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On the twisted cobar construction

H.-J. Baues and A.P. Tonks

Introduction

The classical cobar construction QC for a coalgebra C (first introduced by
Adams [1]) is an important algebraic concept motivated by the singular chain
complex of a loop space QX If X is a l-reduced simplicial set with realisation
| X} Adams proved that there is a natural isomorphism of homology groups

H.(QC(X), A) 2= H.(QX], A) (%)

where C'(.X) is the coalgebra given by the chain complex on .\’ and the Alexander-
Whitney diagonal. Here the homology has coefficients in an abelian group A.
The purpose of this paper is the extension of this result to the case of twisted
coefficients given by m,Q|X|-modules A, with m Q[X| = H..X.

We introduce the new algebraic concepts of a twisted coalgebra C and a
twisted cobar construction 2C which extend the classical notions. We are able to
define for any I- reducecl simplicial set X a twisted coalgebra C(.Y) together with
a natural projection C( ) = C(X), such that there is a natural isomorphism

HJ(QC(X), A) = H.(QX],A) (x%)

for all twisted coefficients A. For this we prove that there is a natural homology

equivalence of differential algebras between QC(X) and CQL\l where Q|X| is
the universal cover of the loop space 2/.X|. We show

QC(X)®zuZ = QC(X)

and hence recover from (#) the result (¥) of Adams.

Iterated loop spaces and the problem of iterating the cobar construction lead
to the theory of operads in which there has been much recent interest [16, 17,
18, 19. 20]. The twisted cobar construction therefore yields a new problem of
iteration corresponding to the sequence of simply-connected spaces

1X], QX! QQ1x),. ..

with ﬁ(}"} = Q¥. For this an extension of the structure of the twisted coalgebra
C(X) 13 needed to allow iteration of the twisted cobar construction.



The proof of the main theorem relies on the geometric cobar construction
introduced in {2] and the computation of its crossed chain complex. The theory
of crossed chain complexes goes back to Whitehead [23] and has been developed
in, for example, [5, L1, 13]. Here we also need the associated theory of crossed
chain algebras (8, 22]; first examples of such algebras were studied in [5, 6, 7,
10, 21].

1 The twisted cobar construction

Algebras, coalgebras and twisted coalgebras

We begin by recalling some elementary definitions, and introduce the notion
of a twisted differential coalgebra.

A (graded) module M = (M, R) is a family of R-modules Af;, i € Z, for R
a commutative ring with unit 1 = lg. For z € M; we write |z| = 7, and we
denote the action of @« € R on « by z® or zo. A module is termed positive if
M; =0fori < 0. For n € Z a map of degree n of modules (f,g) : (M,R) =
(M’,R') is a family of group homomeorphisms f; : M; — M[,, together with
a ring homomorphism ¢ : R — R’ satisfying f;(z*) = (fiz)9* for o € R,
x € M;, i € Z. We have a suspension functor s on the category of modules,
with (s )n41 = A, and natural isomorphisms s® : M — s M of degree n for
neEZ.

A chain compler is an R-module Af together with a differential d : M — M
of degree —1 satisfying dd = 0. A chain map is a map of degree 0 which
commutes with the differentials. The homology of a chain complex M is the
graded module HAf with (HM), = Ha(M) = kerd,/Imd,41. The tensor
product of R-chain complexes is given by the tensor product of modules, with
(M@M"), = @iﬂ.:" M;®r ;. and the differential

dg{z®y) = (d®! + 1@d)(z@y) = d1:®y+(—1)|rl;n®dy

An R-chain algebra (or a differential algebra over R) consists of a positive
chain complex 4 over R together with R-chain maps

R— = A, AQA —— 4

with R concentrated in dimension zero. which yield an associative multiplication
r-y=p{z®y) for x, y € A with neutral eleinent * = p(1). Morphismns of chain
algebras are chain maps which respect the multiplications and the units. We
write Alg for the category of chain algebras. An R-chain algebra A is augmented
if a chain algebra morphism ¢ : A — R is given with en = |; morphisms of
augmented chain algebras must respect the augmentations.



An R-coalgebra consists of a positive R-module C together with maps of
degree zero

C —— R, c 2> cec

where A is coassociative and ¢ is a counit for the comultiplication A. Morphisms
of coalgebras are maps of degree 0 which respect the comultiplications and
counits. A coalgebra C' is ¢ugmented if a morphism of coalgebras n: R = C' is
given with enp = 1. -

For €' an augmented coalgebra, let C' be the quotient C/n{R), so that we
have C= R & C as modules. Let A be the map

. &
C—=CoC

tnduced by A.

Definition 1.1 A twisted coalgebra over K is an augmented R-coalgebra C
together with R-module maps

d.C—>(C  of degree —1
§.C—> R  of degree —2
such that 49 = 0 and

Adz) = (1@ +001)Ax (x

)
ddz = (16 —d@l)Hz (%)

Note that in {1.1)(x#%) we nse CoOrR = C = ROrC. Let 60&13 be the
category of twisted coaigebras, with morphisms (f,¢) : (C, R) = (C', R') given
by morphisms of augmented coalgebras which commute with  and with 4.

Remark 1.2 The map é on C> is to be thought of as giving the twisted struc-
ture; if § = 0 definition 1.1 reduces to the usual definition of an augmented
differential coalgebra.

Definition 1.3 Suppose 2 is augmented by a ring homomorphisme : R = Z.
Then we say that C is an e-twisted coalgebra if €6 = 0. In this case we get a
projection

(p.e)

(C.R) (CQRZ,Z)

where C®pZ is a differential coalgebra with augmentation Z - CQ®gZ, n —
12n.



The twisted cobar construction
Let M be an R-module and let
MO = MOM®...QM

be the n-fold tensor product of A/ over R. Then the tensor algebra
T(M) = uen
n>0

is the sum of all the graded R-modules A/®". The algebra multiplication and
unit are given by the canonical isomorphisms

MOPQMOM = NOntm) ong R o= N0

respectively.
We say that a chain algebra A is free if forgetting the differentials there is
an isomorphism A = T{M) of algebras for some M. In this case we write 1",
n > 0, for the inclusion of M®" in A. The differential on A is determined by
its restriction to A
dil : M — 4

Definition 1.4 Given a twisted R-coalgebra C we define the fwisted cobar con-
struction

QC = (T(s7'C),dq)

to be the free R-chain algebra generated by the desuspension s~1C with the
differential given by

dat! = s —ils7l9s + z?(s'l®s“)ﬂs
This will give a functor
~ a -~
Coalg — Alg

which reduces to the classical cobar construction of Adams [1] in the case § = 0.
Moreover the chain algebra QC is augmented by the projection QC — R if and
only if é = 0.

Lemma 1.5 QC is a well defined R-chain algebra.

Proof: Let
d = das7" 5———»7’(3-16') (1)
d = §—s57'0+ (s"'@s~HA (2)



We have to show dad = 0. We have

dod = dod —dgs™'8 + da(s™'®@s~)A (3)
where dnd = 0 since dq:® = 0. Hence we get

dod = —do+ (d®s 1A - (s~ @d)A (4)
with

—dd = ~60+ 57100~ (s7'@s™)AS (5)

where d0 = (. Moreover

(des~ YA = (b@s HA - (s~ 'os~ A (6)
+ ((s7'esThHAesTHA (7)
—(sTIRAA = - (s7'@)A + (s~ l@sT o)A (8)
- (5“19(5_1®s‘1)5)5 (9)

Here we have {7) = (s~'®s™!®s~1)(AD1)A and (9) = —(s~'®s~1@s ) (1QA)A
so that {7) and (9) cancel by the coassociativity of &.
Moreover we have

sTLO0 + (605 HA — (sT'@)A
= s-l(aa+(d®1)fi_(1®a)£) = 0
and
—(s7'®s A - (71 d0s A + (5T @sT ) A
- (5-1®s—1)(—Aa+(a®1)5+(1®a)ﬁ) = 0

This completes the proof. O

Lemma 1.6 [f C is an g-twisted coalgebra over R then there is a natural iso-
morphism of augmented chain algebras over Z

(QCIORZ = Q(CORZ)
where the right hand side is the classical cobar construction.

Proof: e have (MQMYOrZ = (MOgZ)Qg (M @rZ) for R-modules M,
M’ and so

ACorz = D(s7'C)®" 22 = Pis™'CorZ)?
n20 n20



Since s~ CQaZ = s'l(m) we have the result at the level of free algebras.
Also é®pZ = 0, so under these isomorphisms we have

dat'@rZ = —s~'(0QrZ)s+ (s7'@s™)(A®RZ)s

and the lemma is proved. O

The twisted chain coalgebra

Let A be the simpticial category, with objects the ordered sets n = {0, 1,...,n}
and morphisms the monotonic increasing functions. A simplicial set X is a con-
travariant functor from A to the category of sets; equivalently it is a family of
sets (Xp)n>o with degeneracy and face maps

*; . - d;
.Yn —‘,'-Xn-}-l .Xn ‘_”/Yn_[

for 0 < i < n, satisfying the usual relations. Simplices in the image of some
s; are termed degenerate. For an n-simplex ¢ € X, and a monotonic function
a:m — n we also write o(ag .. .ay) forae € Xy, and ¢(0...i...n) for die. If
X is a simplicial set, then the Z-chain complex C(.Y) is defined as follows. Let
F be the chain complex with £, the free abelian group on X,, and differential
do =3 7(—1)'d;o. Let D be the subchain complex generated by the degenerate
simplices. Then C(.X) is the quotient F/D. The homology H(X) of X is given
by the homology of the chain complex C'(.X).

Let G be a group with unit lg, and /G its augmentation module given by
the kernel of the ring homomorphism ZG — Z, 3 nig; — > n;. Then IG is a
right ZG-module which is generated as an abelian group by g — g, lg #9 € G.

Suppose H is an abelian group and é : G = H is a group homomorphism.
Then the derived module Dy of é is the Z H-module

D¢, = I D0y Xt zH

where G acts on the left on ZH via ¢. The function hy : G = Dy, & —
(z — lg)®1y, is the universal ¢-derivation; it satisfies

holan) = hol2)?) + hy(y)

and any other function /i from (7 to a Z H{-module ¥V with such a property factors
as h = fhy for a unique Z {-homomorphism f: Dy — V.

Definition 1.7 Suppose X 1s a l-reduced simplicial set, that is, Xo = X} =
{+}, and let R be the commutative ring given by the group ring Z[H2X]. Let ¢
be the quotient map

(X2) —=» Co X — HaX



from the free group {X2) on X3, with the universal ¢-derivation

(1‘:3) l!'- Dé

Let Dy’ C Dy be the submodule generated by the image h4(sp#) of the degen-
erate 2-simplex. We define the twisted chain H-coalgebra C(X) associated to X
by

Co(X) = R

CiX) = 0

CalX) = Dy/Dy'

Ca(X) = Cp(X)®zR forn>3

For each i > 0 we have functions
X —=Ci(x)

which are defined for o; € X; by op— 1, 0, = 0, 02 = hyoa and o, = 0,31
for n > 3. We will identify non-degenerate simplices of .X' with their images in
C(X) and degenerate simplices with 0. The coaugmentation and counit 7, ¢ are

given by R = Cp(N'} and the comultiplication

is the Alexander-Whitney diagonal

Alzy = 1@z +z@] forfz| <2
ZU(U...E)@J(?’...R) force Xp, n>3

=0

>
3
I

Moreover, let
Ca(X) ——R

be the Z[H2X]-homomorphisin defined by dhg(z) = gz — 1y, x for z € (X3),
and let

o~

Cn(-\—) '_8—,- al’l-—l("\’)

be defined on generators ¢ € X, n > 3, by

r

do = Z(—1)f((tfa)=f<°>

=0

where z(0) € HaXN iso(a(i— 1.7/ i+ 1)) for t <7< n—1and trivial fori = 0, n.



This will give a functor
¢ A
sSet; —— Coalg

where sSet; is the category of l-reduced simplicial sets. Note that 6’(X) is an e-
twisted coalgebra for ¢ : Z[H2X] — Z the usual augmentation homomorphism,
and that cokerd = Z.

Lemma 1.8 For o € X3 we have
do = Il¢(—(130—d10'+d36+d00')

Proof: Let w = —dgo — d\¢ + de20 + doo € (X2). Then by the derivation
property we may expand hg(w) as

— hy{d3o)? ) — hy(dy o)D) 4 Ry (dya)#99) by (doo)
But w is a boundary in C2.X and hence trivial in H2X, so we have
ho(w) = hy(doe) = ho(dio) ) 4 hy(dao)®3() — hy(dzo)

Since we identify simplices in .V'» with their images under hy, this agrees with
the formula for do in the definition. O

Lemma 1.9 6‘(‘\') is a well defined twisted coalgebra over Z[H,X].

Proof: The Alexander-Whitnev map defines a coassociative comultiplication.
To show (1.1)(#) is straightforward in dimensions < 4 since all terms vanish.
For ¢ € X, n > 5. we have

(1@)Ac = (1600)>_a(0...))@s(j...n) =
=0
n—1 n
o0, e | Y (-0l i)} (10)
=0 i=j

—_—
—
—

n

Pelde = () o(0...J)@o(j...n) =

J=0



where 7J(i} = ¢o(i— 1,4, i+ 1) for i & {p, ¢}, trivial otherwise. Since the terms
for i = j = k in (10) cancel with those for i = j = &+ 1 in (11), we can write

(10) + (11) as

n i—1 n e
SN 00 el T )+ Zo(o...?...j)cao(j...n))

i=0 ji=0 j=itl

= A (i(—l)‘(dgcr):'("))

i=0

]
[>
Q
q

as required. We get dd = 0 since for ¢ € X3 we have by lemma 1.8
ddoc = bhy( - dso — dyo + dyo + dgo)
= ¢(-dao—dyo+dioc+dyo) = lpg,x = 0

since —d3o — d10 + doo + doo 1s a boundary in C».X and so is mapped to the
trivial element in homology. It remains to check (1.1)(*%). This is trivial in
dimensions < 3. For o € X,,, n > 4 we have

dbe = aZ(—l)ia(O,..?...rx);"’

i=0
noi—1

= S S (=)0, ] 0. n)ldiodte
i=0 j=0
n n (

+ ( ]_ ‘+J"1 “'?"'?"-n):j-l dio)+zio
%%

Now for i — j > 2 we have z;(dje) + zjo = zi_1(djo) + z;0. This also holds
fori—j=1,2<1i < n—1.since then their difference is the boundary of
o(i—2,i—1,i,i+ 1) in C2(\) and so is zero in homology. Thus all the terms
in 80 cancel except
—a(2...n)" —a(0...n=2)+0a(2...n)+a{0...n—2)7
= o(0...n—2)hel=EAmln) _ () p = )fRan(002)

But this is just (1@ — §@1)Ac. O
Lemma 1.10 There is a natural isomorphism of augmented differential coalge-
bras

C(XN)®gumnZ = C(X)

where the right hand side is the Z-chain compler on X with the Alexander-
Whitney diagonal.



Proof: Let F be the free group (Xs—spx) and note that ag(X) may be
regarded as the derived module of the map

P2 HoX

Thus we have &(X)@z[g,x]z = JF®zrZ. But this is the dertved module of
the homomorphism F — | and so is just the abelianisation F2® = Cy(X). We
in fact have C;(N)@zu,xZ = Ci(X) for all 7, and the composite

~ —~

Xi — Ci(X) — CilX)®zm.xZ = Ci(X)

is the inclusion of simplices as generators of the chain complex, mapping de-
generate simplices to zero. The formule for A®z(y,x)Z and 0Qz(x,x1Z in

6’,-(‘\')®z[”,)g]Z are then precisely the classical formule for A and 9 in C(X).
O

Proposition 1.11 For X «a l-reduced simplicial set, there is a natural isomor-
phism of augmented Z-chain algebras

QC(\)®zxiZ = QC(X)

Proof: Lemmas 1.6 and 1.10. O

The main theorem

In the above we introduced the wwisted cobar construction, giving a chain
algebra QC' from a twisted coalgebra C, and we have examples of twisted coal-
gebras C(X) arising from 1-reduced simplicial sets X. Let |.X| be the realisation
of X. We now state the connection between the construction QC’(X) and the
singular chain complex CQ].X]| on the universal cover Q| X/ of the loop space of
|.X}. In fact these constructions yield functors:

———

Coonl |

sSetl ng

Theorem 1.12 For L-reduced simplicial sets X there is a natural homology
aquivalence in Alg

QG(X) ~ CAIX]
Here natural homology equivalence of functors F, G : sSety — ng is the equiv-

alence relation generated by the relation that /7 ~ G if there is a natural trans-
formation F —=  in Alg which induces homology isomorphisms.

10



The functor C'ﬁrl above is obtained by composing the following functors

~

0 | u o] C -~
sSet) —— Mony Mon Alg

Let Mong be the category of path-connected topological monoids M which
admit a universal covering M. Then | | carries a 1-reduced simplicial set X to
the space of Moore loops on |.X| with the monoid structure given by composition
of loops.

A twisted monoid (M, G) is a path-connected topological monoid (37, -} to-
gether with an abelian group G such that Af is also a G-space with

&P = (;1:~y)“‘3

for z,y € M, o, 8 € G, where z® denotes the action of @ on z. Morphisms
(f,8) : {(M,G) = (M’ G’} consist of group homomorphisms ¢ : G = G’ and
#-equivariant topological monoid maps f : M — M'. We write Mon for the
category of twisted monoids. =

We define the functor u by (M) = (M, m Af). For this choose a basepoint
* € A covering ly;. Then A is a monoid with Lo == and multiplication

— e ——— m ——
Mx M2 MxM——M
where m : M x M — A 1s the multiplication on Af. Note that the map

TF[J\'[ X Tl'l.'\‘[ = Trl(ﬂ"f x J\'[) ——M(L Tl'l.'\'[

is the group law of the abelian group 7 M and therefore (ﬁ, m M) is a twisted
monoid.

Given a twisted monoid (Af. () let C(A) be the singular chain complex of
M and let R = ZG be the group ring of the abelian group G. The action of G
on A gives an action of 7 on C{M)}. A unit * € Co(M) is given by lys. The
Z-bilinear map

c
C(M)@zC (M) — C(M x M) 24 c(ar)
induces an A-bilinear mulliplication

C(AMYQRC (M) — C(M)

fa3

since 29 -y = {2 y)* = = y* In M. Hence we can define the functor C above



2 The crossed cobar construction

Simplicial strings and interval categories

We start by describing the category QA of simplicial strings, and the associ-
ated monoidal functors Q.X, L, first introduced in [2). We introduce the notion
of a category with an interval object; any such category serves as the target for
L.

Let A, C A be the subcategory of the simplicial category A containing only
those morphisms @ : n = m with «(0) = 0 and a(n) = m. Recall that A, is
generated by the maps

siin+l—=n (0<i<n), di:n—=nt+l (1<i<n)

which repeat and omit the value 7 respectively.

Next consider the category {0, 1}/Set of double-pointed sets (A4, ag,a;) and
functions preserving the basepoints. e can regard A, as a subcategory of
{0, 1}/Set with objects {n] = {n,0,n). Note that {0,1}/Set has a monoidal
structure given by

(A, a0,a1)0(B. bo,by) = (-‘ﬂ,ao,bl)
al~b0

and unit element * = [0].

Definition 2.1 The category of simplicial strings QA is the monoidal subcat-
egory of {0,1}/Set generated by A, and the functions

[7]3[m] Bl [n+m]

defined by i~ i on [n] and i — n + { on {m].

Let (C,®) be a monoidal category. Using the above presentation of A, we
see that to define a monoidal functor C : A — C it is necessary and sufficient
to give the following data in C: :

1. objects C,, for n > 1, with Cy = x,
2. morphisms s; : Cyqy = €, for 0 <0 <,
3. morphisms d; : C,, = Cpyq for 1 < i < n,

4, morphisms vy, m : Ch @ Cim = Cugm forn.m > 0, with vo n = vn 0 = le.,



such that the following relations hold

$j8i =  §iSj41 fori <j
djd{ d,‘dj_l fori < j

(I;Sj_l fori < j
sjd; = id fori=jori=j+1
dg_lsj fori>j

_ { Un—l,m(si®l) fori<n

i Un.m-1{1@si-n) fori>n

div _ Unt1m(di®l)  fori<n

e Unm+1(l@di—p) fori>n
'Un,nt-}-l(l@l)m,l) = Un+m,l(’vn,m®l)

To define a contravariant monoidal functor on 2A the data and relations
needed are dual to these.

Definition 2.2 Let Set be the category of sets with the cartesian monoidal
structure. Then given a 0-reduced simplicial set X, Xo = {#}, the monoidal
functor )

(QA)P 22X, gt

is defined on the generating objects of QA by (2.X), = X, and on the generating
morphisms s;, di, vy m by

$i: Xy — .-\_.14,1,
di : A\-n-l—l —+ X,
baon = (A, do™) : Nngm = Xn % X

respectively: cf. [.2.12 of [2].
We may also write vy, (o) as (o(0,...,n),0(n,...,n+m)) for ¢ € Xnim.

A map N — N’ of O-reduced simplicial sets induces a natural transformation
QX — QX of monoidal functors in the obvious way.

Definition 2.3 An interval object in a monoidal category (C,®) is an object
T of C together with morphisms d* : « 5 Z, e: T a5 xandm :IQZI = T
satisfving the following relations:

L m{l@d=)Y=m(d~ Q1) =1
2. m(1odt) = m{dt@1) = d*e
3.om(1©Qm) = m{(mel)



An interval category is a monoidal category with a specified interval object.
Two examples of interval categories are the following:

1. Let C be the category FTop of filtered spaces X' = (Xp € X3 C Xy C
. }. The tensor product is the product with the compactly generated
topology and the filtration (X®Y)n = |J;4;=, -Xi x ¥;. Then C has an
interval object Z with Zp = {0, 1} and Z,, the unit interval [0, 1] for n > 1.
The maps d~ and d* take » to 0 and 1 respectively, e is the identification
to a single point, and m is the maximum function (t;,12) — max(t,12).
Then, for example, the relation m(dt®1) = d*e becomes max(1,t) = L.
Note that the n-cube Z®" has a natural CW-complex structure, such that
the filtration agrees with the skeletal filtration.

2. Let C be the cartesian monoidal category sSet of simplicial sets. This
has an interval object given by the standard l-simplex A[l]. Regarding
elements of A[l], as monotonic functions a : z — 1, the multiplication m
is given by m{a.b}{(i) = max(a(?), b(i)). The maps d~, d*, e are defined
from dy, dy, so respectively.

On the n-cubes 79" in any interval category we have coface maps

d*
IOn —— T@(n+1)

given by II@(.-n@di@.lI@(.._.“; for | <7< n+ 1, and codegeneracy maps
on UL T&(n-1)

given by lrei-u@m®lem--1 for 1 <i<n~1, or by e@liain-1, lzam-nQe
for: =0, n.

Definition 2.4 The standard simplicial string model functor in an interval cat-
egory C is the monoidal functor L : QA — C given on the generating objects
by L, =Z%®=1) and on the generating morphisms s;, di, vq m by

my P IO o 70n=1)
dr s T@(n-1) _, 70n
rlz' cTon-NgTeim=1) 4 TO(m+n=1)

respectively.!

Y There is a misprint in the definition of L on p.9 of [2]; either a; needs to be changed to
reverse the roles of d¥ and d—, or § should be ‘min’ rather than ‘max’.



Coends and the geometric cobar construction

Suppose C is an arbitrary cocomplete category, D a small category, and F
a functor D°P x D — C. Then the coend of F over D, written fd F(d,d), is
given by the equaliser in C of the morphisms:

[I Flded) =——= ][] F(d.d
f € D{dy, ds} ’ d € Ob(D)

which are given componentwise on the coproduct by
aiy = g, F(da, f) and biy = ig, F(f,dy)

In suitable categories C we can define coends more explicitly in terms of
elements and relations. Let A be the Ob(D)-indexed coproduct of the objects
F(d,d)in C. Then fd F(d,d) is the quotient object of A given by imposing the
relations F{dy, f)(2) ~ F(f,da2){z) foreach f :d2 = dy in D and z in F(d,, ds).

Suppose now that C, D are monoidal categories and F is a monoidal functor.
Also we assume that @ preserves colimits in C; this is the case for example if C
is monoidal closed. Then the coend of F has the structure of a monoid object
in C, with identity F(#,*) = % and multiplication induced by the maps

F((l],d1)®F(dg,dg) = F(d1®dg,d1®d3)

If C is an interval category, and .Y is a O-reduced simplicial set. then we
have monoidal functors

(Qa)r X, gaq QA —£»-¢

from the previous section. Using the ‘copower’ functor Set x C ——= C given
by taking set-indexed coproducts in C, one obtains the monoidal functor

(QA)P x QA — XL o

Definition 2.5 The {geometric} cobar construction on a 0-reduced simplicial
set .\ is the C-monoid Q(\) given by the coend of QX - L over QA.

A
2c() = [ @) L()
This yields the functor

Q

sSety C-Monoids

where sSetq is the category of O-reduced simplicial sets.
Since we have a nice presentation for QA we can give a more explicit de-
scription of the cobar construction than the coend definition above.
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Proposition 2.6 The cobar construction X on a simplicial set X, Xo = *,
is given by a coproduct in C indezed by words in X3,

H H I@("1—1)®...®I®(ﬂr-1)

r>0 (I],A..,.L";-)
which has ‘generating’ elements
(21, o2ei )

fory e I®Mm—-Ng ... @I®M—1) y e X, np > 1, k=1,...,r, quotiented by
the relations

(T, Tty Sithy Zhg s B3 )~ (25)]; (Lek®@mui@151 ) (y))
(41-‘11~-séf"k—l,di‘d-‘k,xk+1.---,-l'riy) ~ ((Ij)'{§(1<k®dg_®1>k)(y))
(21, o hog, A e Ay, Zegr, v y) ~ (25)] (Lex®@dF @15k) (3))

where 1¢y is the identity map on I®%i<x(?i=1) and 1., similarly. Note that
i # 0, ng in the second relation.

The monoid structure on QX is given by the unit { ;%) and the multipli-
cation

(wyi,...,w;¥)@(z1,.. . 202) = (wr,. .., W, Ty,..., 20, YyR2).

The importance of the geometric cobar construction is that it provides a
model for the loop space on the realisation of a simplicial set. In fact from [2]
we have the following result (compare also [9]):

Theorem 2.7 For |-reduced simplicial sets X there is a natural homotopy
equivalence of path-connected topological monoids

QppopY = QIX]

Also QFTopX has o natural CW.compler structure and its filtration in FTop
cotncides with the skeletal filtration.

Here natural homotopy equivalence of functors F, 7 : sSet; — Mong 18 the
equivalence relation generated by the relation that F ~ G if there is a natural
transformation £ = ¢ in Mong which for each object is a homotopy equivalence
in the category of pointed topological spaces.

The crossed cobar construction

Let C be the monoidal closed category Crs of crossed complexes (see for
example {11, 13]}). The tensor product C®LD of crossed complexes is defined
in terms of generators ¢c®c¢’ € (COD)uym for ¢ € Cn, ¢ € Dy, Logether with
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certain relations which may be found in [13]. A monoid object C in Crs is
termed a crossed algebra, or a crossed chain algebra if Cy = {x}.

An interval object Z in Crs is given by the crossed complex on generators
0,1 € Zy, ¢ €Iy, with se = 0, ¢ = 1. The maps d~,d* : x — I are given by
* = 0, *x — | respectively, e : T — * is the unique map to the terminal object
and the map m : Z®T — T is given on the standard generators by

0 ifa=b=0
a@br— ¢ ¢ if {a,b} = {0,:}
1 otherwise.

Alternatively this may be obtained by applying the fundamental crossed com-
plex functor 7 : FTop — Crs to the interval object structure in FTop defined
ahove.

If (5" is the n-dimensional generator of Z®" then from the tensor product
relations we can obtain

s(¢) = 0

e = 1
B(:%") = 19" forn>1
§(:97) = - 1@ — @0+ 0®:c + 1§l
32 = —.o®] — 10019 %! — 1@

+:@2:20'1®1® L @10 4+ 0L ®18!

n

560 = Y= (00 = (42T forn 2 4

i=1

where z; € (Z®0=1)) is given by (d}, )"~ =1 df )~ (w).
For A = (Ax)] an ordered subset of {1 <2< ... < n}and a € {—,+}", let
d$ be the morphism
dir . dyy 780 mr) 7 on

Then the 3" generators of Z®" may be written as d$¢®(~") for 0 < r < n, and
the relations on these generators are obtained by applying d$ to the terms in
the relations above,

By proposition 2.6, we can now give a presentation for the crossed cobar
construction Q.6 (\) on a l-reduced simplicial set X. For an z € .Y, only the
top-dimensional generator of Z8(®=1) needs to be considered since the lower-
dimensional ones can bhe obtained by applying (I?’ and so are identified with
generators coming from (products of) faces of z. Since m maps top-dimensional
generators to an identity we can also throw out degenerate simplices. The
resulting monoid € in Crs has Cy = {*} since we are treating the i-reduced
case only, and is in fact a free crossed chain algebra [22).
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Theorem 2.8 Let X be a simplicial set with Xo = X\ = {*}. For z, € X,
n >4, set zj(z,) = d’é’lrl}’;g"lxn =za{(i-11i+1)EXs for 1 <i<n-1.
Then C = Qg (X) is the crossed chain algebra with generators z, € Cy-y for
r, € Xp, n > 2, subject to the relations

zn, = * fx, is degenerate
da(z3) = —doxs—dars+diza+ dzza
(53(.'1?4) = —_ d4'£4 — ([2:174:2(“) - (101?4

+ (13;1:423(:4) + dadqz4Qdodiz4 + (1'12:421(:‘)

n—2
Snotlzn) = —doza+ Y (—1)'di 2a@dgza — (—1)"dnn

i=2
n=1 ‘

- Z(—i)’d,-a:n""(”") forn>5
i=1

together with the usual relations on tensor products of crossed complezes.

Recall {from {4, 14, 23] that there is a functor D from crossed complexes to
R-chain complexes. Given a crossed complex of groups

1]

. $ §
Cq 4 CB 3 2

Cn 1

let w1 = 7 C = cokerd» and let ¢ be the quotient map € — m, with hy :
C| = Dy the universal ¢-derivation. Then D(C) is the Zm-chain complex
; 5
Cly — Oy —= (3P

d d
2 Dd, ——lb-Z‘rrl

where dex = hgéox and dihye = oz — In,.

Lemma 2.9 D induces a functor
CrsAlg — ng
from crossed chain algebras to chain algebras

Proof: If A, B are crossed complexes, then 7 {A@2B) is mA x m B and
from [14] we know that D(A@ B) is the chain complex DA®zD B with the action
of mA x 7 B given by (x®y) @b = 29@y". A morphism

ARB ——=(

of pointed crossed complexes induces a multiplication myA x m B — mC via
a-b = mn(a®«).m(+x@bh). Moreover the Z-chain map

DARZDB =2 pC
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satisfies (Dm)(x°®@y°) = (Dm)(z®y)**. In particularif 4 = B=C and misa
monoid structure on C then Dm induces a Zr-chain algebra structure

DCRzxPC 2> DC
where m; acts on PC®z+,DC by (z®y)* = 29Qy = z®y®. O

\We can now relate the crossed and twisted cobar constructions.

Proposition 2.10 For l-reduced simplicial sets X, there is a natural isomor-
phism of ZH2X -chain algebras

DRe, ¥ = QCX

Proof: Let A. B be the chain algebras PQX, QCx respectively, and recall
that Bg = R = ZH-X and

B, = EB Ci,®aCi,®r ... QrC;,
ih+..+ir=n
where C is the derived module of ¢’ : {(X2—sg*) = Ho.X and C; = Ci+1(X; R)
for i > 2. Now (QX}, is the free group on Yo —sg*, and (2X)2 is the free
crossed (£2.Y);-module with generators o3 and o2®c% and boundary relations

(520’3 = —(l’odg*d'30'3+d10'3+d30‘3
Oa(00@04y) = —=0h—0atoh+ o
where as usual we quotient out degenerate simplices. Thus

(DX )2 —2m (X — s0#) —m Ha X — 0

is exact and we have Ag = By = R and A; = By = Dy, with dihgpr =
¢z — lg,x in A and B. In general Q.Y is generated as a crossed complex
by ¢1®...®0, in dimension )_(dimo; ~ L). Since tensor products of pointed
crossed complexes satisfy the relations

(cL+)@d; = G @dj+(c@d))
GOl +d) = (od)t+aed
(c,—+c;)®dj = @dj+e;@d; fori>2
GO +dy) = codi+a®d; forj>2
tod; = (ci@dp)® fori>2
ci ®d}t‘ = {c @flj)d' for j > 2

we obtain As = (QX)5® = C3(XN1 R) % Dyr®rDy, and similarly for n > 3 we
find that 4, = (QX), agrees with B, above. Note that for X 2-dimensional
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the result A, = D,,:e" was proved in 7). For ¢ € X34 the differentials in 4, B
agree by

dao = D (=)'e(0...)@c(i...n) =Y (—1)'dcoti-tiith)
2 0
= Aoc—9¢ = dgo
and for ¢ € X3 we have dao = hgdao which agrees with dge = -390 by

lemma 1.8. O

Proof of the main theorem

We now complete the proof of theorem 1.12, that for X a simplicial set
with Yo = X; = {} there is a natural homology equivalence between the cobar
construction QC(X) of the twisted chain coalgebra on X, and the singular chain
algebra Cﬁrﬂ of the universal cover of the loops on X. We have just seen
in 2.10 that QC is given by applying D to the crossed cobar construction Qcpg-
Also by 2.7 we know that the loop space on .Y is given up to homotopy by the
geometric cobar construction, and so there is a natural homology equivalence of

chain algebras cﬁfﬂ ~ CQFTopX‘ The main theorem thus follows from the
following:

Proposition 2.11 For l-reduced simplicial sets X, there is a natural homology
equivalence of chain alyebras

Doy X ~ CQFTop‘\-

Proof: Let ¥ be the monoid in FTop given by QFTopX' Since the fun-

damental crossed complex functor m preserves colimits and tensor products of
the spaces involved we note that Q.Y i3 just 7Y. Tt therefore remains to

show that there is a natural homology equivalence DY ~ CY. Let Y have the
filtration given by the the inverse image under the covering map of the (skeletal}
filsration on Y. Then by {23], or proposition 5.2 of [14], we can identify Dr¥
with the cellular chain complex HY given by the relative homology groups:

o~ b o~ & PO ~
s Hy(Yy. ¥a) —= Ha(¥s, 11) —> (¥}, Yo) — Ho(Yo)

Finally we note that there is a natural equivalence HY ~ C'Y given via

H?(J_C"r:ellf’— g Cﬂ?
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where CeanY is the subchain complex of the singular chain complex cY gener-
ated by all singular simplices ¢ : A” = Y which are cellular maps. The map r
carries ¢ to g.[A"] where [A™] € H,(A™, §A™) is the fundamental class. O
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