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Abstract. We consider certain group theoretical applications of the well-known Hilton-Milnor

Theorem. For n ≥ 1, let F2n be a free group of rank 2n with generators {x1, y1, . . . , xn, yn}.

Consider the following normal subgroups of F2n : Ri = 〈xi, yi〉
F2n , i = 1, . . . , n, Rn+1 =

〈x1 . . . xn, y1 . . . yn〉
F2n . We prove the following isomorphisms of abelian groups:

R1 ∩ · · · ∩ Rn+1

R1 ∩ · · · ∩ Rn+1 ∩ γn+1(F2n)
' γn+1(F2)/γn+2(F2), for n 6= 4k − 2,

R1 ∩ · · · ∩ Rn+1

R1 ∩ · · · ∩ Rn+1 ∩ γn+1(F2n)
' γn+1(F2)/γn+2(F2) ⊕ γ2k(F2)/γ2k+1(F2), for n = 4k − 2,

where {γi(F2n)}i≥1 is the lower central series of F2n. The 4-periodicity in the formulation of

the above statement comes naturally from homotopy theory, namely from the description of

torsion-free components of the homotopy groups of spheres.

1. Introduction

Given a free group F and normal subgroups (n ≥ 2)

R1, . . . , Rn � F,

consider the quotient group

In(F, R1, . . . , Rn) =
R1 ∩ · · · ∩ Rn

∏

I∪J={1,...,n}, I∩J=∅[
⋂

i∈I Ri,
⋂

j∈J Rj]
.

Here
⋂

denotes the intersection of subgroups in the free group F and
∏

is the product of com-
mutator subgroups as indicated. Let n ≥ 1, F2n be a free group with basis {x1, y1, . . . , xn, yn}.
Consider the following normal subgroups of F2n:

Ri = 〈xi, yi〉
F2n, i = 1, . . . , n,

Rn+1 = 〈x1 . . . xn, y1 . . . yn〉
F2n.

It follows from [4] that, for n ≥ 1, there is the following isomorphism of abelian groups:

(1.1) πn+1(S
2 ∨ S2) ' In+1(F2n, R1, . . . , Rn+1),

where S2 ∨S2 is the wedge of two 2-spheres. From the other hand, the Hilton-Milnor Theorem
(see [3]) implies the following isomorphism:

(1.2) πn+1(S
2 ∨ S2) '

n+1
⊕

i=2

πn+1(S
i)⊕τ(i−1),

where

τ(i) =
1

i

∑

d|i

µ(d)2i/d,

1
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(the number of basic commutators of the fixed length in the free (super) Lie ring) µ(d) being
the Möbius function. For example, the first nontrivial homotopy groups of S2 ∨ S2 are:

π2(S
2 ∨ S2) ' π2(S

2)⊕2 ' Z⊕2,

π3(S
2 ∨ S2) ' π3(S

2)⊕2 ⊕ π3(S
3) ' Z⊕3,

π4(S
2 ∨ S2) ' π4(S

2)⊕2 ⊕ π4(S
3) ⊕ π4(S

4)⊕2 ' Z⊕3
2 ⊕ Z⊕2,

. . . .

The following problem rises naturally: for every i = 2, . . . , n + 1, identify the summand
πn+1(S

i)⊕τ(i) as a subgroup of In+1(F2n, R1, . . . , Rn+1). As a contribution to this problem,
we analyze here the torsion-free part of the homotopy group πn+1(S

2 ∨ S2) as a summand of
In+1(F2n, R1, . . . , Rn+1). As a natural group-theoretical application of this analysis, we have
the following

Theorem 1. There is a natural isomorphism of abelian groups

R1 ∩ · · · ∩ Rn+1

R1 ∩ · · · ∩ Rn+1 ∩ γn+1(F2n)
' γn+1(F2)/γn+2(F2), for n 6= 4k − 2,

R1 ∩ · · · ∩ Rn+1

R1 ∩ · · · ∩ Rn+1 ∩ γn+1(F2n)
' γn+1(F2)/γn+2(F2) ⊕ γ2k(F2)/γ2k+1(F2), for n = 4k − 2,

where {γi(F2n)}i≥1 is the lower central series of F2n.

The abelian groups in Theorem 1 are exactly the torsion-free parts of the homotopy groups
πn+1(S

2 ∨ S2). The 4-periodicity from Theorem 1 is not very clear from the group-theoretical
point of view, however comes naturally from the point of view of homotopy theory.

2. Simplicial groups and Hilton-Milnor Theorem

2.1. Milnor’s construction. Recall that, for a given pointed simplicial set K, the F [K]-
construction is the simplicial group with F [K]n = F (Kn \ ∗), where F (−) is the free group
functor. Then there is a weak homotopy equivalence

|F [K]| ' ΩΣ|K|.

For the n-sphere, the simplicial group F [Sn] can be defined as a certain simplicial group with
F [Sn]k = {1}, k ≤ n − 1 and F [Sn]n+k is a free group of rank

(

n+k
k

)

for k ≥ 0. Furthermore,
it is shown in [5] that for every simplicial group G with Gk = {1}, k ≤ n − 1 and Gn+k a free
group of rank

(

m+k
k

)

, k ≥ 0, there is a simplicial monomorphism F [Sn] → G, which induces
the homotopy equivalence and an isomorphism of their nilpotent completions. We will use the
standard notation K(Z ⊕ Z, 1) for the abelianization of F [S1 ∨ S1].

The following result due to Curtis (see [1]) is the main ingredient in the proof of Theorem 1:

Theorem 2. Let F be a connected simplicial group or Lie algebra (over Z) then γr(F ) is
log2r-connected.
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2.2. Samuelson product. The Whitehead product can be described with the help of simplicial
language. Let G be a simplicial group.

For p, q ≥ 1, let

(a; b) = (a1, . . . , ap; b1, . . . , bq)

be a permutation of (0, . . . , p + q − 1), such that a1 < · · · < ap, b1 < · · · < bq. We will refer to
such (a; b) as a (p; q)-shuffle. Denote by sign(a; b) the sign of the permutation (a; b).

For x ∈ Gp, y ∈ Gq define the bracket

〈x, y〉 :=
∏

(a;b)

[sbx, say]sign(a;b),(2.1)

where the product is taken over the set of all (p, q)-shuffles (a; b) and

sb = sbq
. . . sb1 , sa = sap

. . . sa1
.

It is easy to show (see, for example, [1]), that the definition of the bracket 〈, 〉 can be extended
to the homotopy classes of G, i.e. the product 2.1 induces the product

〈x, y〉 ∈ πp+q(G), x ∈ πp(G), y ∈ πq(G),

called the Samuelson product in G. Now, for a given topological space (simplicial set) X, the
Whitehead product

[u, v] ∈ πp+q+1(X), u ∈ πp+1(X), v ∈ πq+1(X),

can be defined as

[u, v] = (−1)p∂−1〈∂u, ∂v〉,

where ∂ : π∗(X) → π∗(GX) and GX is the Kan’s loop construction of X.
For every i = 2, . . . , n + 1, we have τ(i) maps

cj : ΩΣ(S1 ∧ · · · ∧ S1) → ΩΣ(S1 ∨ S1), j = 1, . . . , τ(i)

indexed by basic commutators of weight i in two variables. Hilton-Milnor Theorem implies
that for every such map and k ≥ 2, the induced homomorphism

c∗j : πk(ΩΣ(S1 ∧ · · · ∧ S1)) = πk+1(S
i) → πk(ΩΣ(S1 ∨ S1)) = πk+1(S

2 ∨ S2)

is a splitting monomorphism. Furthermore, all the homotopy classes of π∗(S
2 ∨ S2) consist of

the images of such maps. The maps cj can be written simplicialy with the help of the Milnor
F [K]-construction. The maps cj can be written as certain simplicial maps

cj : F [Si−1] → F [S1 ∨ S1],

which induce monomorphisms of the homotopy groups. For the analog of Hilton-Milnor Theo-
rem for simplicial algebras see [2].

3. Proof of Theorem 1

For a finitely generated abelian group A, let TF(A) be the torson-free subgroup of A. We will
use the notation Ln and T n(A) for the n-th Lie functor and the n-th tensor power respectively.
Since for every abelian group A, the composition

Ln(A) → T n(A) → Ln(A)
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is the same as n-multiplication, and T nK(Z ⊕ Z, 1) is K((Z ⊕ Z)⊗n, n), we conclude that the
group

πnL
sK(Z ⊕ Z, 1) ⊗ Q = 0, s > n.

Since

(3.1) R1 ∩ · · · ∩ Rn ⊆ γn(F2n),

we have

πnL
sK(Z ⊕ Z, 1) = 0, s < n.

Now Theorem 2 implies that

(3.2) TF(πn+1(S
2 ∨ S2)) = TF(πnK(Z ⊕ Z, 1)) = TF(πnL

nK(Z ⊕ Z, 1)).

We know from the well-known Theorem due to Serre that TF(πk(S
l)) = Z if k = l or l =

2s, k = 4s − 1, s ≥ 1 and TF(πk(S
l)) = 0 otherwise. Therefore, the isomorphism (1.2) implies

the following isomorphism of abelian groups

TF(πn+1(S
2 ∨ S2)) =







πn+1(S
n+1)⊕τ(n+1) ⊕ TF((πn+1(S

2s)⊕τ(2s)) ' Z⊕(τ(n+1)+τ(2s)),
if n = 4s − 2, s ≥ 1

πn+1(S
n+1)⊕τ(n+1) ' Z⊕τ(n+1) otherwise.

Since
∏

I∪J={1,...,n+1}, I∩J=∅[
⋂

i∈I Ri,
⋂

j∈J Rj] ⊆ γn+1(F2n), we have the following isomorphism

(3.3) πnL
nL(Z ⊕ Z, 1) '

R1 ∩ · · · ∩ Rn+1

R1 ∩ · · · ∩ Rn+1 ∩ γn+1(F2n)
.

The inclusion (3.1) implies that the right-hand group in (3.3) is a subgroup in γn(F2n)/γn+1(F2n)
and, therefore, is torsion-free. The isomorpisms (3.3) and (3.2) imply the following isomorphism:

(3.4) TF(πn+1(S
2 ∨ S2)) '

R1 ∩ · · · ∩ Rn+1

R1 ∩ · · · ∩ Rn+1 ∩ γn+1(F2n)

and the Theorem 1 is proved.

Remark. It is easy to see that the same proof works for the case of the wedge of r 2-spheres
∨r

i=1 S2, r ≥ 2. For every n ≥ 3, we have the following isomorphisms of abelian groups:

TF(πn+1(

r
∨

i=1

S2)) '
R1 ∩ · · · ∩ Rn+1

R1 ∩ · · · ∩ Rn+1 ∩ γn+1(Frn)
' γn(Fr)/γn+1(Fr), n 6= 4k − 2,

TF(πn+1(

r
∨

i=1

S2)) '
R1 ∩ · · · ∩ Rn+1

R1 ∩ · · · ∩ Rn+1 ∩ γn+1(Frn)
'

γn(Fr)/γn+1(Fr) ⊕ γ2k(Fr)/γ2k+1(Fr), n = 4k − 2,

where Fnr is a free group with generator set {x
(1)
1 , . . . , x

(r)
1 , . . . , x

(1)
n , . . . , x

(r)
n } with normal sub-

groups Ri = 〈x
(1)
i , . . . , x

(r)
i 〉Frn, Rn+1 = 〈x

(1)
1 . . . x

(1)
n , . . . , x

(r)
1 . . . x

(r)
n 〉Frn.
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Group-theoretical description of the isomorphism (3.4). The isomorphisms of abelian
groups (3.4), can be defined combinatorially using the simplicial language. Define the monomor-
phism

Z⊕τ(n) ↪→
R1 ∩ · · · ∩ Rn+1

R1 ∩ · · · ∩ Rn+1 ∩ γn+1(F2n)
, n ≥ 3.(3.5)

Let n ≥ 3. Consider F [Si−1] for i = 2, . . . , n + 1. The element σ ∈ πn+1(S
i) defines a certain

element e(σ) ∈ F [Si−1]n/Bn(Si−1). Consider the simplicial group F [S1 ∨ S1] with F [S1 ∨ S1]1
a free group with generators x1, x2. For k ≥ 2, define

ŝj = sk . . . sj+1sj−1 . . . s0 : F [S1 ∨ S1]1 → F [S1 ∨ S1]k, j = 0, . . . , k

For example, ŝ0 = s2s1, ŝ1 = s2s0, ŝ2 = s1s0, for k = 3. The set of homomorphisms {ŝ0, . . . , ŝk}
can be naturally ordered as follows:

ŝ0 < ŝ1 < · · · < ŝk.

Let c be a basic commutator of weight n in two symbols x1, x2. That is, c/γn+1F2 is an element
from a Hall basis of γn(F2)/γn+1(F2). Write symbolically c as

c = [xj1 , . . . , xjn
], jl = 1, 2.

(we remember that the configuration of brackets in c can be non-left-orientable). Define then
the element

ĉ =
∏

(i1,...,in)∈Sn

[ŝi1xj1 , . . . , ŝinxjn
]sign(i1,...,in) ∈ F [S1 ∨ S1]n.

For example, for c = [x1, x2, x1], we have

ĉ = [s2s1x1, s2s0x2, s1s0x1][s1s0x1, s2s1x2, s2s0x1][s2s0x1, s1s0x2, s2s1x1]

[s2s0x1, s2s1x2, s1s0x1]
−1[s2s1x1, s1s0x2, s2s0x1]

−1[s1s0x1, s2s0x2, s2s1x1]
−1.

Now consider the abelian group Z⊕τ(n) as a quotient γn(F2)/γn+1(F2) with a Hall basis {c∗}∗∈I .
The definition of the Samuelson product implies that the jn+1-image of the element c∗ in (3.5) is

the element ĉ∗ in R1∩···∩Rn+1

R1∩···∩Rn+1∩γn+1(F2n)
(here the basis of F2n is written as {ŝ0x1, ŝ0x2, . . . , ŝn−1x0, ŝn−1x1}).

Analogically one can define the monomorphism

(3.6) Z⊕τ(2s) ↪→
R1 ∩ · · · ∩ Rn+1

R1 ∩ · · · ∩ Rn+1 ∩ γn+1(F2n)
, n = 4s − 2.

For n = 4s − 2, F [S2s−1]2s−1 an infinite cyclic group with generator σ. The element of infinite
order in π4s−1(S

2s) defines an element κs ∈ F [S2s−1]4s−2/B4s−2. The direct computations show
that the element κs can be presented modulo B4s−2 as

κ̄s = 〈σ, σ〉 =
∏

(a;b)

[sbσ, saσ]sign(a;b),

where (a; b) runs over the set of all (2s−1; 2s−1)-shuffles. Now the map (3.6) can be constructed
with the help of (2s − 1)-Samuelson products and the structure of the element κ̄s.

Acknowledgements. The author thanks J. Wu for the suggestion to consider the simplicial
meaning of the Hilton-Milnor theorem.
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