On the twisted cobar construction

H.-J. Baues
A. P. Tonks

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn

Germany

On the twisted cobar construction

H.-J. Baues and A.P. Tonks

Introduction

The classical cobar construction ΩC for a coalgebra C (first introduced by Adams [1]) is an important algebraic concept motivated by the singular chain complex of a loop space ΩX. If X is a 1 -reduced simplicial set with realisation $|X|$ Adams proved that there is a natural isomorphism of homology groups

$$
\begin{equation*}
H_{*}(\Omega C(X), A) \cong H_{*}(\Omega|X|, A) \tag{*}
\end{equation*}
$$

where $C(X)$ is the coalgebra given by the chain complex on X and the AlexanderWhitney diagonal. Here the homology has coefficients in an abelian group A. The purpose of this paper is the extension of this result to the case of twisted coefficients given by $\pi_{1} \Omega|X|$-modules A, with $\pi_{1} \Omega|X|=H_{2} X$.

We introduce the new algebraic concepts of a twisted coalgebra C and a twisted cobar construction ΩC which extend the classical notions. We are able to define for any 1-reduced simplicial set X a twisted coalgebra $\widehat{C}(X)$ together with a natural projection $\hat{C}(X) \rightarrow C(X)$, such that there is a natural isomorphism

$$
\begin{equation*}
H_{*}(\Omega \widehat{C}(\mathrm{X}), A) \cong H_{-}(\Omega|X|, A) \tag{**}
\end{equation*}
$$

for all twisted coefficients A. For this we prove that there is a natural homology equivalence of differential algebras between $\Omega \hat{C}(X)$ and $C \widehat{\Omega|X|}$ where $\widehat{\Omega|X|}$ is the universal cover of the loop space $\Omega|X|$. We show

$$
\Omega \widehat{C}(X) \otimes_{\mathbb{Z}}\left[I_{3} X\right] \mathbb{Z} \cong \Omega C(X)
$$

and hence recover from ($* *$) the result ($*$) of Adams.
Iterated loop spaces and the problem of iterating the cobar construction lead to the theory of operads in which there has been much recent interest [16, 17, 18, 19. 20]. The twisted cobar construction therefore yields a new problem of iteration corresponding to the sequence of simply-connected spaces

$$
|X|, \widehat{\Omega}|X|, \widehat{\Omega} \widehat{\Omega}|X|, \ldots
$$

with $\widehat{\Omega}(Y)=\widehat{\Omega Y}$. For this an extension of the structure of the twisted coalgebra $\widehat{C}(X)$ is needed to allow iteration of the twisted cobar construction.

The proof of the main theorem relies on the geometric cobar construction introduced in [2] and the computation of its crossed chain complex. The theory of crossed chain complexes goes back to Whitehead [23] and has been developed in, for example, $[5,11,13]$. Here we also need the associated theory of crossed chain algebras [8, 22]; first examples of such algebras were studied in $[5,6,7$, $10,21]$.

1 The twisted cobar construction

Algebras, coalgebras and twisted coalgebras

We begin by recalling some elementary definitions, and introduce the notion of a twisted differential coalgebra.

A (graded) module $M=(M, R)$ is a family of R-modules $M_{i}, i \in \mathbb{Z}$, for R a commutative ring with unit $1=1_{R}$. For $x \in M_{i}$ we write $|x|=i$, and we denote the action of $\alpha \in R$ on x by x^{α} or $x \alpha$. A module is termed positive if $M_{i}=0$ for $i<0$. For $n \in \mathbb{Z}$ a map of degree n of modules $(f, g):(M, R) \rightarrow$ $\left(M^{\prime}, R^{\prime}\right)$ is a family of group homomorphisms $f_{i}: M_{i} \rightarrow M_{i+n}^{\prime}$ together with a ring homomorphism $g: R \rightarrow R^{\prime}$ satisfying $f_{i}\left(x^{\alpha}\right)=\left(f_{i} x\right)^{g \alpha}$ for $\alpha \in R$, $x \in M_{i}, i \in \mathbb{Z}$. We have a suspension functor s on the category of modules, with $(s M)_{n+1}=M M_{n}$, and natural isomorphisms $s^{n}: M \rightarrow s^{n} M$ of degree n for $n \in \mathbb{Z}$.

A chain complex is an R-module M together with a differential $d: M \rightarrow M$ of degree -1 satisfying $d d=0$. A chain map is a map of degree 0 which commutes with the differentials. The homology of a chain complex M is the graded module $H M$ with $(H M)_{n}=H_{n}(M)=\operatorname{ker} d_{n} / \operatorname{Im} d_{n+1}$. The tensor product of R-chain complexes is given by the tensor product of modules, with $\left(M \otimes M^{\prime}\right)_{n}=\bigoplus_{i+j=n} M_{i} \otimes_{R} M_{j}$. and the differential

$$
d_{\otimes}(x \otimes y)=(d \otimes 1+1 \otimes d)(x \otimes y)=d x \otimes y+(-1)^{|x|} x \otimes d y
$$

An R-chain algebra (or a differential algebra over R) consists of a positive chain complex. A over R together with R-chain maps

$$
R \xrightarrow{\eta} A, \quad A \otimes A \xrightarrow{\mu} A
$$

with R concentrated in dimension zero, which yield an associative multiplication $x \cdot y=\mu(x \otimes y)$ for $x, y \in A$ with neutral element $*=\eta(1)$. Morphisms of chain algebras are chain maps which respect the multiplications and the units. We write $\hat{A} \lg$ for the category of chain algebras. An R-chain algebra A is augmented if a chain algebra morphism $\varepsilon: A \rightarrow R$ is given with $\varepsilon \eta=1$; morphisms of augmented chain algebras must respect the augmentations.

An R-coalgebra consists of a positive R-module C together with maps of degree zero

$$
C \xrightarrow{\leftrightarrows} R, \quad C \xrightarrow{\Delta} C \otimes C
$$

where Δ is coassociative and ε is a counit for the comultiplication Δ. Morphisms of coalgebras are maps of degree 0 which respect the comultiplications and counits. A coalgebra C is augmented if a morphism of coalgebras $\eta: R \rightarrow C$ is given with $s \eta=1$.

For C an augmented coalgebra, let \widetilde{C} be the quotient $C / \eta(R)$, so that we have $C \cong R \oplus \widetilde{C}$ as modules. Let $\widetilde{\Delta}$ be the map

$$
\tilde{C} \xrightarrow{\tilde{\Delta}} \tilde{C} \otimes \tilde{C}
$$

induced by Δ.
Definition 1.1 A twisted coalgebra over R is an augmented R-coalgebra C together with R-module maps

$$
\begin{array}{ll}
\partial: \tilde{C} \longrightarrow \tilde{C} & \text { of degree }-1 \\
\delta: \tilde{C} \longrightarrow R & \text { of degree }-2
\end{array}
$$

such that $\delta \partial=0$ and

$$
\begin{align*}
\widetilde{\Delta}(\partial x) & =(1 \otimes \partial+\partial \otimes 1) \widetilde{\triangle} x \tag{*}\\
\partial \partial x & =(1 \otimes \delta-\delta \otimes 1) \tilde{\triangle} x \tag{**}
\end{align*}
$$

Note that in $(1.1)(* *)$ we use $\tilde{C} \otimes_{R} R \cong \tilde{C} \cong R \otimes_{R} \tilde{C}$. Let $\widehat{\text { Coalg }}$ be the category of twisted coaigebras, with morphisms $(f, g):(C, R) \rightarrow\left(C^{\prime}, R^{\prime}\right)$ given by morphisms of augmented coalgebras which commute with ∂ and with δ.

Remark 1.2 The map δ on C_{2} is to be thought of as giving the twisted structure; if $\delta=0$ definition 1.1 reduces to the usual definition of an augmented differential coalgebra.

Definition 1.3 Suppose R is augmented by a ring homomorphism $\varepsilon: R \rightarrow \mathbb{Z}$. Then we say that C is an ε-twisted coalgebra if $\varepsilon \delta=0$. In this case we get a projection

$$
(C, R) \xrightarrow{(p, \varepsilon)}\left(C \otimes_{R} \mathbb{Z}, \mathbb{Z}\right)
$$

where $C \otimes_{R^{\mathbb{Z}}}$ is a differential coalgebra with augmentation $\mathbb{Z} \rightarrow C Q_{R} \mathbb{Z}, n \mapsto$ $12 n$.

The twisted cobar construction

Let M be an R-module and let

$$
M^{\otimes n}=M \otimes M \otimes \ldots \otimes M
$$

be the n-fold tensor product of M over R. Then the tensor algebra

$$
T(M)=\bigoplus_{n \geq 0} M^{8 n}
$$

is the sum of all the graded R-modules $M^{\otimes n}$. The algebra multiplication and unit are given by the canonical isomorphisms

$$
M^{\otimes n} \otimes M^{\ominus m} \cong M^{\otimes(n+m)} \text { and } R \cong M^{\ominus 0}
$$

respectively.
We say that a chain algebra A is free if forgetting the differentials there is an isomorphism $A \cong T(M)$ of algebras for some M. In this case we write \imath^{n}, $n \geq 0$, for the inclusion of $M^{\otimes n}$ in A. The differential on A is determined by its restriction to M

$$
d t^{1}: M \longrightarrow A
$$

Definition 1.4 Given a twisted R-coalgebra C we define the twisted cobar construction

$$
\Omega C=\left(T\left(s^{-1} \tilde{C}\right), d_{\Omega}\right)
$$

to be the free R-chain algebra generated by the desuspension $s^{-1} \widetilde{C}$ with the differential given by

$$
d_{\Omega} l^{1}=i^{0} \delta s-i^{1} s^{-1} \partial s+i^{2}\left(s^{-1} \otimes s^{-1}\right) \tilde{\triangle} s
$$

This will give a functor

$$
\hat{\text { Coalg }}^{\Omega} \mathrm{A} l \mathrm{lg}
$$

which reduces to the classical colbar construction of Adams [1] in the case $\delta=0$. Moreover the chain aigebra ΩC is augmented by the projection $\Omega C \rightarrow R$ if and only if $\delta=0$.

Lemma $1.5 \Omega C$ is a well defined R-chain algebra.
Proof: Let

$$
\begin{align*}
& d=d_{\Omega} s^{-1}: \tilde{C} \longrightarrow T\left(s^{-1} \tilde{C}\right) \tag{1}\\
& d=\delta-s^{-1} \partial+\left(s^{-1} \otimes s^{-1}\right) \tilde{\triangle} \tag{2}
\end{align*}
$$

We have to show $d_{\Omega} d=0$. We have

$$
\begin{equation*}
d_{\Omega} d=d_{\Omega} \delta-d_{\Omega} s^{-1} \partial+d_{\Omega}\left(s^{-1} \otimes s^{-1}\right) \tilde{\triangle} \tag{3}
\end{equation*}
$$

where $d_{\Omega} \delta=0$ since $d_{\Omega^{2}}{ }^{0}=0$. Hence we get

$$
\begin{equation*}
d_{\Omega} d=-d \partial+\left(d \otimes s^{-1}\right) \tilde{\triangle}-\left(s^{-1} \otimes d\right) \widetilde{\triangle} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
-d \partial=-\delta \partial+s^{-1} \partial \partial-\left(s^{-1} \otimes s^{-1}\right) \tilde{\Delta} \partial \tag{5}
\end{equation*}
$$

where $\delta \partial=0$. Moreover

$$
\begin{align*}
\left(d \otimes s^{-1}\right) \widetilde{\triangle} & =\left(\delta \otimes s^{-1}\right) \widetilde{\Delta}-\left(s^{-1} \partial \otimes s^{-1}\right) \tilde{\triangle} \tag{6}\\
& +\left(\left(s^{-1} \otimes s^{-1}\right) \tilde{\Delta} \otimes s^{-1}\right) \tilde{\Delta} \tag{7}\\
-\left(s^{-1} \otimes d\right) \tilde{\triangle} & =-\left(s^{-1} \otimes \delta\right) \tilde{\Delta}+\left(s^{-1} \otimes s^{-1} \partial\right) \tilde{\triangle} \tag{8}\\
& -\left(s^{-1} \odot\left(s^{-1} \otimes s^{-1}\right) \tilde{\triangle}\right) \tilde{\Delta} \tag{9}
\end{align*}
$$

Here we have $(\overline{7})=\left(s^{-1} \otimes s^{-1} \otimes s^{-1}\right)(\widetilde{\triangle} \otimes 1) \widetilde{\triangle}$ and $(9)=-\left(s^{-1} \otimes s^{-1} \otimes s^{-1}\right)(1 \otimes \tilde{\triangle}) \tilde{\triangle}$ so that (7) and (9) cancel by the coassociativity of Δ.

Moreover we have

$$
\begin{aligned}
& s^{-1} \partial \partial+\left(\delta \otimes s^{-1}\right) \tilde{\triangle}-\left(s^{-1} \otimes \delta\right) \tilde{\triangle} \\
& \quad=s^{-1}(\partial \partial+(\delta \otimes 1) \tilde{\triangle}-(1 \otimes \delta) \tilde{\Delta})=0
\end{aligned}
$$

and

$$
\begin{aligned}
& -\left(s^{-1} \otimes s^{-1}\right) \tilde{\Delta} \partial-\left(s^{-1} \partial \otimes s^{-1}\right) \widetilde{\Delta}+\left(s^{-1} \odot s^{-1} \partial\right) \tilde{\Delta} \\
& \quad=\left(s^{-1} \otimes s^{-1}\right)(-\tilde{\triangle} \partial+(\partial \otimes \mathrm{V}) \widetilde{\Delta}+(1 \otimes \partial) \widetilde{\triangle})=0
\end{aligned}
$$

This completes the proof.

Lemma 1.6 If C is an ε-twisted coalgebra over R then there is a natural isomorphism of augmented chain algebms over \mathbb{Z}

$$
(\Omega C) \vartheta_{R} \mathbb{Z} \cong \Omega\left(C \otimes_{R} \mathbb{Z}\right)
$$

where the right hand side is the classical cobar construction.
Proof: We have $\left(M \otimes^{\prime}\right) \Theta_{R} \mathbb{Z} \cong\left(M \emptyset_{R} \mathbb{Z}\right) \otimes_{\mathbb{Z}}\left(M^{\prime} \ominus_{R} \mathbb{Z}\right)$ for R-modules M. M^{\prime}, and so

$$
\Omega C O_{R} \overline{\mathbb{Z}} \cong \bigoplus_{n \geq 0}\left(s^{-1} \tilde{C}\right)^{\circ n} \partial_{R} \mathbb{Z} \cong \bigoplus_{n \geq 0}\left(s^{-1} \tilde{C} Q_{R} \mathbb{Z}\right)^{\emptyset n}
$$

Since $s^{-1} \widetilde{C} \otimes_{R} \mathbb{Z} \cong s^{-1}\left(\widehat{C \otimes_{R} \mathbb{Z}}\right)$ we have the result at the level of free algebras. Also $\delta \otimes_{R} \mathbb{Z}=0$, so under these isomorphisms we have

$$
d_{\Omega} v^{1} \otimes_{R} \mathbb{Z} \cong-s^{-1}\left(\partial \otimes_{R} \mathbb{Z}\right) s+\left(s^{-1} \otimes s^{-1}\right)\left(\widehat{\triangle \otimes_{R} \mathbb{Z}}\right) s
$$

and the lemma is proved.

The twisted chain coalgebra

Let Δ be the simplicial category, with objects the ordered sets $\underline{n}=\{0,1, \ldots, n\}$ and morphisms the monotonic increasing functions. A simplicial set X is a contravariant functor from Δ to the category of sets; equivalently it is a family of sets $\left(X_{n}\right)_{n \geq 0}$ with degeneracy and face maps

$$
X_{n} \xrightarrow{:} X_{n+1} \quad X_{n} \xrightarrow{d_{i}} X_{n-1}
$$

for $0 \leq i \leq n$, satisfying the usual relations. Simplices in the image of some s_{i} are termed degenerate. For an n-simplex $\sigma \in X_{n}$ and a monotonic function $a: \underline{m} \rightarrow \underline{n}$ we also write $\sigma\left(a_{0} \ldots a_{m}\right)$ for $a^{*} \sigma \in X_{m}$ and $\sigma(0 \ldots \widehat{i} \ldots n)$ for $d_{i} \sigma$. If X is a simplicial set, then the \mathbb{Z}-chain complex $C(X)$ is defined as follows. Let F be the chain complex with F_{n} the free abelian group on X_{n} and differential $d \sigma=\sum_{0}^{n}(-1)^{i} d_{i} \sigma$. Let D be the subchain complex generated by the degenerate simplices. Then $C(X)$ is the quotient F / D. The homology $H(X)$ of X is given by the homology of the chain complex $C(X)$.

Let G be a group with unit l_{G}, and $I G$ its augmentation module given by the kernel of the ring homomorphism $\mathbb{Z} G_{i} \rightarrow \mathbb{Z}, \sum n_{i} g_{i} \mapsto \sum n_{i}$. Then $I G$ is a right $\mathbb{Z} G$-module which is generated as an abelian group by $g-1_{G}, 1_{G} \neq g \in G$.

Suppose H is an abelian group and $\phi: G \rightarrow H$ is a group homomorphism. Then the derived module D_{ϕ} of ϕ is the $\mathbb{Z} H$-module

$$
D_{\phi}=I G \otimes \mathbf{z} G \mathbb{Z} H
$$

where G acts on the left on $\mathbb{Z} H$ via ϕ. The function $h_{\phi}: G \rightarrow D_{\phi}, x \mapsto$ $\left(x-1_{G}\right) \otimes 1_{H}$, is the miversal ϕ-derivation; it satisfies

$$
h_{\phi}(x y)=h_{\phi}(x)^{\phi(y)}+h_{\phi}(y)
$$

and any other function h from G to a $\mathbb{Z} H$-module V with such a property factors as $h=f h_{\phi}$ for a mique $\mathbb{Z} I I$-homomorphism $f: D_{\phi} \rightarrow V$.

Definition 1.7 Suppose X is a 1 -reduced simplicial set, that is, $X_{0}=X_{1}=$ $\{*\}$, and let, R be the commutative ring given by the group ring $\mathbb{Z}\left[H_{2} X\right]$. Let ϕ be the quotient map

$$
\left\langle\mathrm{X}_{2}\right\rangle \longrightarrow \mathrm{C}_{2} \mathrm{X} \longrightarrow \mathrm{H}_{2} \mathrm{X}
$$

from the free group $\left\langle X_{2}\right\rangle$ on X_{2}, with the universal ϕ-derivation

$$
\left\langle X_{2}\right\rangle \xrightarrow{h_{\phi}} D_{\phi}
$$

Let $D_{\phi}{ }^{\prime} \subset D_{\phi}$ be the submodule generated by the image $h_{\phi}\left(s_{0} *\right)$ of the degenerate 2 -simplex. We define the twisted chain R-coalgebra $\widehat{C}(X)$ associated to X by

$$
\begin{aligned}
& \hat{C}_{0}(X)=R \\
& \hat{C}_{1}(X)=0 \\
& \hat{C}_{2}(X)=D_{\phi} / D_{\phi}^{\prime} \\
& \widehat{C}_{n}(X)=C_{n}(X) \otimes_{\mathbf{Z}} R \text { for } n \geq 3
\end{aligned}
$$

For each $i \geq 0$ we have functions

$$
X_{i} \longrightarrow \widehat{C}_{i}(X)
$$

which are defined for $\sigma_{i} \in \mathcal{X}_{i}$ by $\sigma_{0} \mapsto 1, \sigma_{1} \mapsto 0, \sigma_{2} \mapsto h_{\phi} \sigma_{2}$ and $\sigma_{n} \mapsto \sigma_{n} \otimes 1$ for $n \geq 3$. We will identify non-degenerate simplices of X with their images in $\hat{C}(X)$ and degenerate simplices with 0 . The coaugmentation and counit η, ε are given by $R \cong \widehat{C}_{0}(X)$ and the comultiplication

$$
\hat{C}(X) \xrightarrow{\Delta} \hat{C}(X) \otimes \hat{C}(X)
$$

is the Alexander-Whitney diagonal

$$
\begin{aligned}
& \Delta(x)=1 \ominus x+x \otimes 1 \text { for }|x| \leq 2 \\
& \Delta(\sigma)=\sum_{i=0}^{n} \sigma(0 \ldots i) \otimes \sigma(i \ldots n) \text { for } \sigma \in X_{n}, n \geq 3
\end{aligned}
$$

Moreover, let

$$
\hat{C}_{2}(X) \xrightarrow{\delta} R
$$

be the $\mathbb{Z}\left[H_{2} X\right]$-homomorphism defined by $\delta h_{\phi}(x)=\phi x-1_{I_{2} X}$ for $x \in\left\langle X_{2}\right\rangle$, and let

$$
\hat{C}_{n}(X) \xrightarrow{\theta} \hat{C}_{n-1}(X)
$$

be defined on generators $\sigma \in \mathrm{K}_{n}, n \geq 3$, by

$$
\partial \sigma=\sum_{i=0}^{n}(-1)^{i}\left(d_{i} \sigma\right)^{z_{i}(\sigma)}
$$

where $z_{i}(\sigma) \in H_{2} X$ is $\phi(\sigma(i-1, i, i+l))$ for $1 \leq i \leq n-1$ and trivial for $i=0, n$.

This will give a functor

$$
\operatorname{sSet}_{1} \xrightarrow{\widehat{C}} \widehat{\text { Coalg }}
$$

where sSet \boldsymbol{t}_{1} is the category of 1 -reduced simplicial sets. Note that $\widehat{C}(X)$ is an ε twisted coalgebra for $\varepsilon: \mathbb{Z}\left[H_{2} X\right] \rightarrow \mathbb{Z}$ the usual augmentation homomorphism, and that coker $\delta=\mathbb{Z}$.

Lemma 1.8 For $\sigma \in X_{3}$ we have

$$
\partial \sigma=h_{\phi}\left(-d_{3} \sigma-d_{1} \sigma+d_{2} \sigma+d_{0} \sigma\right)
$$

Proof: Let $w=-d_{3} \sigma-d_{1} \sigma+d_{2} \sigma+d_{0} \sigma \in\left\langle X_{2}\right\rangle$. Then by the derivation property we may expand $h_{\phi}(w)$ as

$$
-h_{\phi}\left(d_{3} \sigma\right)^{\phi(w)}-h_{\phi}\left(d_{1} \sigma\right)^{\phi\left(d_{3} \sigma+w\right)}+h_{\phi}\left(d_{2} \sigma\right)^{\phi\left(d_{0} \sigma\right)}+h_{\phi}\left(d_{0} \sigma\right)
$$

But w is a boundary in $\mathrm{C}_{2} \mathrm{X}$ and hence trivial in $\mathrm{H}_{2} \mathrm{X}$, so we have

$$
h_{\phi}(w)=h_{\phi}\left(d_{0} \sigma\right)-h_{\phi}\left(d_{1} \sigma\right)^{: 1_{1}(\sigma)}+h_{\phi}\left(d_{2} \sigma\right)^{z_{2}(\sigma)}-h_{\phi}\left(d_{3} \sigma\right)
$$

Since we identify simplices in K_{2} with their images under h_{ϕ}, this agrees with the formula for $\partial \sigma$ in the definition.

Lemma 1.9 $\widehat{C}(X)$ is a well defined twisted coalgebra over $\mathbb{Z}\left[H_{2} X\right]$.
Proof: The Alexander-Whitney map defines a coassociative comultiplication. To show $(1.1)(*)$ is straightforward in dimensions ≤ 4 since all terms vanish. For $\sigma \in X_{n}, n \geq 5$, we have

$$
\begin{gather*}
(1 \otimes \partial) \tilde{\triangle} \sigma=(1 \otimes \partial) \sum_{j=0}^{n} \sigma(0 \ldots j) \otimes \sigma(j \ldots n)= \\
\sum_{j=0}^{n-1}(-1)^{j} \sigma(0 \ldots j) \ominus\left(\sum_{i=j}^{n}(-1)^{i-j} \sigma(j \ldots \hat{i} \ldots n)^{\tau_{j}^{n}(i)}\right) \tag{10}\\
(\partial \otimes 1) \tilde{\triangle} \sigma=(\partial \otimes 1) \sum_{j=0}^{n} \sigma(0 \ldots j) \otimes \sigma(j \ldots n)= \\
\sum_{j=1}^{n}\left(\sum_{i=0}^{j}(-1)^{i} \sigma(0 \ldots \hat{i} \ldots j)^{\tau_{0}^{j}(i)}\right) \otimes \sigma(j \ldots n) \tag{11}
\end{gather*}
$$

where $\tau_{F}^{q}(i)=\phi \sigma(i-1, i, i+1)$ for $i \notin\{p, q\}$, trivial otherwise. Since the terms for $i=j=k$ in (10) cancel with those for $i=j=k+1$ in (11), we can write $(10)+(11)$ as

$$
\begin{gathered}
\sum_{i=0}^{n}(-1)^{i}\left(\sum_{j=0}^{i-1} \sigma(0 \ldots j) \otimes \sigma(j \ldots \hat{i} \ldots n)+\sum_{j=i+1}^{n} \sigma(0 \ldots \hat{i} \ldots j) \otimes \sigma(j \ldots n)\right)^{z i \sigma} \\
=\tilde{\triangle}\left(\sum_{i=0}^{n}(-1)^{i}\left(d_{i} \sigma\right)^{z i(\sigma)}\right)=\tilde{\triangle} \partial \sigma
\end{gathered}
$$

as required. We get $\delta \partial=0$ since for $\sigma \in X_{3}$ we have by lemma 1.8

$$
\begin{aligned}
\delta \partial \sigma & =\delta h_{\phi}\left(-d_{3} \sigma-d_{1} \sigma+d_{2} \sigma+d_{0} \sigma\right) \\
& =\phi\left(-d_{3} \sigma-d_{1} \sigma+d_{2} \sigma+d_{0} \sigma\right)-1_{H_{3} X}=0
\end{aligned}
$$

since $-d_{3} \sigma-d_{1} \sigma+d_{2} \sigma+d_{0} \sigma$ is a boundary in $C_{2} X$ and so is mapped to the trivial element in homology. It remains to check (1.1)(**). This is trivial in dimensions ≤ 3. For $\sigma \in X_{n}, n \geq 4$ we have

$$
\begin{aligned}
\partial \partial \sigma & =\partial \sum_{i=0}^{n}(-1)^{i} \sigma(0 \ldots \hat{i} \ldots n)^{z_{i} \sigma} \\
& =\sum_{i=0}^{n} \sum_{j=0}^{i-1}(-1)^{i+j} \sigma(0 \ldots \hat{j} \ldots \hat{i} \ldots n)^{z_{j}\left(d_{i} \sigma\right)+z_{i} \sigma} \\
& +\sum_{i=0}^{n} \sum_{j=i+1}^{n}(-1)^{i+j-1} \sigma(0 \ldots \hat{i} \ldots \hat{j} \ldots n)^{z_{j-1}\left(d_{i} \sigma\right)+z_{i} \sigma}
\end{aligned}
$$

Now for $i-j \geq 2$ we have $z_{j}\left(d_{i} \sigma\right)+z_{i} \sigma=z_{i-1}\left(d_{j} \sigma\right)+z_{j} \sigma$. This also holds for $i-j=1, \overline{2} \leq i \leq n-1$, since then their difference is the boundary of $\sigma(i-2, i-1, i, i+1)$ in $C_{2}(X)$ and so is zero in homology. Thus all the terms in $\partial \partial \sigma$ cancel except

$$
\begin{array}{r}
-\sigma(2 \ldots n)^{z_{1} \sigma}-\sigma(0 \ldots n-2)+\sigma(2 \ldots n)+\sigma(0 \ldots n-2)^{z_{n-1} \sigma} \\
=\sigma(0 \ldots n-2)^{\delta h_{2} \sigma(n-2, n-1, n)}-\sigma(2 \ldots n-2)^{\delta h_{2} \sigma(0,1,2)}
\end{array}
$$

But this is just $(1 Q \delta-\delta \otimes 1) \tilde{\triangle} \sigma$.

Lemma 1.10 There is a nutural isomorphism of augmented differential coalgebras

$$
\hat{C}(X) \otimes_{z}\left[I_{2} X\right] \mathbb{Z} \cong C(X)
$$

where the right hand side is the \mathbb{Z}-chain complex on X with the AlexanderWhitney diagonal.

Proof: Let F be the free group $\left\langle X_{2}-s_{0} *\right\rangle$ and note that $\widehat{C}_{2}(X)$ may be regarded as the derived module of the map

$$
F \xrightarrow{\phi^{\prime}} H_{2} \mathrm{X}
$$

Thus we have $\hat{C}_{2}(X) \otimes_{\mathbf{Z}}\left[H_{2} X\right] \mathbb{Z} \cong I F \otimes_{\mathbf{Z} F} \mathbb{Z}$. But this is the derived module of the homomorphism $F \rightarrow$ l and so is just the abelianisation $F^{\text {ab }} \cong C_{2}(X)$. We in fact have $\hat{C}_{i}(X) \otimes_{\mathbb{Z}}\left[H_{2} X\right] \mathbb{Z} \cong C_{i}(X)$ for all i, and the composite

$$
x_{i} \longrightarrow \hat{C}_{i}^{\prime}(X) \longrightarrow \hat{C}_{i}(X) \otimes_{\mathbb{Z}\left[H_{2} X\right]} \mathbb{Z} \cong C_{i}(X)
$$

is the inclusion of simplices as generators of the chain complex, mapping degenerate simplices to zero. The formulæ for $\Delta \otimes_{\mathbf{Z}\left[H_{2} X\right]} \mathbb{Z}$ and $\partial \otimes_{\mathbf{Z}}\left[\mathrm{H}_{2} X\right] \mathbb{Z}$ in $\hat{C}_{i}(X) \otimes \mathbf{z}_{\left[H_{2} X\right]} \mathbb{Z}$ are then precisely the classical formulæ for Δ and ∂ in $C(X)$.

Proposition 1.11 For A a 1-reduced simplicial set, there is a natural isomorphism of augmented \mathbb{Z}-chain algebras

$$
\Omega \hat{C}(X) \otimes_{\mathbb{z}\left[H_{2} X\right]} \cong \Omega C(X)
$$

Proof: Lemmas 1.6 and 1.10.

The main theorem

In the above we introduced the twisted cobar construction, giving a chain algebra ΩC^{\prime} from a twisted coalgebra C, and we have examples of twisted coalgebras $\widehat{C}(X)$ arising from 1-reduced simplicial sets X. Let $|X|$ be the realisation of X. We now state the connection between the construction $\Omega \widehat{C}(X)$ and the singular chain complex $C \widehat{\Omega|X|}$ on the universal cover $\widehat{\Omega|X|}$ of the loop space of $|\mathcal{K}|$. In fact these constructions yield functors:

$$
\operatorname{set}_{1} \xrightarrow{\Omega \hat{c}, \hat{\Omega} \mid} \widehat{A} \lg
$$

Theorem 1.12 For 1-reduced simplicial sets X there is a natural homology equivalence in $\widehat{\mathrm{A}} \mathrm{lg}$

$$
\Omega \hat{C}(X) \sim \widehat{C X|X|}
$$

Here natural homology equivalence of functors $F, G:$ sSet $_{1} \rightarrow \widehat{\mathrm{~A}} \mathrm{~g}$ is the equivalence relation generated by the relation that $F \sim G$ if there is a natural transformation $F \rightarrow G$ in $\hat{\mathrm{A} l g}$ which induces homology isomorphisms.

The functor $C \widehat{\Omega \mid} \mid$ above is obtained by composing the following functors

Let Mon $_{0}$ be the category of path-connected topological monoids M which admit a universal covering \widehat{M}. Then $\Omega|\mid$ carries a 1 -reduced simplicial set X to the space of Moore loops on $|X|$ with the monoid structure given by composition of loops.

A twisted monoid (M, G) is a path-connected topological monoid (M, \cdot) together with an abelian group G such that M is also a G-space with

$$
x^{\alpha} \cdot y^{\beta}=(x \cdot y)^{\alpha \beta}
$$

for $x, y \in M, \alpha, \beta \in G$, where x^{α} denotes the action of α on x. Morphisms $(f, \theta):(M, G) \rightarrow\left(M^{\prime}, G^{\prime}\right)$ consist of group homomorphisms $\theta: G \rightarrow G^{\prime}$ and θ-equivariant topological monoid maps $f: M \rightarrow M^{\prime}$. We write \widehat{M} on for the category of twisted monoids.

We define the functor \widehat{u} by $\widehat{u}(M)=\left(\widehat{M}, \pi_{1} M\right)$. For this choose a basepoint $* \in \widehat{M}$ covering 1_{M}. Then \widehat{M} is a monoid with $1_{\widehat{M}}=*$ and multiplication

$$
\widehat{M} \times \widehat{M} \cong \widehat{M \times M} \xrightarrow{\widehat{m}}
$$

where $m: M \times M \rightarrow M$ is the multiplication on M. Note that the map

$$
\pi_{1} M \times \pi_{1} M \cong \pi_{1}(M \times M) \xrightarrow{\pi_{1}(m)} \pi_{1} M
$$

is the group law of the abelian group $\pi_{1} M$ and therefore $\left(\widehat{M}, \pi_{1} M\right)$ is a twisted monoid.

Given a twisted monoid ($M . G$) let $C^{\prime}(M)$ be the singular chain complex of M and let $R=\mathbb{Z} G$ be the group ring of the abelian group G. The action of G on M gives an action of R on $C(M)$. A unit $* \in C_{0}(M)$ is given by l_{M}. The \mathbb{Z}-bilinear map

$$
C(M) \bigcirc_{\mathbf{z}} C(M) \longrightarrow C(M \times M) \xrightarrow{C(\mu)} C(M)
$$

induces an R-bilinear multiplication

$$
C(M) \otimes_{R} C(M) \longrightarrow C(M)
$$

since $x^{\alpha} \cdot y=(x \cdot y)^{\alpha}=x \cdot y^{\alpha}$ in M. Hence we can define the functor C above by $C(M, G)=(C M, R)$.

2 The crossed cobar construction

Simplicial strings and interval categories

We start by describing the category $\Omega \Delta$ of simplicial strings, and the associated monoidal functors $\Omega X, L$, first introduced in [2]. We introduce the notion of a category with an interval object; any such category serves as the target for L.

Let $\Delta, \subset \Delta$ be the subcategory of the simplicial category Δ containing only those morphisms $a: \underline{n} \rightarrow \underline{m}$ with $a(0)=0$ and $a(n)=m$. Recall that Δ, is generated by the maps

$$
s_{i}: \underline{n+1} \rightarrow \underline{n}, \quad(0 \leq i \leq n), \quad d_{i}: \underline{n} \rightarrow \underline{n+1}, \quad(1 \leq i \leq n)
$$

which repeat and omit the value i respectively.
Next consider the category $\{0,1\} /$ Set of double-pointed sets $\left(A, a_{0}, a_{1}\right)$ and functions preserving the basepoints. We can regard Δ. as a subcategory of $\{0,1\} /$ Set with objects $[n]=(\underline{n}, 0, n)$. Note that $\{0,1\} /$ Set has a monoidal structure given by

$$
\left(A, a_{0}, a_{1}\right) \square\left(B, b_{0}, b_{1}\right)=\left(\frac{A \amalg B}{a_{1} \sim b_{0}}, a_{0}, b_{1}\right)
$$

and unit element $*=[0]$.
Definition 2.1 The category of simplicial strings $\Omega \Delta$ is the monoidal subcategory of $\{0,1\} /$ Set generated by Δ, and the functions

$$
[n] \square[m] \xrightarrow{v_{n, m}}[n+m]
$$

defined by $i \mapsto i$ on $[n]$ and $i \mapsto n+i$ on $[m]$.
Let (C, \otimes) be a monoidal category. Using the above presentation of $\Omega \Delta$, we see that to define a monoidal functor $C: \Omega \Delta \rightarrow C$ it is necessary and sufficient to give the following data in C :

1. objects C_{n} for $n \geq 1$, with $C_{0}=*$,
2. morphisms $s_{i}: C_{n+1} \rightarrow C_{n}$ for $0 \leq i \leq n$,
3. morphisms $d_{i}: C_{n} \rightarrow C_{n+1}$ for $1 \leq i \leq n$,
4. morphisms $u_{n, m}: C_{n} \otimes C_{m} \rightarrow C_{n+m}$ for $n, m \geq 0$, with $v_{0, n}=v_{n, 0}=1_{C_{n}}$,
such that the following relations hold

$$
\begin{aligned}
& s_{j} s_{i}=s_{i} s_{j+1} \quad \text { for } i \leq j \\
& d_{j} d_{i}=d_{i} d_{j-1} \quad \text { for } i<j \\
& s_{j} d_{i}= \begin{cases}d_{i} s_{j-1} & \text { for } i<j \\
\text { id } & \text { for } i=j \text { or } i=j+1 \\
d_{i-1} s_{j} & \text { for } i>j\end{cases} \\
& s_{i} v_{n, m}= \begin{cases}v_{n-1, m}\left(s_{i} \otimes 1\right) & \text { for } i<n \\
v_{n, m-1}\left(1 \otimes s_{i-n}\right) & \text { for } i \geq n\end{cases} \\
& d_{i} v_{n, m}= \begin{cases}v_{n+1, m}\left(d_{i} \otimes 1\right) & \text { for } i \leq n \\
v_{n, m+1}\left(1 \otimes d_{i-n}\right) & \text { for } i>n\end{cases} \\
& v_{n, m+l}\left(1 \otimes v_{m, i}\right)=v_{n+m, l}\left(v_{n, m} \otimes l\right)
\end{aligned}
$$

To define a contravariant monoidal functor on $\Omega \Delta$ the data and relations needed are dual to these.

Definition 2.2 Let Set be the category of sets with the cartesian monoidal structure. Then given a 0 -reduced simplicial set $X, X_{0}=\{*\}$, the monoidal functor

$$
(\Omega \Delta)^{\mathrm{op}} \xrightarrow{\Omega x} \text { Set }
$$

is defined on the generating objects of $\Omega \Delta$ by $(\Omega X)_{n}=X_{n}$ and on the generating morphisms $s_{i}, d_{i}, v_{n, m}$ by

$$
\begin{gathered}
s_{\mathbf{i}}: X_{n} \rightarrow X_{n+1}, \\
d_{i}: X_{n+1} \rightarrow X_{n} \\
u_{n, m}=\left(d_{n+1}^{m}, d_{0}^{n}\right): X_{n+m} \rightarrow X_{n} \times X_{m}
\end{gathered}
$$

respectively; cf. [.2.12 of [2].
We may also write $v_{n, m}(\sigma)$ as $(\sigma(0, \ldots, n), \sigma(n, \ldots, n+m))$ for $\sigma \in X_{n+m}$.
A map $X \rightarrow X^{\prime}$ of 0 -reduced simplicial sets induces a natural transformation $\Omega X \rightarrow \Omega X^{\prime}$ of monoidal functors in the obvious way.

Definition 2.3 An interval object in a monoidal category (\mathbf{C}, \otimes) is an object \mathcal{I} of C together with morphisms $d^{ \pm}: * \rightarrow \mathcal{I}, e: \mathcal{I} \rightarrow *$ and $m: \mathcal{I} \otimes \mathcal{I} \rightarrow \mathcal{I}$ satisfying the following relations:

1. $m\left(1 \otimes d^{-}\right)=m\left(d^{-} \otimes 1\right)=I_{I}$
2. $m\left(1 \odot d^{+}\right)=m\left(d^{+} \oslash 1\right)=d^{+} e$
3. $m(1 \rho m)=m(m \circ 1)$

An interval category is a monoidal category with a specified interval object. Two examples of interval categories are the following:

1. Let C be the category FTop of filtered spaces $X=\left(X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq\right.$ \ldots...). The tensor product is the product with the compactly generated topology and the filtration $(X \otimes Y)_{n}=\bigcup_{i+j=n} X_{i} \times Y_{j}$. Then C has an interval object \mathcal{I} with $\mathcal{I}_{0}=\{0,1\}$ and \mathcal{I}_{n} the unit interval $[0,1]$ for $n \geq 1$. The maps d^{-}and d^{+}take $*$ to 0 and 1 respectively, e is the identification to a single point, and m is the maximum function $\left(t_{1}, t_{2}\right) \mapsto \max \left(t_{1}, t_{2}\right)$. Then, for example, the relation $m\left(d^{+} \otimes 1\right)=d^{+} e$ becomes $\max (1, t)=1$. Note that the n-cube $\mathcal{I}^{\ominus n}$ has a natural CW-complex structure, such that the filtration agrees with the skeletal filtration.
2. Let \mathbf{C} be the cartesian monoidal category sSet of simplicial sets. This has an interval object given by the standard 1 -simplex $\Delta[1]$. Regarding elements of $\Delta[1]_{n}$ as monotonic functions $a: \underline{n} \rightarrow \underline{1}$, the multiplication m is given by $m(a, b)(i)=\max (a(i), b(i))$. The maps d^{-}, d^{+}, e are defined from d_{1}, d_{0}, s_{0} respectively.

On the n-cubes $\mathcal{I}^{\mathscr{O} n}$ in any interval category we have coface maps

$$
\mathcal{I}^{\otimes n} \xrightarrow{d_{i}^{ \pm}} \mathcal{I}^{\otimes(n+1)}
$$

given by $1_{I \otimes(1-1)} \otimes d^{ \pm} \otimes 1_{I \otimes(n-1+1)}$ for $1 \leq i \leq n+1$, and codegeneracy maps

$$
\mathcal{I}^{\otimes n} \xrightarrow{m_{i}} \mathcal{I}^{\otimes(n-1)}
$$

given by $1_{I \otimes(i-1)} \otimes m \otimes 1_{I \otimes(n-1-1)}$ for $1 \leq i \leq n-1$, or by $e \otimes 1_{\mathcal{I} \otimes(n-1)}, 1_{\mathcal{I} \otimes(n-1)} \otimes e$ for $i=0, n$.

Definition 2.4 The standard simplicial string model functor in an interval category C is the monoidal functor $L: \Omega \Delta \rightarrow \mathrm{C}$ given on the generating objects by $L_{n}=\mathcal{I}^{\otimes(n-1)}$ and on the generating morphisms $s_{i}, d_{i}, v_{n, m}$ by

$$
\begin{gathered}
m_{i}: \mathcal{I}^{\ominus n} \rightarrow \mathcal{I}^{\ominus(n-1)} \\
d_{i}^{-}: \mathcal{I}^{\ominus(n-1)} \rightarrow \mathcal{I}^{\ominus n} \\
d_{n}^{+}: \mathcal{I}^{\ominus(n-1)}\left(\mathcal{I}^{\ominus(m-1)} \rightarrow \mathcal{I}^{\ominus(m+n-1)}\right.
\end{gathered}
$$

respectively. ${ }^{1}$

[^0]
Coends and the geometric cobar construction

Suppose \mathbf{C} is an arbitrary cocomplete category, \mathbf{D} a small category, and F a functor $\mathrm{D}^{\circ \mathrm{p}} \times \mathrm{D} \rightarrow \mathrm{C}$. Then the coend of F over D , written $\int^{d} F(d, d)$, is given by the equaliser in C of the morphisms:

which are given componentwise on the coproduct by

$$
a i_{f}=i_{d_{2}} F\left(d_{2}, f\right) \quad \text { and } \quad b i_{f}=i_{d_{1}} F\left(f, d_{1}\right)
$$

In suitable categories \mathbf{C} we can define coends more explicitly in terms of elements and relations. Let A be the $\mathrm{Ob}(\mathrm{D})$-indexed coproduct of the objects $F(d, d)$ in C. Then $\int^{d} F(d, d)$ is the quotient object of A given by imposing the relations $F\left(d_{1}, f\right)(x) \sim F\left(f, d_{2}\right)(x)$ for each $f: d_{2} \rightarrow d_{1}$ in D and x in $F\left(d_{1}, d_{2}\right)$.

Suppose now that C, D are monoidal categories and F is a monoidal functor. Also we assume that \otimes preserves colimits in C; this is the case for example if C is monoidal closed. Then the coend of F has the structure of a monoid object in C . with identity $F(*, *)=*$ and multiplication induced by the maps

$$
F\left(d_{1}, d_{1}\right) \otimes F\left(d_{2}, d_{2}\right) \cong F\left(d_{1} \otimes d_{2}, d_{1} \otimes d_{2}\right)
$$

If C is an interval category, and X is a 0 -reduced simplicial set, then we have monoidal functors

$$
(\Omega \Delta)^{\circ p} \xrightarrow{\Omega X} \text { Set } \quad \Omega \Delta \xrightarrow{L} \mathrm{C}
$$

from the previous section. Using the 'copower' functor Set $\times \mathrm{C} \longrightarrow \mathrm{C}$ given by taking set-indexed coproducts in C : one obtains the monoidal functor

$$
(\Omega \Delta)^{\circ p} \times \Omega \Delta \xrightarrow{\Omega X \cdot L} \mathrm{C}
$$

Definition 2.5 The (geometric) cobar construction on a 0 -reduced simplicial set N is the C -monoid $\underline{\Omega}_{\mathrm{C}}(X)$ given by the coend of $\Omega X \cdot L$ over $\Omega \Delta$.

$$
\underline{\Omega}_{\mathrm{C}}(X)=\int^{A}(\Omega X)(A) \cdot L(A)
$$

This yields the functor

$$
\text { sSet }_{0} \xrightarrow{\Omega_{C}} \text { C-Monoids }
$$

where $\mathbf{s S e t} \mathbf{t}_{0}$ is the category of 0 -reduced simplicial sets.
Since we have a nice presentation for $\Omega \Delta$ we can give a more explicit desuription of the cobar construction than the coend definition above.

Proposition 2.6 The cobar construction $\underline{\Omega}_{C} X$ on a simplicial set $X, X_{0}=*$; is given by a coproduct in C indexed by words in $\mathrm{X}_{\geq 1}$

$$
\coprod_{r \geq 0} \coprod_{\left(x_{1}, \ldots, x_{r}\right)} \mathcal{I}^{\otimes\left(n_{1}-1\right)} \otimes \cdots \otimes \mathcal{I}^{\otimes\left(n_{r}-1\right)}
$$

which has 'generating' elements

$$
\left(x_{1}, \ldots, x_{r} ; y\right)
$$

for $y \in \mathcal{I}^{\otimes\left(n_{1}-1\right)} \otimes \cdots \mathcal{I}^{\ominus\left(n_{r}-1\right)}, x_{k} \in X_{n_{k}}, n_{k} \geq 1, k=1, \ldots, r$, quotiented by the relations

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{k-1}, s_{i} x_{k}, x_{k+1}, \ldots, x_{r} ; y\right) & \sim\left(\left(x_{j}\right)_{1}^{r} ;\left(1_{<k} \otimes m_{i} \otimes 1_{>k}\right)(y)\right) \\
\left(x_{1}, \ldots, x_{k-1}, d_{i} x_{k}, x_{k+1}, \ldots, x_{r} ; y\right) & \sim\left(\left(x_{j}\right)_{1}^{r} ;\left(1_{<k} \otimes d_{i}^{-} \otimes 1_{>k}\right)(y)\right) \\
\left(x_{1}, \ldots, x_{k-1}, d_{i+1}^{n_{k}-i} x_{k}, d_{0}^{i} x_{k}, x_{k+1}, \ldots, x_{r} ; y\right) & \sim\left(\left(x_{j}\right)_{1}^{r} ;\left(1_{<k} \otimes d_{i}^{+} \otimes l_{>k}\right)(y)\right)
\end{aligned}
$$

where $1_{<k}$ is the identity map on $\mathcal{I}^{\otimes \Sigma_{j<k}\left(n_{j}-1\right)}$, and $1_{>k}$ similarly. Note that $i \neq 0, n_{k}$ in the second relation.

The monoid structure on $\underline{\Omega}_{\mathrm{C}} . \hat{x}$ is given by the unit $(; *)$ and the multiplication

$$
\left(w_{1}, \ldots, w_{s} ; y\right) \otimes\left(x_{1}, \ldots, x_{r} ; z\right)=\left(w_{1}, \ldots, w_{s}, x_{1}, \ldots, x_{r} ; y \otimes z\right)
$$

The importance of the geometric cobar construction is that it provides a model for the loop space on the realisation of a simplicial set. In fact from [2] we have the following result (compare also [9]):

Theorem 2.7 For 1-reduced simplicial sets X there is a natural homotopy equivalence of path-connected topological monoids

$$
\underline{\Omega}_{\text {FTop }} X \simeq \Omega|X|
$$

Also $\Omega_{\mathrm{FTop}} \mathrm{X}$ has a natural CW-complex structure and its filtration in FTop coincides with the skeletal fill ration.

Here natural homotopy equivalence of functors $F, G:$ sSet $_{1} \rightarrow$ Mon $_{0}$ is the equivalence relation generated by the relation that $F \simeq G$ if there is a natural transformation $F \rightarrow C$ in Mon_{0} which for each object is a homotopy equivalence in the category of pointed topological spaces.

The crossed cobar construction

Let C be the monoiclal closed category Cr s of crossed complexes (see for example $[11,1: 3]$). The tensor product $C \otimes D$ of crossed complexes is defined in terms of generators $c \circ c^{\prime} \in(C \odot D)_{n+m}$ for $c \in C_{n}^{\prime}, c^{\prime} \in D_{m}$ together with
certain relations which may be found in [13]. A monoid object C in Crs is termed a crossed algebra, or a crossed chain algebra if $C_{0}=\{*\}$.

An interval object \mathcal{I} in Crs is given by the crossed complex on generators $0, l \in \mathcal{I}_{0}, \iota \in \mathcal{I}_{1}$, with $s \iota=0, t \iota=1$. The maps $d^{-}, d^{+}: * \rightarrow \mathcal{I}$ are given by $* \mapsto 0, * \mapsto 1$ respectively, $e: \mathcal{I} \rightarrow *$ is the unique map to the terminal object and the map $m: \mathcal{I} \otimes \mathcal{I} \rightarrow \mathcal{I}$ is given on the standard generators by

$$
a \otimes b \mapsto \begin{cases}0 & \text { if } a=b=0 \\ \iota & \text { if }\{a, b\}=\{0, \iota\} \\ 1 & \text { otherwise. }\end{cases}
$$

Alternatively this may be obtained by applying the fundamental crossed complex functor $\pi:$ FTop \rightarrow Crs to the interval object structure in FTop defined above.

If $t^{\ominus n}$ is the n-dimensional generator of $\mathcal{I}^{\otimes n}$ then from the tensor product relations we can obtain

$$
\begin{aligned}
s(t)= & 0 \\
t(\iota)= & 1 \\
B\left(\iota^{\otimes n}\right)= & 1^{\otimes n} \text { for } n \geq 1 \\
\delta\left(\iota^{\otimes 2}\right)= & -1 \otimes \iota-\iota \otimes+0 \otimes \iota+t \otimes 1 \\
\delta\left(\iota^{\otimes 3}\right)= & -\iota \otimes \iota \otimes 1-\iota \otimes 0 \otimes \iota^{1 \otimes \iota 1}-1 \otimes \iota \otimes \iota \\
& +\iota \otimes \iota \otimes 0^{1 \otimes 1 \otimes \iota}+\iota \otimes 1 \otimes \iota+0 \otimes \iota \otimes \iota^{\iota \otimes 1 \otimes 1} \\
\delta\left(\iota^{\otimes n}\right)= & \sum_{i=1}^{n}(-1)^{i}\left(d_{i}^{+} \iota^{(n-1)}-\left(d_{i}^{-} \iota^{(n-1)}\right)^{z_{i}}\right) \quad \text { for } n \geq 4
\end{aligned}
$$

where $z_{i} \in\left(\mathcal{I}^{\ominus(n-1)}\right)_{1}$ is given by $\left(d_{i+1}^{+}\right)^{n-i-1}\left(d_{1}^{+}\right)^{i-1}(\iota)$.
For $\lambda=\left(\lambda_{k}\right)_{1}^{r}$ an ordered subset of $\{1<2<\ldots<n\}$ and $\alpha \in\{-,+\}^{r}$, let d_{λ}^{α} be the morphism

$$
d_{\lambda_{r}}^{\alpha r} \ldots d_{\lambda_{1}}^{\alpha_{1}}: \mathcal{I}^{\otimes(n-r)} \rightarrow \mathcal{I}^{\ominus n}
$$

Then the 3^{n} generators of $\mathcal{I}^{\ominus n}$ may be written as $d_{\lambda}^{\alpha} \iota^{\otimes(n-r)}$ for $0 \leq r \leq n$, and the relations on these generators are obtained by applying d_{λ}^{α} to the terms in the relations above.

By proposition 2.6, we can now give a presentation for the cossed cobar construction $\underline{\Omega}_{\mathrm{Crs}}(X)$ on a 1 -reduced simplicial set X. For an $x \in X_{n}$ only the top-dimensional generator of $\mathcal{I}^{\otimes(n-1)}$ needs to be considered since the lowerdimensional ones can be obtained by applying $d_{i}^{ \pm}$and so are identified with generators coming from (products of) faces of x. Since m maps top-dimensional generators to an identity we can also throw out degenerate simplices. The resulting monoid C in Crs has $C_{0}=\{*\}$ since we are treating the 1 -reduced case only, and is in fact a free crossed chain algebra [22].

Theorem 2.8 Let K be a simplicial set with $X_{0}=X_{1}=\{*\}$. For $x_{n} \in X_{n}$, $n \geq 4$, set $z_{i}\left(x_{n}\right)=d_{0}^{i-1} d_{i+2}^{n-i-1} x_{n}=x_{n}(i-1, i, i+1) \in X_{2}$ for $1 \leq i \leq n-1$. Then $C=\underline{\Omega}_{\mathrm{Crs}}(X)$ is the crossed chain algebra with generators $x_{n} \in \bar{C}_{n-1}$ for $x_{n} \in X_{n}, n \geq 2$, subject to the relations

$$
\begin{aligned}
x_{n} & =* \text { if } x_{n} \text { is degenerate } \\
\delta_{2}\left(x_{3}\right)= & -d_{0} x_{3}-d_{2} x_{3}+d_{1} x_{3}+d_{3} x_{3} \\
\delta_{3}\left(x_{4}\right)= & -d_{4} x_{4}-d_{2} x_{4}{ }_{2}^{z_{2}\left(x_{4}\right)}-d_{0} x_{4} \\
+ & d_{3} x_{4}^{z_{3}\left(x_{4}\right)}+d_{3} d_{4} x_{4} \otimes d_{0} d_{1} x_{4}+d_{1} x_{4}^{z_{1}\left(x_{4}\right)} \\
\delta_{n-1}\left(x_{n}\right)= & -d_{0} x_{n}+\sum_{i=2}^{n-2}(-1)^{i} d_{i+1}^{n-i} x_{n} \otimes d_{0}^{i} x_{n}-(-1)^{n} d_{n} x_{n} \\
& -\sum_{i=1}^{n-1}(-1)^{i} d_{i} x_{n}{ }^{z_{i}\left(x_{n}\right)} \quad \text { for } n \geq 5
\end{aligned}
$$

together with the usual relations on tensor products of crossed complexes.
Recall from $[4,14,23]$ that there is a functor \mathcal{D} from crossed complexes to R-chain complexes. Given a crossed complex of groups

$$
\cdots \longrightarrow C_{4} \xrightarrow{\delta_{1}} C_{3} \xrightarrow{\delta_{3}} C_{2} \xrightarrow{\delta_{2}} C_{1}
$$

let $\pi_{1}=\pi_{1} C=$ coker δ_{2} and let ϕ be the quotient map $C_{1} \rightarrow \pi_{1}$, with h_{ϕ} : $C_{1} \rightarrow D_{\phi}$ the universal ϕ-derivation. Then $\mathcal{D}(C)$ is the $\mathbb{Z} \pi_{1}$-chain complex

$$
\cdots \longrightarrow C_{4} \xrightarrow{\delta_{4}} C_{3} \xrightarrow{\delta_{3}} C_{2}^{\mathrm{nb}} \xrightarrow{d_{2}} D_{\phi} \xrightarrow{d_{1}} \mathbb{Z} \pi_{1}
$$

where $d_{2} x=h_{\phi} \delta_{2} x$ and $d_{1} h_{\phi} x=\phi x-1_{\pi_{1}}$.
Lemma 2.9 \mathcal{D} induces a functor

$$
\text { CrsAlg } \xrightarrow{D} \widehat{\mathbf{A}} \lg
$$

from crossed chain algebras to chain algebras
Proof: If A, B are crossed complexes, then $\pi_{1}(A \varnothing B)$ is $\pi_{1} A \times \pi_{1} B$ and from [14] we know that $\mathcal{D}(A \otimes B)$ is the chain complex $\mathcal{D} A \otimes_{\boldsymbol{z}} \mathcal{D} B$ with the action of $\pi_{1} A \times \pi_{1} B$ given by $(x \otimes y)^{(a, b)}=x^{a} \otimes y y^{b}$. A morphism

$$
A \otimes B \xrightarrow{m} C
$$

of pointed crossed complexes induces a multiplication $\pi_{1} A \times \pi_{1} B \rightarrow \pi_{1} C$ via $a \cdot b=m(a \bigcirc) *) \cdot m(* \odot b)$. Moreover the \mathbb{Z}-chain map

$$
\mathcal{D A} Q_{E} D B \xrightarrow{D m^{2}} \mathcal{D} C
$$

satisfies $(\mathcal{D} m)\left(x^{a} \otimes y^{b}\right)=(\mathcal{D} m)(x \otimes y)^{a \cdot b}$. In particular if $A=B=C$ and m is a monoid structure on C then $D m$ induces a $\mathbb{Z} \pi_{1}$-chain algebra structure

$$
\mathcal{D} C \otimes_{\mathbf{Z}_{\pi_{1}}} \mathcal{D C} \xrightarrow{\mathcal{D} m} \mathcal{D} C
$$

where π_{1} acts on $\mathcal{D} C \otimes \mathbf{z}_{\pi_{1}} \mathcal{D} C$ by $(x \otimes y)^{a}=x^{a} \otimes y=x \otimes y^{a}$.
We can now relate the crossed and twisted cobar constructions.
Proposition 2.10 For 1-reduced simplicial sets X, there is a natural isomorphism of $\mathbb{Z} \mathrm{H}_{2} X$-chain algebras

$$
\mathcal{D} \underline{\Omega}_{\mathrm{Crs}} X \cong \Omega \widehat{C} X
$$

Proof: Let A, B be the chain algebras $\mathcal{D} \underline{\Omega} X, \Omega \widehat{C} X$ respectively, and recall that $B_{0}=R=\mathbb{Z} H_{2} X$ and

$$
B_{n}=\bigoplus_{i_{1}+\ldots+i_{r}=n} C_{i_{1}} \otimes_{R} C_{i_{3}} \otimes_{R} \ldots \otimes_{R} C_{i_{r}}
$$

where C_{1} is the derived module of $\phi^{\prime}:\left\langle X_{2}-s_{0} *\right\rangle \rightarrow H_{2} X$ and $C_{i}=C_{i+1}(X ; R)$ for $i \geq 2$. Now $(\Omega X)_{1}$ is the free group on $X_{2}-s_{0} *$, and $(\Omega X)_{2}$ is the free crossed $(\Omega . Y)_{1}$-module with generators σ_{3} and $\sigma_{2} \otimes \sigma_{2}^{\prime}$ and boundary relations

$$
\begin{aligned}
\delta_{2} \sigma_{3} & =-d_{0} \sigma_{3}-d_{2} \sigma_{3}+d_{1} \sigma_{3}+d_{3} \sigma_{3} \\
\delta_{2}\left(\sigma_{2} \otimes \sigma_{2}^{\prime}\right) & =-\sigma_{2}^{\prime}-\sigma_{2}+\sigma_{2}^{\prime}+\sigma_{2}
\end{aligned}
$$

where as usual we quotient out degenerate simplices. Thus

$$
\left(\Omega \mathrm{S}_{2} \xrightarrow{\delta_{2}}\left\langle\mathrm{X}_{2}-s_{0} *\right\rangle \xrightarrow{\delta^{\prime}} H_{2} \mathrm{X} \longrightarrow 0\right.
$$

is exact and we have $A_{0}=B_{0}=R$ and $A_{1}=B_{1}=D_{\phi^{\prime}}$, with $d_{1} h_{\phi^{\prime}} x=$ $\phi^{\prime} x-1_{H_{2} X}$ in A and B. In general ΩN is generated as a crossed complex by $\sigma_{1} \otimes \ldots \otimes \sigma_{r}$ in dimension $\sum\left(\operatorname{dim} \sigma_{i}-1\right)$. Since tensor products of pointed crossed complexes satisfy the relations

$$
\begin{aligned}
\left(c_{1}+c_{1}^{\prime}\right) \otimes d_{j} & =c_{1}^{\prime} \otimes d_{j}+\left(c_{1} \otimes d_{j}\right)^{c_{1}^{\prime}} \\
c_{i} \otimes\left(d_{1}+d_{1}^{\prime}\right) & =\left(c_{i} \otimes d_{1}\right)^{d_{1}^{\prime}}+c_{i} \otimes d_{1}^{\prime} \\
\left(c_{i}+c_{i}^{\prime}\right) \otimes d_{j} & =c_{i} \otimes d_{j}+c_{i}^{\prime} \otimes d_{j} \quad \text { for } i \geq 2 \\
c_{i} \otimes\left(d_{j}+d_{j}^{\prime}\right) & =c_{i} \oslash d_{j}+c_{i} \otimes d_{j}^{\prime} \quad \text { for } j \geq 2 \\
c_{i}^{c_{i}} \oslash d_{j} & =\left(c_{i} \oslash d_{j}\right)^{c_{1}} \quad \text { for } i \geq 2 \\
c_{i} \otimes d_{j}^{d_{1}} & =\left(c_{i} \oslash d_{j}\right)^{d_{1}} \quad \text { for } j \geq 2
\end{aligned}
$$

we obtain $A_{\underline{2}}=(\underline{\Omega})_{2}^{n b}=C_{3}^{\prime}\left(X^{\prime} ; R\right) G_{B} D_{\phi^{\prime}} Q_{R} D_{\phi^{\prime}}$, and similarly for $n \geq 3$ we find that $A_{n}=(\underline{\Omega} X)_{n}$ agrees with B_{n} above. Note that for X 2-dimensional
the result $A_{n}=D_{\phi^{\prime}}{ }^{9 n}$ was proved in [$\left.\bar{t}\right]$. For $\sigma \in X_{\geq 4}$ the differentials in A, B agree by

$$
\begin{aligned}
d_{A} \sigma & =\sum_{2}^{n-2}(-1)^{i} \sigma(0 \ldots i) \otimes \sigma(i \ldots n)-\sum_{0}^{n}(-1)^{i} d_{i} \sigma^{\sigma(i-1, i, i+1)} \\
& =\tilde{\triangle} \sigma-\partial \sigma=d_{B} \sigma
\end{aligned}
$$

and for $\sigma \in X_{3}$ we have $d_{A} \sigma=h_{\phi^{\prime}} \delta_{2} \sigma$ which agrees with $d_{B} \sigma=-\partial \sigma$ by lemma 1.8 .

Proof of the main theorem

We now complete the proof of theorem 1.12 , that for X a simplicial set with $X_{0}=X_{1}=\{*\}$ there is a natural homology equivalence between the cobar construction $\Omega \widehat{C}(X)$ of the twisted chain coalgebra on X, and the singular chain algebra $C \widehat{\Omega|X|}$ of the universal cover of the loops on X. We have just seen in 2.10 that $\Omega \widehat{C}$ is given by applying \mathcal{D} to the crossed cobar construction Ω_{Crs}. Also by 2.7 we know that the loop space on X is given up to homotopy by the geometric cobar construction, and so there is a natural homology equivalence of chain algebras $C \widehat{\Omega|X|} \sim C \widehat{\Omega}$ FTop X. The main theorem thus follows from the following:

Proposition 2.11 For 1 -reduced simplicial sets X. there is a natural homology equivalence of chain alyebras

$$
\mathcal{D} \underline{\Omega}_{\operatorname{Crs}} X \sim C \underline{\Omega}_{\mathbf{F}} \operatorname{Top}^{x}
$$

Proof: Let Y be the monoid in FTop given by $\underline{\Omega}_{F T o p} X$. Since the fundamental crossed complex functor π preserves colimits and tensor products of the spaces involved we note that $\underline{\Omega}_{\mathrm{Crs}} \mathrm{X}$ is just πY. It therefore remains to show that there is a natural homology equivalence $\mathcal{D} \pi Y \sim C \widehat{Y}$. Let \widehat{Y} have the filtration given by the the inverse image under the covering map of the (skeletal) filtration on Y. Then by [23], or proposition 5.2 of [14], we can identify $\mathcal{D} \pi Y$ with the cellular chain complex $\mathcal{H} \widehat{Y}$ given by the relative homology groups:

$$
\cdots \longrightarrow H_{3}\left(\hat{Y}_{3}, \hat{Y}_{2}\right) \xrightarrow{\delta_{3}} H_{2}\left(\hat{Y}_{2}, \hat{Y}_{1}\right) \xrightarrow{\delta_{3}} H_{1}\left(\hat{Y}_{1}, \hat{Y}_{0}\right) \xrightarrow{\delta_{1}} H_{0}\left(\hat{Y}_{0}\right)
$$

Finally we note that there is a natural equivalence $\mathcal{H} \widehat{Y} \sim C \widehat{Y}$ given via

$$
\mathcal{H} \hat{Y} \stackrel{\tau}{\longleftrightarrow} C_{\text {cell }} \hat{Y} \subseteq C \widehat{Y}
$$

where $C_{\text {cell }} \hat{Y}$ is the subchain complex of the singular chain complex $C \hat{Y}$ generated by all singular simplices $\sigma: \Delta^{n} \rightarrow \widehat{Y}$ which are cellular maps. The map τ carries σ to $\sigma .\left[\Delta^{n}\right]$ where $\left[\Delta^{n}\right] \in H_{n}\left(\Delta^{n}, \partial \Delta^{n}\right)$ is the fundamental class.

References

[1] J. F. Adams. On the cobar construction. Proc. Nat. Acad. Sci. 42 (1956), 409-412
[2] H.-J. BaUEs. Gieometry of loop spaces and the cobar construction. Memoirs of the AMS 230 (1980)
[3] H.-.J. Baues. The double bar and cobar constructions. Compositio Mathematica 43 (1981), 331-341
[4] H.-.I. Baues. Algebraic homotopy. Cambridge studies in advanced mathematics 15 (1989)
[5] H.-J. Baues. Combinatorial homotopy and 4-dimensional complexes. de Gruyter expositions in mathematics 2 (1991)
[6] H.-J. Baues and R. Brown. On relative homotopy groups of the product filtration, the James construction, and a formula of Hopf. J. Pure and Appl. Algebra 89 (1993), 49-61
[7] H.-.J. Baues and D. Conduché. On the tensor algebra of a non-abelian group and applications. K - Theory 5 (1992), 531-554
[8] H.-.J. Baues and A. P. Tonks. Crossed chain algebras. In preparation
[9] C. Berger. Un groupoïde simplicial comme modèle de l'espace des chemins. Bulletin de la Société Mathématique de France. To appear.
[10] R. Brown and N. D. Gilbert. Algebraic models of 3-types and automorphism structures for crossed modules. Proc. London Math. Soc. 59 (1989), 51-7.3
[11] R. Brown aud P. J. Higgins. The algebra of cubes. J. Pure and Appl. Algebra 21 (1981), 2:33-260
[12] R.. Brown and P. J. Higgins. Colimit theorems for relative homotopy groups. J. Pure and Appl. Algebra 22 (1981), 11-41
[13] R. Brown and P. J. Higgins. Tensor products and homotopies for ω groupoids and crossed complexes. J. Pure and Appl. Algebra 47 (1987), 1-3:3
[14] R. Brown and P. J. Higgins. Crossed complexes and chain complexes with operators. Math. Proc. Camb. Phil. Soc. 107 (1990), 33-57
[15] R. H. Crowell. The derived module of a homomorphism. Adv. in Math. 6 (1971), 210-238
[16] M. Gerstenhaber and A. A. Voronov. Homotopy G-algebras and moduli space operads preprint (1994)
[17] E. GETZLER and J. D. S. Jones. Operads, homotopy algebra, and iterated integrals for double loop spaces. Surv. Diff. Geom. To appear.
[18] E. Getzler and M. M. Kapranov. Modular operads. preprint (1994)
[19] V. Ginzburg and M. M. Kapranov. Koszul duality for operads. Duke Mathematical Journal 76 (1994)
[20] J. R. Smith. Iterating the cobar construction. Memoirs of the AMS 524 (1994)
[21] A. P. Tonks. Theory and applications of crossed complexes. Ph.D. thesis, University of Wales (1993)
[22] A. P. Tonks. An I-category structure for crossed chain algebras. preprint (1994)
[23] J. H. C. Whitehead. Combinatorial homotopy II. Bull. Amer. Math. Soc. 55 (1949), 453-496

Max-Planck-Institut für Mathematik
Gottfried-Claren-Strabe 26
53225 Bonn
October 14, 1994.

[^0]: ${ }^{1}$ There is a misprint in the defintion of L on p. 9 of [2]; either a_{1} needs to be changed to reverse the roles of d^{+}and d^{-}, or δ should be 'min' rather than 'max'.

