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On the twisted cobar construction

H.-J. Baues and A.P. Tanks

Introduction
The classical cobar construction nc for a coalgebra C (first introduced by

Adams [1]) is an important algebraic concept motivated by the singular chain
complex of a loop space OS. Ir X is a l-reduced simplicial set with realisation
IX I Adams proved that Lhere is a natural isomorphism of homology groups

where e (X) is the coalgebra gi yen by the chai n eom plex on X and the Alexander­
\Vhitney diagonal. Here the homology has coeffieients in an abelian group A.
The purpose of t.his paper is the extension of this result to the case of twisted
coefficients given by 1r 10IXI-lllodules A, with 1r10IXl = H 2X.

\Ve introduce the new algebraic concepts of a twisted eoalgebra C aod a
twisted cobar construction ,Oe which extend the classical notions. \Ve are able to
define for any l-recluced simplicial set X a twisted coalgebra C(X) together with

a natural projection C(X) --+ C(X), such that there is a natural isomorphism

H.(nC(X), A) H.(nlxl, A)

for all t\visted coefficients A. Por Lllis we prove that there is a natural homology

equivalencc of differential algebras between nC(X) and cfiTYl where fiTYl is
the universal cover of [,he loop space njXI. \Ve show

and hence recover from (**) thc resul t (*) of Adams.
Iterated loop spaces and I.he problem of iterating the cobar construction lead

to the f.heory of operads in \vhich there has been much recent interest [16, 17,
18 1 19. 20]. The twisted cobar cOl1struction therefore yields a new problem of
iteration corresponding to t.hc sequencc of simply-connected spaces

with fi (Y) = &. For t,his an extension of the structure of the twisted coalgebra

C( X) is needecl 1,0 allow iteration of thc twisted cobar construct.ion.



The proof of the main theorem relies on the geometrie eobar eonstruction
introdueed in [2] and the eomputation of its erossed ehain eomplex. The theory
of erossed ehain eomplexes goes back to \Vhitehead [23) and has been developed
in, for example, [5, ll, 13]. Here we also need the associated theory of crossed
chain algebras [8, 22]; first examples of such algebras were studied in [5, 6, 7,
10, 21].

1 The twisted cobar construction

Aigebras, coalgebras and twisted coalgebras

\Ve begin by recalling same elementary definitions, and introduee the nation
of a twisted differential coalgebra.

A (groded) module AI = (1.H, R) is a family of R-modules AIj , i E ~, for R
a eommutative ring with unit 1 = IR. For x E .Ali we write lxI = i, and we
denote the action of 0' E R on x by X U or xa. A module is termed positive if
1.H j = 0 for i < O. Por n E !l a map 0/ degree n of modules (f, g) : (AI, R) --+
(1."1 1

, R') is a family of group homomorphisms fi : lvIi --+ i\I:+n together with
a ring homomorph ism 9 : R --+ R' satisfying fd x Cl

) = (fi X )9('( for 0' ER,
x E Ali, i E 2Z. \Ve have a suspension funetor 5 on the category of modules,
\Vi th (s AI) Il+1 = AIr!, amI 11 atu ral isomorph isms sn : 1.\1 -+ sr! AI of degree Tl for
nE LE.

A chnin camp/ex is an R-module 1'1 together with a differential cl : M --+ M
of degree -1 satisfying dd = O. A chain map is a map of degree 0 whieh
commutes with the differentials. The homology of a chain complex .Iv! is the
graded module HAI with (HA!)n = Hn(iH) = kerdn/Imdn +1 . The tensor
product of R-chain complexes is given by thc tensor product of modules, with
(lVf01'1')n = EBi+j=n Ali0Rl'1j. and the differential

An R-clwill algehm (or a diJJerentifll algebra over R) consists of a positive
chain complex A o\'er R t.ogether with R-chain maps

with R concent.rated in dimension zero, ",hieh yield an associative multiplication
x· y = jt(x (9 y) for ;1:, y E A wit.h neutral element * = 7](1). J\'lorphisrns of chain
algebras are chain Illaps whieh respect the multipiications and the units. \Ve
write Aig for l,he category of chaill algebras. An R-ehain algebra A is augmented
if a cha i Tl alge bra morph ism s : A --+ R is given wi th E 7] = l; morphisms of
augmented chain algebras must respect the o.ugmentatiolls.



An R-coalgebm consists of a positive R-module C together with maps of
degree zero

C~R,

where 6. is coassoeiative and e is a counit for the comultiplication 6.. Morphisms
of coalgebra'3 are maps of degree 0 whieh respect the comultiplieations and
counits. A coalgebra C is (wgmented if a morphism of coalgebras 1] : R -+ C is
gi\'en with E1] = 1.

For C an augmented eoalgebra, let C be the quotient C/1](R), so that we

have C ~ REBe as mod ules. Let z;. be the map

_ l:l __

C-C®C

ind uced by 6..

Definition 1.1 A twisted coalgebra over R 15 an augmented R-coalgebra C
together with R-module maps

fJ: C~C ofdegree-1

15 : C~ R of degree - 2

such that Jo = 0 and

.6.(Öx)

iJox

= (l00 + (01).6x

(100 - 801 ).6.x

Note t.hat in (1.1)(**) we t1se C0 RR := C == R.0RC, Let Coalg be the
category oftwisted coalgebras, with morphisms (/,g): (C,R) -+ (C',R') given
by morphisms of augmented coalgebras which commute with 8 and with o.

Renlark 1.2 The map 0 on C'2 is to be thought of as giving the twisted struc­
ture; if 8 = 0 definition 1,1 reduces to the usual definition of an augmented
differential coalgebra,

Definition 1.3 5uppose R. is augmented by a ring homomorphism € : R --+ IZ.
Then we say I.hat C is an €-twisted coalgebm if .:-8 = 0, In I,his case we get a
projectioll

(p,!)
(C, R) ---~Jo (C0RIZ,71)

where C0nZ is a differential coalgebra with augmentation 7Z. --+ C0R7Z., 11 l---t

l.':)n.



The twisted cobar construction

Let kf be an R-modllie anel let

be the n-fold tensor product of !\I over R. Then the tensor algebra

T(J\.J) = EB 1\10n

n;::O

is the surn of all the graded R-modules lH0 n . The algebra rnultiplication and
unit are given by the canonical isomorphisms

respectively.
\Ve say that a chain algebra A is free if forgetting the differentials there is

an isomorph isrn .4 == T (1"1) of algebras for some kf. In this case we wri te zn 1

n ?: 0, for the indusion of A/0 n in A. The differential on A is deterrnined by
its restriction to Al

Definition 1.4 Given a twisted R-coalgebra C we define the twisted cobar con­
struction

to be the free R-chain algebra generated by the desuspension 8- 1(5 with the
differential giyen by

dnt l = tOJs _/1 5 -185 + l2(s-1 0s-1)68

This "lill give a funetor
...... n ......
Coalg~Alg

",hieh reduces to thc c1assical cobar construction of Adams [1] in the case 6 =o.
Moreover the chain algebra r2C is augmented by the projection oe -t R if and
only if 6 = o.

Lenuua 1.5 oe is a weiL deftlled R-chain algebm.

Proof: Let

dn..,-I : C~T(5-1C)

S - :'i-la + (5- 105- 1)6

<1

(1 )

(2)



\Ve have to show dnd = O. \Ve have

rind = dno - dn,S-18 + dn (s-1 0s-1)6

where dno =0 since dnlo =O. Hence we get

with

where 58 =O. ?vloreover

(eL0s- 1)6 = (60 s - 1)6 - (s-180s- 1)6
+ ((S-1 0s-1)60s- 1)6

- (s-l@d)6 = - (s-1 0 6)6 + (s-I@S-18)6

- (",-1 0 (s-I@S-1)6)6

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Here we have (7) = (5- 10s- 108- 1)(601)6 and (9) = -(s-105- 10s- 1 )(106).6
so that (7) and (9) cancel by the coassociativity of 6. .

.Moreover we have

s-la8 + (00s- 1 )6 - (S-1 00 )6

= 8-
1 (00+ (J01)6-{106).6) = 0

and

- (S-1 0s -1)6ö - (5- 180s- 1 ).6. + (s-lOS-18)6.

= (S-10s-1) ( - LiD + (U01)6 + (108).6.) 0

This completes the proof. 0

LenUllR l.G [f C is (111 e·lwisfed coalgebra ouer R lhen lhere is a natural iso­
morphjsm of (wgmented clwiTi algefJm8 ouer Z

when~ the rjght hemd siele is fhe classical cobar constroetion.

Proof: \Ve have (A[0iH ' )ORZ ~ (AI0 R LZ)0z(!\'!'0 R tl) ror R-modules Al.
J.\-I', and so

QC0n~ ':::: EB(s-tC)0 n ':)R:E -­

n~O

EB(s- lC0RZ)0n

H~O



Sinee s-lC0RZ:: s-l(~Z) we have the result at the level of free algebras.
Also 6'0R Z = O~ so under these isomorphisms we have

and the lemma is proved. 0

The twisted chain coalgebra

Let .6. be the simplieial category~ wi th objects the ordered sets!!. = {O, 1, ... , n}
and morphisms the monotonie increasing functions. A simplicial set X is a con­
travariant functor from .6. to the category of sets; equivalently it is a family of
sets (Xn ) n;:: 0 wi th degeneraey and face maps

\,p d; v
·-\n ~"'\n-l

for 0 ~ i ::; n~ satisfying the lIsual relations. Simplices in the image of some
Si are termed degenerate. For an n-simplex (T E X n and a monotonie function
a : m --+ II we also write (1"((/0 ... (Im) for a-a E X m and 0'(0 .. .7... n) for diO'. If
.Y is a simplieial set, then the :E-ehain eomplex C(X) is defined as follows. Let
F be the chain complex with Fn the [ree abelian group on X n and differential
da =L~(-l)idia. Let D be the subehain eomplex generated by the degenerate
simplices. Then C(X) is ehe quotient F/ D. The homology H(X) of X is given
by the homology of the chain complex C(X).

Let G be a grollp wit,h unit le~ and JG its augmentation module given by
t he kernel 0 f t he ri Hg hOlllomorphism 7L G --+ 7l, L llj9j f-t L ni. Then 1G is a
right 2G-module whieh is generated as an abelian group by 9 - 1e, 10 =f 9 E G.

Suppose H is an abelian grollp and dJ : G --+ H is a group homomorphism.
Then the del'lved module D,~ of dJ is the 22:H-module

D" JG 0zG?lH

where G acts on the lefe on "2.sH via $. The function h<f.> G --+ D,pl X ~

(x - 1G)@1[{, is the 1ll1iversal dl-derivation; it satisfies

h,p(J:Y) = h~(x)<P(Y) + h.p(y)

and any other function 11 [rom G to a ;EH-module V with such a property factors
as h = f h,p for a Illlique Z [[-hOIll01110rphism f : D,p --+ V.

Definition l.i Suppose X is a I-reduc:ed simplicial set, ehat is, ...\0 = ...\1 =
{*Land let. R, be I.hc COIll mut,11, ivc ri ng given by the grou p ring ?l [H2..\]' Let 4J
be t.he quot.ient map

(.-'<:::)~ C;X~ H2 X

(;



from the free grou p (.12) on X 2, wi th the universal qS-derivation

Let D./ C D1> be the su bmod IJ le generated by the image h,p (so *) of the degen­
erate 2-simplex. \Ve define the twisted chain R-coalgebm C(X) associated to X
by

Co(.1)

C\(.1)

C:?(.y)

CIl(X)

= R.

o
D,pl D,p'

= Cn{.1)@zR for n 2:: 3

For each i 2:: 0 we have functions

which are defined for O"j E Xi by 0"0 H 1, 0"1 ....-+ 0) 0"'2 ....-+ h,pO"'2 and O'fl I-t erTl 01
for n ~ ;t \Ve will identify non-degenerate simplices of X with their images in
C{X) and degenerate simplices with O. The coaugmentation and counit 7], c are
given by R:! Co(.1) ami the comultiplication

,.... n -. -.
C(.1) - C(X)@C(X)

is the A lexander- \Vhitney cl iagonal

6(x) 10x + x01 for lxi ~ 2
n

6(er) = Ler(Ü ... i)0er(i ... n) forerEXn ) n>:{
i=O

Moreover: let

be lohe Z[H'2X]-homomorpllisll1 defincd by 6h,p(x) = qSx - lu2 x for x E (X2 ))

and let

be defined on generat.ors (J' E X n , n 2. :{, by

Der = :1)_l)i ((lterY;(o)
i=O

where .:d(J') E 1-f2 X is dJ(lT(i-l. i, i+ l)) for t :s i:S Tl- I anel t,rivial far i = 0, n.

7



This will give a funetor

c "
sSet 1~ Coalg

where sSet 1 is the category of l-reduced simplicial sets. Note that C(X) is an E­

t\\'isted coalgebra for f : 2l[H:!X] --t ~ the usual augmentation homomorphism,
and that eoker 6 = :E.

Lemnla 1.8 FOT (J' E X 3 tue IlClve

Proof: Let w = -d3 0" - d10" + d:!O" + doO" E (X2 ). Then by the derivation
property we may expand h,p (w) as

But w is a boundary in ('2X alld hence trivial in H:!X, so we have

h,p (w)

Since we identify simplices ill X:! wil.h their images nnder h,p, this agrees with
the formula for GO" in the definition. 0

LemnlR 1.9 C(X) is (J weil defined twisted coalgebm over !l[H2X].

Proof: The Alexallder- \Vhitney map defines a coassociative comultiplication.
To show (1.1)( *) is straightforward iIl cl imensions :5 4 si nce aB terms vanish.
For 0" E .\n, 11 2 .s. we have

Il

(l®o).ßO" = (100) L 0"(0 ... j)®O"(j ... n)
)=0

n-l ( 11 )j. . i-j .. --:- r!'(i)?=(-l) (J'(U ... J)0 ~(-l) O'(} ... l ... n) 1

)=0 1=)

fl

(10)

(801).ß0" (i)01) L a(O ... j)®O"(j ... Tl)
)=0

<'3

(11)



where T7(i) =if)(j(i - 1, i, i + 1) for i f/:. {p, q}, trivial otherwise. Since the terms
for i = j = k in (10) cancel with those for i = j = k + 1 in (11), we can write
(10) + (11) as

t( _l)i (f 0"(0 . .. j)0a(j ...7... 11) + t a(O .. .7.. .j)0uU ... 11)) ::;0'

i=O j=O j=i+l

'6 (t(-lji(dioy,(a J) = '68u
1=0

as required. \Ve get bü = 0 since for u E X a we have by lemma 1.8

Jou = bh.p( - d3u - dIa + d2u + dou)

4J( - ([aa - d1l1' + d2a + doa) - IH'lx = 0

since -dau - <11u + d']u + doO" is a boundary in C'2X and so is mapped to the
trivial element i11 homology. It rein ai ns to check (1.1)(**). This is trivi al in
dimensions :5 :). For 0" E X n , 1l 2: 4 we have

11

ü(J(1 (J 2:) -1) i (1(0 .. .7... H )::;0'

i=O
rl i-l

= L L (-1 )i+j a(O ... ) ...7... n)::j(d;u)+z;u

i=O j=O

Tl Tl

+ L L (_1)i+j -1,.,.(0 ...7...}... n)::j-dd;O')+z;o

i=O j=i+l

Now for i - j 2: '2 we have -=j(dj(1) + ::ja = -=i-ddj(1) + Zja. This also holds
for i - j :::::; L 2 :5 i ~ 11 - 1. since then their difference is the boundary of
a(i - 2, i-I, i, i + 1) in C'2(X) and so is zero in homology. Thus all the terms
in 88(1 cancel except

- (1(2 ... n)::l C1 - 1T(0 ... 11 -:- 2) + 0'(2 ... n) + 0"(0 ... Tl - 2)Z,.-1 C1

= 0"(0 ... 11 - 2r1h :!C1( n- 2,n -1,11) _ 1T(2 ... n _ 2)oh'l>:7(0, 1,2)

But this is jllst (106 - S(1)'6cr. 0

Leuuuu 1.10 Yhere L~ (l ,wlurnl isomo/7Jhism 0/ augmenled dijJp-renlial coalge­
bms

whel'P- the ",gilt hcmd side is Ihe ?l-chain complex on X with the Alexander­
~.vh i t.ne!! diago1laL.

~)



Proof: Let F be the free group (X2 - 80*) and note that C2(X) may be
regarded as the deri\'ed module of the map

41'
F ---.... H..,X

Thus we have C2(X)0z[H:JX j§.; ~ I P0zpZ. But this is the derived module of
the homomorphism F ---7 land so is just the abelianisation pab '= C2(X). \Ve

in fact have C\(X)0z[1I:Jx j!Z ~ CdX) for aU i, and the composite

is the inclusion of simplices as generators of the chain complex, mapping de­
generate simplices LO zero. The formulre for 6.0z[H~XIZ and 80z[H:JX ]7Z in

Ci (X)0z[/{:Jxj!Z are then precisely tbe classical formulre for 6. and 8 in C(X).
o

Proposition 1.11 For X (l l-reduced sim.plicial set, there is a natmul isomor­
phism 01 augmented Z -cfwiTi algeb/Us'

Proof: Lemmas 1.6 allel l.IO. 0

The Inain theoren1

In the above we introdllced the twisted cobar construction, giving a chain
algebra nc from a twisteel coalgebra C: anel we have examples of twisted coal­
gebras C(X) arising from l-reduced simplicial sets X. Let lXI be the realisation

of X. \Ve now state the ~ection between the cons~tion nC(X) and the

singular chain complex CSlIXI Oll the universal cover nixi of the loop space of
jXl In fact these construct,ions yielel functors:

ne, cfiil
sSet, ----~,Alg

Theorenl 1.12 Fo/' t-recilu:ed .simplicial sets X there JS a nalf/ml homology
f;quivalence in Aig

Here natural homology eqllillulellce of functors F: G : sSet l ~ Alg is the equiv­
alence relation generated by t.hc relation that F '" G if there is a natural trans­
formation F ---7 G in Alg wh ich indllces hOlllology isolllorphisllls.

In



-The functor COl I above is obtained by composing the following funetors

r11 1 ;; - c--
sSetl~ Mono~Mon --+ Alg

Let Mono be t,he category of path-connected topological monoids l\rl which
admit a universal covering M. Then 01 Icarries a l-reduced simplicial set X to
the space of .lVloore loops on lXI with the monoid structure given by composition
of loops.

A twisted mOlloid (M 1 C) is a path-connected topological monoid (111 1 .) to­
gether with an abelian group G' such that 1H is also a G-space with

for x, y E 1.H 1 C\' 1 ß E G, \\"here xO: denotes the action of Cl' on x. .Morphisms
(!, B) : (Al, C) -+ (Al', G') consist of group homomorphisms B : C -+ C' aod
B-equivariant topological Illonoid maps f : 1H -+ Al'. \Ve \vrite Mon for the
category of twisted mOlloids. _

'':: define the runctor u~Y U(lH) = (1\1, iT 11\1). For this choose a basepoint

* E Al covering 1,'1. Thcn 1.\1 is a monoid with 1,0' = * and multiplication

~

Ai x Ai == iT7Xl m_~~ Ai

where m : AI x 1\1 -+ 1H is the multiplication on 1\1. Note that the map

is the group law 01' the abelian group iTI~H and therefore eXl, iTllH) is a twisted
monoid.

'Given a twisted mOlloid (AI. Ci) let C(1.H) be the singular chain complex of
Al and let R = 7lG be l,he grollp ring of the abelian group G. The action of G
Oll 1H gives an action of R on C(A1). A unit * E CO(1.\1) is given by 1,'1. The
2Z-bilinear map

C(Af)0zC(AI) - C(AI x J\,J)~ C(1\4)

incluces an R-bilinear 1Il1litiplication

C(!H)0nC(Al) --+ C(AI)

since x a . .'I = (;; . y)O- = :r. '.'Ja in Al. Hence we ean deHne t.he functor C above
by Cp1. G) = (CJI. R).

11



2 The crossed cobar construction

Sinlplicial strings and interval categories

\Ve start by deseribing the eategory n~ of simplicial strings, and the assoei­
ated monoidal [unctors nx, L~ first introduced in [2]. \Ve introduce the notion
of a eategory with an interval object; any such eategory serves as the target for
L.

Let ~. C ~ be the sllbeategory of the simplieial eategory ~ eontaining only
those morphisms (/. : 11. ~ m with a(O) =0 and a(n) = m. Recall that ~. is
generated by the maps

Si : Tl + 1~ Ll, (0::; i ::; Tl) I dj : II ~ n + I, (1 $ i ::; n)

whieh repeat and omir. the vaille i respeetively.
Next consider the eategory {O, I} / Set of double- pointed sets (A, ao, a d and

funetions preserving thc basepoints. \Ve can regard ~. as a subcategory of
{O, l}/Set with objects (11] = (rr, 0, n). Note that {O, 1}/Set has a monoidal
strueture given by

and unit element * = [0].

Definition 2.1 The calegonJ 01 simplicial strings n~ is the monoidal subcat­
egory of {O I l} / Set generated by ~. and the fu netions

[11]0[172)~ [n + m]

definec1 by i f-f- i on [11] anel i f-f- 11 + i on [m].

Let (C, 0) be a monoidal eategory. Using the above presentation of O~, we
see that to clefine a monoic1al fUBet,or C : Oß ~ C it is necessary alld sufficient
to give the following dal.a in C:

1. object,s Cn for Tl 2: 1, with Co =*,

2. morphisms Si : C"+l ~ Crl for 0 ::; i ::; 11,

4. ll10rphisms V",lU : Cn 0 Cm --+ Cn + m for 11, m ~ 0, with Va,n =Vn,O = lc.. ,

11



sueh that the following relations hold

BjSj = SiSj+l

djd j djdj - 1

for i :5 j

for i < j

{dis j _ 1 for i < j
sjdj = id for i = j or i = j + 1

di_1Sj for i > j

{ vn_l,m(sj0l) for i < n
SjUn,m =

un.m-d10si-n) for i ~ n

divn,m { vn+l,m(di 01) for i :s; n

un,m+d 10d i - n) for i > n

Un,m+l (lGv m ,l) Un+m ,/ (vn,m0l)

To define a contravariant monoidal funetor on n~ the data and relations
needed are dual to these.

Definition 2.2 Let Set be the eategory of sets with t.he eartesian monoidal
strueture. Then given a O-reduced simplieial set XI Xo = {*}I the monoidal
funetor

(OD. )OP~ Set

is defined on tbe generating objeets ofn~ by (nX)n = Xn and on the generating
morphisms Si, dil Un,m by

Si: Xn --+ X"+I,

dl' : Xn +1 --+ Xll ,

I'n,m = (d~+l' don) : X n+m --+ Xn X X rn

respeetively: cf. [,2.12 of [2].
\Ve Illay also write vn,m(O") as (0"(0: ... , n), O"(n, ... , Tl + m)) for 0" E X n+m .

A map X --+ X I of 0- red ueed si m plieial sets induees a natural transformation
nx --+ OX' of monoidal f"netors in the obvious way.

D efini tioll 2.3 All i IIt erva[ object in a monoidal eategory (C! (9) is an object
'I of C t.ogether with Illorphisms d± : '* --+ 'I, e : 'I --+ * and In : 'I (9 'I --+ 'I
satisfying the following relations:

1. m{10d-) = m(d-01) = lr

2. m.( 10d+) =rn(d+Q)l) =d+c

:L m{ 10m.) = l1l{m01)

I ')
.J



An interval category is a mOlloidal category with a speeified interval object.
Two examples of interval eategories are the following:

1. Let C be the category FTop of fi Itered spaces .Y = (X0 ~ X 1 ~ X2 ~

... ). The tensor product is the product with the eompactly generated
topology and the fil trat ion (X (9 }'") n = Ui+j =n XiX Yj. Then C has an
interval obj eet Z with I o = {O, I} and Zn the uni t interval [0, 1] for n 2: 1.
The maps d- alld d+ t.ake * to 0 and 1 respectively, e is the identifieation
to a single point, and m is the maximum function (tl, t2) ~ max(t 1, t2).
Then, for example, t,he relation m(d+01) = d+e becomes max(l, t) = l.
Note that thc n-cube Z0 n has a natural C\V-complex structure, such that
the filtration agrees wi th the skeletal filtration.

2. Let C be the cartesian monoidal category sSet of simplicial sets. This
has an interval object given by the standard I-simplex ~[l]. Regarding
elements of ß.[ l]n as monotonie functions a : 11 --1- 1, the multiplication m
is given by m(a. b)(i) = max(a(i)1 b(i)). The maps d-, d+} e are defined
from dll do, So respectivcly.

On the n-cubes Z0 n in any interval category we have coface maps

given by lI0(,-lJ0d±0110(tl-'+1) for I :5 i ::; 11 + 1, alld codegeneracy maps

Z0 n ~10(n-l)

given by lI@(i-ll0m01r0fll-'-I) for 1 ~ i:5 n-l, or by e01r@(It-I), lI@(1t-1l0e

for i = O. n.

Definition 2.4 The 5t<mdanl 8implicial siring model fllnctor in an interval cat­
egory C is the monoidal fnnetor L : n~ --1- C given on the generating objects
by Ln = Z0(11-1) ami on the generating morphisms Si, d i } Vn,m by

"li: IOn -t 7 0 (n-l)

(ti: z0(n-lj --1- Z0 n

d~ : I0(n-l)0z0 (m-l) --1- z0(m+n-l)

respectively.l

l There is a III ispri nt in t be deli 11 it ion Qf L on p.9 of [2]; either a I need~ to be changed to
reveI1le the roles of d+ ami d-. or S should be 'min' rather than 'max'.



Coends and the geonletric cobar construction

Suppose C is an arbitrary cocomplete category, Dasmall category, and F
a runctor DOP x D -+ C. Then the coend of F over D: written fd F(d, d), is
given by ehe eqllaliser in C of the morphisms:

TI F(d'2l dd
fED(d l !d'2)

a

b
TI F(d, d)

d E Ob(D)

which are given component\vise on the coproduct by

In suitable categories C we can define coends more explicitly in terms of
elements and relations. Let A be the Ob(D)-indexed coproduct of the objects

F(d, d) in C. Then fd F(d, d) is the quotient object of A given by imposing the
relations F(d 1• f)(x) '" F(f, d'2)(x) for each f : d2 --+ dl in D and x in F(d 1 ! d2 ).

Suppose naw that C, D are monoidal categories and Fis a monoidal functor.
Also \\'e assume tImt 0 preserves colimits in C; this is the case for example if C
is ll1onoidal closed. Then the coend of F has the structure of a monoid object
in C. with identity F( *, *) = * and 111l11tiplication induced by the maps

F(d 1, dd0F(d'2! d2) == F(d10d2!d1@d2 )

If C is an interval category, and X is a O-reduced simplicial set. then we
have manoidal funetors

from t.he previous sectioll. Using t.he 'copower' runetor Set xC----+- C given
by taking set- indexed coproducts in C. olle 0 btains the monoidal functor

Definition 2.5 The (geometrie) CObo,- cOllstrucüon on a O-reduced simplicial
set S is t. he C-lt1onoid ilc (X) gi yen by t he coend of OX . Lover 0 ~.

ilc(X)

This yields tohe fllnetar

J
A

(OX)(A) . L(A)

ßC
sSeto ----~"C-Monoids

where sSet.o is (,he category of O-recluced simplicial sets.
Since we have a nicc present.ation for n~ we can give a more explicit de­

scri ptioH üf the cobar cOllstructioll th an the coend defini tion above.

1.1



Proposition 2.6 The coOOr construction ileX on a simplicial set X, Xo = *:
is given by a COPTO(J!lct. in C indexed by woms in X -;:: 1

TI II 1:0 (n 1 - l)@ ... 0:r0 (n ~ - 1)

r-;::O (x 1 , .. . ,x~)

which Iws ;generating' elements

(Xl, .. . ,Xr;Y)

for y E 1:0 (n 1 -l)® .. '01:0(1l~-1)! Xk E Sn", nk 2:: 1, k = L, ... , r, quotiented by
th e re/at ions

(Xl,"" Xk-ll SjXk, Xk+l,···. X r ; Y)

(Xl,"" Xk-l, djXk, Xk+l,···, X r ; Y)

( d lllt-i di )
Xl,···,Xk-l, i+l Xk, OXk,Xk+l,""Xr ;Y

((Xj)~; (L<k0mj01>k )(Y))

((Xj)~; (1<k0di01>k)(Y))

((Xj)t; (l<k0dt01>k)(Y))

where l<k js the idenlity map on :r0~j<lt(nj-1)! and l>k similarly. Note lhat
i =1= 0, nk ill the second relation.

The monoid strucll/re on D.c X is given by the unit ( ; *) and the multipli­
cation

The import,ance of the geomet,ric cobar construction is that it provides a
model for t.he loop space on the realisation of a simplicial set. In fact from (2]
we have t,he following result (compare also [9]):

Theorenl 2.7 FOI' l-reduced simplicial sets X lhere lS a natuml homotopy
equivaJence of ]Xlth-cOTmected topologicol monoids

Also UFTop.\ Iws a lIatw'fl! CIV-complex structure and ils filtmtion in FTop
coincides /Vii" the skelelal jiltmtioll.

Here natural hOlHolopy equi valence of fu netors F, G : SSetl -+ MOlla is the
equivalence relation generated by t.he relation that F :::: G if there is a natural
transformation F -+ Gin MOHo ,vhic::h for each object. is a homotopy equivalence
in the category of pointed topological spaces.

The crossed cobar construction

Let. C be the monoidal close<1 category Crs of crossed complexes (see for
example [l1, 1:~]). The tensor product C0D of crossed complexes is defined
in terms 01' generators c0c' E (C0D)n+111 for c E Cn, Cf E Dm together with

Iti



eertain relations whieh may be fOHnd in [13]. A monoid objeet C in Crs is
termed a crossed algeb'l'(l. or a crossed chain algebm if Co = {*}.

An interval objeet I in Crs is given by the crossed eomplex on generators
0,1 E I o, L EIl, with SL = 0, LL = 1. The maps d-, d+ : * -4- I are given by
* .....-+ 0. * .....-+ I respectively, e : I -4- * is tbe unique map to the terminal objeet
and the mup 111 : I0I -4- I is given on the standard generators by

if Cl = b = 0
if {a,b} = {O,L}
otherwise.

Alternatively this may be obtained by applying the fundamental crossed com­
plex runetor iT : FTop -4- Crs to the interval objeet strueture in FTop defined
above.

If L0n is the n-dimensional generator of 1 0n then from the tensor product
relations \\Te ean obtain

S(L) 0

l(L) = 1

.ß(L0n ) 1°11 for /I. 2: 1

J(L02 ) = - 10r - I\~O + 00L + /01
J(L03) = - L@t01 - 1.0ü@t10t01 - 10t@t

+ L0/.00l010L + t010t + ü0t@tL0101
n

S(L0 H
) = I)-I)i (dtt0 (1I-l) - (dil,0(11-1))'~;) for n 2: 4

i=l

where =i E (10(H-l)h is given by (di+l)n-i-l(rlj)i-l(r).
For /\ = (..\d~ an ordered subset of {I< 2< ... < n} and Q E {-,+Y, let

d~ be the morphism
d~" ... d~1 : 1 0 (n-r) -4- IOn

r AI

Then the :3 11 generators of IOn may be written as d~t0(n-r) for 0 ~ I' ~ n, and
the relations on these generators are obtained by applying d~ to the terms in
t.he rein tions above.

By proposition :2.6, we ean now give a presentation for the crossed cobar
const nu:t ion nC 1'5 (.\) Oll a 1- recillcecl sim pi icial set X. For an x E X n. on Iy the
top-dimensional generator of 1 0 (n-1) needs t.o be considered since the lower­
dimensional ones can be obtained by applying elf and so are ident.ified with
generators com ing [rom (prodlIcts of) [aces of x. Si nce 111 maps top-dimensional
generat.ors to an identity \\Te ean also throw out degenerate simplices, Thc
resulting monoid C in Crs has Co = {*} since we are treating the l-reduced
(;a.:;;e only. ami is in ["ct a free crossecl ehain algebra [22].
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Theorem 2.8 Let X be a simplicial set with .10 = Xl = {*}. For X n E X n ,

n ~ 4, set =dxn) = ~-ld;l+'2j-lxn = xn(i - 1, i, i + 1) E .1'2 for 1 :$ i :$ n - 1.
Then C =ilCrs(.1) is the cl'Ossed chain algebra with generators X n E Cn - 1 for
X n E Xn, n ~ 2.. subjecl to the relations

X n .. if X n is degenerate

8'2 (X3) = - dox:l - d'2 X3 + dtX3 + d3 X 3

83 (X4) - d4 X 4 - d'2 X 4 Z'J(.r~) - dOX 4

+ d3X/J(.r~) + d3d,!X40dod1X4 + d1X/dx~)

n-2

- doxn + L(-I)jd?;/.z:n0~Xn - (-l)ndnx n
j-')

n-l- L (-l)idjxn Zi(X,,) for n ~ 5

i=1

together with the /lsual relations on tensor producls of crossed complexes.

Recall from [4, 14, 2:1] that. there is a funetor D from crossed eomplexes to
R-ehain eomplexes. Given Cl erossed complex of groups

C' o~ C 03 C' o:z Cf
"'- 4~ 3- '2~ 1

let 7fl = 71"1 C = eoker 8'2 and let <p be t.he quotient map C't --+ 7fll with htJ>
C't --+ 01' the universal tjI-derivation. Then V(C) is the L7l"t-chain complex

where d'2x = h1'6'2x and dthrpx = dJx - lll"l'

Lemlua 2.9 1) i"duces a funclor

'0
CrsAlg ----~~Alg

from crossed chain algebras to chain algebras

Praof: Ir Al 8 are crossecl complexes, then 7l"1 (A08) is 7l"IA x 7ft Band
from [14] we kno", I,hat 'D(.40B) is the chain complex VA0z'DB with the action
of 1rlA x 7l"1 B givell by (x0.11)(a.b) = xa@yb. A lIlorphism

of point,ed cros.''ied COIll plexes iHclucc:'i a ll1ultiplication 7l" 1.A x 7l"1 B --+ ?Tl C via
Cl • b = /Tl (a0*). m( *Oh). !vloreover t.he :-f:-chain map

DA0zDB~DC
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satisfies (Vm)(xa@yb) = (Vm)(x0y)a'b. In partieular if.4 = B =C and m is a
monoid strueture on ethen 'Dm induees a :E1rl-ehain algebra strueture

VC0Z1tIVC~VC

\Ve ean nmv reiate the erossed and twisted eobar eonstructions,

Proposition 2.10 For l-reduced simplicial sets X .. there is a natural isomor­
phism of flH2X -chaill algebras

VUCrs X '" ncX

Proof: Let A, B be the chain algebras VUX, ncx respectivelYl and recaU
that Bo = R = I2H2X and

Bn = E9 Cit0RCi'J0n" ,0RCi ..
il+ ...+i ..=n

where Cl is the derived module of q,' : (.12-80*) ---+ H 2X and Ci =Ci+dX; R)
for i ~ 2. Now C~Xlt is the free group on .\2 - So *, and (D..1b is the free
erossed (11.'\) l-module with generators lT3 and lT20u'2 and boundary relations

62 lT3 = - dOlT3 - d2 lT3 + dl lT3 + d3 lT3

S2(lT20/T~) = -/T~-lT2+lT~+/T2

where as Ilsuat we quotient out. degenerate simpliees. Thus

is exaet <lnd we have An = Bo = Rand Al = BI = D"" with dthr/J'x =
tft'x - IH'J x in A and B. 111 general ß.\ is generated as a erossed complex
by lT10 ... 0lTr in dimension 2:]dim /Ti - l). Sinee tensor produets of pointed
crossed complexes satisfy the relations

( C1 + e'l) 0 dj

Ci 0 (e/ l + cl'tl
(Ci + cn 0 dj

Ci 0 (d) + cl})

<IOe/j

A ld l
Ci 'U ( j

C~ 0 cl j + (Cl 0 dj)C~

(Ci (0 clt}d'l + ci (9 ci't

Ci 0 clj + c~ 0 dj for i 2: 2

Ci 0 clj + Ci (9 cl} for j 2: 2

(cj 0 rlj )Cl for i 2: 2

(Ci 0 dj)d l for j 2: 2

WC obtain 11'2 = (UX)~b = C:l(X; R) 'B D,,'0 R D.;,' , and similarly for n :2: 3 we
find t.hat All = (U.Y)n agrees with Bn above, Note thaI, for .X 2-dimensional

ID



the result An =: D,pt0n was proved in [i]. For (7 E X~4 the differentials in A, B
agree by

n-2 n

dA (7 2::( -l)ilT(O ... i)@lT(i ... n) - 2::( _l)idj (7o(i-l,i,i+l)

2 0

=
and for (7 E X 3 we have dA(7 = h1J,J2lT which agrees with dBU = -au by
lemma 1.8. 0

Proof of the lnain theorelll

.'Ve now complete t.he proof of theorem 1.12, that for X a simplicial set
with So = Xl = {*} there is a nat.ural homology equivalence bet.ween the cobar

construction rlC(X) of the twisted chain coalgebra on X, and the singular chain

algebra C~I of the lllliversal cover of the loops on X. \Ve have just seen

in 2.10 tImt o.C is giyen by applying 'D to the erossed cobar eonstruetion QCrs'
Also by 2.7 we know that the loop space on X is given up to homotopy by the
geometrie eobar eonst,ruetion, and so there is a natural homology equivalenee of

chain algebras C~I ....... CnFTop X. The main theorem thus follows from the
following:

Proposition 2.11 FoT' l-reduced simplicial sets X.' there is a natural homology
equivalence 0/ chain algebras

Proot': Let Y be t,he monoid in FTop given by QFTopX. Sinee the fun­

damental crossed complex fUllctor rr preserves colimits and tensor products of
the spaces involved wc note that QCrsX is just rrY. lt therefore remains to

show that there is a natural homolOg)' equivalence 'DrrY ....... CY. Let Y have the
filtration givcn by the the inverse image ullder t.he covering map of the (skeletal)
filtration Oll Y". '"fhen by [2:1], or J.:.roposition 5.2 of [14], we can identify 'DrrY
wi th the cell nlar chain com plcx 'H}" gi ven by l,he rel ative homology groups:

F inally we 110 te t. hat. t here is a na t \I ral eq 1I ivalence 'H. Y '" CY giyen via
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where CcellY is the suhchain complex of the singular chain complex CY gener­
ated by alt singular simplices er : ti ll

--;. Y which are cellular maps. The map T

carries er to er~[tin] where [tin] E Hn (.tl n , otin ) is the fundamental dass. 0
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