ we define a map $T_{\eta}: \Delta \rightarrow \overline{\mathbb{Q}}^{\times}$by the formula $T_{\eta}(\delta)=\eta \delta^{-1}$. This map is a modification of the corresponding map $T_{\gamma}^{0}: \Delta \rightarrow \overline{\mathbb{Q}}^{\times}$in [5,sect.5.2], which is defined by the formula $T_{\gamma}^{0}(\delta)=\gamma^{2} \delta^{-1}$ for $\gamma \in \Delta$. It is evident that for each $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$
$$
\operatorname{Card}\left(T_{\sigma(\eta)}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\sigma(\eta)}(\sigma(\Delta)) \cap \sigma(\Delta)\right)=\operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)
$$
and hence for any constant c the set
\[

$$
\begin{equation*}
\left\{\eta \in \Delta \cdot \Delta \mid \operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=c\right\} \text { is } \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \text { - invariant. } \tag{0.2.1}
\end{equation*}
$$

\]

So we have a good instrument of computing the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant subsets of $\Delta \cdot \Delta$.
0.3. We recall that J has an ordinary reduction at a non-Archimedean place v of k with a residue field $k(v)=\mathbb{F}_{q_{v}}$ of characteristic $p_{v} \Leftrightarrow$ the special fibre J_{v} of the Neron minimal model of J is an abelian variety and the following equivalent conditions hold:
(0.3.1) p_{v}-rank of J_{v} equals $\operatorname{dim}_{k(v)} J_{v}$;
(0.3.2) for any eigenvalue δ of the Frobenius endomorphism of l-adic Tate module $T_{l}\left(J_{v} \otimes_{k(v)} \overline{k(v)}\right)\left(l \neq p_{v}\right)$ and for any place v of $\overline{\mathbb{Q}}$ over p_{v} the following relation holds:

$$
\frac{w(\delta)}{w\left(q_{v}\right)} \in\{0,1\}
$$

[6,sect.2].
0.4. Definition. An abelian variety J over a number field k has many ordinary reductions \Leftrightarrow there exists a set S of non-Archimedean places of k such that J has an ordinary reduction at each place $v \in S$ and the density of S is positive.

It is well known that an abelian variety J of dimension ≤ 2 has many ordinary reductions. Moreover, in this case we may assume that the density of S is equal to 1 [12].
0.5. Yu.G.Zarhin theorem[19,th.4.2]. Suppose that an abelian variety J over a number field k has many ordinary reductions. Then each simple factor g of the reductive Lie algebra Lie $\operatorname{Im}\left(\rho_{l}\right) \otimes \overline{\mathbb{Q}_{l}}$ is a classical Lie algebra of type A_{m}, B_{m}, C_{m} or D_{m}, and the highest weight of any irreducible g-submodule $V \subset V_{l} \otimes \overline{\mathbb{Q}_{l}}$ is a minuscule weight (microweight) in Bourbaki's terminology [3].

This theorem is proved in [19] under the assumption that S has density 1 . We have remarked that the positivity of the density is sufficient [17,th.1.13].
0.6. We denote by $\mathbb{N}^{+}=\{1,2,3, \ldots\}$ the set of all positive natural numbers. We also define the binomial coefficient by the usual formula

$$
\binom{n}{m}=\frac{n!}{m!(n-m)!} .
$$

We introduce some sets of exceptional numbers

$$
E x(1)=\left\{4^{l}, \frac{1}{2}\binom{4 l+2}{2 l+1}^{2 m-1}, 2^{8 l m+4 l-4 m-3}, 4^{l}(m+1)^{2 l+1} \mid l, m \in \mathbb{N}^{+}\right\}=
$$

$$
\begin{aligned}
& =\{4,10,16,32,64,108,126,256,500,512,864,1024,1372,1716,2048,2916,3888, \\
& 4000,4096,5324,6912,8192,8788,10976,13500,16384,19652,23328,24310,27436, \\
& 32000,37044,42592,48668,50000,55296,62500,65536,70304,78732,87808,97556, \\
& 108000,119164,124416,131072,139968,143748,157216,171500,186624,202612, \\
& 219488,237276,256000,262144,268912,275684,296352,318028,340736,352716, \\
& 364500,389344,415292,442368,470596,500000,524288,530604,562432,595508, \\
& 629856,665500,702464,740772,780448,821516,864000,907924,944784,953312, \\
& \ldots\},
\end{aligned}
$$

$$
\begin{gathered}
E x(3)=\left\{4^{l+1}, 6^{l+1},\binom{4 m+4}{2 m+2}^{l},\binom{4 m+2}{2 m+1}^{2 l},\right. \\
\left.2^{(4 m-1) l}, 4^{l}(m+2)^{2 l}, 2^{l+1}(m+4)^{l+1} \mid l, m \in \mathbb{N}^{+}\right\}=
\end{gathered}
$$

$=\{8,16,36,64,70,100,128,144,196,216,256,324,400,484,512,576,676,784$, $900,924,1000,1024,1156,1296,1444,1600,1728,1764,1936,2048,2116,2304$, $2500,2704,2744,2916,3136,3364,3600,3844,4096, \ldots\}$.
It is evident that the density of $E x(1) \cup E x(3)$ in the set \mathbb{N} is equal to zero.
According to Albert's classification [11] the division algebra $\operatorname{End}^{0}\left(J_{\mathbb{C}}\right)$ belongs to one of the following types:

Type 1. $\operatorname{End}^{0}\left(J_{\mathbf{C}}\right)=K=K_{0}$ is a totally real field of algebraic numbers, $e=$ $[K: \mathbb{Q}]$ divides $\operatorname{dim} J_{\mathbf{C}}$.

Type 2. $K=K_{0}, \operatorname{End}^{0}\left(J_{\mathbf{C}}\right)$ is a quaternion division algebra over K such that for any embedding $\sigma: K \rightarrow \mathbb{R}$

$$
\operatorname{End}^{0}\left(J_{\mathbb{C}}\right) \otimes_{K, \sigma} \mathbb{R}=M_{2}(\mathbb{R})
$$

Type 3. $K=K_{0}, \operatorname{End}^{0}\left(J_{\mathbb{C}}\right)$ is a quaternion division algebra over K such that for any embedding $\sigma: K \rightarrow \mathbb{R}$

$$
\operatorname{End}^{0}\left(J_{\mathbb{C}}\right) \otimes_{K, \sigma} \mathbb{R}=\mathbb{K}
$$

is the algebra of classical quaternions.
Type 4. K is an imaginary quadratic extension of a totally real field K_{0} and for any embedding $\sigma: K_{0} \rightarrow \mathbb{R}$

$$
\operatorname{End}^{0}\left(J_{\mathbf{C}}\right) \otimes_{K_{0}, \sigma} \mathbb{R}=M_{n}(\mathbb{C})
$$

0.7. We introduce here some new sets of exceptional numbers:

$$
\begin{gathered}
E x_{1}^{g e n}(1)=\left\{2(2 l+1)^{2} \mid l \in \mathbb{N}^{+}\right\}= \\
=\{18,50,98,162,242,338,450,578,722,882,1058,1250,1458,1682,1922,2178,2450,2738, \\
3042,3362,3698,4050,4418,4802,5202,5618,6050,6498, \ldots\},
\end{gathered}
$$

$$
E x_{1}^{s p}(1)=\left\{\binom{2^{r+2}}{2^{r+1}}, \left.m\binom{2^{r+2}}{2^{r+1}} \right\rvert\, r \in \mathbb{N}^{+}\right.
$$

$$
m=\frac{\binom{2^{r+2}}{2^{r+1}}}{\binom{2^{r+2}-2 n}{2^{r+1}-n}+\binom{2^{r+2}-2 n}{2^{r+1}-n-1}}
$$

is an odd integer for some natural number $n \in\left[2,2^{r+1}\right]$ or

$$
m=\frac{\binom{2^{r+2}}{2^{r+1}}}{2\binom{2^{r+2}-2 n-1}{2^{r+1}-n}}
$$

is an odd integer for some natural number $\left.n \in\left[1,2^{r+1}-2\right]\right\}=$
$=\{70,490,12870,16563690,27606150,601080390, \ldots\}$.
It is evident that the density of the set $E x(1) \cup E x_{1}^{g e n}(1) \cup E x_{1}^{s p}(1)$ in \mathbb{N}^{+}is equal to zero.

Now we are able to extend Serre theorem 0.2 into the area of even dimensions.
0.8. Main Theorem. Suppose that J is an absolutely simple abelian variety over a number field $k,[k: \mathbb{Q}]<\infty$. Assume that J has many ordinary reductions and $\operatorname{Cent}($ End $(J \otimes \bar{k}))=\mathbb{Z}$.

1) If $J \otimes \bar{k}$ is an abelian variety of the 1st type by Albert's classification, $\operatorname{dim}_{k} J=2(\bmod 4)$ and

$$
\operatorname{dim}_{k} J \notin E x(1) \cup E x_{1}^{g e n}(1) \cup E x_{1}^{s p}(1)
$$

then the Hodge, Tate and Mumford - Tate conjectures hold for J.
2) If $J \otimes \bar{k}$ is an abelian variety of the 2nd type by Albert's classification, $\operatorname{dim}_{k} J=4(\bmod 8)$ and

$$
\operatorname{dim}_{k} J \notin 2\left\{E x(1) \cup E x_{1}^{g e n}(1) \cup E x_{1}^{s p}(1)\right\}
$$

then the Hodge, Tate and Mumford - Tate conjectures hold for J.
3) If $J \otimes \bar{k}$ is an abelian variety of the $9 d$ type by Albert's classification, $\operatorname{dim}_{k} J=4(\bmod 8)$ and

$$
\operatorname{dim}_{k} J \notin E x(3) \cup 2\left\{E x_{1}^{s p}(1)\right\}
$$

then the Mumford - Tate conjecture holds for J.

§1. SOME properties of l-adic representations

1.1. We start to prove the main theorem.

First of all we recall some facts from the theory of linear representations of simple Lie algebras over an algebraically closed field of characteristic zero.

If g is a simple Lie algebra of type $A_{m}(m \geq 1)$, then in N.Bourbaki's notations

$$
\omega_{i}=\epsilon_{1}+\ldots+\epsilon_{i}-\frac{i}{m+1}\left(\epsilon_{1}+\ldots+\epsilon_{m+1}\right)
$$

Weyl group $W(R)$ is the group of all permutations of $\left\{\epsilon_{1}, \ldots, \epsilon_{m+1}\right\}[3$, ch. 6 ,sect. 4.7$]$, $\operatorname{dim} E\left(\omega_{r}\right)=\binom{m+1}{r}[3, \operatorname{ch} .8$, table 2],
$E\left(\omega_{r}\right)$ is symplectic or orthogonal $\Leftrightarrow r=\frac{m+1}{2}[3$, ch. 8, table 1$]$ and in this case

$$
\begin{aligned}
\omega_{r} & =\frac{1}{2}\left(\epsilon_{1}+\ldots+\epsilon_{(m+1) / 2}-\epsilon_{(m+3) / 2}-\ldots-\epsilon_{m+1}\right), \\
\operatorname{ch} E\left(\omega_{r}\right) & =\operatorname{ch} E\left(\omega_{(m+1) / 2}\right)=\sum_{\substack{a_{i} \in\{ \pm 1\} \\
a_{1}+\ldots+a_{m+1}=0}} e^{a_{1} \frac{\varepsilon_{1}}{2}+\ldots+a_{m+1} \frac{e_{m+1}}{2}}= \\
& =\sum_{\substack{a_{i \in\{ \pm 1\}} \\
a_{1}+\ldots+a_{m} \in\{ \pm 1\}}} e^{a_{1} \frac{\varepsilon_{1}-\epsilon_{m+1}}{2}+\ldots+a_{m} \frac{\epsilon_{m}-\epsilon_{m+1}}{2}} .
\end{aligned}
$$

If g is a simple Lie algebra of type $B_{m}(m \geq 2)$, then $\operatorname{dim} E\left(\omega_{m}\right)=2^{m}[3$, ch. 8 , table 2],

$$
\begin{aligned}
\omega_{m} & =\frac{1}{2}\left(\epsilon_{1}+\ldots+\epsilon_{m}\right), \\
\operatorname{chE}\left(\omega_{m}\right) & =\sum_{a_{i} \in\{ \pm 1\}} e^{a_{1} \frac{e_{1}}{2}+\ldots+a_{m} \frac{e_{m}}{2}}
\end{aligned}
$$

[3,ch.6,sect.4.5].
If g is a simple Lie algebra of type $C_{m}(m \geq 2)$, then $\operatorname{dim} E\left(\omega_{1}\right)=2 m[3$, ch. 8 , table 2], $\omega_{1}=\epsilon_{1}$,

$$
\operatorname{ch} E\left(\omega_{1}\right)=\sum_{\substack{a_{i} \in\{ \pm 1\} \\ i \in\{1, \ldots, m\}}} e^{a_{i} \epsilon_{i}}
$$

[3,ch.6,sect.4.6].
If g is a simple Lie algebra of type $D_{m}(m \geq 3)$, then $\operatorname{dim} E\left(\omega_{1}\right)=2 m[3$, ch. 8 , table 2], $\omega_{1}=\epsilon_{1}$,

$$
\begin{gathered}
\operatorname{ch} E\left(\omega_{1}\right)=\sum_{\substack{a_{i} \in\{ \pm 1\} \\
i \in\{1, \ldots, m\}}} e^{a_{i} \epsilon_{i}}, \\
\operatorname{dim} E\left(\omega_{m-1}\right)=\operatorname{dim} E\left(\omega_{m}\right)=2^{m-1}, \\
\operatorname{ch} E\left(\omega_{m-1}\right)=\sum_{\substack{\left.a_{i} \in\{ \pm 1\} \\
\operatorname{Cardd}^{2} \mid a_{i}=-1\right\}=1(\bmod 2)}} e^{a_{1} \frac{c_{1}}{2}+\ldots+a_{m} \frac{c_{m}}{2}}, \\
\operatorname{ch} E\left(\omega_{m}\right)=\sum_{\substack{a_{i} \in\{ \pm 1\} \\
\operatorname{Card}\left\{i \mid a_{i}=-1\right\}=0(\bmod 2)}} e^{a_{1} \frac{e_{1}}{2}+\ldots+a_{m} \frac{c_{m}}{2}}
\end{gathered}
$$

[3,ch.6,sect.4.8].
1.2. Lemma[15,sect.4.8.1]. Let $v_{2}: \mathbb{Q}^{\times} \rightarrow \mathbb{Z}$ be the standard 2 -adic valuation of the field \mathbb{Q}. Assume that g is a simple Lie algebra of type A_{1} and the highest weight of an irreducible representation $\rho: g \rightarrow \operatorname{End} E$ is the minuscule weight. Then:

1) if ρ is an orthogonal representation, then $l=4 m-1$,

$$
\operatorname{deg}(\rho)=\binom{4 m}{2 m}
$$

$$
v_{2}(\operatorname{deg}(\rho))=\chi(m)
$$

is the number of units in the binary representation of m; therefore $v_{2}(\operatorname{deg}(\rho)) \geq 1$ and $v_{2}(\operatorname{deg}(\rho))=1 \Leftrightarrow l=2^{r+1}-1\left(r \in \mathbb{N}^{+}\right) \Leftrightarrow \operatorname{deg}(\rho) \in\left\{\left.\binom{2^{r+1}}{2^{r}} \right\rvert\, r \in \mathbb{N}^{+}\right\}=$ $\{6,70,12870,601080390, \ldots\}$;
2) if ρ is a symplectic representation and $l \geq 2$, then $l=4 m+1$,

$$
\begin{aligned}
\operatorname{deg}(\rho) & =\binom{4 m+2}{2 m+1} \\
v_{2}(\operatorname{deg}(\rho)) & =\chi(m)+1 \geq 2,
\end{aligned}
$$

therefore $\operatorname{deg}(\rho)=0(\bmod 4)$.
1.3. Let $G_{V_{l}}$ be the algebraic envelope of $\operatorname{Im}\left(\rho_{l}\right) \subset \mathrm{GL}\left(V_{l}\right)$, where

$$
V_{l}=H_{e t}^{1}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right) .
$$

By F.A.Bogomolov theorem [1] Lie $\operatorname{Im}\left(\rho_{l}\right)=\operatorname{Lie}\left(G_{V_{1}}\right)$ and $G_{V_{l}}$ containes the group G_{m} of homotheties. By G.Faltings theorems [7] $G_{V_{1}}$ is reductive and

$$
\operatorname{End}_{G_{V_{l}}}\left(V_{l}\right)=\operatorname{End}(J) \otimes \mathbb{Q}_{l}
$$

Let $g_{l}=$ Lie $\operatorname{Im}\left(\rho_{l}\right)$. We shall denote by $g_{l}^{s s}$ the semisimple part of g_{l}. By J.-P.Serre theorem [5,th.3.10] the rank of $G_{V_{l}}$ (resp. g_{l}) is independent of l. In the case under consideration we may assume that $G_{V_{i}}=S_{V_{i}} \cdot \mathrm{G}_{m}$, where $S_{V_{i}}=\left[G_{V_{i}}, G_{V_{l}}\right]$ is the commutator subgroup of $G_{V_{l}}[5$, sect.1.2.2b].
1.4. Assume that v is a non-Archimedean place of k at which J has a good reduction. Let \bar{v} be any extension of v to \bar{k} and let $F_{\bar{v}} \in \operatorname{Gal}(\bar{k} / k)$ be the corresponding Frobenius element. It is well known that the characteristic polynomial of $\rho_{l}\left(F_{\bar{v}}^{-1}\right)$ coincides with the characteristic polynomial of the Frobenius endomorphism π_{v} of the reduction J_{v} of J at v. We denote by Δ the set of all eigenvalues of $\rho_{l}\left(F_{\bar{v}}^{-1}\right)$ (without counting multiplicities). Let Γ_{v} be a multiplicative subgroup of $\overline{\mathbb{Q}}^{\times}$generated by Δ.

It is well known that $\mathbb{Q}\left[\pi_{v}\right]=\prod K_{i}, K_{i}$ are number fields. The multiplicative group $\mathbb{Q}\left[\pi_{v}\right]^{\times}$defines a \mathbb{Q}-torus $T_{\pi_{v}}=\prod R_{K_{i} / \mathbb{Q}}\left(\mathrm{G}_{m K_{i}}\right)$, where $R_{K_{i} / \mathbf{Q}}$ are the Weil restrictions of scalar functors. Let H_{v} be the smallest algebraic subgroup of $T_{\pi_{v}}$ defined over \mathbb{Q}, such that $\pi_{v} \in H_{v}(\mathbb{Q})$. As is well-known, H_{v} is a group of multiplicative type. The connected component of the identity in H_{v} is called the Frobenius torus T_{v}. It can be regarded as the \mathbb{Q}-model of the connected component of 1 in the Zariski closure of the set $\left\{\rho_{l}\left(F_{\bar{v}}^{-1}\right)^{n} \mid n \in \mathbb{Z}\right\}$ in $G_{V_{l}}[5$, sect.3b].
1.5. As an easy consequence of [5, prop.3.6,5.2.1, lemma 2.1, cor.3.8] we have the following result.

After replacing k by some finite extension we may assume that for some set S of density 1 in the set of all non-Archimedean places of k and for each $v \in S$ the following conditions hold:

1) for a fixed integer $n \geq 2$ such that $l^{n}>\left(2 \operatorname{dim}_{k} J\right)^{2}$, the l^{n}-torsion points of $J(\bar{k})$ are rational points over k;
2) $p_{v}=\operatorname{char}(k(v))>\left(2 \operatorname{dim}_{k} J\right)^{2} ;$
3) $\operatorname{Norm}_{k / \mathbf{Q}}(v)=p_{v}$;
4) the Frobenius trace $\operatorname{Tr}\left(\rho_{l}\left(F_{\bar{v}}^{-1}\right)\right)$ is not divisible by p_{v};
5) Γ_{v} is torsion-free, $G_{V_{i}}$ is connected and $\rho_{l}\left(F_{\bar{v}}^{-1}\right) \in T_{v}\left(\overline{\mathbb{Q}_{l}}\right)$;
6) the Frobenius torus T_{v} is a maximal torus of $G_{V_{l}}$ and

$$
\operatorname{rank}\left(\Gamma_{v}\right)=\operatorname{dim}\left(T_{v}\right)=\operatorname{rank}\left(G_{V_{l}}\right)
$$

By the condition of the theorem J has many ordinary reductions. Hence, we may assume that the following additional condition holds:
7) for each element $\delta \in \Delta$ and for any place w of $\overline{\mathbb{Q}}$ over p_{v} we have

$$
\frac{w(\delta)}{w\left(p_{v}\right)} \in\{0,1\}
$$

(because in virtue of the condition (3) above $k(v)=\mathbb{F}_{p_{v}}$). In this case we have the following important relation

$$
\begin{equation*}
\frac{w(\Delta \cdot \Delta)}{w\left(p_{v}^{2}\right)} \subset\left\{0, \frac{1}{2}, 1\right\} . \tag{1.5.8}
\end{equation*}
$$

§2. Proof of The main theorem for abelian VARIETY WITHOUT COMPLEX MULTIPLICATION

2.1. We assume that $J \otimes \bar{k}$ is an abelian variety of the 1st type by Albert's classification. It is well known that $V_{l} \otimes \overline{\mathbb{Q}_{l}}$ is an irreducible symplectic $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l^{-}}}$ module. Let $d=\operatorname{dim}_{k} J$.

Assume that the Lie algebra $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is simple. Theorem 0.5 and the relation $\operatorname{dim}_{k} J \notin E x(1)$ imply that $g_{i}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is the Lie algebra of type C_{d} [16, sect.1.3-1.8]. On the other hand, Lie $\mathrm{Hg}\left(J_{\mathbb{C}}\right) \otimes \overline{\mathbb{Q}_{l}} \subset s p\left(V_{l} \otimes \overline{\mathbb{Q}_{l}}\right)$. By Piatetski-Shapiro -Deligne Borovoi theorem [13],[2] there exists a canonical embedding

$$
\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right) \subset \operatorname{Lie}\left[\operatorname{MT}\left(J_{\mathbf{C}}\right)\left(\mathbb{Q}_{l}\right)\right]=\mathbb{Q}_{l} \times \operatorname{Lie}\left[\operatorname{Hg}\left(J_{\mathbf{C}}\right)\left(\mathbb{Q}_{l}\right)\right]
$$

So there exists a canonical isomorphism of Lie algebras

$$
\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right) \simeq \operatorname{Lie}\left[\operatorname{MT}\left(J_{\mathbf{C}}\right)\left(\mathbb{Q}_{l}\right)\right]
$$

2.2. Now we may assume that the Lie algebra $g_{i}^{s s} \otimes \overline{\mathbb{Q}_{i}}$ is not simple.

Let $f: S \rightarrow S_{V_{1}} \otimes \overline{\mathbb{Q}_{l}}$ be the universal covering, where $S=S_{1} \times S_{2} \times \ldots \times S_{q}$ is a product of simple simply connected algebraic $\overline{\mathbb{Q}_{l}}$-groups. An isogeny f extends to an isogeny

$$
f: \mathrm{G}_{m} \times S_{1} \times \ldots \times S_{q} \rightarrow \mathrm{G}_{m} \cdot\left(S_{V_{l}} \otimes \overline{\mathbb{Q}_{l}}\right)=G_{V_{l}} \otimes \overline{\mathbb{Q}_{l}},
$$

defined by the formula $f((a, s))=a \cdot f(s)$ for $a \in \mathrm{G}_{m}, s \in S_{1} \times \ldots \times S_{q}$.
By (1.5.6) the Frobenius torus T_{v} is a maximal torus of $G_{V_{l}}$. Hence

$$
T=\left(f^{-1}\left(T_{v} \otimes \overline{\mathbb{Q}_{l}}\right)\right)^{0} \subset \mathrm{G}_{m} \times S_{1} \times \ldots \times S_{q}
$$

is a maximal subtorus. Consider the canonical projections

$$
\begin{aligned}
& \mathrm{pr}_{0}: \mathrm{G}_{m} \times S_{1} \times \ldots \times S_{q} \rightarrow \mathrm{G}_{m} \\
& \mathrm{pr}_{i}: \mathrm{G}_{m} \times S_{1} \times \ldots \times S_{q} \rightarrow S_{i} .
\end{aligned}
$$

It is evident that $T=\operatorname{pr}_{0}(T) \times \operatorname{pr}_{1}(T) \times \ldots \times \operatorname{pr}_{q}(T)$.
On the other hand,

$$
V_{l} \otimes \overline{\mathbb{Q}_{l}}=W_{1} \otimes \ldots \otimes W_{q}
$$

where W_{1} is an irreducible $\mathrm{G}_{m} \times S_{1}$-module, W_{2} is an irreducible S_{2}-module, \ldots, W_{q} is an irreducible S_{q}-module. Let

$$
\begin{aligned}
& \rho_{1}: \mathrm{G}_{m} \times S_{1} \rightarrow \mathrm{GL}\left(W_{1}\right), \\
& \rho_{i}: S_{i} \rightarrow \operatorname{GL}\left(W_{i}\right)(i \geq 2)
\end{aligned}
$$

are the corresponding representations. We have a commutative diagram

$$
\begin{aligned}
\mathrm{G}_{m} \times & S_{1} \times \ldots \times S_{q} \xrightarrow{\rho_{1} \otimes \ldots \otimes \rho_{q}} \mathrm{GL}\left(W_{1} \otimes \ldots \otimes W_{q}\right) \\
& \downarrow f \\
G_{V_{l}} & \otimes \overline{\mathbb{Q}_{l}} \quad \subset \\
\| & \mathrm{GL}\left(W_{1} \otimes \ldots \otimes W_{q}\right)
\end{aligned}
$$

By (1.5.5) $\rho_{l}\left(F_{\bar{v}}^{-1}\right) \in T_{v}\left(\overline{\mathbb{Q}_{l}}\right)$, hence there exists an element

$$
\tau_{\bar{v}}=\left(\tau_{0}, \tau_{1}, \ldots, \tau_{q}\right) \in \operatorname{pr}_{0}(T) \times \operatorname{pr}_{1}(T) \times \ldots \times \operatorname{pr}_{q}(T)
$$

such that

$$
\left(\rho_{1} \otimes \ldots \otimes \rho_{q}\right)\left(\tau_{\bar{v}}\right)=f\left(\tau_{\bar{v}}\right)=\rho_{l}\left(F_{\bar{v}}^{-1}\right)
$$

We see that each eigenvalue of $\rho_{l}\left(F_{\bar{v}}^{-1}\right)$ is of the form $\chi_{0}^{(0)}\left(\tau_{0}\right) \cdot \chi_{i}^{(1)}\left(\tau_{1}\right) \ldots \chi_{j}^{(q)}\left(\tau_{q}\right)$, where $\chi_{k}^{(m)} \in \mathrm{X}\left(\mathrm{pr}_{m}(T)\right)$ are some characters.
2.3. By (1.5.1) $\operatorname{Im}\left(\rho_{l}\right) \subset\left\{x \in \operatorname{End} T_{l}(J \otimes \bar{k}) \mid x \in 1+l^{n} \operatorname{End} T_{l}(J \otimes \bar{k})\right\}$. Hence for any $x \in \operatorname{Im}\left(\rho_{l}\right)$ the l-adic \log arithm $\log x$ is defined.

Let μ be the Haar measure on $\operatorname{Im}\left(\rho_{l}\right)$ normalized by the equality $\mu\left(\operatorname{Im}\left(\rho_{l}\right)\right)=1$. It is well known that $X=\left\{x \in \operatorname{Im}\left(\rho_{l}\right) \mid \log x\right.$ is a regular element in Lie $\left.\operatorname{Im}\left(\rho_{l}\right)\right\}$ is open and everywhere dense in $\operatorname{Im}\left(\rho_{l}\right)$. Its boundary ∂X is a closed analytic subset. So $\mu(\partial X)=0$ [14, sect.2.2]. Moreover, the set X is invariant under conjugation in $\operatorname{Im}\left(\rho_{l}\right)$. By Chebotarev theorem the density of $\left\{v \mid \rho_{l}\left(F_{\bar{v}}^{-1}\right) \in X\right\}$ is equal to $\mu(X)=1-\mu(\partial X)=1$ [14, sect.2.2, corollary 2]. Hence we may assume that for v the conditions (1.5.1)-(2.5.7) hold and $\log \rho_{l}\left(F_{\bar{v}}^{-1}\right)$ is a regular element in Lie $\operatorname{Im}\left(\rho_{l}\right)$.

Let $\lambda=\chi_{0}^{(0)}\left(\tau_{0}\right)$. According to the results of sections $0.5,1.1,2.2$ we may assume that for Lie algebra $\mathrm{Lie} S_{1}$ we have:
for type $A_{m}(m \geq 1): \chi_{i}^{(1)}\left(\tau_{1}\right)=\alpha_{1}^{a_{1}} \ldots \alpha_{m}^{a_{m}}\left(a_{j} \in\{ \pm 1\}, a_{1}+\ldots+a_{m} \in\{ \pm 1\}\right) ;$
for type $B_{m}(m \geq 2): \chi_{i}^{(1)}\left(\tau_{1}\right)=\alpha_{1}^{a_{1}} \ldots \alpha_{m}^{a_{m}}\left(a_{j} \in\{ \pm 1\}\right)$;
for type $C_{m}(m \geq 2): \chi_{i}^{(1)}\left(\tau_{1}\right)=\alpha_{j}^{a_{j}}\left(a_{j} \in\{ \pm 1\}, j \in\{1, \ldots, m\}\right)$;
for type $D_{m}(m \geq 3): \chi_{i}^{(1)}\left(\tau_{1}\right)=\alpha_{j}^{a_{j}}\left(a_{j} \in\{ \pm 1\}, j \in\{1, \ldots, m\}\right)$
or $\chi_{i}^{(1)}\left(\tau_{1}\right)=\alpha_{1}^{a_{1}} \ldots \alpha_{m}^{a_{m}}\left(a_{j} \in\{ \pm 1\}, \operatorname{Card}\left\{j \mid a_{j}=-1\right\}=1(\bmod 2)\right)$
or $\chi_{i}^{(1)}\left(\tau_{1}\right)=\alpha_{1}^{a_{1}} \ldots \alpha_{m}^{a_{m}}\left(a_{j} \in\{ \pm 1\}, \operatorname{Card}\left\{j \mid a_{j}=-1\right\}=0(\bmod 2)\right)$,
where $\alpha_{1}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}}^{\times}$are multiplicatively independent (in other words, these numbers generate the multiplicative subgroup in $\overline{\mathbb{Q}}^{\times}$of rank m).
2.4. By the condition of the theorem $\operatorname{dim}_{k} J=2(\bmod 4)$. It follows from the results of sections 1.1-1.2 that 2 divides $\operatorname{dim}_{\overline{\mathbf{Q}}_{t}} W_{i}$. Hence $S=S_{1} \times S_{2}$ is a product of two simple simply connected algebraic $\overline{\mathbb{Q}_{l}}$-groups,

$$
\begin{equation*}
v_{2}\left(\operatorname{dim}_{\overline{\mathbb{Q}}_{i}} W_{i}\right)=1(i=1,2) \tag{2.4.1}
\end{equation*}
$$

We may assume that W_{1} is a symplectic S_{1}-module and W_{2} is an orthogonal $S_{2^{-}}$ module. From (2.4.1) it follows that Lie S_{i} is not an algebra of type $B_{n}(n \geq 2)$. If Lie S_{i} is an algebra of type $D_{n}(n \geq 3)$ then $W_{i}=E\left(\omega_{1}\right), i=2$. In virtue of lemma 1.2 Lie S_{1} is not an algebra of type $A_{n}(n \geq 2)$. Hence a pair (type of $\left.g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}, V_{l} \otimes \overline{\mathbb{Q}_{l}}\right)$ assumes one of the following values:

$$
\begin{gathered}
\left(C_{m} \times D_{n}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right)(m \geq 1, n \geq 3) \\
\left(C_{m} \times A_{2^{q+1}-1}, E\left(\omega_{1}^{(1)}+\omega_{2^{q}}^{(2)}\right)\right)(m \geq 1, q \geq 1)
\end{gathered}
$$

where an index (i) shows that the corresponding fundamental weight relates to the i -th factor.
2.5. Assume that $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is a semisimple Lie algebra of type $C_{m} \times D_{n}(m \geq 1, n \geq$ 3), $V_{l} \otimes \overline{\mathbb{Q}_{l}}=E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\left(\right.$ we recall that $\left.A_{1}=C_{1}\right)$. In this case $\operatorname{dim}_{k} J=2 m n$, where m, n are odd integers. We may assume that each element $\delta \in \Delta$ is of the form $\lambda \alpha_{i}^{a_{i}} \beta_{j}^{b_{j}}$, where $a_{i}, b_{j} \in\{ \pm 1\}$ and $\lambda, \alpha_{1}, \ldots \alpha_{m}, \beta_{1}, \ldots \beta_{n}$ are multiplicatively independent. This structure of Δ does not distinguish the cases $C_{m} \times D_{n}$ and $C_{n} \times D_{m}$. So,we may assume that $m \leq n$. On the other hand, we have to assume that $m \neq n$ (hence $\operatorname{dim}_{k} J \notin E x_{1}^{g e n}(1)$), because we want to use the following lemma.
2.6. Lemma. Suppose that $m<n$. Then

$$
\eta \in\left\{\lambda^{2} \alpha_{i}^{ \pm 2} \mid i=1, \ldots, m\right\} \Leftrightarrow \operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=2 n .
$$

Proof. Let $\eta \in \Delta \cdot \Delta$. We may assume that

$$
\eta \in\left\{\lambda^{2}, \lambda^{2} \alpha_{1}^{2}, \lambda^{2} \alpha_{1} \alpha_{2}, \lambda^{2} \beta_{1}^{2}, \lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}, \lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2}, \lambda^{2} \beta_{1} \beta_{2}, \lambda^{2} \alpha_{1}^{2} \beta_{1} \beta_{2}, \lambda^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2}\right\} .
$$

If $\delta \in \Delta$, then $T_{\eta}(\delta)=\eta \delta^{-1}$, hence

$$
\begin{gathered}
T_{\lambda^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in \Delta \\
T_{\lambda^{2} \alpha_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \beta_{j}^{ \pm 1} \mid j=1, \ldots, n\right\},
\end{gathered}
$$

$$
\begin{gathered}
T_{\lambda^{2} \alpha_{1} \alpha_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1,2} \beta_{j}^{ \pm 1} \mid j=1, \ldots, n\right\} \\
T_{\lambda^{2} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{i}^{ \pm 1} \beta_{1} \mid i=1, \ldots, m\right\} \\
T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \beta_{1}\right\} \\
T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1,2} \beta_{1}\right\} \\
T_{\lambda^{2} \beta_{1} \beta_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{i}^{ \pm 1} \beta_{1,2} \mid i=1, \ldots, m\right\} \\
T_{\lambda^{2} \alpha_{1}^{2} \beta_{1} \beta_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \beta_{1,2}\right\} \\
T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1,2} \beta_{1,2}\right\} .
\end{gathered}
$$

Note that m, n are odd integers, $1 \leq m<n$. So the statement of the lemma follows from the relations above.
2.7. Lemma 2.6 and (0.2.1) imply that the set $\left\{\lambda^{2} \alpha_{i}^{ \pm 2} \mid i=1, \ldots, m\right\}$ is $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant. From (1.5.8) it follows that for any place w of $\overline{\mathbb{Q}}$ over p_{v} we have

$$
\frac{w\left(\lambda^{2} \alpha_{1}^{2}\right)}{w\left(p_{v}^{2}\right)} \in\left\{0, \frac{1}{2}, 1\right\}
$$

Suppose that

$$
\frac{w\left(\lambda^{2} \alpha_{1}^{2}\right)}{w\left(p_{v}^{2}\right)}=0
$$

for some place w. Then for each $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
\frac{(\sigma w)\left(\sigma\left(\lambda^{2} \alpha_{1}^{2}\right)\right)}{(\sigma w)\left(p_{v}^{2}\right)}=0
$$

hence from the relation

$$
\sigma\left(\lambda^{2} \alpha_{1}^{2}\right) \in\left\{\lambda^{2} \alpha_{i}^{ \pm 2} \mid i=1, \ldots, m\right\}
$$

obtained above and from the transitivity of a natural action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $\{w \mid w$ is a place of $\overline{\mathbb{Q}}$ over $\left.p_{v}\right\}$ it follows that $\forall w \mid p_{v} \exists \lambda^{2} \alpha_{i}^{2 a_{i}}\left(a_{i} \in\{ \pm 1\}, i \in\{1, \ldots, m\}\right)$ such that $w\left(\lambda^{2} \alpha_{i}^{2 a_{i}}\right)=0$.

So, $\forall w \mid p_{v}$

$$
0=w\left(\lambda^{2} \alpha_{i}^{2 a_{i}}\right)=\frac{1}{2}\left\{w\left(\lambda^{2} \alpha_{i}^{2 a_{i}} \beta_{1}^{2}\right)+w\left(\lambda^{2} \alpha_{i}^{2 a_{i}} \beta_{1}^{-2}\right)\right\}
$$

Since both summands in the last brackets are nonnegative, we have the relation

$$
w\left(\lambda^{2} \alpha_{i}^{2 a_{i}} \beta_{1}^{2}\right)=w\left(\lambda^{2} \alpha_{i}^{2 a_{i}} \beta_{1}^{-2}\right)=0
$$

So $w\left(\beta_{1}\right)=0$ for all $w \mid p_{v}$. It follows that β_{1} is a root of $1[19$,sublemma 3.4.0] contrary to the assumption that $\lambda, \alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n}$ are multiplicatively independent.

Suppose that

$$
\frac{w\left(\lambda^{2} \alpha_{1}^{2}\right)}{w\left(p_{v}^{2}\right)}=1
$$

for some place w. Let ρ be a complex conjugation defined by some fixed embedding $\overline{\mathbb{Q}} \subset \mathbb{C}$. It is well known that

$$
\frac{w\left(\lambda^{2} \alpha_{1}^{2}\right)}{w\left(p_{v}^{2}\right)}+\frac{(\rho w)\left(\lambda^{2} \alpha_{1}^{2}\right)}{(\rho w)\left(p_{v}^{2}\right)}=1
$$

[16,(3.16.2)]. So in our situation we have the impossible relation

$$
\frac{(\rho w)\left(\lambda^{2} \alpha_{1}^{2}\right)}{(\rho w)\left(p_{v}^{2}\right)}=0 .
$$

Hence

$$
\frac{w\left(\lambda^{2} \alpha_{1}^{ \pm 2}\right)}{w\left(p_{v}^{2}\right)}=\frac{1}{2}
$$

for all places $w \mid p_{v}$. It follows that α_{1} is a root of 1 [19,sublemma 3.4.0] contrary to the assumption that $\lambda, \alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n}$ are multiplicatively independent. So $g_{l}^{s s} \otimes \overline{\mathbb{Q}}_{l}$ is not a Lie algebra of type $C_{m} \times D_{n}$.
2.8. Suppose that $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is a Lie algebra of type $C_{m} \times A_{2^{q+1}-1}$,

$$
\left.V_{l} \otimes \overline{\mathbb{Q}_{l}}=E\left(\omega_{1}^{(1)}+\omega_{2 q}^{(2)}\right)\right)(m \geq 1, q \geq 1) .
$$

It is well known that $A_{3} \simeq D_{3}$. So we may assume that $q=r+1 \geq 2, r \in \mathbb{N}^{+}, m$ is an odd integer, each element $\delta \in \Delta$ is of the form $\lambda \alpha_{i}^{a_{i}} \beta_{1}^{b_{1}} \ldots \beta_{2^{r+2}-1}^{b_{2 r+2}}$, where $a_{i}, b_{j} \in$ $\{ \pm 1\}, b_{1}+\ldots+b_{2^{r+2}-1} \in\{ \pm 1\}$ and $\lambda, \alpha_{1}, \ldots \alpha_{m}, \beta_{1}, \ldots \beta_{2^{r+2}-1}$ are multiplicatively independent.
2.9. Lemma. Suppose that $\operatorname{dim}_{k} J \notin E x_{1}^{g e n}(1) \cup E x_{1}^{s p}(1)$. Then.

$$
\eta \in\left\{\lambda^{2} \alpha_{i}^{ \pm 1} \alpha_{j}^{ \pm 1} \mid i, j \in\{1, \ldots, m\}, i \neq j\right\} \Leftrightarrow \operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=2\binom{2^{r+2}}{2^{r+1}}
$$

Proof. Let $\eta \in \Delta \cdot \Delta$. We may assume that

$$
\begin{gathered}
\eta \in\left\{\lambda^{2}, \lambda^{2} \alpha_{1}^{2}, \lambda^{2} \alpha_{1} \alpha_{2} ; \lambda^{2} \beta_{1}^{2}, \lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}, \lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2} ; \lambda^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n-1}^{-2}\right. \\
\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n-1}^{-2}, \lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n-1}^{-2}\left(2 \leq n \leq 2^{r+1}\right) \\
\lambda^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n}^{-2}, \lambda^{2} \alpha_{1}^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n}^{-2}, \lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n}^{-2} \\
\left.\left(1 \leq n \leq 2^{r+1}-1\right)\right\} .
\end{gathered}
$$

If $\delta \in \Delta$, then $T_{\eta}(\delta)=\eta \delta^{-1}$, hence

$$
T_{\lambda^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in \Delta
$$

$$
\operatorname{Card}\left(T_{\lambda^{2}}(\Delta) \cap \Delta\right)=\operatorname{Card}(\Delta)=2 \operatorname{dim}_{k} J=2 m\binom{2^{r+2}}{2^{r+1}} \neq 2\binom{2^{r+2}}{2^{r+1}}
$$

in virtue of the relations

$$
\operatorname{dim}_{k} J \notin\left\{\left.\binom{2^{r+2}}{2^{r+1}} \right\rvert\, r \in \mathbb{N}^{+}\right\} \subset E x_{1}^{s p}(1)
$$

(in particular, $m \neq 1$). On the other hand,

$$
\begin{gathered}
T_{\lambda^{2} \alpha_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \beta_{1}^{b_{1}} \ldots \beta_{2^{r+2-1}}^{b_{2 r+2}-1} \mid b_{j} \in\{ \pm 1\}, b_{1}+\ldots+b_{2^{r+2}-1} \in\{ \pm 1\}\right\} \\
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2}}(\Delta) \cap \Delta\right)=\operatorname{dim}_{\bar{Q}_{2}} E\left(\omega_{2^{r+1}}^{(2)}\right)=\binom{2^{r+2}}{2^{r+1}} \neq 2\binom{2^{r+2}}{2^{r+1}} \\
T_{\lambda^{2} \alpha_{1} \alpha_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1,2} \beta_{1}^{b_{1}} \ldots \beta_{2^{r+2}-1}^{b_{2 r+2}} \mid b_{j} \in\{ \pm 1\}, b_{1}+\ldots+b_{2^{r+2}-1} \in\{ \pm 1\}\right\}, \\
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1} \alpha_{2}}(\Delta) \cap \Delta\right)=2 \operatorname{dim}_{\overline{Q_{d}}} E\left(\omega_{2^{r+1}}^{(2)}\right)=2\binom{2^{r+2}}{2^{r+1}}
\end{gathered}
$$

It is clear that

$$
T_{\lambda^{2} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta=\lambda \alpha_{i}^{ \pm 1} \beta_{1} \beta_{2}^{b_{2}} \ldots \beta_{2^{r+2}-1}^{b_{2 r+2}}
$$

where $i \in\{1, \ldots, m\}, b_{j} \in\{ \pm 1\}, 1+b_{2}+\ldots+b_{2^{r+2}-1} \in\{ \pm 1\}$. It is evident that we can get $\left(b_{2}, \ldots, b_{2^{r+2-1}}\right)$ from $(1, . ., 1,-1, \ldots,-1)\left(2^{r+1}-1\right.$ times 1 and $2^{r+1}-1$ times -1) or from $(1, . ., 1,-1, \ldots,-1)\left(2^{r+1}-2\right.$ times 1 and 2^{r+1} times -1$)$ by some permutation of coordinates. Hence we have

$$
\begin{gathered}
\operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{2}}(\Delta) \cap \Delta\right)=2 m\left\{\binom{2^{r+2}-2}{2^{r+1}-1}+\binom{2^{r+2}-2}{2^{r+1}-2}\right\}= \\
2 m \cdot \frac{1}{2}\binom{2^{r+2}}{2^{r+1}}=m\binom{2^{r+2}}{2^{r+1}} \neq 2\binom{2^{r+2}}{2^{r+1}}
\end{gathered}
$$

because m is an odd integer.
On the other hand,

$$
\begin{gathered}
T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta=\lambda \alpha_{1} \beta_{1} \beta_{2}^{b_{2} \ldots \beta_{2^{r+2}-1}^{b_{2}+2},} \\
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}}(\Delta) \cap \Delta\right)=\binom{2^{r+2}-2}{2^{r+1}-1}+\binom{2^{r+2}-2}{2^{r+1}-2}= \\
\frac{1}{2}\binom{2^{r+2}}{2^{r+1}} \neq 2\binom{2^{r+2}}{2^{r+1}} ; \\
T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta=\lambda \alpha_{1,2} \beta_{1} \beta_{2}^{b_{2}} \ldots \beta_{2^{r+2}-1}^{b_{2 r+2}},
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2}}(\Delta) \cap \Delta\right)=2\left\{\binom{2^{r+2}-2}{2^{r+1}-1}+\binom{2^{r+2}-2}{2^{r+1}-2}\right\}= \\
\binom{2^{r+2}}{2^{r+1}} \neq 2\binom{2^{r+2}}{2^{r+1}} .
\end{gathered}
$$

It is clear that

$$
T_{\lambda^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n-1}^{-2}}(\delta) \in \Delta \Leftrightarrow \delta=\lambda \alpha_{i}^{ \pm 1} \beta_{1} \ldots \beta_{n} \beta_{n+1}^{-1} \ldots \beta_{2 n-1}^{-1} \beta_{2 n}^{b_{2 n}} \ldots \beta_{2^{r+2}-1}^{b_{2 r}+2-1},
$$

where $i \in\{1, \ldots, m\}, b_{j} \in\{ \pm 1\}, 1+b_{2 n}+\ldots+b_{2^{++2}-1} \in\{ \pm 1\}$. It is evident that we can get $\left(b_{2 n}, \ldots, b_{2^{r+2}-1}\right)$ from $(1, \ldots, 1,-1, \ldots,-1)\left(2^{r+1}-n\right.$ times 1 and $2^{r+1}-n$ times -1) or from $(1, . ., 1,-1, \ldots,-1)\left(2^{r+1}-n-1\right.$ times 1 and $2^{r+1}-n+1$ times -1) by some permutation of coordinates, $2 \leq n \leq 2^{r+1}$. Hence we have

$$
\begin{aligned}
& \operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n-1}^{-2}}(\Delta) \cap \Delta\right)=2 m\left\{\binom{2^{r+2}-2 n}{2^{r+1}-n}+\binom{2^{r+2}-2 n}{2^{r+1}-n-1}\right\} \neq \\
& 2\binom{2^{r+2}}{2^{r+1}}
\end{aligned}
$$

because $\operatorname{dim}_{k} J \notin E x_{1}^{s p}(1)$.
It is clear that

$$
T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n-1}^{-2}}(\delta) \in \Delta \Leftrightarrow \delta=\lambda \alpha_{1} \beta_{1} \ldots \beta_{n} \beta_{n+1}^{-1} \ldots \beta_{2 n-1}^{-1} \beta_{2 n}^{b_{2 n}} \ldots \beta_{2^{r+2}-1}^{b_{2 r+2}}
$$

where $b_{j} \in\{ \pm 1\}, 1+b_{2 n}+\ldots+b_{2^{r+2}-1} \in\{ \pm 1\}$. So,

$$
\begin{aligned}
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n-1}^{-2}}(\Delta) \cap \Delta\right)=\binom{2^{r+2}-2 n}{2^{r+1}-n}+\binom{2^{r+2}-2 n}{2^{r+1}-n-1} \neq \\
2\binom{2^{r+2}}{2^{r+1}},
\end{aligned}
$$

because $n \geq 2$.
On the other hand,

$$
\begin{aligned}
& T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n-1}^{-2}}(\delta) \in \Delta \Leftrightarrow \delta=\lambda \alpha_{1,2} \beta_{1} \ldots \beta_{n} \beta_{n+1}^{-1} \ldots \beta_{2 n-1}^{-1} \beta_{2 n}^{b_{2 n} \ldots \beta_{2} b_{2 r+2}-1}, \\
& \operatorname{Card}\left(T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n-1}^{-2}}(\Delta) \cap \Delta\right)=2\left\{\binom{2^{r+2}-2 n}{2^{r+1}-n}+\binom{2^{r+2}-2 n}{2^{r+1}-n-1}\right\} \\
& \leq 4\binom{2^{r+2}-2 n}{2^{r+1}-n} \leq 4\binom{2^{r+2}-2}{2^{r+1}-1}=2\binom{2^{r+2}}{2^{r+1}} \frac{1}{\left(2^{r+2}-1\right)\left(2^{r+1}+1\right)}<2\binom{2^{r+2}}{2^{r+1}} .
\end{aligned}
$$

It is clear that

$$
T_{\lambda^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n}^{-2}}(\delta) \in \Delta \Leftrightarrow \delta=\lambda \alpha_{i}^{ \pm 1} \beta_{1} \ldots \beta_{n} \beta_{n+1}^{-1} \ldots \beta_{2 n}^{-1} \beta_{2 n+1}^{b_{2 n+1}} \ldots \beta_{2^{r+2-1}}^{b_{2+2}+1}
$$

where $i \in\{1, \ldots, m\}, b_{j} \in\{ \pm 1\}, b_{2 n+1}+\ldots+b_{2^{r+2}-1} \in\{ \pm 1\}$. It is evident that we can get $\left(b_{2 n+1}, \ldots, b_{2^{r+2-1}}\right)$ from $(1, . ., 1,-1, \ldots,-1)\left(2^{r+1}-n\right.$ times 1 and $2^{r+1}-n-1$ times -1) or from $(1, \ldots, 1,-1, \ldots,-1)\left(2^{r+1}-n-1\right.$ times 1 and $2^{r+1}-n$ times -1$)$ by some permutation of coordinates, $1 \leq n \leq 2^{r+1}-1$. Hence we have
$\operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n}^{-2}}(\Delta) \cap \Delta\right)=2 m\left\{\binom{2^{r+2}-2 n-1}{2^{r+1}-n}+\binom{2^{r+2}-2 n-1}{2^{r+1}-n-1}\right\}=$

$$
4 m\binom{2^{r+2}-2 n-1}{2^{r+1}-n} \neq 2\binom{2^{r+2}}{2^{r+1}}
$$

otherwise for $n=2^{r+1}-1$ we would have:

$$
\begin{aligned}
4 m & =2\binom{2^{r+2}}{2^{r+1}} \\
m & =\frac{1}{2}\binom{2^{r+2}}{2^{r+1}}
\end{aligned}
$$

is an odd integer,

$$
\operatorname{dim}_{k} J=m\binom{2^{r+2}}{2^{r+1}}=2 m^{2} \in E x_{1}^{g e n}(1)
$$

contrary to the assumption of lemma; for $1 \leq n \leq 2^{r+1}-2$ we would have:

$$
m=\frac{\binom{2^{r+2}}{2^{r+1}}}{2\binom{\left(^{r+2}-2 n-1\right.}{2^{r+1}-n}}
$$

is an odd integer for some natural number $n \in\left[1,2^{r+1}-2\right]$,

$$
\operatorname{dim}_{k} J=m\binom{2^{r+2}}{2^{r+1}} \in E x_{1}^{s p}(1)
$$

contrary to the assumption of lemma.
It is evident that

$$
T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n}^{-2}}(\delta) \in \Delta \Leftrightarrow \delta=\lambda \alpha_{1} \beta_{1} \ldots \beta_{n} \beta_{n+1}^{-1} \ldots \beta_{2 n}^{-1} \beta_{2 n+1}^{b_{2 n+1} \ldots} \beta_{2^{r+2}-1}^{b_{2 r+2}},
$$

where $b_{j} \in\{ \pm 1\}, b_{2 n+1}+\ldots+b_{2^{r+2}-1} \in\{ \pm 1\}$. Hence,

$$
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n}^{-2}}(\Delta) \cap \Delta\right)=2\binom{2^{r+2}-2 n-1}{2^{r+1}-n} \neq 2\binom{2^{r+2}}{2^{r+1}}
$$

because $n \geq 1$.
On the other hand,

$$
T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n}^{-2}}(\delta) \in \Delta \Leftrightarrow \delta=\lambda \alpha_{1,2} \beta_{1} \ldots \beta_{n} \beta_{n+1}^{-1} \ldots \beta_{2 n}^{-1} \beta_{2 n+1}^{b_{2 n+1} \ldots \beta_{2^{r+2}-1}^{b_{2 r+2}}, ~}
$$

where $b_{j} \in\{ \pm 1\}, b_{2 n+1}+\ldots+b_{2^{r+2}-1} \in\{ \pm 1\}$. Hence,

$$
\begin{gathered}
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2} \ldots \beta_{n}^{2} \beta_{n+1}^{-2} \ldots \beta_{2 n}^{-2}}(\Delta) \cap \Delta\right)=4\binom{2^{r+2}-2 n-1}{2^{r+1}-n} \leq 4\binom{2^{r+2}-3}{2^{r+1}-1}= \\
\binom{2^{r+2}}{2^{r+1}} \frac{2^{r+1}}{2^{r+2}-1}<\binom{2^{r+2}}{2^{r+1}}
\end{gathered}
$$

Lemma 2.9 is proved.
2.10. By lemma 2.9 and (0.2.1) the set $\left\{\lambda^{2} \alpha_{i}^{ \pm 1} \alpha_{j}^{ \pm 1} \mid i, j \in\{1, \ldots, m\}, i \neq j\right\}$ is $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant.

From (1.5.8) it follows that for any place w of $\overline{\mathbb{Q}}$ over p_{v} we have

$$
\frac{w\left(\lambda^{2} \alpha_{1} \alpha_{2}\right)}{w\left(p_{v}^{2}\right)} \in\left\{0, \frac{1}{2}, 1\right\} .
$$

Suppose that

$$
\frac{w\left(\lambda^{2} \alpha_{1} \alpha_{2}\right)}{w\left(p_{v}^{2}\right)}=0
$$

for some place w. Then for each $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
\frac{(\sigma w)\left(\sigma\left(\lambda^{2} \alpha_{1} \alpha_{2}\right)\right)}{(\sigma w)\left(p_{v}^{2}\right)}=0
$$

hence from the relation

$$
\sigma\left(\lambda^{2} \alpha_{1} \alpha_{2}\right) \in\left\{\lambda^{2} \alpha_{i}^{ \pm 1} \alpha_{j}^{ \pm 1} \mid i, j \in\{1, \ldots, m\}, i \neq j\right\}
$$

obtained above and from the transitivity of a natural action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the set $\left\{w \mid w\right.$ is a place of $\overline{\mathbb{Q}}$ over $\left.p_{v}\right\}$ it follows that $\forall w \mid p_{v} \exists \lambda^{2} \alpha_{i}^{a_{i}} \alpha_{j}^{a_{j}}\left(a_{i}, a_{j} \in\right.$ $\{ \pm 1\}, i, j \in\{1, \ldots, m\}, i \neq j)$ such that $w\left(\lambda^{2} \alpha_{i}^{a_{i}} \alpha_{j}^{a_{j}}\right)=0$.

So, $\forall w \mid p_{v}$

$$
0=w\left(\lambda^{2} \alpha_{i}^{a_{i}} \alpha_{j}^{a_{j}}\right)=\frac{1}{2}\left\{w\left(\lambda^{2} \alpha_{i}^{a_{i}} \alpha_{j}^{a_{j}} \beta_{1}^{2}\right)+w\left(\lambda^{2} \alpha_{i}^{a_{i}} \alpha_{j}^{a_{j}} \beta_{1}^{-2}\right)\right\}
$$

On the other hand,

$$
\lambda^{2} \alpha_{i}^{a_{i}} \alpha_{j}^{a_{j}} \beta_{1}^{2 b_{1}} \in \Delta \cdot \Delta .
$$

Consequently both summands in the last brackets are nonnegative and we have the relation

$$
w\left(\lambda^{2} \alpha_{i}^{a_{i}} \alpha_{j}^{a_{j}} \beta_{1}^{2}\right)=w\left(\lambda^{2} \alpha_{i}^{a_{i}} \alpha_{j}^{a_{j}} \beta_{1}^{-2}\right)=0 .
$$

So $w\left(\beta_{1}\right)=0$ for all $w \mid p_{v}$. It follows that β_{1} is a root of 1 [19,sublemma 3.4.0] contrary to the assumption that $\lambda, \alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{2^{r+2}-1}$ are multiplicatively independent.

If

$$
\frac{w\left(\lambda^{2} \alpha_{1} \alpha_{2}\right)}{w\left(p_{v}^{2}\right)}=1
$$

then we have the impossible relation

$$
\frac{(\rho w)\left(\lambda^{2} \alpha_{1} \alpha_{2}\right)}{(\rho w)\left(p_{v}^{2}\right)}=0
$$

Hence,

$$
\frac{w\left(\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right)}{w\left(p_{v}^{2}\right)}=\frac{1}{2}
$$

for all places $w \mid p_{v}$. It follows that $\alpha_{1} \alpha_{2}$ is a root of 1 [1.9,sublemma 3.4.0] contrary to the assumption that $\lambda, \alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{2^{r+2}-1}$ are multiplicatively independent. So $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{i}}$ is not a Lie algebra of type $C_{m} \times A_{2^{q+1}-1}$.

§3. Proof of the main theorem for abelian variety of the 2nd or the 3d type by Albert's classification

3.1. We assume that $J \otimes \bar{k}$ is an abelian variety of the 2nd type by Albert's classification. From the well known relations

$$
\begin{align*}
& M_{2}\left(\overline{\mathbb{Q}_{l}}\right) \simeq \operatorname{End}^{0}(J \otimes \bar{k}) \otimes \overline{\mathbb{Q}_{l}} \simeq \operatorname{End}_{g_{l} \otimes \overline{\mathbb{Q}_{l}}} V_{l} \otimes \overline{\mathbb{Q}_{l}} \tag{3.1.1}\\
& \mathrm{NS}(J \otimes \bar{k}) \otimes \overline{\mathbb{Q}_{l}} \simeq\left(\bigwedge^{2} H_{e t}^{1}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right) \otimes \overline{\mathbb{Q}_{l}}\right)^{g_{i} \cdot \otimes \overline{\mathbb{A}}} \tag{3.1.2}
\end{align*}
$$

and from Schur's lemma it follows that $V_{l} \otimes \overline{\mathbb{Q}_{l}}$ is the direct sum of two copies of an irreducible symplectic $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$-module. Since each eigenvalue $\delta \in \Delta$ has multiplicity 2 we can deduce the statement of the theorem by the same procedure as above.
3.2. We assume that $J \otimes \bar{k}$ is an abelian variety of the 3 d type by Albert's classification. From the relations (3.1.1)-(3.1.2) and from Schur's lemma it follows that $V_{l} \otimes \overline{\mathbb{Q}_{l}}$ is the direct sum of two copies of an irreducible orthogonal $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ module W.

Assume that a Lie algebra $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is simple. From the relation $\operatorname{dim}_{k} J \notin E x(3)$ it follows that $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is a Lie algebra of type $D_{d / 2}$, where $d=\operatorname{dim}_{k} J[16$,sect.1.31.8]. On the other hand, Lie $\mathrm{Hg}\left(J_{\mathbf{C}}\right) \otimes \overline{\mathbb{Q}_{l}} \subset s o(W)$. By Piatetski-Shapiro -Deligne - Borovoi theorem [13],[2] there exists a canonical embedding

$$
\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right) \subset \operatorname{Lie}\left[\operatorname{MT}\left(J_{\mathrm{C}}\right)\left(\mathbb{Q}_{l}\right)\right]=\mathbb{Q}_{l} \times \operatorname{Lie}\left[\operatorname{Hg}\left(J_{\mathbf{C}}\right)\left(\mathbb{Q}_{l}\right)\right]
$$

So there exists a canonical isomorphism of Lie algebras

$$
\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right) \simeq \operatorname{Lie}\left[\operatorname{MT}\left(J_{\mathbf{C}}\right)\left(\mathbb{Q}_{l}\right)\right]
$$

3.3. Now we may assume that a Lie algebra $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is not simple. By the condition of the theorem $\operatorname{dim}_{k} J=4(\bmod 8)$. It follows from the results of sections 1.1-1.2 that $W=W_{1} \otimes W_{2}$ and 2 divides $\operatorname{dim}_{\overline{\mathbf{Q}}_{1}} W_{i}$. Hence $S=S_{1} \times S_{2}$ is a product of two simple simply connected algebraic $\overline{\mathbb{Q}_{l}}$-groups,

$$
\begin{equation*}
v_{2}\left(\operatorname{dim}_{\overline{\mathbb{Q}}_{1}} W_{i}\right)=1(i=1,2) \tag{3.3.1}
\end{equation*}
$$

From (3.3.1) it follows that Lie S_{i} is not an algebra of type $B_{n}(n \geq 2)$. If Lie S_{i} is an algebra of type $D_{n}(n \geq 3)$ then $W_{i}=E\left(\omega_{1}^{(i)}\right)$. Hence a pair (type of $\left.g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}, V_{l} \otimes \overline{\mathbb{Q}_{l}}\right)$ assumes one of the following values:

$$
\begin{gathered}
\left(C_{m} \times C_{n}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)^{\oplus 2}\right)(m \geq 1, n \geq 1) \\
\left(D_{m} \times D_{n}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)^{\oplus 2}\right)(m \geq 3, n \geq 3) \\
\left(D_{m} \times A_{2^{q+1}-1}, E\left(\omega_{1}^{(1)}+\omega_{2 q}^{(2)}\right)^{\oplus 2}\right)(m \geq 3, q \geq 1) \\
\left(A_{2^{p+1}-1} \times A_{2^{q+1}-1}, E\left(\omega_{2 p}^{(1)}+\omega_{2 q}^{(2)}\right)^{\oplus 2}\right)(p \geq 1, q \geq 1)
\end{gathered}
$$

where m, n are odd integers.
On the other hand, it is easy to see that $2 \cdot E x_{1}^{g e n}(1) \subset E x(3)$. Hence $\operatorname{dim}_{k} J \notin$ $2 \cdot E x_{1}^{g e n}(1)$.
3.4. Assume that $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is a semisimple Lie algebra of type $C_{m} \times C_{n},(m \geq$ $1, n \geq 1), V_{l} \otimes \overline{\mathbb{Q}_{l}}=E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)^{\oplus 2}$. In this case $\operatorname{dim}_{k} J=4 m n$, where m, n are odd integers. We may assume that $m \leq n$. On the other hand, we have to assume that $\operatorname{dim}_{k} J=4$ or $m \neq n$ because $\operatorname{dim}_{k} J \notin 2 \cdot E x_{1}^{g e n}(1)$. If $\operatorname{dim}_{k} J=4$ then $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is a semisimple Lie algebra of type $C_{1} \times C_{1}=D_{2}$ and the Mumford - Tate conjecture holds for J.

We assume that $1 \leq m<n$. Then we can exclude the variant ($C_{m} \times C_{n}, E\left(\omega_{1}^{(1)}+\right.$ $\left.\left.\omega_{1}^{(2)}\right)^{\oplus 2}\right)(m \geq 1, n \geq 1)$ by the arguments of sections 2.6-2.7.
3.5. Assume that $g_{l}^{s s} \otimes \overline{\mathbb{Q}} l$ is a semisimple Lie algebra of type $D_{m} \times D_{n}(m \geq$ $3, \dot{n} \geq 3), V_{l} \otimes \overline{\mathbb{Q}_{l}}=E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)^{\oplus 2}$. The structure of Δ does not distinguish the cases $D_{m} \times D_{n}$ and $C_{m} \times C_{n}$. Hence we may exclude this variant as above.
3.6. The variant $\left(D_{m} \times A_{2^{q+1}-1}, E\left(\omega_{1}^{(1)}+\omega_{2 q}^{(2)}\right)^{\oplus 2}\right)(m \geq 3, q \geq 1)$ can be excluded by the arguments of sections 2.8-2.10 because $\operatorname{dim}_{k} J \notin 2 \cdot\left\{E x_{1}^{g e n}(1) \cup E x_{1}^{s p}(1)\right\}$.
3.7. Consider the variant $\left(A_{2^{p+1}-1} \times A_{2^{q+1}-1}, E\left(\omega_{2 p}^{(1)}+\omega_{2 q}^{(2)}\right)^{\oplus 2}\right)(p \geq 1, q \geq 1)$. From the relation $\operatorname{dim}_{k} J \notin 2 \cdot E x_{1}^{g e n}(1)$ it follows that $p \neq q$. So we may assume that $p<q$. Since $A_{3} \simeq D_{3}$ we may assume that $2 \leq p=r+1<q=s+1$, where $r, s \in \mathbb{N}^{+}, r<s$. Each element $\delta \in \Delta$ has the form

$$
\lambda \alpha_{1}^{a_{1}} \ldots \alpha_{2^{r+2}-1}^{a_{2 r+2}} \cdot \beta_{1}^{b_{1}} \ldots \beta_{2^{\circ}+2-1}^{b_{2+2}+2},
$$

where $a_{i}, b_{j} \in\{ \pm 1\}, a_{1}+\ldots+a_{2^{r+2}-1} \in\{ \pm 1\}, b_{1}+\ldots+b_{2^{s+2}-1} \in\{ \pm 1\}$ and $\lambda, \alpha_{1}, \ldots, \alpha_{2^{r+2-1}}, \beta_{1}, \ldots, \beta_{2^{\bullet+2-1}}$ are multiplicatively independent.
3.8. Lemma. Let $\eta \in \Delta \cdot \Delta$. We have $\eta \in\left\{\lambda^{2}\left(\alpha_{i}^{2} \alpha_{j}^{-2}\right)^{ \pm 1} \mid i \neq j\right\} \Leftrightarrow$

$$
\operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=2\binom{2^{r+2}-3}{2^{r+1}-1}\binom{2^{s+2}}{2^{s+1}}=\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{r+2}}{2^{r+1}}\binom{2^{s+2}}{2^{s+1}}
$$

Proof. We may assume that $\eta=\lambda^{2} \nu_{1} \nu_{2}$, where

$$
\begin{gathered}
\nu_{1} \in\left\{1, \alpha_{1}^{2}, \alpha_{1}^{2} \ldots \alpha_{n}^{2} \alpha_{n+1}^{-2} \ldots \alpha_{2 n-1}^{-2}\left(2 \leq n \leq 2^{r+1}\right), \alpha_{1}^{2} \ldots \alpha_{n}^{2} \alpha_{n+1}^{-2} \ldots \alpha_{2 n}^{-2}\right. \\
\left.\left(1 \leq n \leq 2^{r+1}-1\right)\right\}
\end{gathered}
$$

$$
\begin{gathered}
\nu_{2} \in\left\{1, \beta_{1}^{2}, \beta_{1}^{2} \ldots \beta_{m}^{2} \beta_{m+1}^{-2} \ldots \beta_{2 m-1}^{-2}\left(2 \leq m \leq 2^{s+1}\right), \beta_{1}^{2} \ldots \beta_{m}^{2} \beta_{m+1}^{-2} \ldots \beta_{2 m}^{-2}\right. \\
\left.\left(1 \leq m \leq 2^{s+1}-1\right)\right\}
\end{gathered}
$$

It is easy to see that $\operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=c_{1}\left(\nu_{1}\right) \cdot c_{2}\left(\nu_{2}\right)$, where

$$
\begin{gathered}
c_{1}(1)=\binom{2^{r+2}}{2^{r+1}} \\
c_{1}\left(\alpha_{1}^{2}\right)=\binom{2^{r+2}-2}{2^{r+1}-1}+\binom{2^{r+2}-2}{2^{r+1}-2}=\frac{1}{2}\binom{2^{r+2}}{2^{r+1}} \\
c_{1}\left(\alpha_{1}^{2} \ldots \alpha_{n}^{2} \alpha_{n+1}^{-2} \ldots \alpha_{2 n-1}^{-2}\right)=\binom{2^{r+2}-2 n}{2^{r+1}-n}+\binom{2^{r+2}-2 n}{2^{r+1}-n-1} \\
c_{1}\left(\alpha_{1}^{2} \ldots \alpha_{n}^{2} \alpha_{n+1}^{-2} \ldots \alpha_{2 n}^{-2}\right)=2\binom{2^{r+2}-2 n-1}{2^{r+1}-n} \\
c_{2}(1)=\binom{2^{s+2}}{2^{s+1}} \\
c_{2}\left(\beta_{1}^{2}\right)=\binom{2^{s+2}-2}{2^{s+1}-1}+\binom{2^{s+2}-2}{2^{s+1}-2}=\frac{1}{2}\binom{2^{s+2}}{2^{s+1}} \\
c_{2}\left(\beta_{1}^{2} \ldots \beta_{m}^{2} \beta_{m+1}^{-2} \ldots \beta_{2 m-1}^{-2}\right)=\binom{2^{s+2}-2 m}{2^{s+1}-m}+\binom{2^{s+2}-2 m}{2^{s+1}-m-1} \\
c_{2}\left(\beta_{1}^{2} \ldots \beta_{m}^{2} \beta_{m+1}^{-2} \ldots \beta_{2 m}^{-2}\right)=2\binom{2^{s+2}-2 m-1}{2^{s+1}-m}
\end{gathered}
$$

For example,

$$
\begin{gathered}
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2} \ldots \alpha_{n}^{2} \alpha_{n+1}^{-2} \ldots \alpha_{2 n-1}^{-2} \beta_{1}^{2}}(\Delta) \cap \Delta\right)= \\
\left\{\binom{2^{r+2}-2 n}{2^{r+1}-n}+\binom{2^{r+2}-2 n}{2^{r+1}-n-1}\right\} \cdot \frac{1}{2}\binom{2^{s+2}}{2^{s+1}}
\end{gathered}
$$

Using these calculations, the relations

$$
\begin{gathered}
\binom{2^{r+2}-2}{2^{r+1}-1}+\binom{2^{r+2}-2}{2^{r+1}-2}=\frac{1}{2}\binom{2^{r+2}}{2^{r+1}} \\
\binom{2^{r+2}-3}{2^{r+1}-1}=\frac{2^{r+1}}{2^{r+2}-1} \cdot\binom{2^{r+2}}{2^{r+1}} \\
\binom{2^{r+2}-4}{2^{r+1}-2}=\frac{2^{r+1}}{2^{r+2}-1} \cdot \frac{2^{r+1}-1}{2^{r+2}-3} \cdot\binom{2^{r+2}}{2^{r+1}}
\end{gathered}
$$

and similar relations with s instead of r we can deduce the statement of lemma from the inequality $r<s$ and elementary properties of decreasing function

$$
f(r)=\frac{2^{r}}{2^{r+2}-1}\left(\text { note that } \frac{\partial f(r)}{\partial r}<0\right)
$$

Indeed, for $n \geq 2$

$$
\begin{gathered}
c_{1}\left(\alpha_{1}^{2} \ldots \alpha_{n}^{2} \alpha_{n+1}^{-2} \ldots \alpha_{2 n-1}^{-2}\right)=\binom{2^{r+2}-2 n}{2^{r+1}-n}+\binom{2^{r+2}-2 n}{2^{r+1}-n-1} \leq 2\binom{2^{r+2}-2 n}{2^{r+1}-n} \\
\leq 2\binom{2^{r+2}-4}{2^{r+1}-2}=2\binom{2^{r+2}-3}{2^{r+1}-1} \cdot \frac{2^{r+1}-1}{2^{r+2}-3}<2\binom{2^{r+2}-3}{2^{r+1}-1}, \\
c_{1}\left(\alpha_{1}^{2} \ldots \alpha_{n}^{2} \alpha_{n+1}^{-2} \ldots \alpha_{2 n}^{-2}\right)=2\binom{2^{r+2}-2 n-1}{2^{r+1}-n} \leq 2\binom{2^{r+2}-5}{2^{r+1}-2}<2\binom{2^{r+2}-3}{2^{r+1}-1},
\end{gathered}
$$

hence we may assume that $\nu_{1} \in\left\{1, \alpha_{1}^{2}, \alpha_{1}^{2} \alpha_{2}^{-2}\right\}$.
It is evident that $\eta \neq \lambda^{2}$. On the other hand, if $\eta=\lambda^{2} \beta_{1}^{2}$ then

$$
\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{r+2}}{2^{r+1}}\binom{2^{s+2}}{2^{s+1}}=\binom{2^{r+2}}{2^{r+1}} \cdot \frac{1}{2} \cdot\binom{2^{s+2}}{2^{s+1}}
$$

and we get the impossible relation

$$
\frac{2^{r}}{2^{r+2}-1}=\frac{1}{2}
$$

If $\eta=\lambda^{2} \beta_{1}^{2} \ldots \beta_{m}^{2} \beta_{m+1}^{-2} \ldots \beta_{2 m-1}^{-2}$ then we have

$$
\begin{gathered}
\binom{2^{r+2}}{2^{r+1}}\left\{\binom{2^{s+2}-2 m}{2^{s+1}-m}+\binom{2^{s+2}-2 m}{2^{s+1}-m-1}\right\}=\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{r+2}}{2^{r+1}}\binom{2^{s+2}}{2^{s+1}} \\
\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{s+2}}{2^{s+1}}=\binom{2^{s+2}-2 m}{2^{s+1}-m}+\binom{2^{s+2}-2 m}{2^{s+1}-m-1} \leq 2 \cdot\binom{2^{s+2}-2 m}{2^{s+1}-m} \leq \\
2 \cdot\binom{2^{s+2}-4}{2^{s+1}-2}=\frac{2^{s}}{2^{s+2}-1} \cdot \frac{2^{s+1}-1}{2^{s+2}-3} \cdot\binom{2^{s+2}}{2^{s+1}} \\
f(r)=\frac{2^{r}}{2^{r+2}-1} \leq \frac{2^{s}}{2^{s+2}-1} \cdot \frac{2^{s+1}-1}{2^{s+2}-3}<\frac{2^{s}}{2^{s+2}-1}=f(s)
\end{gathered}
$$

contrary to the assumption that $r<s$.
If $\eta=\lambda^{2} \beta_{1}^{2} \ldots \beta_{m}^{2} \beta_{m+1}^{-2} \ldots \beta_{2 m}^{-2}$ then we have

$$
\begin{gathered}
\binom{2^{r+2}}{2^{r+1}} \cdot 2 \cdot\binom{2^{s+2}-2 m-1}{2^{s+1}-m}=\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{r+2}}{2^{r+1}}\binom{2^{s+2}}{2^{s+1}} \\
\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{s+2}}{2^{s+1}}=2 \cdot\binom{2^{s+2}-2 m-1}{2^{s+1}-m} \leq 2 \cdot\binom{2^{s+2}-3}{2^{s+1}-1}=\frac{2^{s}}{2^{s+2}-1}\binom{2^{s+2}}{2^{s+1}} \\
f(r)=\frac{2^{r}}{2^{r+2}-1} \leq \frac{2^{s}}{2^{s+2}-1}=f(s)
\end{gathered}
$$

contrary to the assumption that $r<s$.

If $\eta=\lambda^{2} \alpha_{1}^{2}$ then

$$
\frac{1}{2}\binom{2^{r+2}}{2^{r+1}}\binom{2^{s+2}}{2^{s+1}}=\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{r+2}}{2^{r+1}}\binom{2^{s+2}}{2^{s+1}}
$$

and we get the impossible relation

$$
\frac{2^{r}}{2^{r+2}-1}=\frac{1}{2}
$$

If $\eta=\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}$ then

$$
\frac{1}{2}\binom{2^{r+2}}{2^{r+1}} \frac{1}{2}\binom{2^{s+2}}{2^{s+1}}=\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{r+2}}{2^{r+1}}\binom{2^{s+2}}{2^{s+1}}
$$

and we get the impossible relation

$$
\frac{2^{r}}{2^{r+2}-1}=\frac{1}{4}
$$

If $\eta=\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2} \ldots \beta_{m}^{2} \beta_{m+1}^{-2} \ldots \beta_{2 m-1}^{-2}$ then we have.

$$
\begin{gathered}
\frac{1}{2}\binom{2^{r+2}}{2^{r+1}}\left\{\binom{2^{s+2}-2 m}{2^{s+1}-m}+\binom{2^{s+2}-2 m}{2^{s+1}-m-1}\right\}=\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{r+2}}{2^{r+1}}\binom{2^{s+2}}{2^{s+1}} \\
\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{s+2}}{2^{s+1}}=\frac{1}{2}\left\{\binom{2^{s+2}-2 m}{2^{s+1}-m}+\binom{2^{s+2}-2 m}{2^{s+1}-m-1}\right\} \leq\binom{ 2^{s+2}-2 m}{2^{s+1}-m} \\
\leq\binom{ 2^{s+2}-4}{2^{s+1}-2}=\frac{2^{s-1}}{2^{s+2}-1} \cdot \frac{2^{s+1}-1}{2^{s+2}-3} \cdot\binom{2^{s+2}}{2^{s+1}} \leq \frac{2^{s-1}}{2^{s+2}-1}\binom{2^{s+2}}{2^{s+1}},
\end{gathered}
$$

and we get the impossible relation

$$
f(r)=\frac{2^{r}}{2^{r+2}-1} \leq \frac{2^{s-1}}{2^{s+2}-1}=\frac{1}{2} f(s)<\frac{1}{2} f(r) .
$$

If $\eta=\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2} \ldots \beta_{m}^{2} \beta_{m+1}^{-2} \ldots \beta_{2 m}^{-2}$ then

$$
\begin{gathered}
\frac{1}{2}\binom{2^{r+2}}{2^{r+1}} \cdot 2 \cdot\binom{2^{s+2}-2 m-1}{2^{s+1}-m}=\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{r+2}}{2^{r+1}}\binom{2^{s+2}}{2^{s+1}}, \\
\frac{2^{r}}{2^{r+2}-1} \cdot\binom{2^{s+2}}{2^{s+1}}=\binom{2^{s+2}-2 m-1}{2^{s+1}-m} \leq\binom{ 2^{s+2}-3}{2^{s+1}-1}=\frac{2^{s-1}}{2^{s+2}-1}\binom{2^{s+2}}{2^{s+1}},
\end{gathered}
$$

and we get the impossible relation

$$
f(r)=\frac{2^{r}}{2^{r+2}-1} \leq \frac{2^{s-1}}{2^{s+2}-1}=\frac{1}{2} f(s)<\frac{1}{2} f(r)
$$

If $\nu_{2} \in\left\{\beta_{1}^{2}, \beta_{1}^{2} \ldots \beta_{m}^{2} \beta_{m+1}^{-2} \ldots \beta_{2 m-1}^{-2}, \beta_{1}^{2} \ldots \beta_{m}^{2} \beta_{m+1}^{-2} \ldots \beta_{2 m}^{-2}\right\}$ then

$$
c_{2}\left(\nu_{2}\right)<\binom{2^{s+2}}{2^{s+1}}
$$

and $\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2} \alpha_{2}^{-2} \nu_{2}}(\Delta) \cap \Delta\right)=c_{1}\left(\alpha_{1}^{2} \alpha_{2}^{-2}\right) \cdot c_{2}\left(\nu_{2}\right)=$

$$
2\binom{2^{r+2}-3}{2^{r+1}-1} \cdot c_{2}\left(\nu_{2}\right)<2\binom{2^{r+2}-3}{2^{r+1}-1}\binom{2^{s+2}}{2^{s+1}} .
$$

Lemma 3.8 is proved.
3.9. By lemma 3.8 the set $\left\{\lambda^{2}\left(\alpha_{i}^{2} \alpha_{j}^{-2}\right)^{ \pm 1} \mid i \neq j\right\}$ is $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant.

From (1.5.8) it follows that for any place w of $\overline{\mathbb{Q}}$ over p_{v} we have

$$
\frac{w\left(\lambda^{2} \alpha_{1}^{2} \alpha_{2}^{-2}\right)}{w\left(p_{v}^{2}\right)} \in\left\{0, \frac{1}{2}, 1\right\}
$$

Suppose that

$$
\frac{w\left(\lambda^{2} \alpha_{1}^{2} \alpha_{2}^{-2}\right)}{w\left(p_{v}^{2}\right)}=0
$$

for some place w. Then for each $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
\frac{(\sigma w)\left(\sigma\left(\lambda^{2} \alpha_{1}^{2} \alpha_{2}^{-2}\right)\right)}{(\sigma w)\left(p_{v}^{2}\right)}=0
$$

hence from the relation

$$
\sigma\left(\lambda^{2} \alpha_{1}^{2} \alpha_{2}^{-2}\right) \in\left\{\lambda^{2}\left(\alpha_{i}^{2} \alpha_{j}^{-2}\right)^{ \pm 1} \mid i \neq j\right\}
$$

obtained above and from the transitivity of a natural action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the set $\left\{w \mid w\right.$ is a place of $\overline{\mathbb{Q}}$ over $\left.p_{v}\right\}$ it follows that $\forall w \mid p_{v} \exists \lambda^{2}\left(\alpha_{i}^{2} \alpha_{j}^{-2}\right)^{a}(a \in\{ \pm 1\}, i \neq j)$ such that $w\left(\lambda^{2}\left(\alpha_{i}^{2} \alpha_{j}^{-2}\right)^{a}\right)=0$.

So, $\forall w \mid p_{v}$

$$
\left.0=w\left(\lambda^{2}\left(\alpha_{i}^{2} \alpha_{j}^{-2}\right)^{a}\right)=\frac{1}{2}\left\{w\left(\lambda^{2}\left(\alpha_{i}^{2} \alpha_{j}^{-2}\right)^{a} \beta_{1}^{2}\right)+w\left(\lambda^{2}\left(\alpha_{i}^{2} \alpha_{j}^{-2}\right)^{a}\right) \beta_{1}^{-2}\right)\right\}
$$

On the other hand,

$$
\lambda^{2}\left(\alpha_{i}^{2} \alpha_{j}^{-2}\right)^{a} \beta_{1}^{2 b_{1}} \in \Delta \cdot \Delta .
$$

Consequently both summands in the last brackets are nonnegative and we have the relation

$$
\left.w\left(\lambda^{2}\left(\alpha_{i}^{2} \alpha_{j}^{-2}\right)^{a} \beta_{1}^{2}\right)=w\left(\lambda^{2}\left(\alpha_{i}^{2} \alpha_{j}^{-2}\right)^{a}\right) \beta_{1}^{-2}\right)=0
$$

So $w\left(\beta_{1}\right)=0$ for all $w \mid p_{v}$. It follows that β_{1} is a root of $1[19$, sublemma 3.4.0] contrary to the assumption that $\lambda, \alpha_{1}, \ldots, \alpha_{2^{r+2-1}}, \beta_{1}, \ldots, \beta_{2^{+2+1}}$ are multiplicatively independent.

If

$$
\frac{w\left(\lambda^{2} \alpha_{1}^{2} \alpha_{2}^{-2}\right)}{w\left(p_{v}^{2}\right)}=1
$$

then we have the impossible relation

$$
\frac{(\rho w)\left(\lambda^{2} \alpha_{1}^{2} \alpha_{2}^{-2}\right)}{(\rho w)\left(p_{v}^{2}\right)}=0
$$

Hence,

$$
\frac{w\left(\lambda^{2}\left(\alpha_{1}^{2} \alpha_{2}^{-2}\right)^{ \pm 1}\right)}{w\left(p_{v}^{2}\right)}=\frac{1}{2}
$$

for all places $w \mid p_{v}$. It follows that $\alpha_{1}^{2} \alpha_{2}^{-2}$ is a root of 1 [19, sublemma 3.4.0] contrary to our assumptions. So $g_{i}^{s s} \otimes \overline{\mathbb{Q}_{i}}$ is not a Lie algebra of type $A_{2^{p+1}-1} \times A_{2^{q+1}-1}$. Theorem 0.8 is proved.

References

[1] F.A.Bogomolov, Sur l'algebricite des representations l-adiques, C.R.Acad.Sc.Paris 290 (1980), 701-703.
[2] M.V.Borovoi, Shimura-Deligne schemes $M_{\mathbf{C}}(G, h)$ and rational cohomology classes of type (p, p) on abelian varieties, In:Questions of the theory of groups and homological algebra, Jaroslavl State University, Jaroslavl, 1977, pp. 3-53.
[3] N.Bourbaki, Groups et algebres de Lie,Chaps.1-8, Actualites Sci.Indust.,nos.1285,1349, 1337,1364,Hermann, Paris, 1971,1972,1968,1975.
[4] J.W.S.Cassels and A.Frohlich (editors), Algebraic number theory, (Proc.International Conf.,Brighton,1965),Academic Press,London,and Thompson, Washington,D.C., 1967.
[5] W.Chi, l-adic and λ-adic representations associated to abelian varieties defined over number fields, Amer.J.Math. 114 (1992), 315-353.
[6] P.Deligne, Varietes abeliennes ordinaires sur un corps fini, Invent.Math. 8 (1969), 238-243.
[7] G.Faltings, Endlichkeitssatze fur abelsche Varietaten uber Zahlkorpern, Invent.Math. 73 (1983), 349-366.
[8] A.Grothendieck, Hodge's general conjecture is false for trivial reasons, Topology 8 (1969), 299-303.
[9] W.V.D.Hodge, The topological invariants of algebraic varieties, Proc.Internat.Congr. Math.(Cambridge,MA,1950),Amer.Math.Soc., Providence,RI, 1 (1952), 182-192.
[10] D.Mumford, Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups,Proc.Sympos.Pure Math., Amer.Math.Soc.,Providence, RI, 9 (1966), 347-352.
[11] D.Mumford(in collaboration with C.P.Ramanujam), Abelian varieties, Tata Inst.Fund. Res.,Bombay,and Oxford Univ.Press,London, 1970.
[12] A.Ogus, Hodge cycles and crystalline cohomology, Hodge cycles, motives, and Shimura varieties. Lecture Notes in Math., Springer-Verlag,Berlin 900 (1982), 357-414.
[13] I.I.Piatetski-Shapiro, Interrelations between the Tate and Hodge conjectures for abelian varieties, Mat.Sb. 85 (1971), 610-620.
[14] J.-P.Serre, Abelian l-adic representations and elliptic curves, Benjamin, New York, 1968.
[15] S.G.Tankeev, On algebraic cycles on surfaces and abelian varieties, Izv.Russian Acad. Sci.Ser.Math. 45,n. 2 (1981), 398-434.
[16] S.G.Tankeev, Algebraic cycles on abelian variety without complex multiplication, Izv. Russian Acad.Sci.Ser.Math. 58,n. 3 (1994), 103-126.
[17] S.G.Tankeev, Algebraic cycles on simple 4p-dimensional abelian variety over a number field, to appear.
[18] J.Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry, Harper and Row, New York, 1965, pp. 93-110.
[19] Yu.G.Zarhin, Weights of simple Lie algebras in cohomology of algebraic varieties, Izv.Russian Acad.Sci. Ser.Math. 48,n. 2 (1984), 264-304.

Vladimir State Technical University, ul. Gorkogo,87, Vladimir, 600029, Russia E-MAIL:TANKEEV ${ }^{0} / 0$ RTF@VPTI.VLADIMIR.SU

[^0]: *This paper is a result of my stay at the Max-Planck-Institut fur Mathematik in 1995-96. It is my pleasure to thank the members of MPI for their hospitality.

