## CERTAIN GROUP-THEORETICAL APPLICATIONS OF THE HILTON-MILNOR THEOREM

ROMAN MIKHAILOV

Abstract. We consider certain group theoretical applications of the well-known Hilton-Milnor Theorem. For $n \geq 1$, let $F_{2 n}$ be a free group of rank $2 n$ with generators $\left\{x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right\}$. Consider the following normal subgroups of $F_{2 n}: R_{i}=\left\langle x_{i}, y_{i}\right\rangle^{F_{2 n}}, i=1, \ldots, n, R_{n+1}=$ $\left\langle x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right\rangle^{F_{2 n}}$. We prove the following isomorphisms of abelian groups:

$$
\begin{aligned}
& \frac{R_{1} \cap \cdots \cap R_{n+1}}{R_{1} \cap \cdots \cap R_{n+1} \cap \gamma_{n+1}\left(F_{2 n}\right)} \simeq \gamma_{n+1}\left(F_{2}\right) / \gamma_{n+2}\left(F_{2}\right), \text { for } n \neq 4 k-2 \\
& \frac{R_{1} \cap \cdots \cap R_{n+1}}{R_{1} \cap \cdots \cap R_{n+1} \cap \gamma_{n+1}\left(F_{2 n}\right)} \simeq \gamma_{n+1}\left(F_{2}\right) / \gamma_{n+2}\left(F_{2}\right) \oplus \gamma_{2 k}\left(F_{2}\right) / \gamma_{2 k+1}\left(F_{2}\right), \text { for } n=4 k-2
\end{aligned}
$$

where $\left\{\gamma_{i}\left(F_{2 n}\right)\right\}_{i \geq 1}$ is the lower central series of $F_{2 n}$. The 4-periodicity in the formulation of the above statement comes naturally from homotopy theory, namely from the description of torsion-free components of the homotopy groups of spheres.

## 1. Introduction

Given a free group $F$ and normal subgroups ( $n \geq 2$ )

$$
R_{1}, \ldots, R_{n} \unlhd F
$$

consider the quotient group

$$
I_{n}\left(F, R_{1}, \ldots, R_{n}\right)=\frac{R_{1} \cap \cdots \cap R_{n}}{\prod_{I \cup J=\{1, \ldots, n\}, I \cap J=\emptyset}\left[\bigcap_{i \in I} R_{i}, \bigcap_{j \in J} R_{j}\right]}
$$

Here $\bigcap$ denotes the intersection of subgroups in the free group $F$ and $\Pi$ is the product of commutator subgroups as indicated. Let $n \geq 1, F_{2 n}$ be a free group with basis $\left\{x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right\}$. Consider the following normal subgroups of $F_{2 n}$ :

$$
\begin{aligned}
& R_{i}=\left\langle x_{i}, y_{i}\right\rangle^{F_{2 n}}, i=1, \ldots, n \\
& R_{n+1}=\left\langle x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right\rangle^{F_{2 n}}
\end{aligned}
$$

It follows from [4] that, for $n \geq 1$, there is the following isomorphism of abelian groups:

$$
\begin{equation*}
\pi_{n+1}\left(S^{2} \vee S^{2}\right) \simeq I_{n+1}\left(F_{2 n}, R_{1}, \ldots, R_{n+1}\right) \tag{1.1}
\end{equation*}
$$

where $S^{2} \vee S^{2}$ is the wedge of two 2-spheres. From the other hand, the Hilton-Milnor Theorem (see [3]) implies the following isomorphism:

$$
\begin{equation*}
\pi_{n+1}\left(S^{2} \vee S^{2}\right) \simeq \bigoplus_{i=2}^{n+1} \pi_{n+1}\left(S^{i}\right)^{\oplus \tau(i-1)} \tag{1.2}
\end{equation*}
$$

where

$$
\tau(i)=\frac{1}{i} \sum_{\substack{d \mid i \\ 1}} \mu(d) 2^{i / d}
$$

(the number of basic commutators of the fixed length in the free (super) Lie ring) $\mu(d)$ being the Möbius function. For example, the first nontrivial homotopy groups of $S^{2} \vee S^{2}$ are:

$$
\begin{aligned}
& \pi_{2}\left(S^{2} \vee S^{2}\right) \simeq \pi_{2}\left(S^{2}\right)^{\oplus 2} \simeq \mathbb{Z}^{\oplus 2} \\
& \pi_{3}\left(S^{2} \vee S^{2}\right) \simeq \pi_{3}\left(S^{2}\right)^{\oplus 2} \oplus \pi_{3}\left(S^{3}\right) \simeq \mathbb{Z}^{\oplus 3} \\
& \pi_{4}\left(S^{2} \vee S^{2}\right) \simeq \pi_{4}\left(S^{2}\right)^{\oplus 2} \oplus \pi_{4}\left(S^{3}\right) \oplus \pi_{4}\left(S^{4}\right)^{\oplus 2} \simeq \mathbb{Z}_{2}^{\oplus 3} \oplus \mathbb{Z}^{\oplus 2}
\end{aligned}
$$

The following problem rises naturally: for every $i=2, \ldots, n+1$, identify the summand $\pi_{n+1}\left(S^{i}\right)^{\oplus \tau(i)}$ as a subgroup of $I_{n+1}\left(F_{2 n}, R_{1}, \ldots, R_{n+1}\right)$. As a contribution to this problem, we analyze here the torsion-free part of the homotopy group $\pi_{n+1}\left(S^{2} \vee S^{2}\right)$ as a summand of $I_{n+1}\left(F_{2 n}, R_{1}, \ldots, R_{n+1}\right)$. As a natural group-theoretical application of this analysis, we have the following

Theorem 1. There is a natural isomorphism of abelian groups

$$
\begin{aligned}
& \frac{R_{1} \cap \cdots \cap R_{n+1}}{R_{1} \cap \cdots \cap R_{n+1} \cap \gamma_{n+1}\left(F_{2 n}\right)} \simeq \gamma_{n+1}\left(F_{2}\right) / \gamma_{n+2}\left(F_{2}\right), \text { for } n \neq 4 k-2, \\
& \frac{R_{1} \cap \cdots \cap R_{n+1}}{R_{1} \cap \cdots \cap R_{n+1} \cap \gamma_{n+1}\left(F_{2 n}\right)} \simeq \gamma_{n+1}\left(F_{2}\right) / \gamma_{n+2}\left(F_{2}\right) \oplus \gamma_{2 k}\left(F_{2}\right) / \gamma_{2 k+1}\left(F_{2}\right), \text { for } n=4 k-2,
\end{aligned}
$$

where $\left\{\gamma_{i}\left(F_{2 n}\right)\right\}_{i \geq 1}$ is the lower central series of $F_{2 n}$.
The abelian groups in Theorem 1 are exactly the torsion-free parts of the homotopy groups $\pi_{n+1}\left(S^{2} \vee S^{2}\right)$. The 4-periodicity from Theorem 1 is not very clear from the group-theoretical point of view, however comes naturally from the point of view of homotopy theory.

## 2. Simplicial groups and Hilton-Milnor Theorem

2.1. Milnor's construction. Recall that, for a given pointed simplicial set $K$, the $F[K]$ construction is the simplicial group with $F[K]_{n}=F\left(K_{n} \backslash *\right)$, where $F(-)$ is the free group functor. Then there is a weak homotopy equivalence

$$
|F[K]| \simeq \Omega \Sigma|K|
$$

For the $n$-sphere, the simplicial group $F\left[S^{n}\right]$ can be defined as a certain simplicial group with $F\left[S^{n}\right]_{k}=\{1\}, k \leq n-1$ and $F\left[S^{n}\right]_{n+k}$ is a free group of $\operatorname{rank}\binom{n+k}{k}$ for $k \geq 0$. Furthermore, it is shown in [5] that for every simplicial group $G$ with $G_{k}=\{1\}, k \leq n-1$ and $G_{n+k}$ a free group of rank $\binom{m+k}{k}, k \geq 0$, there is a simplicial monomorphism $F\left[S^{n}\right] \rightarrow G$, which induces the homotopy equivalence and an isomorphism of their nilpotent completions. We will use the standard notation $K(\mathbb{Z} \oplus \mathbb{Z}, 1)$ for the abelianization of $F\left[S^{1} \vee S^{1}\right]$.

The following result due to Curtis (see [1]) is the main ingredient in the proof of Theorem 1:
Theorem 2. Let $F$ be a connected simplicial group or Lie algebra (over $\mathbb{Z}$ ) then $\gamma_{r}(F)$ is $\log _{2} r$-connected.
2.2. Samuelson product. The Whitehead product can be described with the help of simplicial language. Let $G$ be a simplicial group.

For $p, q \geq 1$, let

$$
(a ; b)=\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q}\right)
$$

be a permutation of $(0, \ldots, p+q-1)$, such that $a_{1}<\cdots<a_{p}, b_{1}<\cdots<b_{q}$. We will refer to such $(a ; b)$ as a $(p ; q)$-shuffle. Denote by $\operatorname{sign}(a ; b)$ the sign of the permutation $(a ; b)$.

For $x \in G_{p}, y \in G_{q}$ define the bracket

$$
\begin{equation*}
\langle x, y\rangle:=\prod_{(a ; b)}\left[s_{b} x, s_{a} y\right]^{\operatorname{sign}(a ; b)} \tag{2.1}
\end{equation*}
$$

where the product is taken over the set of all $(p, q)$-shuffles $(a ; b)$ and

$$
s_{b}=s_{b_{q}} \ldots s_{b_{1}}, \quad s_{a}=s_{a_{p}} \ldots s_{a_{1}}
$$

It is easy to show (see, for example, [1]), that the definition of the bracket $\langle$,$\rangle can be extended$ to the homotopy classes of $G$, i.e. the product 2.1 induces the product

$$
\langle x, y\rangle \in \pi_{p+q}(G), x \in \pi_{p}(G), y \in \pi_{q}(G)
$$

called the Samuelson product in $G$. Now, for a given topological space (simplicial set) $X$, the Whitehead product

$$
[u, v] \in \pi_{p+q+1}(X), u \in \pi_{p+1}(X), v \in \pi_{q+1}(X)
$$

can be defined as

$$
[u, v]=(-1)^{p} \partial^{-1}\langle\partial u, \partial v\rangle
$$

where $\partial: \pi_{*}(X) \rightarrow \pi_{*}(G X)$ and $G X$ is the Kan's loop construction of $X$.
For every $i=2, \ldots, n+1$, we have $\tau(i)$ maps

$$
c_{j}: \Omega \Sigma\left(S^{1} \wedge \cdots \wedge S^{1}\right) \rightarrow \Omega \Sigma\left(S^{1} \vee S^{1}\right), j=1, \ldots, \tau(i)
$$

indexed by basic commutators of weight $i$ in two variables. Hilton-Milnor Theorem implies that for every such map and $k \geq 2$, the induced homomorphism

$$
c_{j}^{*}: \pi_{k}\left(\Omega \Sigma\left(S^{1} \wedge \cdots \wedge S^{1}\right)\right)=\pi_{k+1}\left(S^{i}\right) \rightarrow \pi_{k}\left(\Omega \Sigma\left(S^{1} \vee S^{1}\right)\right)=\pi_{k+1}\left(S^{2} \vee S^{2}\right)
$$

is a splitting monomorphism. Furthermore, all the homotopy classes of $\pi_{*}\left(S^{2} \vee S^{2}\right)$ consist of the images of such maps. The maps $c_{j}$ can be written simplicialy with the help of the Milnor $F[K]$-construction. The maps $c_{j}$ can be written as certain simplicial maps

$$
c_{j}: F\left[S^{i-1}\right] \rightarrow F\left[S^{1} \vee S^{1}\right]
$$

which induce monomorphisms of the homotopy groups. For the analog of Hilton-Milnor Theorem for simplicial algebras see [2].

## 3. Proof of Theorem 1

For a finitely generated abelian group $A$, let $\operatorname{TF}(A)$ be the torson-free subgroup of $A$. We will use the notation $\mathcal{L}^{n}$ and $T^{n}(A)$ for the $n$-th Lie functor and the $n$-th tensor power respectively. Since for every abelian group $A$, the composition

$$
\mathcal{L}^{n}(A) \rightarrow T^{n}(A) \rightarrow \mathcal{L}^{n}(A)
$$

is the same as $n$-multiplication, and $T^{n} K(\mathbb{Z} \oplus \mathbb{Z}, 1)$ is $K\left((\mathbb{Z} \oplus \mathbb{Z})^{\otimes n}\right.$, $\left.n\right)$, we conclude that the group

$$
\pi_{n} \mathcal{L}^{s} K(\mathbb{Z} \oplus \mathbb{Z}, 1) \otimes \mathbb{Q}=0, s>n
$$

Since

$$
\begin{equation*}
R_{1} \cap \cdots \cap R_{n} \subseteq \gamma_{n}\left(F_{2 n}\right) \tag{3.1}
\end{equation*}
$$

we have

$$
\pi_{n} \mathcal{L}^{s} K(\mathbb{Z} \oplus \mathbb{Z}, 1)=0, s<n
$$

Now Theorem 2 implies that

$$
\begin{equation*}
\operatorname{TF}\left(\pi_{n+1}\left(S^{2} \vee S^{2}\right)\right)=\operatorname{TF}\left(\pi_{n} K(\mathbb{Z} \oplus \mathbb{Z}, 1)\right)=\operatorname{TF}\left(\pi_{n} \mathcal{L}^{n} K(\mathbb{Z} \oplus \mathbb{Z}, 1)\right) \tag{3.2}
\end{equation*}
$$

We know from the well-known Theorem due to Serre that $\operatorname{TF}\left(\pi_{k}\left(S^{l}\right)\right)=\mathbb{Z}$ if $k=l$ or $l=$ $2 s, k=4 s-1, s \geq 1$ and $\operatorname{TF}\left(\pi_{k}\left(S^{l}\right)\right)=0$ otherwise. Therefore, the isomorphism (1.2) implies the following isomorphism of abelian groups

$$
\operatorname{TF}\left(\pi_{n+1}\left(S^{2} \vee S^{2}\right)\right)=\left\{\begin{array}{l}
\pi_{n+1}\left(S^{n+1}\right)^{\oplus \tau(n+1)} \oplus \mathrm{TF}\left(\left(\pi_{n+1}\left(S^{2 s}\right)^{\oplus \tau(2 s)}\right) \simeq \mathbb{Z}^{\oplus(\tau(n+1)+\tau(2 s))}\right. \\
\text { if } n=4 s-2, s \geq 1 \\
\pi_{n+1}\left(S^{n+1}\right)^{\oplus \tau(n+1)} \simeq \mathbb{Z}^{\oplus \tau(n+1)} \text { otherwise. }
\end{array}\right.
$$

Since $\prod_{I \cup J=\{1, \ldots, n+1\}, I \cap J=\emptyset}\left[\bigcap_{i \in I} R_{i}, \bigcap_{j \in J} R_{j}\right] \subseteq \gamma_{n+1}\left(F_{2 n}\right)$, we have the following isomorphism

$$
\begin{equation*}
\pi_{n} \mathcal{L}^{n} L(\mathbb{Z} \oplus \mathbb{Z}, 1) \simeq \frac{R_{1} \cap \cdots \cap R_{n+1}}{R_{1} \cap \cdots \cap R_{n+1} \cap \gamma_{n+1}\left(F_{2 n}\right)} \tag{3.3}
\end{equation*}
$$

The inclusion (3.1) implies that the right-hand group in (3.3) is a subgroup in $\gamma_{n}\left(F_{2 n}\right) / \gamma_{n+1}\left(F_{2 n}\right)$ and, therefore, is torsion-free. The isomorpisms (3.3) and (3.2) imply the following isomorphism:

$$
\begin{equation*}
\operatorname{TF}\left(\pi_{n+1}\left(S^{2} \vee S^{2}\right)\right) \simeq \frac{R_{1} \cap \cdots \cap R_{n+1}}{R_{1} \cap \cdots \cap R_{n+1} \cap \gamma_{n+1}\left(F_{2 n}\right)} \tag{3.4}
\end{equation*}
$$

and the Theorem 1 is proved.
Remark. It is easy to see that the same proof works for the case of the wedge of $r 2$-spheres $\bigvee_{i=1}^{r} S^{2}, r \geq 2$. For every $n \geq 3$, we have the following isomorphisms of abelian groups:

$$
\begin{aligned}
& \operatorname{TF}\left(\pi_{n+1}\left(\bigvee_{i=1}^{r} S^{2}\right)\right) \simeq \frac{R_{1} \cap \cdots \cap R_{n+1}}{R_{1} \cap \cdots \cap R_{n+1} \cap \gamma_{n+1}\left(F_{r n}\right)} \simeq \gamma_{n}\left(F_{r}\right) / \gamma_{n+1}\left(F_{r}\right), n \neq 4 k-2, \\
& \operatorname{TF}\left(\pi_{n+1}\left(\bigvee_{i=1}^{r} S^{2}\right)\right) \simeq \frac{R_{1} \cap \cdots \cap R_{n+1}}{R_{1} \cap \cdots \cap R_{n+1} \cap \gamma_{n+1}\left(F_{r n}\right)} \simeq \\
& \gamma_{n}\left(F_{r}\right) / \gamma_{n+1}\left(F_{r}\right) \oplus \gamma_{2 k}\left(F_{r}\right) / \gamma_{2 k+1}\left(F_{r}\right), n=4 k-2,
\end{aligned}
$$

where $F_{n r}$ is a free group with generator set $\left\{x_{1}^{(1)}, \ldots, x_{1}^{(r)}, \ldots, x_{n}^{(1)}, \ldots, x_{n}^{(r)}\right\}$ with normal subgroups $R_{i}=\left\langle x_{i}^{(1)}, \ldots, x_{i}^{(r)}\right\rangle^{F_{r n}}, R_{n+1}=\left\langle x_{1}^{(1)} \ldots x_{n}^{(1)}, \ldots, x_{1}^{(r)} \ldots x_{n}^{(r)}\right\rangle^{F_{r n}}$.

Group-theoretical description of the isomorphism (3.4). The isomorphisms of abelian groups (3.4), can be defined combinatorially using the simplicial language. Define the monomorphism

$$
\begin{equation*}
\mathbb{Z}^{\oplus \tau(n)} \hookrightarrow \frac{R_{1} \cap \cdots \cap R_{n+1}}{R_{1} \cap \cdots \cap R_{n+1} \cap \gamma_{n+1}\left(F_{2 n}\right)}, n \geq 3 \tag{3.5}
\end{equation*}
$$

Let $n \geq 3$. Consider $F\left[S^{i-1}\right]$ for $i=2, \ldots, n+1$. The element $\sigma \in \pi_{n+1}\left(S^{i}\right)$ defines a certain element $e(\sigma) \in F\left[S^{i-1}\right]_{n} / \mathcal{B}_{n}\left(S^{i-1}\right)$. Consider the simplicial group $F\left[S^{1} \vee S^{1}\right]$ with $F\left[S^{1} \vee S^{1}\right]_{1}$ a free group with generators $x_{1}, x_{2}$. For $k \geq 2$, define

$$
\hat{s}_{j}=s_{k} \ldots s_{j+1} s_{j-1} \ldots s_{0}: F\left[S^{1} \vee S^{1}\right]_{1} \rightarrow F\left[S^{1} \vee S^{1}\right]_{k}, j=0, \ldots, k
$$

For example, $\hat{s}_{0}=s_{2} s_{1}, \hat{s}_{1}=s_{2} s_{0}, \hat{s}_{2}=s_{1} s_{0}$, for $k=3$. The set of homomorphisms $\left\{\hat{s}_{0}, \ldots, \hat{s}_{k}\right\}$ can be naturally ordered as follows:

$$
\hat{s}_{0}<\hat{s}_{1}<\cdots<\hat{s}_{k} .
$$

Let $c$ be a basic commutator of weight $n$ in two symbols $x_{1}, x_{2}$. That is, $c / \gamma_{n+1} F_{2}$ is an element from a Hall basis of $\gamma_{n}\left(F_{2}\right) / \gamma_{n+1}\left(F_{2}\right)$. Write symbolically $c$ as

$$
c=\left[x_{j_{1}}, \ldots, x_{j_{n}}\right], \quad j_{l}=1,2 .
$$

(we remember that the configuration of brackets in $c$ can be non-left-orientable). Define then the element

$$
\hat{c}=\prod_{\left(i_{1}, \ldots, i_{n}\right) \in S_{n}}\left[\hat{s}_{i_{1}} x_{j_{1}}, \ldots, \hat{s}_{i_{n}} x_{j_{n}}\right]^{\operatorname{sign}\left(i_{1}, \ldots, i_{n}\right)} \in F\left[S^{1} \vee S^{1}\right]_{n} .
$$

For example, for $c=\left[x_{1}, x_{2}, x_{1}\right]$, we have

$$
\begin{aligned}
& \hat{c}=\left[s_{2} s_{1} x_{1}, s_{2} s_{0} x_{2}, s_{1} s_{0} x_{1}\right]\left[s_{1} s_{0} x_{1}, s_{2} s_{1} x_{2}, s_{2} s_{0} x_{1}\right]\left[s_{2} s_{0} x_{1}, s_{1} s_{0} x_{2}, s_{2} s_{1} x_{1}\right] \\
& \quad\left[s_{2} s_{0} x_{1}, s_{2} s_{1} x_{2}, s_{1} s_{0} x_{1}\right]^{-1}\left[s_{2} s_{1} x_{1}, s_{1} s_{0} x_{2}, s_{2} s_{0} x_{1}\right]^{-1}\left[s_{1} s_{0} x_{1}, s_{2} s_{0} x_{2}, s_{2} s_{1} x_{1}\right]^{-1} .
\end{aligned}
$$

Now consider the abelian group $\mathbb{Z}^{\oplus \tau(n)}$ as a quotient $\gamma_{n}\left(F_{2}\right) / \gamma_{n+1}\left(F_{2}\right)$ with a Hall basis $\left\{c_{*}\right\}_{* \in I}$. The definition of the Samuelson product implies that the $j_{n+1}$-image of the element $c_{*}$ in (3.5) is the element $\hat{c}_{*}$ in $\frac{R_{1} \cap \cdots \cap R_{n+1}}{R_{1} \cap \cdots \cap R_{n+1} \cap \gamma_{n+1}\left(F_{2 n}\right)}$ (here the basis of $F_{2 n}$ is written as $\left\{\hat{s}_{0} x_{1}, \hat{s}_{0} x_{2}, \ldots, \hat{s}_{n-1} x_{0}, \hat{s}_{n-1} x_{1}\right\}$ ).

Analogically one can define the monomorphism

$$
\begin{equation*}
\mathbb{Z}^{\oplus \tau(2 s)} \hookrightarrow \frac{R_{1} \cap \cdots \cap R_{n+1}}{R_{1} \cap \cdots \cap R_{n+1} \cap \gamma_{n+1}\left(F_{2 n}\right)}, n=4 s-2 . \tag{3.6}
\end{equation*}
$$

For $n=4 s-2, F\left[S^{2 s-1}\right]_{2 s-1}$ an infinite cyclic group with generator $\sigma$. The element of infinite order in $\pi_{4 s-1}\left(S^{2 s}\right)$ defines an element $\kappa_{s} \in F\left[S^{2 s-1}\right]_{4 s-2} / \mathcal{B}_{4 s-2}$. The direct computations show that the element $\kappa_{s}$ can be presented modulo $\mathcal{B}_{4 s-2}$ as

$$
\bar{\kappa}_{s}=\langle\sigma, \sigma\rangle=\prod_{(a ; b)}\left[s_{b} \sigma, s_{a} \sigma\right]^{\operatorname{sign}(a ; b)}
$$

where $(a ; b)$ runs over the set of all $(2 s-1 ; 2 s-1)$-shuffles. Now the map (3.6) can be constructed with the help of $(2 s-1)$-Samuelson products and the structure of the element $\bar{\kappa}_{s}$.

Acknowledgements. The author thanks J. Wu for the suggestion to consider the simplicial meaning of the Hilton-Milnor theorem.

## References

[1] E. Curtis: Simplicial homotopy theory, Adv. Math. 6 (1971), 107-209.
[2] P. Goerss: A Hilton-Milnor theorem for categories of simplicial algebras, Amer. J. Math. 111 (1989), 927-971.
[3] P. Hilton: On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955) 154-172.
[4] J. Wu: Combinatorial description of homotopy groups of certain spaces, Math. Proc. Camb. Phyl. Soc. 130, (2001), 489-513.
[5] J. Wu: A braided simplicial group, Proc. London Math. Soc. 84 (2002), 645-662.

