CERTAIN GROUP-THEORETICAL APPLICATIONS OF THE HILTON-MILNOR THEOREM

ROMAN MIKHAILOV

ABSTRACT. We consider certain group theoretical applications of the well-known Hilton-Milnor Theorem. For $n \geq 1$, let F_{2n} be a free group of rank 2n with generators $\{x_1, y_1, \ldots, x_n, y_n\}$. Consider the following normal subgroups of $F_{2n}: R_i = \langle x_i, y_i \rangle^{F_{2n}}, i = 1, \ldots, n, R_{n+1} = \langle x_1 \ldots x_n, y_1 \ldots y_n \rangle^{F_{2n}}$. We prove the following isomorphisms of abelian groups:

$$\frac{R_1 \cap \dots \cap R_{n+1}}{R_1 \cap \dots \cap R_{n+1} \cap \gamma_{n+1}(F_{2n})} \simeq \gamma_{n+1}(F_2)/\gamma_{n+2}(F_2), \text{ for } n \neq 4k-2,$$

$$\frac{R_1 \cap \dots \cap R_{n+1}}{R_1 \cap \dots \cap R_{n+1} \cap \gamma_{n+1}(F_{2n})} \simeq \gamma_{n+1}(F_2)/\gamma_{n+2}(F_2) \oplus \gamma_{2k}(F_2)/\gamma_{2k+1}(F_2), \text{ for } n = 4k-2,$$

where $\{\gamma_i(F_{2n})\}_{i\geq 1}$ is the lower central series of F_{2n} . The 4-periodicity in the formulation of the above statement comes naturally from homotopy theory, namely from the description of torsion-free components of the homotopy groups of spheres.

1. Introduction

Given a free group F and normal subgroups $(n \ge 2)$

$$R_1,\ldots,R_n \leq F$$
,

consider the quotient group

$$I_n(F, R_1, \dots, R_n) = \frac{R_1 \cap \dots \cap R_n}{\prod_{I \cup J = \{1, \dots, n\}, \ I \cap J = \emptyset} \left[\bigcap_{i \in I} R_i, \bigcap_{j \in J} R_j\right]}.$$

Here \bigcap denotes the intersection of subgroups in the free group F and \prod is the product of commutator subgroups as indicated. Let $n \geq 1$, F_{2n} be a free group with basis $\{x_1, y_1, \ldots, x_n, y_n\}$. Consider the following normal subgroups of F_{2n} :

$$R_i = \langle x_i, y_i \rangle^{F_{2n}}, \ i = 1, \dots, n,$$

$$R_{n+1} = \langle x_1 \dots x_n, y_1 \dots y_n \rangle^{F_{2n}}.$$

It follows from [4] that, for $n \geq 1$, there is the following isomorphism of abelian groups:

(1.1)
$$\pi_{n+1}(S^2 \vee S^2) \simeq I_{n+1}(F_{2n}, R_1, \dots, R_{n+1}),$$

where $S^2 \vee S^2$ is the wedge of two 2-spheres. From the other hand, the Hilton-Milnor Theorem (see [3]) implies the following isomorphism:

(1.2)
$$\pi_{n+1}(S^2 \vee S^2) \simeq \bigoplus_{i=2}^{n+1} \pi_{n+1}(S^i)^{\oplus \tau(i-1)},$$

where

$$\tau(i) = \frac{1}{i} \sum_{\substack{d | i \ 1}} \mu(d) 2^{i/d},$$

(the number of basic commutators of the fixed length in the free (super) Lie ring) $\mu(d)$ being the Möbius function. For example, the first nontrivial homotopy groups of $S^2 \vee S^2$ are:

$$\pi_2(S^2 \vee S^2) \simeq \pi_2(S^2)^{\oplus 2} \simeq \mathbb{Z}^{\oplus 2},$$

$$\pi_3(S^2 \vee S^2) \simeq \pi_3(S^2)^{\oplus 2} \oplus \pi_3(S^3) \simeq \mathbb{Z}^{\oplus 3},$$

$$\pi_4(S^2 \vee S^2) \simeq \pi_4(S^2)^{\oplus 2} \oplus \pi_4(S^3) \oplus \pi_4(S^4)^{\oplus 2} \simeq \mathbb{Z}_2^{\oplus 3} \oplus \mathbb{Z}^{\oplus 2},$$
....

The following problem rises naturally: for every i = 2, ..., n + 1, identify the summand $\pi_{n+1}(S^i)^{\oplus \tau(i)}$ as a subgroup of $I_{n+1}(F_{2n}, R_1, ..., R_{n+1})$. As a contribution to this problem, we analyze here the torsion-free part of the homotopy group $\pi_{n+1}(S^2 \vee S^2)$ as a summand of $I_{n+1}(F_{2n}, R_1, ..., R_{n+1})$. As a natural group-theoretical application of this analysis, we have the following

Theorem 1. There is a natural isomorphism of abelian groups

$$\frac{R_1 \cap \dots \cap R_{n+1}}{R_1 \cap \dots \cap R_{n+1} \cap \gamma_{n+1}(F_{2n})} \simeq \gamma_{n+1}(F_2)/\gamma_{n+2}(F_2), \text{ for } n \neq 4k-2,$$

$$\frac{R_1 \cap \dots \cap R_{n+1}}{R_1 \cap \dots \cap R_{n+1} \cap \gamma_{n+1}(F_{2n})} \simeq \gamma_{n+1}(F_2)/\gamma_{n+2}(F_2) \oplus \gamma_{2k}(F_2)/\gamma_{2k+1}(F_2), \text{ for } n = 4k-2,$$

where $\{\gamma_i(F_{2n})\}_{i\geq 1}$ is the lower central series of F_{2n} .

The abelian groups in Theorem 1 are exactly the torsion-free parts of the homotopy groups $\pi_{n+1}(S^2 \vee S^2)$. The 4-periodicity from Theorem 1 is not very clear from the group-theoretical point of view, however comes naturally from the point of view of homotopy theory.

2. SIMPLICIAL GROUPS AND HILTON-MILNOR THEOREM

2.1. Milnor's construction. Recall that, for a given pointed simplicial set K, the F[K]construction is the simplicial group with $F[K]_n = F(K_n \setminus *)$, where F(-) is the free group
functor. Then there is a weak homotopy equivalence

$$|F[K]| \simeq \Omega \Sigma |K|$$
.

For the *n*-sphere, the simplicial group $F[S^n]$ can be defined as a certain simplicial group with $F[S^n]_k = \{1\}, k \leq n-1 \text{ and } F[S^n]_{n+k} \text{ is a free group of rank } \binom{n+k}{k} \text{ for } k \geq 0.$ Furthermore, it is shown in [5] that for every simplicial group G with $G_k = \{1\}, k \leq n-1 \text{ and } G_{n+k} \text{ a free group of rank } \binom{m+k}{k}, k \geq 0$, there is a simplicial monomorphism $F[S^n] \to G$, which induces the homotopy equivalence and an isomorphism of their nilpotent completions. We will use the standard notation $K(\mathbb{Z} \oplus \mathbb{Z}, 1)$ for the abelianization of $F[S^1 \vee S^1]$.

The following result due to Curtis (see [1]) is the main ingredient in the proof of Theorem 1:

Theorem 2. Let F be a connected simplicial group or Lie algebra (over \mathbb{Z}) then $\gamma_r(F)$ is log_2r -connected.

2.2. **Samuelson product.** The Whitehead product can be described with the help of simplicial language. Let G be a simplicial group.

For $p, q \ge 1$, let

$$(a;b) = (a_1, \ldots, a_p; b_1, \ldots, b_q)$$

be a permutation of $(0, \ldots, p+q-1)$, such that $a_1 < \cdots < a_p$, $b_1 < \cdots < b_q$. We will refer to such (a; b) as a (p; q)-shuffle. Denote by sign(a; b) the sign of the permutation (a; b).

For $x \in G_p, y \in G_q$ define the bracket

(2.1)
$$\langle x, y \rangle := \prod_{(a;b)} [s_b x, s_a y]^{sign(a;b)},$$

where the product is taken over the set of all (p,q)-shuffles (a;b) and

$$s_b = s_{b_q} \dots s_{b_1}, \ s_a = s_{a_p} \dots s_{a_1}.$$

It is easy to show (see, for example, [1]), that the definition of the bracket \langle , \rangle can be extended to the homotopy classes of G, i.e. the product 2.1 induces the product

$$\langle x, y \rangle \in \pi_{p+q}(G), \ x \in \pi_p(G), \ y \in \pi_q(G),$$

called the Samuelson product in G. Now, for a given topological space (simplicial set) X, the Whitehead product

$$[u, v] \in \pi_{p+q+1}(X), \ u \in \pi_{p+1}(X), \ v \in \pi_{q+1}(X),$$

can be defined as

$$[u,v] = (-1)^p \partial^{-1} \langle \partial u, \partial v \rangle,$$

where $\partial: \pi_*(X) \to \pi_*(GX)$ and GX is the Kan's loop construction of X.

For every i = 2, ..., n + 1, we have $\tau(i)$ maps

$$c_i: \Omega\Sigma(S^1 \wedge \cdots \wedge S^1) \to \Omega\Sigma(S^1 \vee S^1), \ j=1,\ldots,\tau(i)$$

indexed by basic commutators of weight i in two variables. Hilton-Milnor Theorem implies that for every such map and $k \geq 2$, the induced homomorphism

$$c_i^*: \pi_k(\Omega\Sigma(S^1 \wedge \dots \wedge S^1)) = \pi_{k+1}(S^i) \to \pi_k(\Omega\Sigma(S^1 \vee S^1)) = \pi_{k+1}(S^2 \vee S^2)$$

is a splitting monomorphism. Furthermore, all the homotopy classes of $\pi_*(S^2 \vee S^2)$ consist of the images of such maps. The maps c_j can be written simplicially with the help of the Milnor F[K]-construction. The maps c_j can be written as certain simplicial maps

$$c_j: F[S^{i-1}] \to F[S^1 \vee S^1],$$

which induce monomorphisms of the homotopy groups. For the analog of Hilton-Milnor Theorem for simplicial algebras see [2].

3. Proof of Theorem 1

For a finitely generated abelian group A, let $\mathsf{TF}(A)$ be the torson-free subgroup of A. We will use the notation \mathcal{L}^n and $T^n(A)$ for the n-th Lie functor and the n-th tensor power respectively. Since for every abelian group A, the composition

$$\mathcal{L}^n(A) \to T^n(A) \to \mathcal{L}^n(A)$$

is the same as n-multiplication, and $T^nK(\mathbb{Z}\oplus\mathbb{Z},1)$ is $K((\mathbb{Z}\oplus\mathbb{Z})^{\otimes n},n)$, we conclude that the group

$$\pi_n \mathcal{L}^s K(\mathbb{Z} \oplus \mathbb{Z}, 1) \otimes \mathbb{Q} = 0, \ s > n.$$

Since

$$(3.1) R_1 \cap \cdots \cap R_n \subseteq \gamma_n(F_{2n}),$$

we have

$$\pi_n \mathcal{L}^s K(\mathbb{Z} \oplus \mathbb{Z}, 1) = 0, \ s < n.$$

Now Theorem 2 implies that

$$(3.2) \mathsf{TF}(\pi_{n+1}(S^2 \vee S^2)) = \mathsf{TF}(\pi_n K(\mathbb{Z} \oplus \mathbb{Z}, 1)) = \mathsf{TF}(\pi_n \mathcal{L}^n K(\mathbb{Z} \oplus \mathbb{Z}, 1)).$$

We know from the well-known Theorem due to Serre that $\mathsf{TF}(\pi_k(S^l)) = \mathbb{Z}$ if k = l or $l = 2s, k = 4s - 1, \ s \ge 1$ and $\mathsf{TF}(\pi_k(S^l)) = 0$ otherwise. Therefore, the isomorphism (1.2) implies the following isomorphism of abelian groups

$$\mathsf{TF}(\pi_{n+1}(S^2 \vee S^2)) = \begin{cases} &\pi_{n+1}(S^{n+1})^{\oplus \tau(n+1)} \oplus \mathsf{TF}((\pi_{n+1}(S^{2s})^{\oplus \tau(2s)}) \simeq \mathbb{Z}^{\oplus (\tau(n+1) + \tau(2s))}, \\ &\text{if } n = 4s - 2, \ s \geq 1 \\ &\pi_{n+1}(S^{n+1})^{\oplus \tau(n+1)} \simeq \mathbb{Z}^{\oplus \tau(n+1)} \text{ otherwise.} \end{cases}$$

Since $\prod_{I\cup J=\{1,\dots,n+1\},\ I\cap J=\emptyset} [\bigcap_{i\in I} R_i,\bigcap_{j\in J} R_j] \subseteq \gamma_{n+1}(F_{2n})$, we have the following isomorphism

(3.3)
$$\pi_n \mathcal{L}^n L(\mathbb{Z} \oplus \mathbb{Z}, 1) \simeq \frac{R_1 \cap \dots \cap R_{n+1}}{R_1 \cap \dots \cap R_{n+1} \cap \gamma_{n+1}(F_{2n})}.$$

The inclusion (3.1) implies that the right-hand group in (3.3) is a subgroup in $\gamma_n(F_{2n})/\gamma_{n+1}(F_{2n})$ and, therefore, is torsion-free. The isomorphisms (3.3) and (3.2) imply the following isomorphism:

(3.4)
$$\mathsf{TF}(\pi_{n+1}(S^2 \vee S^2)) \simeq \frac{R_1 \cap \dots \cap R_{n+1}}{R_1 \cap \dots \cap R_{n+1} \cap \gamma_{n+1}(F_{2n})}$$

and the Theorem 1 is proved.

Remark. It is easy to see that the same proof works for the case of the wedge of r 2-spheres $\bigvee_{i=1}^{r} S^2$, $r \geq 2$. For every $n \geq 3$, we have the following isomorphisms of abelian groups:

$$\mathsf{TF}(\pi_{n+1}(\bigvee_{i=1}^{r} S^{2})) \simeq \frac{R_{1} \cap \dots \cap R_{n+1}}{R_{1} \cap \dots \cap R_{n+1} \cap \gamma_{n+1}(F_{rn})} \simeq \gamma_{n}(F_{r})/\gamma_{n+1}(F_{r}), \ n \neq 4k-2,$$

$$\mathsf{TF}(\pi_{n+1}(\bigvee_{i=1}^{r} S^{2})) \simeq \frac{R_{1} \cap \dots \cap R_{n+1}}{R_{1} \cap \dots \cap R_{n+1} \cap \gamma_{n+1}(F_{rn})} \simeq$$

$$\gamma_{n}(F_{r})/\gamma_{n+1}(F_{r}) \oplus \gamma_{2k}(F_{r})/\gamma_{2k+1}(F_{r}), \ n = 4k-2,$$

where F_{nr} is a free group with generator set $\{x_1^{(1)}, \dots, x_1^{(r)}, \dots, x_n^{(1)}, \dots, x_n^{(r)}\}$ with normal subgroups $R_i = \langle x_i^{(1)}, \dots, x_i^{(r)} \rangle^{F_{rn}}$, $R_{n+1} = \langle x_1^{(1)}, \dots, x_n^{(1)}, \dots, x_1^{(r)}, \dots, x_n^{(r)} \rangle^{F_{rn}}$.

Group-theoretical description of the isomorphism (3.4). The isomorphisms of abelian groups (3.4), can be defined combinatorially using the simplicial language. Define the monomorphism

(3.5)
$$\mathbb{Z}^{\oplus \tau(n)} \hookrightarrow \frac{R_1 \cap \dots \cap R_{n+1}}{R_1 \cap \dots \cap R_{n+1} \cap \gamma_{n+1}(F_{2n})}, \ n \ge 3.$$

Let $n \geq 3$. Consider $F[S^{i-1}]$ for i = 2, ..., n+1. The element $\sigma \in \pi_{n+1}(S^i)$ defines a certain element $e(\sigma) \in F[S^{i-1}]_n/\mathcal{B}_n(S^{i-1})$. Consider the simplicial group $F[S^1 \vee S^1]$ with $F[S^1 \vee S^1]_1$ a free group with generators x_1, x_2 . For $k \geq 2$, define

$$\hat{s}_j = s_k \dots s_{j+1} s_{j-1} \dots s_0 : F[S^1 \vee S^1]_1 \to F[S^1 \vee S^1]_k, \ j = 0, \dots, k$$

For example, $\hat{s}_0 = s_2 s_1$, $\hat{s}_1 = s_2 s_0$, $\hat{s}_2 = s_1 s_0$, for k = 3. The set of homomorphisms $\{\hat{s}_0, \dots, \hat{s}_k\}$ can be naturally ordered as follows:

$$\hat{s}_0 < \hat{s}_1 < \dots < \hat{s}_k$$
.

Let c be a basic commutator of weight n in two symbols x_1, x_2 . That is, $c/\gamma_{n+1}F_2$ is an element from a Hall basis of $\gamma_n(F_2)/\gamma_{n+1}(F_2)$. Write symbolically c as

$$c = [x_{j_1}, \dots, x_{j_n}], \ j_l = 1, 2.$$

(we remember that the configuration of brackets in c can be non-left-orientable). Define then the element

$$\hat{c} = \prod_{(i_1, \dots, i_n) \in S_n} [\hat{s}_{i_1} x_{j_1}, \dots, \hat{s}_{i_n} x_{j_n}]^{sign(i_1, \dots, i_n)} \in F[S^1 \vee S^1]_n.$$

For example, for $c = [x_1, x_2, x_1]$, we have

$$\hat{c} = [s_2 s_1 x_1, s_2 s_0 x_2, s_1 s_0 x_1][s_1 s_0 x_1, s_2 s_1 x_2, s_2 s_0 x_1][s_2 s_0 x_1, s_1 s_0 x_2, s_2 s_1 x_1]$$
$$[s_2 s_0 x_1, s_2 s_1 x_2, s_1 s_0 x_1]^{-1}[s_2 s_1 x_1, s_1 s_0 x_2, s_2 s_0 x_1]^{-1}[s_1 s_0 x_1, s_2 s_0 x_2, s_2 s_1 x_1]^{-1}.$$

Now consider the abelian group $\mathbb{Z}^{\oplus \tau(n)}$ as a quotient $\gamma_n(F_2)/\gamma_{n+1}(F_2)$ with a Hall basis $\{c_*\}_{*\in I}$. The definition of the Samuelson product implies that the j_{n+1} -image of the element c_* in (3.5) is the element \hat{c}_* in $\frac{R_1 \cap \dots \cap R_{n+1}}{R_1 \cap \dots \cap R_{n+1} \cap \gamma_{n+1}(F_{2n})}$ (here the basis of F_{2n} is written as $\{\hat{s}_0 x_1, \hat{s}_0 x_2, \dots, \hat{s}_{n-1} x_0, \hat{s}_{n-1} x_1\}$). Analogically one can define the monomorphism

(3.6)
$$\mathbb{Z}^{\oplus \tau(2s)} \hookrightarrow \frac{R_1 \cap \dots \cap R_{n+1}}{R_1 \cap \dots \cap R_{n+1} \cap \gamma_{n+1}(F_{2n})}, \ n = 4s - 2.$$

For n = 4s - 2, $F[S^{2s-1}]_{2s-1}$ an infinite cyclic group with generator σ . The element of infinite order in $\pi_{4s-1}(S^{2s})$ defines an element $\kappa_s \in F[S^{2s-1}]_{4s-2}/\mathcal{B}_{4s-2}$. The direct computations show that the element κ_s can be presented modulo \mathcal{B}_{4s-2} as

$$\bar{\kappa}_s = \langle \sigma, \sigma \rangle = \prod_{(a:b)} [s_b \sigma, s_a \sigma]^{sign(a;b)},$$

where (a; b) runs over the set of all (2s-1; 2s-1)-shuffles. Now the map (3.6) can be constructed with the help of (2s-1)-Samuelson products and the structure of the element $\bar{\kappa}_s$.

Acknowledgements. The author thanks J. Wu for the suggestion to consider the simplicial meaning of the Hilton-Milnor theorem.

REFERENCES

- [1] E. Curtis: Simplicial homotopy theory, Adv. Math. 6 (1971), 107-209.
- [2] P. Goerss: A Hilton-Milnor theorem for categories of simplicial algebras, *Amer. J. Math.* **111** (1989), 927-971.
- [3] P. Hilton: On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955) 154-172.
- [4] J. Wu: Combinatorial description of homotopy groups of certain spaces, *Math. Proc. Camb. Phyl. Soc.* 130, (2001), 489-513.
- [5] J. Wu: A braided simplicial group, Proc. London Math. Soc. 84 (2002), 645-662.