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Abstract. We show that the mapping class group of a compact orientable
surface with higher complexity has the following extreme rigidity in the sense
of measure equivalence: if the mapping class group is measure equivalent to
a discrete group, then they are commensurable up to finite kernel. Moreover,
we describe all lattice embeddings of the mapping class group into a locally
compact second countable group. We also obtain similar results for finite direct
products of mapping class groups.

1. Introduction

The purpose of this paper is to establish a new rigidity theorem for the mapping
class group in terms of measure equivalence among discrete groups. In this paper,
by a discrete group we mean a discrete and countable one. Measure equivalence
was introduced by Gromov [16] as follows:

Definition 1.1. We say that two discrete groups Γ and Λ are measure equivalent if
there exists a measure-preserving action of Γ×Λ on a standard Borel space (Σ,m)
with a σ-finite positive measure such that both restricted actions to Γ and Λ are
essentially free and have a fundamental domain of finite measure. The space (Σ,m)
(equipped with the Γ × Λ-action) is then called a ME coupling of Γ and Λ.

It is easy to see that measure equivalence defines an equivalence relation among
discrete groups. One typical example of two measure equivalent groups is given by
any two lattices in the same locally compact second countable (lcsc) group, which
is the main geometric motivation for the introduction of this notion. Commensu-
rability up to finite kernel is the equivalence relation for discrete groups defined
by declaring two groups in an exact sequence 1 → A → B → C → 1 of discrete
groups to be equivalent if the third group is finite. Any two discrete groups which
are commensurable up to finite kernel are measure equivalent.

Measure equivalence between two groups has another equivalent formulation in
terms of orbit equivalence (see Subsection 2.3), which has been studied for a long
time and is closely related to ergodic theory and the theory of von Neumann alge-
bras. The first magnificent result about orbit equivalence is due to Ornstein-Weiss
[33] following Dye [5], [6] and it can be stated in terms of measure equivalence as
follows: a discrete group is measure equivalent to Z if and only if it is an infi-
nite amenable group. (This result was generalized for amenable discrete measured
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equivalence relations by Connes-Feldman-Weiss [4].) Note that Zimmer [40] ex-
tended the superrigidity theorem for semisimple Lie groups of non-compact type
due to Mostow-Margulis to one in the context of orbit equivalence, which is called
his cocycle superrigidity theorem, and he classified lattices in simple Lie groups of
real rank at least 2 up to measure equivalence. In addition to this classification, his
cocycle superrigidity theorem has many applications to various rigidity phenomena
of higher rank lattices.

Recently, the study of measure equivalence and orbit equivalence is very rapidly
developing. Furman’s beautiful rigidity result in [11] completely determines the
class of discrete groups measure equivalent to some higher rank lattices. Namely, if
a discrete group Λ is measure equivalent to a lattice in a connected simple Lie group
G with finite center and real rank at least 2, then there exists a homomorphism from
Λ onto a lattice in AdG whose kernel is finite. Gaboriau’s discovery in [14] that
`2-Betti numbers for discrete groups are invariant under measure equivalence in a
certain sense leads to surprising progress in the classification problem of measure
equivalence because these numerical invariants are defined for all discrete groups
and are computable for various discrete groups arising geometrically. Popa showed
in [34], [35] that the Bernoulli shifts of Kazhdan groups have various strong rigidity
properties in terms of orbit equivalence. It is remarkable that he treated all Kazhdan
groups, which is a very large class of groups. The reader should be referred to [15],
[37], [38] for more details of recent development of measure equivalence and orbit
equivalence.

Let M = Mg,p be a connected compact orientable surface of type (g, p), that
is, of genus g and with p boundary components. Throughout the paper, a surface
is assumed to be connected, compact and orientable unless otherwise stated. The
mapping class group Γ(M) of M is defined as the group of isotopy classes of all
orientation-preserving diffeomorphisms of M . The extended mapping class group
Γ(M)� of M is the group of isotopy classes of all diffeomorphisms of M , which
contains Γ(M) as a subgroup of index 2. Let κ(M) = 3g+ p− 4 be the complexity
of M . If κ(M) > 0, we say that M has higher complexity. Let C = C(M) be
the curve complex for a surface M . In [25], we obtain some classification result
of Γ(M) in terms of measure equivalence and give various examples of discrete
groups not measure equivalent to Γ(M). In the proof, we established fundamental
methods to study subrelations in a discrete measured equivalence relation arising
from a standard action of Γ(M), where a standard action means an essentially free,
measure-preserving action on a standard Borel space with a finite positive measure.
The curve complex played one of the most important roles in the study of them.
Using these methods, we show the following rigidity theorem for Γ(M), which can
be viewed as an analogue of Furman’s rigidity theorem and is the main result of this
paper. Let Aut(C) denote the automorphism group of the simplicial complex C.
Note that Aut(C) and Γ(M) are commensurable up to finite kernel (see Theorem
2.5).

Theorem 1.1. If a discrete group Λ is measure equivalent to the mapping class
group Γ(M) with κ(M) > 0, then there exists a homomorphism ρ : Λ → Aut(C)
whose kernel and cokernel are both finite.

This theorem completely determines the class of discrete groups measure equiv-
alent to Γ(M) and provides the first example of infinite discrete groups with such
an extreme rigidity in the theory of measure equivalence. Remark that uniform



MEASURE EQUIVALENCE RIGIDITY OF THE MAPPING CLASS GROUP 3

and non-uniform lattices in Lie groups treated in Furman’s rigidity result are not
commensurable up to finite kernel because they are not quasi-isometric [7]. Hence,
if Γ is a lattice as in Furman’s rigidity theorem, then there exists a discrete group
which is measure equivalent to Γ and is not commensurable up to finite kernel with
Γ.

Remark 1.1. Although both Furman’s and Popa’s rigidity theorems are concerned
with discrete groups satisfying (or related to) Kazhdan’s property, the mapping
class group for a surface of genus at most 2 does not have Kazhdan’s property
or more strongly, it contains a subgroup of finite index which admits a quotient
isomorphic to a non-abelian free group of finite rank (see [32]). It is unknown
whether the mapping class groups for other surfaces have Kazhdan’s property or
not.

Theorem 1.1 completes the classification of mapping class groups up to measure
equivalence.

Theorem 1.2. Suppose that M 1, M2 are distinct surfaces of type (g1, p1), (g2, p2),
respectively with κ(M 1), κ(M2) > 0 and g1 ≤ g2. Moreover, assume that Γ(M 1) and
Γ(M2) are measure equivalent. Then we only have the following two possibilities:
((g1, p1), (g2, p2)) = ((0, 5), (1, 2)), ((0, 6), (2, 0)).

Remark 1.2. Note that if κ(M) < 0 and M 6= M1,0, then Γ(M) is finite. Both
Γ(M1,0) and Γ(M1,1) are isomorphic to SL(2,Z) and Γ(M0,4) is commensurable up
to finite kernel with SL(2,Z). It is known that Γ(M0,5) and Γ(M1,2) (resp. Γ(M0,6)
and Γ(M2,0)) are commensurable up to finite kernel (see Theorem 2.5).

Let Γ be a lattice in a connected simple Lie group G with finite center and
real rank at least 2. In the proof of Furman’s rigidity theorem in [11], the main
ingredient is to prove the following (see [11, Theorem 4.1]): let (Ω, ω) be a self ME
coupling of Γ (i.e., a ME coupling of Γ and Γ). Then there exists an essentially
unique almost Γ × Γ-equivariant Borel map Ψ: Ω → Aut(AdG), which means that

Ψ((γ, γ′)x) = Ad(γ)Ψ(x)Ad(γ ′)−1

for any γ, γ′ ∈ Γ and a.e. x ∈ Ω. Furman substantially used Zimmer’s cocycle
superrigidity theorem for the construction of Ψ. On the other hand, we can show
that for a self ME coupling (Σ,m) of Γ(M), there exists an essentially unique almost
Γ(M) × Γ(M)-equivariant Borel map Φ: Σ → Aut(C), which means that

Φ((γ, γ′)x) = π(γ)Φ(x)π(γ′)−1

for any γ, γ′ ∈ Γ(M) and a.e. x ∈ Σ. Here, π : Γ(M)� → Aut(C) is the natural
homomorphism. This construction of Φ is the heart of the proof of Theorem 1.1.
In Section 3, we give an outline of the construction of Φ.

After the construction of the map Φ, we apply Furman’s and Monod-Shalom’s
techniques in [11], [31] for higher rank lattices and non-trivial direct products of
finitely many groups with special properties (e.g., word-hyperbolic ones), which are
applicable to a more general situation. More precisely, given a ME coupling (Σ′,m′)
of Γ(M) and a discrete group Λ, we construct the self ME coupling Σ′ ×Λ Λ×Λ Σ̌′.
Using their techniques for the equivariant Borel map from this self ME coupling
into Aut(C), one can find a homomorphism ρ as in Theorem 1.1.

Moreover, we consider the same problem as above for a finite direct product
Γ(M1) × · · · × Γ(Mn) of mapping class groups Γ(Mi) with κ(Mi) > 0 for all i.
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Monod-Shalom introduced in [31] the class C consisting of discrete groups Γ which
admit a mixing unitary representation π on a Hilbert space such that the second
bounded cohomologyH2

b (Γ, π) of Γ with coefficient π does not vanish. They showed
in that paper that a non-trivial finite direct product of discrete groups in C satisfies
various measurable rigidity properties. The class C contains a large number of
discrete groups arising geometrically (e.g., word-hyperbolic ones) and whether a
discrete group is in C or not is invariant under measure equivalence. Hamenstädt
proved in [19] that the mapping class group of a surface with higher complexity is
contained in C, so we can obtain various measurable rigidity theorems as in [31] for
direct products of mapping class groups.

Following Monod-Shalom’s ingenious technique treating fundamental domains
for actions on ME couplings, we can find an essentially unique almost equivariant
Borel map from a self ME coupling of a direct product of Γ(Mi) into the direct
product of Aut(C(Mi)). In the same way as above, we can show the following
theorem similar to Theorem 1.1 for a direct product of Γ(Mi):

Theorem 1.3. Let n be a positive integer and let Mi be a surface with κ(Mi) > 0
for i ∈ {1, . . . , n}. If a discrete group Λ is measure equivalent to the direct product
Γ(M1)× · · · ×Γ(Mn), then there exists a homomorphism Λ → Aut(C(M1))× · · · ×
Aut(C(Mn)) whose kernel and cokernel are both finite.

In [13], Furman gave another application of the map Ψ mentioned above. He
gave an explicit description of a lcsc group containing a lattice isomorphic to a
lattice in a simple Lie group of higher rank. Roughly speaking, he showed that
such a lcsc group can be built only from the ambient Lie group or from the lattice
itself and their actions on a compact group. Following Furman, we describe a lcsc
group containing a lattice isomorphic to the mapping class group as follows. We
fix notations as follows: let n ∈ N and let Mi be a surface with κ(Mi) > 0 for
i ∈ {1, . . . , n}. Put

G = Aut(C(M1)) × · · · × Aut(C(Mn))

and let Gi be equal to Γ(Mi)
� or Aut(C(Mi)). Put G0 = G1 × · · · × Gn and let

π : G0 → G be the natural homomorphism.

Theorem 1.4. Suppose that Γ is a subgroup of finite index in G0 and there is a
lattice embedding σ : Γ → H into a lcsc group H, that is, σ is an injective homo-
morphism such that σ(Γ) is a lattice in H. Then we have a subgroup H0 of finite
index in H containing σ(Γ) and a compact normal subgroup K of H0 satisfying the
following:

(i) [H : H0] ≤ [G : π(Γ)];
(ii) The action of H on K by conjugation induces via σ an action of Γ on

K and hence a semi-direct product Γ n K. Let p : Γ n K → H0 be the
homomorphism defined by Γ 3 γ 7→ σ(γ) and K 3 k 7→ k. Then p is
surjective;

(iii) For γ ∈ Γ and k ∈ K, we have (γ, k) ∈ ker(p) if and only if π(γ) = e
and k = σ(γ)−1. In particular, if the kernel of the restriction of π to Γ is
trivial, then p is an isomorphism.

This theorem says that there exist no interesting lattice embeddings of the map-
ping class group. The following corollary can easily be shown:
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Corollary 1.5. Let Γ be a subgroup of finite index in G0 and suppose that we have
a lattice embedding of Γ into a lcsc group H. Then the image of Γ is cocompact in
H and H has infinitely many connected components.

It follows from this corollary that any subgroup of finite index of the mapping
class group for a surface with higher complexity can not be isomorphic to a lattice in
a semisimple Lie group, which was proved first by Kaimanovich-Masur [24]. They
showed more generally that any sufficiently large subgroup of the mapping class
group can not be isomorphic to a lattice in a semisimple Lie group. In this direction,
Farb-Masur [8], Bestvina-Fujiwara [2] and Yeung [39] studied homomorphisms from
a lattice in some semisimple Lie group into the mapping class group and concluded
that their images are finite.

In a subsequent paper [26], we give an application of the existence of an equi-
variant Borel map from a self ME coupling of the mapping class group, following
Furman’s idea in [12]. In [26], we establish orbit equivalence rigidity of ergodic
standard actions of the mapping class group and give a new example of a discrete
measured equivalence relation which can not arise from any standard action of a
discrete group. Moreover, we give uncountably many explicit examples of ergodic
standard actions of the mapping class group which are mutually non-orbit equiva-
lent, using certain generalized Bernoulli shifts of the mapping class group.

Acknowledgement. The author is grateful to Professor Ursula Hamenstädt for
reading the first draft of this paper very carefully and giving many valuable sugges-
tions. The author also thanks the Max Planck Institute for Mathematics at Bonn
for its warm hospitality.

2. Preliminaries

2.1. The mapping class group. In this subsection, we recall fundamental facts
about the mapping class group and several geometric objects related to it. We refer
the reader to [9], [21], [23] or Sections 3.1, 3.2, 4.3 and 4.5 in [25] and the references
therein for the material of this subsection.

Let M = Mg,p be a surface of genus g and with p boundary components. Let
Γ(M), Γ(M)� be the mapping class group and the extended one of M , respectively,
defined as in Section 1. Let κ(M) = 3g + p − 4 be the complexity of M . When
κ(M) > 0, we say that M has higher complexity.

For a surfaceM , let V (C) = V (C(M)) be the set of all non-trivial isotopy classes
of non-peripheral simple closed curves on M . Let S(M) denote the set of all non-
empty finite subsets of V (C) which can be realized disjointly on M at the same
time. If κ(M) > 0, we can define the curve complex C = C(M) as a simplicial
complex whose vertex set is V (C) and simplex set is S(M). Remark that when
κ(M) = 0, we can define the curve complex of M in a slightly different way so that
its vertex set V (C) is given in the same way as above. If κ(M) ≥ 0, then Γ(M)�

has the natural and simplicial action on C and C is connected and has infinite
diameter. Moreover, when C is equipped with a natural combinatorial metric, it is
hyperbolic in the sense of Gromov (see [29]).

Let M be a surface with κ(M) ≥ 0 and let i : V (C)×V (C) → N be the geometric
intersection number. Let MF = MF(M) be the space of measured foliations on
M . Let PMF = PMF(M) be the space of projective measured foliations on M ,
which is also called the Thurston boundary and is homeomorphic to the sphere of
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dimension 6g − 7 + 2p. Note that S(M) can naturally be embedded into PMF .
The geometric intersection number i can continuously and R>0-homogeneously be
extended to a function MF ×MF → R≥0 in the following sense:

i(r1F1, r2F2) = r1r2i(F1, F2)

for any r1, r2 ∈ R>0 and F1, F2 ∈ MF . Hence, for two elements F1, F2 ∈ PMF ,
whether i(F1, F2) = 0 or 6= 0 makes sense. It is clear that Γ(M)� acts continuously
on both MF and PMF and

i(gF1, gF2) = i(F1, F2)

for any g ∈ Γ(M)� and F1, F2 ∈ MF (or PMF). Let

MIN = {F ∈ PMF : i(F, α) 6= 0 for any α ∈ V (C)}

be the set of all minimal measured foliations on M , which is a Γ(M)�-invariant
Borel subset of PMF .

The Thurston boundary PMF is an ideal boundary of the Teichmüller space of
T = T (M) for M . The union T = T ∪ PMF is called the Thurston compactifica-
tion of the Teichmüller space, which is homeomorphic to the closed Euclidean ball
of dimension 6g − 6 + 2p whose boundary corresponds to PMF .

For g ∈ Γ(M), let us denote by

Fix(g) = {x ∈ T : gx = x}

the fixed point set of g. Each element g ∈ Γ(M) is classified as follows in terms of
its fixed points on T (see Expóse 9, §V, Théorème and Expóse 11, §4, Théorème in
[9]):

(i) g has finite order and has a fixed point on T ;
(ii) g is pseudo-Anosov, which means that Fix(g) consists of exactly two points

in MIN ;
(iii) g has infinite order and is reducible, which means that there exists σ ∈

S(M) such that gσ = σ.

These three types are mutually exclusive. We say that F ∈ PMF is a pseudo-
Anosov foliation if F is a fixed point for some pseudo-Anosov element. The set of
all pseudo-Anosov elements is dense in PMF .

Since the curve complex C is hyperbolic, we can consider its boundary ∂C at
infinity, which is not compact. There exists a natural Γ(M)-equivariant continuous
map MIN → ∂C, which is injective on the set of all uniquely ergodic measured
foliations. This set contains all pseudo-Anosov foliations (see [18], [27] or [25,
Section 3.2]).

A pseudo-Anosov element g ∈ Γ(M) has the following remarkable dynamics on
T (see [23, Theorem 7.3.A]): the two fixed points F±(g) ∈ MIN of g satisfy that
if U is any neighborhood of F+(g) in T and K is any compact set in T \ {F−(g)},
then gn(K) ⊂ U for all sufficiently large n ∈ N.

Using the above classification of elements of Γ(M), McCarthy-Papadopoulos [30]
classified subgroups Γ of Γ(M) as follows:

(i) Γ is finite;
(ii) there exists a pseudo-Anosov element g ∈ Γ such that h{F±(g)} = {F±(g)}

for any h ∈ Γ. In this case, Γ is virtually cyclic;
(iii) there exists σ ∈ S(M) such that gσ = σ for any g ∈ Γ. In this case, Γ is

said to be reducible;
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(iv) Γ contains an independent pair {g1, g2} of pseudo-Anosov elements, which
means {F±(g1)}∩{F±(g2)} = ∅. In this case, Γ contains a non-abelian free
subgroup and is said to be sufficiently large.

We recall the canonical reduction system (CRS) for a subgroup of Γ(M), which
plays an important role in the study of reducible subgroups. We refer the reader to
[21, Chapter 7] for more details about CRS’s. For σ ∈ S(M), we denote by Mσ for
simplicity the surface obtained by cutting along a realization of curves in σ. For
an integer m ≥ 3, let Γ(M ;m) be the subgroup of Γ(M) consisting of all elements
which act on the homology group H1(M ; Z/mZ) trivially. This subgroup has the
following notable properties (see Theorem 1.2 and Corollaries 1.5, 1.8, 3.6 in [21]
or [25, Section 4.3]):

Theorem 2.1. In the above notation, the following assertions hold:

(i) Γ(M ;m) is a torsion-free subgroup of finite index in Γ(M).
(ii) If g ∈ Γ(M ;m) and F ∈ PMF satisfy gnF = F for some n ∈ Z\{0}, then

gF = F .
(iii) If g ∈ Γ(M ;m) and σ ∈ S(M) satisfy gnσ = σ for some n ∈ Z \ {0}, then

gα = α for any α ∈ S(M) and g preserves each component of Mσ and of
the boundary of M .

When we consider the problem of measure equivalence in subsequent sections,
we study actions of (a finite index subgroup of) Γ(M ;m) instead of Γ(M).

Let Γ be a subgroup of Γ(M ;m). A curve α ∈ V (C) is called an essential
reduction class for Γ if the following two conditions are satisfied:

(i) gα = α for any g ∈ Γ;
(ii) if β ∈ V (C) satisfies i(α, β) 6= 0, then there exists g ∈ Γ such that gβ 6= β.

The canonical reduction system (CRS) σ(Γ) for Γ is defined to be the set of all
essential reduction classes for Γ, which is either an element in S(M) or empty. We
can define the CRS for a general subgroup Γ of Γ(M) as the CRS for Γ∩Γ(M ;m),
which is independent of m. It is known that an infinite subgroup Γ of Γ(M) is
reducible if and only if σ(Γ) is non-empty (see [21, Corollary 7.17]).

Given a subgroup Γ of Γ(M ;m) and σ ∈ S(M) with gσ = σ for any g ∈ Γ,
thanks to Theorem 2.1 (iii), we can define a natural homomorphism

pσ : Γ →
∏

Q

Γ(Q),

where Q runs through all components of Mσ.

Lemma 2.2 ([3, Lemma 2.1 (1)], [23, Corollary 4.1.B]). The kernel of pσ is con-
tained in the subgroup of Γ(M) generated by Dehn twists about all curves in σ.

For each component Q of Mσ, let pQ : Γ → Γ(Q) be the composition of pσ with
the projection onto Γ(Q). It is known that if a subgroup Γ of Γ(M ;m) is reducible
and Q is a component of Mσ(Γ), then the image pQ(Γ) either is trivial or contains
a pseudo-Anosov element in Γ(Q) (see [21, Corollary 7.18]). If pQ(Γ) is trivial,
infinite amenable or non-amenable, then Q is said to be T, IA or IN, respectively.

Lemma 2.3. Let Γ be a finite index subgroup of Γ(M) and define a subgroup

Γσ = {g ∈ Γ : gσ = σ}

for σ ∈ S(M). Then the CRS for Γσ is equal to σ.
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This lemma follows easily from [21, Theorem 7.16] because any component of
Mσ which is not a pair of pants is IN for Γσ if Γ is a finite index subgroup of
Γ(M ;m) with an integer m ≥ 3.

Lemma 2.4. Let Γ be an infinite subgroup of Γ(M ;m) and let α ∈ V (C(M)).
Assume that gα = α for all g ∈ Γ. If for each component Q of Mα, we have gβ = β
for any β ∈ V (C(Q)) and g ∈ Γ, then the CRS for Γ is {α}.

Proof. Since Γ is infinite and reducible, the CRS σ(Γ) for Γ is non-empty. Let
δ ∈ σ(Γ). We show that δ = α. Let Q be a component of Mα. If δ ∈ V (C(Q)),
then there exists β ∈ V (C(Q)) with i(β, δ) 6= 0. By assumption, β is invariant for
Γ, which contradicts the assumption that δ is an essential reduction class for Γ.
Thus, either i(δ, α) 6= 0 or δ = α. The former case can not happen because α is
invariant for Γ and δ ∈ σ(Γ). �

2.2. The automorphism group of the curve complex. Let M be a surface
with κ(M) > 0. Then we have the natural homomorphism π : Γ(M)� → Aut(C).

Theorem 2.5 ([22], [28]). Let M be a surface with κ(M) > 0.

(i) If M is neither M1,2 nor M2,0, then π is an isomorphism.
(ii) If M = M1,2, then the image of π is a subgroup of Aut(C) with index 5

and ker(π) is the subgroup generated by a hyperelliptic involution, which is
isomorphic to Z/2Z.

(iii) If M = M2,0, then π is surjective and ker(π) is the subgroup generated by
a hyperelliptic involution, which is isomorphic to Z/2Z.

(iv) The two curve complexes C(M0,5), C(M1,2) (resp. C(M0,6), C(M2,0)) are
isomorphic as simplicial complexes.

Theorem 2.6. Let Γ be a subgroup of finite index in Aut(C). For each g0 ∈
Aut(C) \ {e}, the set {gg0g−1 : g ∈ Γ} consists of infinitely many elements.

Proof. We may assume that M 6= M1,2,M2,0 by Theorem 2.5 (iv). By Theorem
2.5 (i), we identify Aut(C) with Γ(M)�. Let g0 ∈ Γ(M)� and assume that the set
{gg0g

−1 : g ∈ Γ} consists of only finitely many elements. Then note that for any
infinite subset {hn}n∈N of Γ, there exists an infinite subsequence {ni}i∈N of N such
that hni

g0h
−1
ni

= hnj
g0h

−1
nj

for each i, j. Put

Fix(g0) = {x ∈ T : g0x = x},

which is a non-empty closed subset of T .
Assume Fix(g0) 6⊃ PMF . If we deduce a contradiction, then the inclusion

Fix(g0) ⊃ PMF holds, which implies g0 = e and completes the proof. Since the
set of pseudo-Anosov foliations is dense in PMF , we can find an independent pair
{g1, g2} ⊂ Γ(M) of pseudo-Anosov elements such that F+(g1), F+(g2) ∈ PMF \
Fix(g0). Using the assumption that Γ is a subgroup of finite index in Γ(M)�, we
may assume that g1, g2 ∈ Γ.

Let s ∈ Fix(g0). It follows from the above remark that there exists an infinite
increasing subsequence {ni} of N such that g−ni

1 g0g
ni

1 = g0 for each i. Then we
have s = g0s = g−ni

1 g0g
ni

1 s, which implies gni

1 s ∈ Fix(g0) for each i. If s 6= F−(g1),
then gni

1 s → F+(g1) ∈ PMF \ Fix(g0) as i → ∞, which is a contradiction. Thus,
s = F−(g1). Similarly, we can show that if s ∈ Fix(g0), then s = F−(g2), which is
a contradiction because the pair {g1, g2} is independent. �
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2.3. Measure equivalence and orbit equivalence. In this subsection, we recall
the construction of weakly orbit equivalent actions from a ME coupling given in [12,
Section 3]. We refer the reader to [1] for the terminology of an r-discrete measured
groupoid and its amenability. We fix notations as follows: given an r-discrete
measured groupoid G on a standard finite measure space (X,µ) (i.e., a standard
Borel space with a finite positive measure) and a Borel subset A ⊂ X with positive
measure, we denote by

(G)A = {γ ∈ G : r(γ), s(γ) ∈ A}

the restricted groupoid to A, where r, s : G → X are the range, source maps, re-
spectively. For x, y ∈ X , let

Gxy = {γ ∈ G : r(γ) = x, s(γ) = y}

and let ex ∈ Gxx denote the unit. If A is a Borel subset of X , then GA denotes the
saturation defined by

GA = {r(γ) ∈ X : γ ∈ G, s(γ) ∈ A},

which is a Borel subset of X .
Let (Σ,m) be a ME coupling of discrete groups Γ and Λ, and choose fundamental

domains Y,X ⊂ Σ for the Γ-, Λ-actions. Remark that we have a natural Γ-action
on X equipped with the restricted measure of m because X can be identified with
the quotient space Σ/Λ as Borel spaces. Similarly, we have a natural Λ-action on
Y . In order to distinguish from the original Γ-, Λ-actions on Σ, we denote the Γ-,
Λ-actions on X , Y by γ ·x, λ · y, respectively, using a dot. Note that we can choose
X and Y so that A = X ∩ Y satisfies Γ · A = X and Λ · A = Y up to null sets. In
what follows, suppose that X and Y satisfy this condition.

Let G = ΓnX (resp. H = ΛnY ) be the r-discrete measured groupoid on (X,µ)
(resp. (Y, ν)) constructed from the above action. We can define cocycles

α : Γ ×X → Λ, β : Λ × Y → Γ

so that γ · x = α(γ, x)γx ∈ X and λ · y = β(λ, y)λy ∈ Y for any γ ∈ Γ, λ ∈ Λ and
a.e. x ∈ X , y ∈ Y . Let

p : X → Y, q : Y → X

be the Borel maps defined by

p(x) = Γx ∩ Y, q(y) = Λy ∩X

for x ∈ X and y ∈ Y . Note that both p and q are the identity on A = X ∩ Y and

p(γ · x) = α(γ, x) · p(x), q(λ · y) = β(λ, y) · q(y)

for any γ ∈ Γ, λ ∈ Λ and a.e. x ∈ X , y ∈ Y . Define groupoid homomorphisms

f : G 3 (γ, x) 7→ (α(γ, x), p(x)) ∈ H

g : H 3 (λ, y) 7→ (β(λ, y), q(y)) ∈ G.

Note that β(α(γ, x), x) = γ for any γ ∈ Γ and a.e. x ∈ A with γ · x ∈ A, and
α(β(λ, y), y) = λ for any λ ∈ Λ and a.e. y ∈ A with λ · y ∈ A. Therefore, we obtain
the following:

Proposition 2.7. The groupoid homomorphisms

f : (G)A → (H)A, g : (H)A → (G)A

satisfy g ◦ f = id and f ◦ g = id.
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This proposition implies that the two actions of Γ on X and Λ on Y are weakly
orbit equivalent.

Consider the Γ × Λ-action on X × Λ defined by

γλ(x, λ′) = (γ · x, α(γ, x)λ′λ−1).

It is easy to check the following lemma:

Lemma 2.8. The Borel map Σ → X ×Λ defined by λx 7→ (x, λ−1) for x ∈ X and
λ ∈ Λ is Borel isomorphic and Γ × Λ-equivariant.

Conversely, we know the following theorem. For simplicity, a standard action of
a discrete group means an essentially free, measure-preserving Borel action of it on
a standard finite measure space.

Theorem 2.9 ([12, Theorem 3.3]). If two discrete groups Γ and Λ have ergodic
standard actions on (X,µ) and (Y, ν) which are weakly orbit equivalent, then we
can construct a ME coupling (Σ,m) of Γ and Λ such that the Γ-actions on X and
Λ\Σ (resp. the Λ-actions on Y and Γ\Σ) are isomorphic.

2.4. Normal subgroupoids. In this subsection, we introduce the notion of normal
subgroupoids of an r-discrete measured groupoid, based on [10], [25, Subsection
4.6.1]. This notion is a generalization of normal subrelations of a discrete measured
equivalence relation and also a generalization of normal subgroups of a discrete
group.

Let G be an r-discrete measured groupoid on a standard finite measure space
(X,µ) and r, s : G → X be the range, source maps, respectively. Let S be a sub-
groupoid of G. In this paper, a subgroupoid of G means a Borel subgroupoid of G
whose unit space is the same as the one for G. Let us denote by EndS(G) the set
of all Borel maps ϕ : dom(ϕ) → G from a Borel subset of X such that

(i) s(ϕ(x)) = x for a.e. x ∈ dom(ϕ);
(ii) γ ∈ S if and only if ϕ(r(γ))γϕ(s(γ))−1 ∈ S for a.e. γ ∈ (G)dom(ϕ).

Let [[G]]S be the subset of EndS(G) consisting of all ϕ such that the map dom(ϕ) 3
x 7→ r(ϕ(x)) ∈ X is injective a.e. on the domain. When S is trivial, we write [[G]]
instead of [[G]]S .

We define the composition ψ◦ϕ : dom(ψ◦ϕ) → G of two elements ϕ, ψ ∈ EndS(G)
by

dom(ψ ◦ ϕ) = {x ∈ dom(ϕ) : r(ϕ(x)) ∈ dom(ψ)},

ψ ◦ ϕ(x) = ψ(r(ϕ(x)))ϕ(x)

for x ∈ dom(ψ ◦ ϕ). It is easy to check that ψ ◦ ϕ ∈ EndS(G).

Definition 2.1. A subgroupoid S of an r-discrete measured groupoid G on a stan-
dard finite measure space (X,µ) is said to be normal in G if the following condition is
satisfied: there exists a countable family {φn} of maps in EndS(G) such that for a.e.
γ ∈ G, we can find φn in the family satisfying r(γ) ∈ dom(φn) and φn(r(γ))γ ∈ S.
In this case, we write S C G and we call {φn} a family of normal choice functions
for the pair (G,S).

The following two lemmas give natural examples of normal subgroupoids:

Lemma 2.10. Suppose that a discrete group G has a non-singular action on (X,µ)
and H is a normal subgroup of G. Let GG and GH be the groupoids generated by
the actions of G and H, respectively. Then the subgroupoid GH is normal in GG.
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The following two lemmas can be proved by using [25, Theorem 3.9]:

Lemma 2.11. Let G be an r-discrete measured groupoid on (X,µ). Then the
isotropy groupoid

G0 = {γ ∈ G : r(γ) = s(γ)}

is normal in G.

Lemma 2.12. Let G be an r-discrete measured groupoid on (X,µ) and let A be a
Borel subset of X. Then we can find a Borel map f : GA→ G such that

(i) s(f(x)) = x and r(f(x)) ∈ A for a.e. x ∈ GA;
(ii) f(x) = ex ∈ Gxx for a.e. x ∈ A, where Gxx = {γ ∈ G : r(γ) = s(γ) = x} and

ex is the identity element of the isotropy group Gxx .

Lemma 2.13. Let G be an r-discrete measured groupoid on (X,µ) and let S be a
normal subgroupoid of G. If A is a Borel subset of X with positive measure, then
(S)A is normal in (G)A.

Proof. Let {φn} be a family of normal choice functions for the pair (G,S). We
write B = SA and

Dn = {x ∈ A ∩ dom(φn) : r(φn(x)) ∈ B}.

Define a Borel map φ′n : Dn → (G)A by φ′n(x) = f(r(φn(x)))φn(x) for x ∈ Dn,
where f : B → S is a Borel map given by Lemma 2.12 such that

• s(f(x)) = x and r(f(x)) ∈ A for a.e. x ∈ B = SA;
• f(x) = ex ∈ Sxx for a.e. x ∈ A.

We show that {φ′n} is a family of normal choice functions for ((G)A, (S)A). Since
φ′n is the composition of φn and f , we see that φ′n ∈ EndS(G). Let γ ∈ (G)A.
Then there exists φn such that r(γ) ∈ dom(φn) and φn(r(γ))γ ∈ S. Note that
r(γ) ∈ A ∩ dom(φn) and r(φn(r(γ))) = r(φn(r(γ))γ) ∈ SA. Therefore, r(γ) ∈ Dn

and

φ′n(r(γ))γ = f(r(φn(r(γ))))φn(r(γ))γ ∈ (S)A,

which completes the proof. �

Lemma 2.14. Let G be a discrete group generated by two subgroups G1, G2 so
that G1 is normal in G and assume that we have a non-singular action of G on
a standard finite measure space (X,µ). We denote by G, G1 and G2 the groupoids
arising from the actions of G, G1 and G2, respectively. Let A ⊂ X be a Borel subset
with positive measure. Then (G1)A is normal in the subgroupoid H = (G1)A∨ (G2)A
of (G)A generated by the two subgroupoids (G1)A and (G2)A.

Proof. For each i = 1, 2 and g ∈ Gi, define Ag = A ∩ g−1A and ψg : Ag → (G)A
by ψg(x) = (g, x) for x ∈ Ag . It is easy to check that ψg ∈ End(G1)A

(H). For
each word ω of elements in G1 and G2, we can naturally define the composition
ψω ∈ End(G1)A

(H) of ψg. It is clear that {ψω}ω forms a family of normal choice
functions for (H, (G1)A). �

3. Actions of some discrete groups

3.1. Actions of the mapping class group. In Sections 4 and 5, we consider
mainly the groupoid generated by an action of the mapping class group and its
subgroupoids. In this subsection, we collect some results about them. Most of the
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following results can be shown in the same way as in [25], where we assume that
the action is essentially free.

Definition 3.1. An r-discrete measured groupoid G on (X,µ) is said to be of
infinite type if there exists a Borel partition X = A1 t A2 such that

(i) for a.e. x ∈ A1, the isotropy group Gxx is infinite;
(ii) the associated principal groupoid of (G)A2

defined by

{(r(γ), s(γ)) ∈ A2 ×A2 : γ ∈ (G)A2
}

is recurrent.

Note that for any n ∈ N ∪ {∞}, the subset

Xn = {x ∈ X : |Gxx | = n}

is measurable and satisfies GXn = Xn.
Let G be an r-discrete measured groupoid on (X,µ) and let ρ : G → G be a

groupoid homomorphism into a standard Borel group G. Let S be a Borel G-
space. Recall that a Borel map ϕ : A → S from a Borel subset A ⊂ X is said to
be ρ-invariant (or invariant for simplicity) for G if ρ(γ)ϕ(s(γ)) = ϕ(r(γ)) for a.e.
γ ∈ (G)A.

Lemma 3.1. In the above situation, let us define a Borel map ϕ′ : GA → S by
ϕ′(x) = ρ(f(x)−1)ϕ(r(f(x))) for x ∈ GA, where f : GA → G is a Borel map con-
structed in Lemma 2.12. Then ϕ′ is also ρ-invariant for G.

Proof. Let γ ∈ (G)GA and put y = r(γ), x = s(γ) ∈ GA. Then

ρ(γ)ϕ′(x) = ρ(f(y)−1)ρ(f(y)γf(x)−1)ϕ(r(f(x)))

= ρ(f(y)−1)ϕ(r(f(y))) = ϕ′(y)

since f(y)γf(x)−1 ∈ (G)A and r(f(y)γf(x)−1) = r(f(y)). �

Assumption 3.1. We call the following assumption (?): let Γ be a subgroup of
Γ(M ;m), where M is a surface with κ(M) > 0 and m ≥ 3 is an integer. Let (X,µ)
be a standard finite measure space. We assume that there exists a non-singular
action of Γ on (X,µ) generating the groupoid

G = GΓ = {(γ, x) ∈ Γ ×X : γ ∈ Γ, x ∈ X}.

and the induced cocycle

ρ : G → Γ, (γ, x) 7→ γ

for γ ∈ Γ and a.e. x ∈ X .

Under the above assumption, we often use the following notation:

• For a subgroup Γ′ of Γ, let GΓ′ denote the subgroupoid of G generated by
the action of Γ′.

• For σ ∈ S(M), we denote by Dσ the intersection of Γ and the subgroup
generated by Dehn twists about all curves in σ. We write Gσ instead of
GDσ

for simplicity. If σ consists of one element α ∈ V (C), then we write
Dα (resp. Gα) instead of Dσ (resp. Gσ).

As in [25], we can consider two types of subgroupoids of infinite type, following
the classification of subgroups of Γ(M) mentioned in Subsection 2.1. We denote by
M(PMF) the space of all probability measures on PMF .



MEASURE EQUIVALENCE RIGIDITY OF THE MAPPING CLASS GROUP 13

Theorem 3.2 ([25, Theorem 4.41]). Under the assumption (?), let Y ⊂ X be a
Borel subset with positive measure and let S be a subgroupoid of (G)Y of infinite
type. If we have an invariant Borel map ϕ : Y →M(PMF) for S, then there exists
a Borel partition Y = Y1 t Y2 satisfying the following:

(i) ϕ(x)(MIN ) = 1 for a.e. x ∈ Y1;
(ii) ϕ(x)(PMF \MIN ) = 1 for a.e. x ∈ Y2.

In the above theorem, remark that both Y1 and Y2 are invariant for S and if Y ′

is a Borel subset of Y with positive measure and ψ : Y ′ → M(PMF) is another
invariant Borel map for S, then ψ satisfies

(i) ψ(x)(MIN ) = 1 for a.e. x ∈ Y1 ∩ Y ′;
(ii) ψ(x)(PMF \MIN ) = 1 for a.e. x ∈ Y2 ∩ Y ′,

where Y1, Y2 are Borel subsets as in the above theorem. Hence, it is natural to give
the following definition:

Definition 3.2. Under the assumption (?), let Y ⊂ X be a Borel subset with
positive measure and let S be a subgroupoid of (G)Y of infinite type.

(i) If we have an invariant Borel map ϕ : Y → M(PMF) for S such that
ϕ(x)(MIN ) = 1 for a.e. x ∈ Y , then S is said to be irreducible and
amenable (or IA in short).

(ii) If we have an invariant Borel map ϕ : Y → M(PMF) for S such that
ϕ(x)(PMF \MIN ) = 1 for a.e. x ∈ Y , then S is said to be reducible.

We have explained in Section 1 that the key ingredient of the proof of Theorem
1.1 is to construct an essentially unique almost Γ(M) × Γ(M)-equivariant Borel
map Φ: Σ → Aut(C) for a self ME coupling (Σ,m) of Γ(M). We give a rough
outline of the construction of the map Φ. In [25], we developed the theory of
recurrent subrelations of an equivalence relation arising from a standard action of
the mapping class group. Thanks to it, we can divide such subrelations into two
types, irreducible and amenable (IA) ones and reducible ones as in Theorem 3.2
and Definition 3.2. The notion of normal subrelations also played an important role
in the classification theorem of [25]. In what follows in this section, we generalize
various central results in [25] about the above subrelations to the case where the
action of the mapping class group is not necessarily essentially free. In this case,
although we need to consider r-discrete measured groupoids arising from group
actions, the proof can be proceeded along the same line.

In Section 4, using various results in this section, we characterize a reducible sub-
groupoid in terms of amenability, non-amenability and normality (see Propositions
4.1, 4.2). Note that these three properties are preserved under an isomorphism
between two groupoids, and that as mentioned in Subsection 2.3, considering a
self ME coupling of Γ(M) is almost equivalent to considering an isomorphism f
between two groupoids G1, G2 arising from measure-preserving actions of Γ(M).
Thanks to the characterization of a reducible subgroupoid, we see that the image
of a reducible subgroupoid of G1 via f is also reducible. Moreover, maximal re-
ducible subgroupoids are mapped to maximal ones by f (see Corollary 4.5, Lemma
4.6 and Corollary 4.7).

Let G be the groupoid associated with a measure-preserving action of Γ(M) on
a standard finite measure space (X,µ). As a next stage, in Section 5, we study an
amenable normal subgroupoid S of infinite type of a maximal reducible subgroupoid
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of G. We can show that S is contained in the groupoid generated by the action of a
Dehn twist about some simple closed curve on M up to a countable Borel partition
of X (see Lemma 5.1). Conversely, the subgroupoid generated by the action of
a Dehn twist about a simple closed curve is normal in some maximal reducible
subgroupoid of G. It follows that roughly speaking, the subgroupoid generated
by a Dehn twist about a simple closed curve can be characterized in terms of
amenability, non-amenability and normality, and in the situation of the previous
paragraph, we see that such subgroupoids are preserved by f . This means that
f induces a bijection of the set V (C) of all isotopy classes of simple closed curves
on M , which is shown to be an automorphism of the curve complex. Translating
this fact into structural information on a self ME coupling (Σ,m) of Γ(M), we can
construct an almost Γ(M) × Γ(M)-equivariant Borel map Φ from Σ into Aut(C)
as mentioned in Section 1.

Remark 3.1. When κ(M) > 0 and M 6= M1,2,M2,0, Ivanov [23, Section 8.5] showed
that any isomorphism from a finite index subgroup of Γ(M)� into a finite index
subgroup of Γ(M)� is the restriction of a unique inner automorphism of Γ(M)�. A
key ingredient of his proof is to show that such an isomorphism f maps sufficiently
high powers of Dehn twists into powers of Dehn twists by characterizing a (power
of) Dehn twist algebraically (see [23, Theorem 7.5.B]). It follows that f yields a
bijection on the set V (C), which is, in fact, an automorphism of the curve complex.
This automorphism comes from an element g in Γ(M)� by Ivanov’s theorem (see
Theorem 2.5). After an easy computation shown in the proof of Theorem 8.5.A in
[23], we can prove that f is the restriction of the inner automorphism of Γ(M) by
conjugation with g. Our construction of the map Φ mentioned above relies heavily
on this idea due to Ivanov.

Remark 3.2. Note that if we only want to prove Theorem 1.1, then it is not necessary
to generalize the results in [25] to the case where the standard action of the mapping
class group is not necessarily essentially free because in general, when two discrete
groups Λ1, Λ2 are measure equivalent, there exists a ME coupling of Λ1 and Λ2

such that the Λ1 × Λ2-action on it is essentially free, which induces weakly orbit
equivalence between standard actions of Λ1 and Λ2. However, in Theorem 1.4,
we need to consider a ME coupling of Γ(M) such that the Γ(M) × Γ(M)-action
is not necessarily essentially free. Moreover, thanks to the generalization, we can
obtain some information about stabilizers of measure-preserving actions of Γ(M)
(see Corollaries 3.9 and 3.17).

In the following theorems, we collect basic properties of the two types of sub-
groupoids of a groupoid generated by an action of the mapping class group, which
are called IA and reducible subgroupoids, respectively. First, we consider IA sub-
groupoids.

Since the curve complex C is a hyperbolic metric space [29], we can construct
the boundary ∂C at infinity, which is non-empty (see [18], [27] or [25, Section 3.2]).
Let ∂2C be the quotient space of ∂C × ∂C by the coordinate exchanging action of
the symmetric group of two letters and let M(∂C) be the space of all probability
measures on ∂C, which has the Borel structure introduced in the comment before
Proposition 4.30 in [25]. Each element in ∂2C can naturally be viewed as an atomic
measure in M(∂C) so that each atom has measure 1 or 1/2. Then ∂2C is a Borel
subset of M(∂C).
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Under the assumption (?), let Y ⊂ X be a Borel subset with positive measure
and let S be a subgroupoid of (G)Y of infinite type. Note that if S is IA, then we can
construct an invariant Borel map Y → M(∂C) for S by using the Γ(M)-equivariant
map MIN → ∂C, which is constructed in [27] (see also [18]).

Proposition 3.3 ([25, Proposition 4.32 (ii), Corollary 4.43]). Under the assump-
tion (?), let Y ⊂ X be a Borel subset with positive measure and let S be a sub-
groupoid of (G)Y of infinite type. Suppose that S admits a ρ-invariant Borel map
ϕ : Y → M(∂C). Then the cardinality of supp(ϕ(x)) is at most 2 for a.e. x ∈ Y
and S is IA.

Theorem 3.4 ([25, Section 4.4.1, Lemma 4.58]). Under the assumption (?), let
Y ⊂ X be a Borel subset with positive measure and let S be a subgroupoid of (G)Y
of infinite type. Suppose that S is IA. Then

(i) there exists an essentially unique invariant Borel map ϕ0 : Y → ∂2C for S
satisfying the following: if Y ′ is a Borel subset of Y with positive measure
and ϕ : Y ′ →M(∂C) is an invariant Borel map for S, then

supp(ϕ(x)) ⊂ supp(ϕ0(x))

for a.e. x ∈ Y ′, where supp(ν) denotes the support of a measure ν.
(ii) if T is a subgroupoid of (G)Y with S C T , then ϕ0 is invariant also for T .
(iii) the groupoid S is amenable.

If X is a point and G is isomorphic to Γ, then the above facts follow from the
classification of subgroups of Γ(M) described in Subsection 2.1. In this case, using
properties of pseudo-Anosov elements, we can prove that S is virtually cyclic, which
implies Theorem 3.4 (iii). To prove Theorem 3.4 (iii) in a general case, we need to
use the amenability in a measurable sense of the action of Γ(M) on ∂C (or ∂2C).

Remark 3.3. Under the assumption (?), let Y ⊂ X be a Borel subset with positive
measure and let S be a subgroupoid of (G)Y of infinite type. It follows from Theorem
3.2 that there exists an essentially unique Borel partition Y = Y1tY2tY3 satisfying
the following:

• if Y1 has positive measure, then (S)Y1
is IA;

• if Y2 has positive measure, then (S)Y2
is reducible;

• if Y3 has positive measure, then (S)Y ′

3
admits no invariant Borel maps

Y ′
3 →M(PMF) for any Borel subset Y ′

3 of Y3 with positive measure.

If S is amenable and any restriction of S to a Borel subset of Y with positive
measure is not reducible, then S is IA, and the converse also holds by Theorem 3.4.

Next, we recall basic properties of reducible subgroupoids. We can define the
canonical reduction system for a reducible subgroupoid as in the case of a reducible
subgroup.

Definition 3.3. Under the assumption (?), let Y ⊂ X be a Borel subset with
positive measure and let S be a subgroupoid of (G)Y of infinite type. Let A be a
Borel subset of Y with positive measure and let α ∈ V (C).

(i) We say that the pair (α,A) is ρ-invariant for S if there exists a countable
Borel partition A =

⊔

An of A such that the constant map An → {α} is
invariant for S for each n.
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(ii) Suppose that (α,A) is ρ-invariant for S. The pair (α,A) is said to be purely
ρ-invariant if (β,B) is not ρ-invariant for S for any Borel subset B of A
with positive measure and any β ∈ V (C) with i(α, β) 6= 0. (In [25], we call
this pair an essential ρ-invariant one for S.)

Since we consider a countable Borel partition in the definition of a ρ-invariant
pair, we can easily show that if there are α ∈ V (C) and a Borel subset An ⊂ Y for
n ∈ N with (α,An) ρ-invariant for S (or purely ρ-invariant, respectively), then the
pair (α,

⋃

An) is also ρ-invariant for S (or purely ρ-invariant, respectively) by [25,
Lemma 4.47]. It follows that for each α ∈ V (C), we can find an essentially maximal
Borel subset Aα ⊂ Y such that (α,Aα) is ρ-invariant for S (or purely ρ-invariant,
respectively) unless there exist no ρ-invariant pairs for S (or purely ρ-invariant,
respectively).

Theorem 3.5 ([25, Section 4.5, Lemma 4.60]). Under the assumption (?), let
Y ⊂ X be a Borel subset with positive measure and let S be a subgroupoid of (G)Y
of infinite type. Suppose that S is reducible. Then

(i) there exists a purely ρ-invariant pair for S.
(ii) we can define an essentially unique invariant Borel map ϕ : Y → S(M) for

S so that
(a) if σ ∈ S(M) satisfies µ(ϕ−1(σ)) > 0 and α ∈ σ, then (α, ϕ−1(σ)) is a

purely ρ-invariant pair for S;
(b) if (α,A) is a purely ρ-invariant pair for S, then

µ(A \ ϕ−1({σ ∈ S(M) : α ∈ σ})) = 0.

(iii) if T is a subgroupoid of (G)Y with S C T , then ϕ is invariant also for T .

Note that we can construct ϕ in Theorem 3.5 (ii) from (i) by the observation
right before Theorem 3.5. We call ϕ in the above theorem the canonical reduction
system (CRS) for S. It is easy to see that if A is a Borel subset of Y with positive
measure, then the CRS for (S)A is the restriction of ϕ to A (see [25, Lemma 4.53
(iii)]). If X is a point and G is isomorphic to Γ, then the above definition of the
CRS for S coincides with the one mentioned in Subsection 2.1.

In the following two lemmas, we study the CRS’s for certain reducible sub-
groupoids arising from the actions of reducible subgroups.

Lemma 3.6. Under the assumption (?), suppose that the Γ-action on (X,µ) is
measure-preserving. Let G be an infinite reducible subgroup of Γ and let σ ∈ S(M)
be the CRS for G. Then GG is reducible and its CRS ϕ : X → S(M) is constant
with value σ.

Proof. It is clear that GG is reducible and for any α ∈ σ, the pair (α,X) is ρ-
invariant for GG. Assume that there exists α ∈ σ such that the pair (α,X) is not
purely ρ-invariant for GG. Then we would have a Borel subset B of X with positive
measure and β ∈ V (C) with i(α, β) 6= 0 such that (β,B) is a ρ-invariant pair
for GG. It follows that there exists a Borel subset B′ of B with positive measure
such that ρ(γ)β = β for a.e. γ ∈ (GG)B′ . We can find g ∈ G of infinite order
with gβ 6= β since α ∈ σ. Since g has infinite order and the Γ-action on (X,µ)
preserves the finite positive measure µ, the subgroupoid (G〈g〉)B′ is of infinite type,
where 〈g〉 denotes the cyclic subgroup generated by g. We can find a Borel subset
B′

1 ⊂ B′ with positive measure and n ∈ Z \ {0} such that (gn, x) ∈ (G〈g〉)B′ for any
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x ∈ B′
1. Thus, gnβ = ρ(gn, x)β = β holds for any x ∈ B′

1. Since G is a subgroup
of Γ(M ;m), it follows from Theorem 2.1 that gkβ = β for any k ∈ Z \ {0}, which
is a contradiction. Thus, (α,X) is a purely ρ-invariant pair for GG and we see that
σ is contained in ϕ(x) for a.e. x ∈ X .

Next, assume that we have a Borel subset A of X with positive measure and
β ∈ ϕ(x) \ σ for any x ∈ A. For each g ∈ G, there is a Borel subset A1 ⊂ A
with positive measure and n ∈ Z \ {0} such that (gn, x) ∈ (GG)A1

and the equation
gnβ = ρ(gn, x)β = β holds for any x ∈ A1 because (β,A) is a ρ-invariant pair for
GG. Thus, gβ = β for any g ∈ G by Theorem 2.1. It follows from β 6∈ σ that there
exists γ ∈ V (C) such that i(β, γ) 6= 0 and hγ = γ for any h ∈ G. Thus, (γ,X) is
a ρ-invariant pair for GG, which contradicts the assumption that β ∈ ϕ(x) for any
x ∈ A, that is, the pair (β,A) is pure. �

Lemma 3.7. Under the assumption (?), suppose that the Γ-action on (X,µ) is
measure-preserving. Let α ∈ V (C) and assume that the subgroup Dα is infinite.
Let Y be a Borel subset of X with positive measure and let S be a subgroupoid of
(Gα)Y of infinite type. Then S is reducible and its CRS for S is constant with value
{α}.

Proof. It is clear that S is reducible and the pair (α, Y ) is ρ-invariant for S. Let
A be a Borel subset of Y with positive measure and β ∈ V (C) with i(α, β) 6= 0.
Assume that the pair (β,A) is ρ-invariant for S. Then there exists a Borel subset
B of A with positive measure such that ρ(γ)β = β for a.e. γ ∈ (S)B . Since S is a
subgroupoid of (Gα)Y of infinite type, there exist infinitely many n ∈ Z and a Borel
subset Bn of B with positive measure such that tn ∈ Γ and (tn, x) ∈ (S)B for any
x ∈ Bn, where t ∈ Γ(M) denotes a Dehn twist about α. Hence, tnβ = ρ(tn, x)β = β
for a.e. x ∈ Bn. In particular, tnβ = β for infinitely many n ∈ Z. It follows from
[21, Lemma 4.2] (or [25, Corollary 4.26]) that i(α, β) = 0, which is a contradiction.
Thus, the pair (α, Y ) is a pure ρ-invariant one for S.

If γ ∈ V (C) satisfies i(α, γ) = 0 and α 6= γ, then there exists δ ∈ V (C) such
that i(α, δ) = 0 and i(γ, δ) 6= 0. Since the pair (δ, Y ) is ρ-invariant for S, the pair
(γ,A′) can not be a pure ρ-invariant one for S for any Borel subset A′ of Y . �

The following proposition can also be proved along the same line as in [25]:

Proposition 3.8 ([25, Proposition 4.61]). Under the assumption (?), suppose that
the Γ-action on (X,µ) is measure-preserving and that Γ is sufficiently large. Then
(G)Y is neither IA nor reducible for any Borel subset Y ⊂ X with positive measure.

As an application of the above generalization of the results in [25], we obtain
some information on stabilizers for a measure-preserving action of the mapping
class group on a standard finite measure space.

Corollary 3.9. Under the assumption (?), suppose that the Γ-action on (X,µ) is
measure-preserving and that Γ is sufficiently large. Then the isotropy group

Gxx = {γ ∈ G : r(γ) = s(γ) = x}

is either trivial or sufficiently large for a.e. x ∈ X.

We can show this corollary by using Lemma 2.11, Theorem 3.4 (ii), Theorem 3.5
(iii) and Proposition 3.8. Note that Γ is torsion-free and that
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• for each pseudo-Anosov element g ∈ Γ, the subset of X consisting of x ∈ X
such that Gxx is IA and fixes the pair {F±(g)} of pseudo-Anosov foliations
is measurable;

• for each σ ∈ S(M), the subset of X consisting of x ∈ X such that Gxx is
reducible and its CRS is σ is measurable.

It follows from these remarks that for a Borel subset Y of X with positive measure,
both subsets

Y1 = {x ∈ Y : Gxx is IA}, Y2 = {x ∈ Y : Gxx is reducible}

are measurable, and (G0)Y1
is IA and (G0)Y2

is reducible, where

G0 = {γ ∈ G : r(γ) = s(γ)}

is the isotropy groupoid of G.
In order to analyze reducible subgroupoids furthermore, in Theorems 3.11, 3.13,

we consider components of the surface obtained by cutting along the CRS for S.
There are three types of components as in the case of subgroups of Γ(M ;m) men-
tioned in the comment right before Lemma 2.3. These theorems will be used when
we characterize reducible subgroupoids in terms of amenability, non-amenability
and normality (see Section 4).

If Γ is an infinite reducible subgroup of Γ(M ;m) with an integer m ≥ 3 and
σ ∈ S(M) is the CRS for Γ, then we can classify each component Q of Mσ in
terms of properties of the quotients pQ(Γ) (i.e., triviality and amenability), where
pQ : Γ → Γ(Q) is the natural homomorphism (see the comment right before Lemma
2.3). On the other hand, when we consider a reducible subgroupoid, we cannot
construct such a quotient. However, fortunately, the properties of the quotient
pQ(Γ) used in the classification of Q can be characterized in terms of fixed points
for the action of pQ(Γ) on the space M(PMF(Q)) of all probability measures on
PMF(Q) as follows:

(a) Q is T for Γ if and only if either Q is a pair of pants or pQ(g)α = α for any
g ∈ Γ and any (or some) α ∈ V (C(Q)).

(b) Q is IA for Γ if and only if the following three conditions are satisfied:
• Q is not a pair of pants;
• pQ(g)α 6= α for any non-trivial g ∈ Γ and any (or some) α ∈ V (C(Q));
• there exists µ ∈ M(PMF(Q)) such that pQ(g)µ = µ for any g ∈ Γ

and µ(MIN (Q)) = 1.
(c) Q is IN for Γ if and only if the following two conditions are satisfied:

• Q is not a pair of pants;
• there exist no fixed points for the action of pQ(Γ) on M(PMF(Q)).

By this observation, we can similarly consider three types of components of the
surface obtained by cutting along the CRS for a reducible subgroupoid. Before
stating the definition of the three types of components, we recall some notation.

Let L be a submanifold of the surface M which is a realization of some element
in S(M). Let Q be a component of ML, where ML denotes the surface obtained by
cuttingM along L. Let pL : ML →M denote the canonical map. For δ ∈ V (C(M)),
we define a finite subset r(δ,Q) of V (C(Q)).

Let δ ∈ V (C(M)) and represent the isotopy class δ by a circle D that intersects
each of the components of L in the least possible number of points. Put DL =
p−1
L (D). The manifold DL consists of some intervals or it is a circle (if D ∩L = ∅).
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If either DL ∩ Q = ∅ or DL is a circle which lies in Q and is peripheral for Q,
then put r(δ,Q) = ∅. If DL is a non-peripheral circle lying in Q, put r(δ,Q) = {δ}.

In the remaining cases, the intersection DL ∩ Q consists of some intervals. For
each such interval I , consider a regular neighborhood in Q of the union of the
interval I and those components of ∂Q on which the ends of I lie. Let NI denote
the regular neighborhood. Then NI is a disk with two holes. Let r′(δ,Q) be the set
of isotopy classes of components of the manifolds ∂NI \ ∂Q, where I runs through
the set of all components of DL∩Q. Define r(δ,Q) as the resulting set of discarding
from r′(δ,Q) the isotopy classes of trivial or peripheral circles of Q. We will regard
r(δ,Q) as a subset of V (C(M)) using the embedding V (C(Q)) ↪→ V (C(M)). It is
clear that this definition depends only on δ and the isotopy class of Q.

Let F : M → M be a diffeomorphism such that F (L) = L and the induced
diffeomorphism ML →ML takes Q to Q. If f ∈ Γ(M) denotes the isotopy class of
F , then we have the equality

f(r(δ,Q)) = r(fδ,Q)

by definition.

Lemma 3.10 ([21, Lemma 7.9]). Let L and Q be the same as above and let δ ∈
V (C(M)). If r(δ,Q) = ∅, then one of the following three cases occurs:

(i) there is a circle in the class δ that does not intersect Q;
(ii) δ is the isotopy class of one of the components of L;
(iii) Q is a disk with two holes.

We denote by D = D(M) the set of all isotopy classes of subsurfaces in M and
denote by F0(D) the set of all finite subsets F of D (including the empty set) such
that if Q1, Q2 ∈ F and Q1 6= Q2, then Q1 and Q2 can be realized disjointly on M .

Theorem 3.11 ([25, Theorem 5.6]). Under the assumption (?), let Y ⊂ X be a
Borel subset with positive measure and let S be a subgroupoid of (G)Y of infinite
type. Suppose that S is reducible and let ϕ : Y → S(M) be its CRS. Then there exist
two essentially unique invariant Borel maps ϕt, ϕi : Y → F0(D) for S satisfying the
following:

(i) any element in ϕt(x) ∪ ϕi(x) is a component of Mϕ(x) for a.e. x ∈ Y ;
(ii) each component of Mϕ(x) belongs to ϕt(x) ∪ ϕi(x) and ϕt(x) ∩ ϕi(x) = ∅

for a.e. x ∈ Y ;
(iii) if Q is in F ∈ F0(D) with µ(ϕ−1

t (F )) > 0, then either Q is a pair of pants
or the pair (α, ϕ−1

t (F )) is ρ-invariant for S for any α ∈ V (C(Q));
(iv) if Q is in F ∈ F0(D) with µ(ϕ−1

i (F )) > 0, then Q is not a pair of pants
and (α,A) is not ρ-invariant for S for any α ∈ V (C(M)) with r(α,Q) 6= ∅
and any Borel subset A ⊂ ϕ−1

i (F ) with positive measure.

We call ϕt (resp. ϕi) the system of trivial (resp. irreducible) subsurfaces for
S or in short, a T (resp. IA) system for S. We often call an element in ϕt(x)
(resp. ϕi(x)) a trivial or T (resp. irreducible or I) subsurface for x ∈ Y . When we
identify a subsurface with a component of the surface obtained by cutting along
some curves, we call T and I subsurfaces also T and I components, respectively. It
is easy to see that if A is a Borel subset of Y with positive measure, then the T, I
systems for (S)A are the restrictions of ϕt, ϕi to A, respectively (see [25, Lemma
5.7]). We can show that T components have the following stronger property:
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Lemma 3.12 ([25, Lemma 5.4]). Under the assumption (?), let Y ⊂ X be a Borel
subset with positive measure and let S be a subgroupoid of (G)Y of infinite type.
Suppose that S is reducible and let ϕ : Y → S(M) be its CRS. We assume the
following:

• ϕ is constant with value σ ∈ S(M) and Q is a component of Mσ;
• we have α ∈ V (C(M)) with r(α,Q) 6= ∅ and a Borel subset A ⊂ Y with

positive measure such that (α,A) is ρ-invariant for S.

Then there exists a countable Borel partition A =
⊔

An such that ρ(γ)β = β for
any β ∈ V (C(Q)) and a.e. γ ∈ (S)An

. In particular, the pair (β,A) is ρ-invariant
for S for any curve β ∈ V (C(Q)).

If the cocycle ρ : S → Γ is essentially valued in Γσ = {g ∈ Γ : gσ = σ} for
some σ and Q is a component of Mσ, then ρQ denotes the cocycle defined by the
composition of ρ with pQ : Γσ → Γ(Q). In the next theorem, we further divide I
subsurfaces into two types, IA and IN ones.

Theorem 3.13 ([25, Theorem 5.9, Section 5.2]). In Theorem 3.11, there exist two
essentially unique invariant Borel maps ϕia, ϕin : Y → F0(D) for S satisfying the
following:

(i) ϕi(x) = ϕia(x) ∪ ϕin(x) and ϕia(x) ∩ ϕin(x) = ∅ for a.e. x ∈ Y ;
(ii) if Q is in F ∈ F0(D) with µ(ϕ−1

ia (F )) > 0, then

(a) if A is a Borel subset of ϕ−1
ia (F ) with positive measure and ψ : A →

M(PMF(Q)) is a ρQ-invariant Borel map for S, then we see that
ψ(x)(MIN (Q)) = 1 for a.e. x ∈ A;

(b) we have an essentially unique ρQ-invariant Borel map ψ0 : ϕ−1
ia (F ) →

∂2C(Q) for S such that if A is a Borel subset of ϕ−1
ia (F ) with positive

measure and ψ : A → M(∂C(Q)) is a ρQ-invariant Borel map for S,
then

supp(ψ(x)) ⊂ supp(ψ0(x))

for a.e. x ∈ A;
(iii) if Q is in F ∈ F0(D) with µ(ϕ−1

in (F )) > 0, then S admits neither ρQ-
invariant Borel maps A → M(PMF(Q)) nor A → ∂2C(Q) for any Borel
subset A ⊂ ϕ−1

in (F ) with positive measure.

We call ϕia (resp. ϕin) the system of irreducible and amenable or IA (resp.
irreducible and non-amenable or IN) subsurfaces for S. We often call an element
in ϕia(x) (resp. ϕin(x)) an irreducible and amenable (resp. irreducible and non-
amenable) subsurface for x ∈ Y and in short, an IA (resp. IN) subsurface (or
component). It is easy to see that if A is a Borel subset of Y with positive measure,
then the IA, IN systems for (S)A are the restrictions of ϕia, ϕin to A, respectively
(see [25, Lemma 5.10]).

We recall some properties of IA components in the following lemma:

Lemma 3.14 ([25, Lemma 5.13]). Under the assumption (?), let Y ⊂ X be a Borel
subset with positive measure and let S be a subgroupoid of (G)Y of infinite type. Let
H be a subgroupoid of (G)Y with S C H. Suppose that S is reducible (thus, so is H)
and all the CRS, T, IA, IN systems for S are constant. Let Q be an IA component
for S and ψ0 : Y → ∂2C(Q) be the ρQ-invariant Borel map for S as in Theorem
3.13 (ii) (b). Then

(i) ψ0 is ρQ-invariant for H.
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(ii) if we denote by ψ : Y → S(M) the CRS for H, then σ ⊂ ψ(x) for a.e.
x ∈ Y , where σ ∈ S(M) is the CRS for S.

(iii) if we denote by ψia : Y → F0(D) the IA system for H, then Q ∈ ψia(x) for
a.e. x ∈ Y .

The following proposition implies that if a reducible subgroupoid has no IN
components, then it is amenable as a groupoid:

Proposition 3.15 ([25, Proposition 5.18]). Under the assumption (?), let Y ⊂ X
be a Borel subset with positive measure and let S be a subgroupoid of (G)Y of infinite
type. Suppose that S is reducible and there exists σ ∈ S(M) such that ρ(γ)σ = σ
for a.e. γ ∈ S. Let {Qi}i be the set of all components of Mσ which are not pairs of
pants and ρσ : S →

∏

i Γ(Qi) be the induced cocycle
∏

i ρQi
. Moreover, we assume

that there exists a ρσ-invariant Borel map

ψ : Y →
∏

i

∂2C(Qi).

Then the groupoid S is amenable.

Suppose that Γ is a subgroup of Γ(M ;m) with an integer m ≥ 3 and that
σ ∈ S(M) is fixed by each element of Γ. Let pσ : Γ →

∏

Q Γ(Q) be the product
∏

Q pQ, where Q runs through all components in Mσ. Note that the kernel of pσ is

contained in the amenable subgroup of Γ(M) generated by Dehn twists about all
curves in σ by Lemma 2.2. Thus, it is easily shown that if every component of Mσ

is either T or IA, then Γ is amenable, which implies Proposition 3.15 in the case
where X is a point.

3.2. Actions of hyperbolic groups. In this subsection, we consider subgroupoids
of a groupoid defined by a non-singular action of a hyperbolic group. In subsequent
sections, we only use Lemma 3.18, in which we consider a groupoid arising from an
action of a free group of rank 2.

Assumption 3.2. We call the following assumption (?)h: let Γ be an infinite
subgroup of a hyperbolic group Γ0. Let (X,µ) be a standard finite measure space
and assume that we have a non-singular Γ-action on (X,µ). We denote by G = ΓnX
and ρ : G → Γ the associated groupoid and cocycle, respectively.

For a hyperbolic group Γ0, let ∂Γ0 be the boundary at infinity and let M(∂Γ0)
be the space of all probability measures on ∂Γ0. We denote by ∂2Γ0 the quotient
space of ∂Γ0 × ∂Γ0 by the coordinate exchanging action of the symmetric group of
two letters, which can naturally be viewed as a Borel subset of M(∂Γ0) as in the
case of the boundary of the curve complex. We can show the following proposition
with the methods from the proof of Theorem 3.4:

Proposition 3.16. Under the assumption (?)h, let Y be a Borel subset of X with
positive measure and let S be a subgroupoid of (G)Y of infinite type. Assume that
there is a ρ-invariant Borel map Y →M(∂Γ0) for S. Then

(i) there exists an essentially unique ρ-invariant Borel map ϕ0 : Y → ∂2Γ0 for
S satisfying the following: if Y ′ is a Borel subset of Y with positive measure
and ϕ : Y ′ →M(∂Γ0) is a ρ-invariant Borel map for S, then

supp(ϕ(x)) ⊂ supp(ϕ0(x))

for a.e. x ∈ Y ′.
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(ii) if T is a subgroupoid of (G)Y with S C T , then ϕ0 is invariant also for T .
(iii) S is amenable as a groupoid.

Using Lemma 2.11 and Proposition 3.16 (ii), (iii), we can show the following as
in Corollary 3.9. Note that the set consisting of all points in ∂2Γ0 fixed by some
infinite subgroup of Γ0 is countable (see [17, Chapitre 8] or the comment about the
dynamics of a hyperbolic group on its boundary right after [25, Theorem 3.3]).

Corollary 3.17. Under the assumption (?)h, suppose that Γ is non-amenable and
that the Γ-action on (X,µ) is measure-preserving. Then the isotropy group

Gxx = {γ ∈ G : r(γ) = s(γ) = x}

is either finite or non-amenable for a.e. x ∈ X.

Lemma 3.18. Let G1, G2 be two infinite cyclic groups and suppose that we have
a measure-preserving action of the free product G = G1 ∗ G2 on a standard finite
measure space (X,µ). Let G, G1 and G2 be the groupoids arising from the actions of
G, G1 and G2, respectively. Then the subgroupoid (G1)A ∨ (G2)A of (G)A generated
by (G1)A and (G2)A is non-amenable for any Borel subset A ⊂ X with positive
measure.

Proof. Suppose that (G1)A∨(G2)A is amenable. We have the natural cocycle ρ : G →
G. It follows that we can find a ρ-invariant Borel map ϕ0 : A → ∂2G for (G1)A ∨
(G2)A as in Proposition 3.16 (i). Let a±i ∈ ∂G be the two fixed points on the
boundary ∂G of G for the action of the group Gi for i = 1, 2. Then the constant
map ϕi : A → ∂2G with value {a±i } is ρ-invariant for the subgroupoid (Gi)A of
infinite type. It follows that ϕi has to satisfy the property in Proposition 3.16
(i). Thus, we have supp(ϕ(x)) ⊂ supp(ϕi(x)) = {a±i } for i = 1, 2, which is a
contradiction because {a±1 } ∩ {a±2 } = ∅. �

4. Characterizations of reducible subgroupoids

The next two propositions characterize an amenable and a non-amenable re-
ducible subgroupoid, respectively, in terms of amenability, non-amenability and
normality. As in the previous section, we use the following notation under the
assumption (?):

• For a subgroup Γ′ of Γ, let GΓ′ denote the subgroupoid of G generated by
the action of Γ′.

• For σ ∈ S(M), we denote by Dσ the intersection of Γ and the subgroup
generated by Dehn twists about all curves in σ. We write Gσ instead of
GDσ

for simplicity. If σ consists of one element α ∈ V (C), then we write
Dα (resp. Gα) instead of Dσ (resp. Gσ).

• For σ ∈ S(M), we write

Γσ = {g ∈ Γ : gσ = σ}.

Proposition 4.1. Under the assumption (?), let Y ⊂ X be a Borel subset with
positive measure and let S be a subgroupoid of (G)Y of infinite type. Suppose that
S is amenable. Consider the following two assertions:

(i) S is reducible.
(ii) For any Borel subset A of Y with positive measure, we have a Borel subset

B of A with positive measure and the following three subgroupoids S ′, S ′′

and T of (G)B :
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(a) an amenable subgroupoid S ′ with (S)B < S ′;
(b) a subgroupoid S ′′ of infinite type with S ′′ < S ′;
(c) a non-amenable subgroupoid T with S ′′ C T .

Then the assertion (ii) implies the assertion (i). If Γ is a subgroup of finite index in
Γ(M ;m) and the Γ-action on (X,µ) is measure-preserving, then the converse also
holds.

Proof. First, we show that the assertion (ii) implies the assertion (i). If S were
not reducible, then since S is of infinite type and amenable, there would exist an
invariant Borel subset A of Y for S with positive measure such that (S)A is IA (see
Theorem 3.2). It follows from the assumption (ii) that we have a Borel subset B of
A with positive measure and subgroupoids S ′, S ′′ and T satisfying the conditions
in (ii). Since (S)A is IA and S ′ is amenable, it follows from Theorem 3.2 that S ′ is
IA. Moreover, S ′′ is also IA. Thus, T is also IA and amenable by Theorem 3.4 (ii)
and Proposition 3.3, which is a contradiction.

Next, we assume that Γ is a subgroup of finite index in Γ(M ;m) and show that
the assertion (i) implies the assertion (ii). Let A be a Borel subset of Y with positive
measure. Then there exists a Borel subset B of A with positive measure satisfying
the following conditions (see Lemma 3.12 for the second condition):

• all of the CRS, T and IA systems for S are constant on B. Let σ ∈ S(M),
ϕt, ϕia ∈ F0(M) be their values on B, respectively. Note that the IN system
for S is empty since S is amenable;

• for a.e. γ ∈ (S)B and any component Q in ϕt and α ∈ V (C(Q)), we have
ρQ(γ)α = α, where ρQ : (S)B → Γ(Q) is the composition of ρ and the
natural projection Γσ → Γ(Q).

For each Q ∈ ϕia, we have the canonical invariant Borel map ψQ : B → ∂2C(Q)
for (S)B as in Theorem 3.13 (ii) (b). Let S ′ be a subgroupoid of (G)B consisting
of all γ ∈ (G)B satisfying

ρ(γ)σ = σ, ρQ(γ)ψQ(s(γ)) = ψQ(r(γ)), ρ(γ)α = α

for any Q ∈ ϕia, any α ∈ V (C(R)) and any R ∈ ϕt which is not a pair of pants.
Note that (S)B < S ′. It follows from Proposition 3.15 that S ′ is amenable.

If |σ| < κ(M) + 1, then let S ′′ = (Gσ)B . Then S ′′ < S ′. Since Γ is a subgroup
of finite index in Γ(M ;m) and there exists a component of Mσ which is not a pair
of pants, we see that S ′′ is of infinite type and Γσ is non-amenable. Thus, the
subgroupoid T = (GΓσ

)B is non-amenable. Moreover, S ′′ C T since Dσ is a normal
subgroup of Γσ by Lemma 2.2. This completes the construction of subgroupoids in
the assertion (ii) in the case of |σ| < κ(M) + 1.

If |σ| = κ(M) + 1, then S ′ = (Gσ)B and it is amenable. Choose α0 ∈ σ. Let
σ′ = σ \ {α0}, which is an element in S(M) since κ(M) > 0. Then S ′′ = (Gσ′ )B
is a subgroupoid of infinite type with S ′′ < S ′. Define T = (GΓσ′

)B . Then T is
non-amenable and S ′′ C T since Dσ′ is a normal subgroup of Γσ′ by Lemma 2.2.
This completes the construction of subgroupoids in the assertion (ii) in the case of
|σ| = κ(M) + 1. �

Proposition 4.2. Under the assumption (?), let Y ⊂ X be a Borel subset with
positive measure and let S be a subgroupoid of (G)Y of infinite type. Suppose that
(S)Y ′ is not amenable for any Borel subset Y ′ of Y with positive measure. Consider
the following two assertions:
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(i) S is reducible.
(ii) For any Borel subset A of Y with positive measure, we have a Borel subset

B of A with positive measure and the following two subgroupoids S ′ and S ′′

of (G)B :
(a) a subgroupoid S ′ with (S)B < S ′;
(b) an amenable subgroupoid S ′′ of infinite type with S ′′ C S ′.

Then the assertion (ii) implies the assertion (i). If Γ is a subgroup of finite index in
Γ(M ;m) and the Γ-action on (X,µ) is measure-preserving, then the converse also
holds.

Proof. First, we show that the assertion (ii) implies the assertion (i). Suppose that
S is not reducible. Then there exists a Borel subset A of Y with positive measure
such that for any Borel subset B of A with positive measure, there is no invariant
Borel map B → M(PMF) for S (see Remark 3.3). By the assumption (ii), we
have a Borel subset B of A with positive measure and two subgroupoids S ′ and S ′′

satisfying the conditions in (ii). Since S ′′ is amenable, by Theorem 3.2, we have a
Borel partition B = B1 tB2 (up to null sets) such that (S ′′)B1

is IA and (S ′′)B2
is

reducible. It follows from Theorem 3.4 (ii) and Theorem 3.5 (iii) that (S ′)B1
is IA

and (S ′)B2
is reducible. If B1 has positive measure, then (S)B1

is non-amenable by
the assumption of S. Since (S)B < S ′, the relation (S ′)B1

is non-amenable, which
contradicts to Theorem 3.4 (iii). On the other hand, if B2 has positive measure,
then (S)B2

has an invariant Borel map B2 → S(M) ⊂ M(PMF), which is also a
contradiction.

Next, we assume that Γ is a subgroup of finite index in Γ(M ;m) and show that
the converse also holds. Let A be a Borel subset of Y with positive measure. Then
there exists a Borel subset B of A with positive measure such that the CRS for S
is constant on B. We denote by σ ∈ S(M) its value on B. Define a subgroupoid

S ′ = {γ ∈ (G)B : ρ(γ)σ = σ} = (GΓσ
)B ,

which satisfies (S)B < S ′. Let S ′′ = (Gσ)B . Then S ′′ is of infinite type since Γ
is a subgroup of finite index in Γ(M ;m) and the Γ-action on (X,µ) is measure-
preserving. Since Dσ is a normal subgroup of Γσ and it is amenable by Lemma 2.2,
we see that S ′′ C S ′ and S ′′ is amenable. �

Assumption 4.1. We call the following assumption (•): for i = 1, 2, let Γi be
a finite index subgroup of Γ(Mi;mi), where Mi is a surface with κ(Mi) > 0 and
mi ≥ 3 is an integer. Consider a measure-preserving action of Γi on a standard
finite measure space (Xi, µi) and let

Gi = GiΓ, ρi : G
i → Γi

be the induced groupoid, cocycle, respectively. Suppose that we have a groupoid
isomorphism

f : (G1)Y1
→ (G2)Y2

,

where Yi ⊂ Xi is a Borel subset satisfying GiYi = Xi up to null sets.

The following corollary is a consequence of Propositions 4.1 and 4.2 which char-
acterize reducible subrelations:

Corollary 4.3. Under the assumption (•), let A1 be a Borel subset of Y1 with
positive measure and let S1 be a subgroupoid of (G1)A1

of infinite type. Then S1 is
reducible if and only if the image f(S1) is reducible.
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Next, we characterize maximal reducible subgroupoids. In the assumption (?),
let Y be a Borel subset of X with positive measure and let ϕ : Y → S(M) be a
Borel map. Then we define a reducible subgroupoid

Sϕ = {γ ∈ (G)Y : ρ(γ)ϕ(s(γ)) = ϕ(r(γ))}.

Proposition 4.4. Under the assumption (?), let Y be a Borel subset of X with
positive measure and let ϕ : Y → S(M) be a Borel map. Assume that Γ is a subgroup
of finite index in Γ(M ;m) and that the Γ-action on (X,µ) is measure-preserving.
Then the CRS for Sϕ is ϕ and for a.e. x ∈ Y , each component of Mϕ(x) either is
a pair of pants or is IN for Sϕ.

Proof. We may assume that all of the CRS, T, IA and IN systems for Sϕ and ϕ are
constant by [25, Lemmas 5.7, 5.10]. We denote the value of ϕ by the same symbol.
Note that Sϕ is equal to (GΓϕ

)Y . It follows from Lemmas 2.3, 3.6 that the CRS for
Sϕ is ϕ.

Let Q be a component of Mϕ which is not a pair of pants. Let g1, g2 ∈ Γϕ
be elements such that {pQ(g1), pQ(g2)} is an independent pair of pseudo-Anosov
elements in Γ(Q), where pQ : Γϕ → Γ(Q) is the natural homomorphism. Let G be
the subgroup of Γϕ generated by g1 and g2. Note that (GG)Y < Sϕ.

IfQ were T for Sϕ, then it follows from Lemma 3.12 that there would exist a Borel
subset A of Y with positive measure such that ρQ(γ)α = α for any α ∈ V (C(Q))
and for a.e. γ ∈ (Sϕ)A, where ρQ is the composition of ρ and pQ. This contradicts
the fact that pQ(gn1 )α 6= α for any α ∈ V (C(Q)) and all n ∈ Z \ {0}.

If Q were IA for Sϕ, then we would have the canonical invariant Borel map
φ : Y → ∂2C(Q) for Sϕ as in Theorem 3.13 (ii) (b). For i = 1, 2, define a Borel map
φi : Y → ∂2C(Q) to be the constant map whose value is the image of {F±(pQ(gi))}
in ∂C(Q). Recall that the natural map MIN → ∂C is injective on the set of all
pseudo-Anosov foliations. It follows that φi is the canonical invariant Borel map
for (GGi

)Y for i = 1, 2, where Gi is the cyclic subgroup generated by gi. Since φ is
invariant for (GGi

)Y , we have the inclusion

supp(φ(x)) ⊂ supp(φi(x))

for a.e. x ∈ Y and any i = 1, 2. This is a contradiction because {F±(pQ(g1))} ∩
{F±(pQ(g2))} = ∅. �

In what follows, we regard V (C) as a subset of S(M) naturally.

Corollary 4.5. Under the assumption (?), let Y be a Borel subset of X with positive
measure and let ϕ : Y → V (C) be a Borel map. Assume that Γ is a finite index
subgroup of Γ(M ;m) and that the Γ-action on (X,µ) is measure-preserving. If S
is a reducible subgroupoid of (G)Y with Sϕ < S, then S = Sϕ.

Proof. Let ψ : Y → S(M) be the CRS for S. It is enough to show ϕ = ψ up to null
sets. Choose α ∈ V (C) and σ ∈ S(M) such that µ(ϕ−1(α) ∩ ψ−1(σ)) > 0 and put
A = ϕ−1(α) ∩ ψ−1(σ). It suffices to prove ϕ = ψ a.e. on A, that is, σ = {α}. We
may assume that all the T, IA and IN systems for Sϕ on A are constant.

Choose β ∈ σ. Since β is in the CRS for (S)A, the pair (β,A) is ρ-invariant for Sϕ.
If we had a componentQ ofMα which is not a pair of pants and satisfies r(β,Q) 6= ∅,
then Q would be T for Sϕ by Theorem 3.11, which contradicts Proposition 4.4.
Thus, r(β,Q) = ∅ for each component Q of Mα which is not a pair of pants. It
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follows from Lemma 3.10 that β is a boundary component of Q, that is, α = β.
Therefore, σ = {α} and ϕ = ψ a.e. on A. �

Lemma 4.6. Under the assumption (?), let Y ⊂ X be a Borel subset with positive
measure and let S be a subgroupoid of (G)Y of infinite type. Suppose that S is
reducible. Then there exists a Borel map ψ : Y → V (C) such that S < Sψ.

Proof. Let ϕ : Y → S(M) be the CRS for S. Choose a countable Borel partition
Y =

⊔

Yn of Y such that ϕ is constant on each Yn. Let αn ∈ V (C) be an element
such that αn ∈ ϕ(x) for a.e. x ∈ Yn. Then the constant map Yn 3 x 7→ αn ∈ V (C)
is invariant for (S)Yn

. It follows from the proof of Lemma 3.1 that we can construct
an invariant Borel map ψ : Y → V (C) for S. �

The following corollary is a consequence of Corollaries 4.3, 4.5 and Lemma 4.6:

Corollary 4.7. Under the assumption (•), let A1 be a Borel subset of Y1 with
positive measure and let ϕ1 : A1 → V (C(M1)) be a Borel map. Put A2 = f(A1)
and

S1
ϕ1

= {γ ∈ (G1)Y1
: ρ1(γ)ϕ1(s(γ)) = ϕ1(r(γ))}.

Then there exists a Borel map ϕ2 : A2 → V (C(M2)) such that f(S1
ϕ1

) = S2
ϕ2

, where

S2
ϕ2

= {γ ∈ (G2)Y2
: ρ2(γ)ϕ2(s(γ)) = ϕ2(r(γ))}.

5. An equivariant Borel map from a self ME coupling

In the next lemma, we study a normal amenable subgroupoid of a maximal
reducible subgroupoid. As in the previous section, we regard the vertex set V (C)
as a subset of the simplex set S(M) naturally.

Lemma 5.1. Under the assumption (?), let Y be a Borel subset of X with positive
measure and let ϕ : Y → V (C) be a Borel map. Assume that Γ is a finite index
subgroup of Γ(M ;m) and that the Γ-action on (X,µ) is measure-preserving. If S
is an amenable subgroupoid of Sϕ of infinite type with S C Sϕ, then there exists a
countable Borel partition Y =

⊔

Yn of Y satisfying the following conditions:

(i) the map ϕ is constant a.e. on Yn. Let αn ∈ V (C) be its value;
(ii) for each n, we have (S)Yn

< (Gαn
)Yn

< (Sϕ)Yn
.

Proof. Recall that Sϕ is reducible and its CRS is given by ϕ (see Proposition 4.4).
Since S is a subgroupoid of Sϕ, it is also reducible. Let ψ : Y → S(M) be the CRS
for S. Since S is normal in Sϕ, the map ψ is invariant also for Sϕ by Theorem 3.5
(iii). By the definition of essential ρ-invariant pairs, we see that ψ(x) ⊂ ϕ(x) for
a.e. x ∈ Y . It follows that ψ(x) = ϕ(x) for a.e. x ∈ Y .

Let A be a Borel subset of Y with positive measure such that all of the CRS
ϕ = ψ and T, IA and IN systems for S and Sϕ are constant on A. We denote
by α ∈ V (C) the value of ϕ = ψ on A. If Q is a component of Mα, then Q is
not IN for (S)A since S is amenable. If Q were IA for (S)A, then Q would be IA
also for (Sϕ)A by Lemma 3.14 (iii), which contradicts Proposition 4.4. Thus, each
component of Mα is T for (S)A.

It follows from Lemma 3.12 that we have a countable Borel partition A =
⊔

An
of A such that ρ(γ)β = β for each component Q of Mα and β ∈ V (C(Q)) and for
a.e. γ ∈ (S)An

for any n. For a.e. γ ∈ (S)An
, consider the subgroup of Γ generated

by ρ(γ). If ρ(γ) is non-trivial, then the CRS for the subgroup is {α} by Lemma 2.4.
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It follows from [21, Corollary 7.18] (see the comment right before Lemma 2.3) that
ρ(γ) lies in the kernel of the natural homomorphism from Γα into

∏

Q Γ(Q), where

Q is taken over all components of Mα. Thus, ρ(γ) ∈ Dα by Lemma 2.2. Since A is
any Borel subset of Y with positive measure such that all of ϕ = ψ and T, IA and
IN systems for S and Sϕ are constant on A, we complete the proof. �

Under the assumption (•), let α ∈ V (C(M1)). Define the constant map ϕα : Y1 3
x 7→ α ∈ V (C(M1)). It follows from Corollary 4.7 that we have a Borel map
ϕ2 : Y2 → V (C(M2)) such that f(S1

ϕα
) = S2

ϕ2
, where we use the same notation as

in the corollary. Since the intersection of Γ1 and the subgroup of Γ(M1) generated
by a Dehn twist along α is normal in

Γ1,α = {g ∈ Γ1 : gα = α}

by Lemma 2.2 and S1
ϕα

= (G1
Γ1,α

)Y1
, we see that (G1

α)Y1
C S1

ϕα
. Thus, f((G1

α)Y1
) C

S2
ϕ2

. By Lemma 5.1, we have a countable Borel partition Y2 =
⊔

An such that

(i) the map ϕ2 is constant on An for each n. Let us denote the value by
βn ∈ V (C(M2));

(ii) for each n, we have (f((G1
α)Y1

))An
< (G2

βn
)An

< (S2
ϕ2

)An
.

Therefore, for each α ∈ V (C(M1)), we can define a Borel map

Ψ(·, α) : Y1 → V (C(M2))

by Ψ(x, α) = βn if x ∈ f−1(An) (up to null sets). Note that this map does not
depend on the decomposition Y2 =

⊔

An.

Lemma 5.2. If α, α′ ∈ V (C(M1)) satisfy i(α, α′) = 0, then i(Ψ(x, α),Ψ(x, α′)) = 0
for a.e. x ∈ Y1.

Proof. Since i(α, α′) = 0, we see that

(G1
α)A C (G1

α)A ∨ (G1
α′)A

for any Borel subset A of Y1 with positive measure (see Lemma 2.14). It follows
from the construction of Ψ(·, α), Ψ(·, α′) that we have a countable Borel partition
Y2 =

⊔

An and βn, β
′
n ∈ V (C(M2)) such that

(f((G1
α)Y1

))An
< (G2

βn
)An

, (f((G1
α′)Y1

))An
< (G2

β′

n
)An

for each n. Using Lemma 3.7, we see that (f((G1
α)Y1

))An
(resp. (f((G1

α′ )Y1
))An

)
is a reducible subrelation of (G2)An

and its CRS is given by the constant map
An 3 x 7→ βn (resp. β′

n) ∈ V (C(M2)). It follows from the above normality that
the constant map An 3 x 7→ βn is invariant also for (f((G1

α′ )Y1
))An

, which implies
i(βn, β

′
n) = 0 by the pureness of the pair (β′

n, An) for (f((G1
α′ )Y1

))An
. �

Lemma 5.3. Let M be a surface with κ(M) ≥ 0 and let α, α′ ∈ V (C(M)) with
i(α, α′) 6= 0. Then tnα and tmα′ generate a free group of rank 2 for all sufficiently large
n,m ∈ N, where tα, tα′ ∈ Γ(M) denote the Dehn twists about α, α′, respectively.

Proof. We regard α and α′ as elements in PMF . Choose an open neighborhood
U of α such that

U ⊂ {F ∈ PMF : i(F, α′) 6= 0},

whereK denotes the closure of a subset K of PMF . Choose an open neighborhood
U ′ of α′ such that

U ′ ⊂ {F ∈ PMF : i(F, α) 6= 0}
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and U ∩ U ′ = ∅. It follows from [21, Theorem 4.3] that there exist n,m ∈ N such
that

tkα(U ′) ⊂ U ⊂ U, tlα′(U) ⊂ U ′ ⊂ U ′

for any k, l ∈ Z with |k| ≥ n, |l| ≥ m.
The lemma follows from the above inclusions and the following ping-pong argu-

ment: we show that a = tnα and b = tmα′ generate a free group of rank 2. Let w be a
non-empty reduced word consisting of a±1, b±1. We prove that w is non-trivial in
Γ(M). It follows from the above inclusion that both ak and bl are non-trivial for
any k, l ∈ Z \ {0}. Therefore, by possibly replacing w by an appropriate conjugate
and an inverse, it is enough to prove that w = akw′bl is non-trivial in Γ(M), where
k, l ∈ Z \ {0} and w′ is a reduced word such that if w′ is non-empty, then the first
letter of w′ is b or b−1 and the last letter of w′ is a or a−1. Then w(x) ∈ U for any
x ∈ U \ U by the above inclusion, and in particular, w(x) 6= x, which implies that
w is non-trivial in Γ(M). �

Lemma 5.4. If α, α′ ∈ V (C(M1)) satisfy i(α, α′) 6= 0, then i(Ψ(x, α),Ψ(x, α′)) 6= 0
for a.e. x ∈ Y1.

Proof. Let α, α′ ∈ V (C(M1)) with i(α, α′) 6= 0. Assume that there exists a Borel
subset A of Y1 with positive measure satisfying the following conditions:

(i) Ψ(·, α) and Ψ(·, α′) are constant on A. Let β, β′ ∈ V (C(M2)) be their
values, respectively;

(ii) i(β, β′) = 0 and

f((G1
α)A) < (G2

β)f(A), f((G1
α′)A) < (G2

β′)f(A).

Since i(β, β′) = 0, we see that (G2
β)f(A) ∨ (G2

β′)f(A) is amenable. On the other

hand, (G1
α)A ∨ (G1

α′ )A is non-amenable by Lemma 5.3 and Lemma 3.18, which is a
contradiction. �

For each α ∈ V (C(M1)), we have a Borel subset Aα of Y1 with full measure such
that Ψ(·, α) is defined on Aα. Put

A1 =
⋂

α∈V (C(M1))

Aα.

By Lemmas 5.2 and 5.4, for each pair {α, α′} of elements in V (C(M1)), we can take
a Borel subset Aα,α′ of A1 with full measure so that for any x ∈ Aα,α′ , we have
i(Ψ(x, α),Ψ(x, α′)) = 0 if i(α, α′) = 0 and i(Ψ(x, α),Ψ(x, α′)) 6= 0 if i(α, α′) 6= 0.
Put

A =
⋂

α,α′∈V (C(M1))

Aα,α′ .

Then Ψ(x, α) is defined for any x ∈ A and α ∈ V (C), and both Lemmas 5.2 and
5.4 are satisfied for any x ∈ A.

Under the assumption (•), suppose that the two surfaces M1, M2 are equal and
we denote the surface by M . Applying the above process to f and f−1, we see that
there exist a Borel subset A of Y1 with full measure and a Borel map

Ψ: A× V (C) → V (C)

such that for each x ∈ A, the map Ψ(x, ·) : V (C) → V (C) defines an element of
the automorphism group Aut(C) of the curve complex. We can define a Borel map
Ψ: A→ Aut(C) by Ψ(x) = Ψ(x, ·) for x ∈ A.
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For simplicity, we denote π ◦ ρi by ρi for i = 1, 2, where π : Γ → Aut(C) is the
natural homomorphism.

Lemma 5.5. We have the equality

Ψ(r(γ)) = ρ2(f(γ))Ψ(s(γ))ρ1(γ
−1)

for a.e. γ ∈ (G1)Y1
.

Proof. Let A be a Borel subset of Y1 and let g1 ∈ Γ1, g2 ∈ Γ2 be elements satisfying
the following conditions:

(a) (g1, x) ∈ (G1)Y1
and (g2, f(x)) = f(g1, x) ∈ (G2)Y2

for any x ∈ A;
(b) the map Ψ is constant on A and g1A, respectively. Let ψ, ψ′ ∈ Aut(C) be

the values on A and g1A, respectively.

For each α ∈ V (C), there exists a Borel subset B of A with positive measure such
that f((G1

α)B) < (G2
ψ(α))f(B). Note that for α ∈ V (C) and g ∈ Γ(M), we have

gtαg
−1 = tgα

by [23, Lemma 4.1.C], where tβ ∈ Γ(M) denotes the Dehn twist about β ∈ V (C).
It follows that

(g1, r(γ))γ(g
−1
1 , g1s(γ)) ∈ (G1

g1α
)g1B , (g2, r(δ))δ(g

−1
2 , g2s(δ)) ∈ (G2

g2ψ(α))f(g1B)

for γ ∈ (G1
α)B and δ ∈ (Gψ(α))f(B). Therefore, f((G1

g1α
)g1B) < (G2

g2ψ(α))f(g1B).

Thus, ψ′(g1α) = g2ψ(α). Since this equality holds for any α ∈ V (C), we have
ψ′ = g2ψg

−1
1 . This means that

Ψ(r(γ)) = ρ2(f(γ))Ψ(s(γ))ρ1(γ)
−1

for a.e. γ = (g1, x) ∈ (G1)Y1
with x ∈ A. �

Definition 5.1. Let S be a Borel space and let m be a measure on S.

(i) Suppose that we are given a Borel space T , a Borel action of a discrete
group G on S, T and a Borel map f : S → T . We say that the map f is
almost G-equivariant if the equality

f(gx) = gf(x)

holds for any g ∈ G and a.e. x ∈ S.
(ii) Suppose that we have discrete groups Γ, Λ, G and homomorphisms π : Γ →

G, τ : Λ → G. Then we denote by (G, π, τ) the Borel space G equipped
with the Γ × Λ-action given by

(γ, λ)g = π(γ)gτ(λ)−1

for γ ∈ Γ, λ ∈ Λ and g ∈ G.

Theorem 5.6. For i = 1, 2, let Γi be a finite index subgroup of Γ(M ;mi), where
M is a surface with κ(M) > 0 and mi ≥ 3 is an integer. Suppose that we have a
ME coupling (Ω,m) of Γ1 and Γ2. Then there exists an essentially unique almost
Γ1 ×Γ2-equivariant Borel map Φ: Ω → (Aut(C), π, π), where π : Γ(M)� → Aut(C)
is the natural homomorphism.
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Proof. As in Subsection 2.3, we can construct a measure-preserving Γi-action on
a standard finite measure space (Xi, µi) for i = 1, 2 such that they satisfy the
assumption (•). In this proof, we use the notation as in (•). For the existence of
Φ, it is enough to show that there exists a Borel map Φ: Ω → Aut(C) such that

Φ(g1g2ω) = π(g2)Φ(ω)π(g1)
−1

for any g1 ∈ Γ1, g2 ∈ Γ2 and a.e. ω ∈ Ω. By Lemma 2.8, the space Ω is isomorphic
to X1 × Γ2 as Γ1 × Γ2-spaces. Here, the Γ1 × Γ2-action on X1 × Γ2 is given by the
formula

g1g2(x, γ) = (g1x, α(g1, x)γg
−1
2 )

for g1 ∈ Γ1, g2, γ ∈ Γ2 and x ∈ X1, where α : Γ1 × X1 → Γ2 is the associated
cocycle. We identify Ω with X1 ×Γ2. For the proof of the theorem, it is enough to
show that if we define Φ: Ω → Aut(C) by the formula

Φ(g1g2(x, e)) = π(g2)Ψ(x)π(g1)
−1

for g1 ∈ Γ1, g2 ∈ Γ2 and x ∈ Y1, then it is well-defined. In other words, it is enough
to show that

π(g2)Ψ(x)π(g1)
−1 = π(g′2)Ψ(x′)π(g′1)

−1

for any g1, g
′
1 ∈ Γ1, g2, g

′
2 ∈ Γ2 and a.e. x, x′ ∈ Y1 satisfying

g1g2(x, e) = g′1g
′
2(x

′, e).

In what follows, we omit π for simplicity. Since

(x′, e) = (g′1)
−1g1(g

′
2)

−1g2(x, e) = ((g′1)
−1g1x, α((g′1)

−1g1, x)g
−1
2 g′2),

we see that x′ = (g′1)
−1g1x ∈ Y1. Since α(g, y) = ρ2(f(g, y)) for g ∈ Γ1, y ∈ Y1

with gy ∈ Y1, we have

Ψ(x′) = Ψ((g′1)
−1g1x) = ρ2(f((g′1)

−1g1, x))Ψ(x)ρ1((g
′
1)

−1g1, x)
−1

= (g′2)
−1g2Ψ(x)g−1

1 g′1

by Lemma 5.5, which shows the claim.
The uniqueness of Φ is a consequence of Theorem 2.6 and the following Lemma

5.7. �

Definition 5.2. Let π : Γ → G be a homomorphism between discrete groups.
Then π is said to be ICC (infinite conjugacy class) if the set {π(γ)gπ(γ)−1 : γ ∈ Γ}
consists of infinitely many elements for any g ∈ G \ {e}.

Lemma 5.7. Let Γ, Λ and G be discrete groups and assume that

π : Γ → G, τ : Λ → G

are homomorphisms and that either π or τ is ICC. Suppose the following two con-
ditions:

(i) we have a ME coupling (Σ,m) of Γ and Λ;
(ii) there exist two almost Γ × Λ-equivariant Borel maps Φ,Φ′ : Σ → (G, π, τ).

Then Φ and Φ′ are essentially equal.
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Proof. We may assume that π is ICC. Let us define a Borel map Φ0 : Σ → G by
Φ0(x) = Φ′(x)Φ(x)−1 for x ∈ Σ. Then Φ0 satisfies the equality

Φ0(γλx) = π(γ)Φ0(x)π(γ)−1

for any γ ∈ Γ, λ ∈ Λ and a.e. x ∈ Σ. Therefore, Φ0 is Λ-invariant and induces an
almost Γ-equivariant Borel map Λ\Σ → G, where the Γ-action on G is given by
conjugation via π. By projecting the finite Γ-invariant measure on Λ\Σ to G, we
obtain a finite measure on G which is invariant under the conjugation via π of each
element of Γ. Since π is ICC, the support of this measure is equal to {e}, which
means that Φ0 = e a.e. on Σ. �

Lemma 5.8. Let Γ, Λ and G be discrete groups and assume that

π : Γ → G, τ : Λ → G

are homomorphisms. Suppose the following three conditions:

(i) we have a normal subgroup Γ′ of Γ (resp. Λ′ of Λ) of finite index and a
ME coupling (Σ,m) of Γ and Λ;

(ii) either the restrictions π : Γ′ → G or τ : Λ′ → G is ICC;
(iii) there exists an almost Γ′ × Λ′-equivariant Borel map Φ: Σ → (G, π, τ).

Then the map Φ is almost Γ × Λ-equivariant.

Proof. We may assume that the restriction τ : Λ′ → G is ICC. For fixed γ ∈ Γ and
λ ∈ Λ, define a Borel map Φ0 : Σ → G by the formula

Φ0(x) = Φ(γλx)−1π(γ)Φ(x)τ(λ)−1

for x ∈ Σ.
Let g ∈ Γ′, h ∈ Λ′. Since Γ′ is normal in Γ and Λ′ is normal in Λ, we have g′ ∈ Γ′

and h′ ∈ Λ′ such that γg = g′γ and λh′ = hλ. Then

Φ0(gh
′x) = Φ(γgλh′x)−1π(γ)π(g)Φ(x)τ(h′)−1τ(λ)−1

= Φ(g′γhλx)−1π(g′)π(γ)Φ(x)τ(λ)−1τ(h)−1

= τ(h)Φ(γλx)−1π(γ)Φ(x)τ(λ)−1τ(h)−1

= τ(h)Φ0(x)τ(h)
−1.

Since g ∈ Γ′ is arbitrary, the map Φ0 induces a Borel map Γ′\Σ → G. The
projectivized finite measure on G is invariant under the conjugation via τ of each
element of Λ′. As in the proof of Lemma 5.7, we can show that Φ0 = e a.e. on
Σ. �

Corollary 5.9. Let M be a surface with κ(M) > 0 and let Γ, Λ be finite index
subgroups of Γ(M)� or Aut(C), respectively. Suppose that we have a ME coupling
(Ω,m) of Γ and Λ. Then there exists an essentially unique almost Γ×Λ-equivariant
Borel map Ω → (Aut(C), π, π).

6. Measure equivalence rigidity

Given a ME coupling (Σ,m) of discrete groups Γ and Λ, we can define the
opposite coupling Σ̌ of Λ and Γ as the Λ × Γ-space obtained by the canonical
isomorphism between Γ×Λ and Λ×Γ. When Γ = Λ, we distinguish the Γ-actions
on Σ by writing (γ, x) 7→ A1

γx and A2
γx, respectively, for γ ∈ Γ and x ∈ Σ.
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If (Σ,m) is a ME coupling of discrete groups Γ and Λ and (Ω, n) is a ME coupling
of discrete groups Λ and ∆, then we can define the composed coupling Σ ×Λ Ω of
Γ and ∆ as the quotient space of Σ × Ω by the diagonal Λ-action.

Definition 6.1. Let π : Γ → G be a homomorphism between discrete groups. We
say that π is almost an isomorphism if both ker(π) and coker(π) are finite.

Theorem 6.1. Let Γ, Λ, G be discrete groups and let π, τ : Γ → G be homomor-
phisms. Suppose that π is ICC and τ is almost an isomorphism and we have a
ME coupling (Σ,m) of Γ and Λ and let Ω = Σ ×Λ Λ ×Λ Σ̌ be the self ME coupling
of Γ. Moreover, assume that there exists an almost Γ × Γ-equivariant Borel map
Φ: Ω → (G, π, τ). Then we can find the following two maps:

(a) a homomorphism ρ : Λ → G which is almost an isomorphism;
(b) an almost Γ × Λ-equivariant Borel map Φ0 : Σ → (G, τ, ρ).

Before the proof, we give the following lemma:

Lemma 6.2. Let Γ, Λ, G be discrete groups and let (Σ,m) be a ME coupling
of Γ and Λ. Let Y ⊂ Σ be a fundamental domain of the Γ-action on Σ and let
θ : Λ × Y → Γ be the associated cocycle. Suppose the following two conditions:

(i) we have a homomorphism π : Γ → G which is almost an isomorphism;
(ii) there exists a subgroup G0 of G such that the cocycle π ◦ θ : Λ × Y → G is

cohomologous to a cocycle which is essentially valued in G0.

Then G0 is a subgroup of finite index in G.

Proof. Take a standard Λ-action on a standard probability space X0. Define a
Γ-action and a G× Λ-action on Σ ×G×X0 by

γ(z, g, x) = (γz, π(γ)g, x)

(g1, λ)(z, g, x) = (λz, gg−1
1 , λx)

for g, g1 ∈ G, γ ∈ Γ, λ ∈ Λ, z ∈ Σ and x ∈ X0. Consider the quotient G×Λ-space Σ̃
of Σ×G×X0 by the Γ-action. Since ker(π) is finite, the Λ-action has a fundamental
domain. Since coker(π) is finite, the Λ-action has a fundamental domain of finite

measure. Thus, the G× Λ-space Σ̃ is a ME coupling of G and Λ.
Let p : Σ × G × X0 → Σ̃ be the natural projection. Then p(Y × {e} × X0)

is a fundamental domain of the G-action on Σ̃. Remark that p is injective on
Y ×{e}×X0. The cocycle θ̃ : Λ× p(Y ×{e}×X0) → G associated to it is given by

θ̃(λ, p(y, e, x)) = π ◦ θ(λ, y)

for λ ∈ Λ, y ∈ Y and x ∈ X0. By assumption, we can find a Borel map ϕ : Y → G
such that

θ′(λ, y) = ϕ(λ · y)π ◦ θ(λ, y)ϕ(y)−1 ∈ G0

for any λ ∈ Λ and a.e. y ∈ Y . Define a Borel map ϕ̃ : p(Y × {e} × X0) → G by
ϕ̃(p(y, e, x)) = ϕ(y) for y ∈ Y . Then

ϕ̃(λ · p(y, e, x))θ̃(λ, p(y, e, x))ϕ̃(p(y, e, x))−1

= ϕ(λ · y)π ◦ θ(λ, y)ϕ(y)−1 ∈ G0,

which means that θ̃ is cohomologous to a cocycle which is essentially valued in G0.
The lemma now follows from [31, Lemma 6.1]. �
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Proof of Theorem 6.1. This proof is almost the same as in [31, Section 6.2]. One
denotes the element corresponding to (x, λ, y) ∈ Σ×Λ×Σ̌ by [x, λ, y] ∈ Σ×ΛΛ×ΛΣ̌.
As in [31, Lemma 6.6], we can prove the following lemma by using the assumption
that π is ICC:

Lemma 6.3. If one defines a Borel map Ψ: Σ3 → G by

Ψ(x, y, z) = Φ([x, e, z])Φ([y, e, z])−1

for (x, y, z) ∈ Σ3, then

Ψ(x, y, z1) = Ψ(x, y, z2)

for m4-a.e. (x, y, z1, z2) ∈ Σ4.

Define a Borel map F : Σ2 → G by F (x, y) = Ψ(x, y, z). It follows from [31,
Lemma 6.2] that for m-a.e. x ∈ Σ, the Borel map ρx : Λ → Γ given by

ρx(λ) = F (λ−1x, y)F (x, y)−1

is the same for m-a.e. y ∈ Σ and defines a homomorphism. Moreover, the equality

ρy(λ) = F (x, y)−1ρx(λ)F (x, y)

holds for any λ ∈ Λ and m2-a.e. (x, y) ∈ Σ2. Note that we have the equality

ρx(λ) = Φ([x, λ, z])Φ([x, e, z])−1

for any λ ∈ Λ and m2-a.e. (x, z) ∈ Σ2. Let N be the normal subgroup of Λ which
is the common kernel of ρx for m-a.e. x ∈ Σ.

Let D ⊂ Σ be a fundamental domain of the Λ-action on Σ and put Ω̃ = D ×
Λ ×D ⊂ Σ × Λ × Σ. This inclusion induces a Borel isomorphism between Ω̃ and
Ω. Let us give a Γ-action on Ω̃ induced by the second Γ-action A2 on Ω and give a
Λ-action on Ω̃ by the left multiplication on the second coordinate:

(γ, λ)(x, λ1, y) = (x, λλ1α(γ, y)−1, γ · y)

for γ ∈ Γ, λ, λ1 ∈ Λ and x, y ∈ D, where α : Γ ×D → Λ is the associated cocycle
to D.

Let Φ̃ : Ω̃ → G be the Borel map induced by Φ and the isomorphism between Ω̃
and Ω. Note that Φ̃ is almost Γ-equivariant in the following sense:

Φ̃(γω) = Φ̃(ω)τ(γ)−1

for any γ ∈ Γ and a.e. ω ∈ Ω̃. Put E0 = Φ̃−1({gn}), where {gn} ⊂ G is a finite set
of all representatives of G/τ(Γ). Remark that E0 is invariant under the action of
ker(τ). If E ⊂ E0 is a fundamental domain of the ker(τ)-action on E0, then it is

also a fundamental domain of the Γ-action on Ω̃. Since ker(τ) is finite, the measure
of E0 is finite. The homomorphism ρx is given by

ρx(λ) = Φ̃(x, λ, z)Φ̃(x, e, z)−1

for any λ ∈ Λ and m2-a.e. (x, z) ∈ D2.
For λ0 ∈ Λ, it is easy to see that λ0 ∈ N if and only if

Φ̃(x, λ0λ1, y) = Φ̃(x, λ1, y)
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for any λ1 ∈ Λ and m2-a.e. (x, y) ∈ D2. It follows that any element in N preserves
E0. Since the measure of E0 is finite, we see that N is finite. Note that for any
λ ∈ Λ and a.e. t = (x, λ1, z) ∈ Ω̃, we have

ρx(λ) = ρx(λλ1)ρx(λ1)
−1

= Φ̃(x, λλ1, z)Φ̃(x, e, z)−1(Φ̃(x, λ1, z)Φ̃(x, e, z)−1)−1

= Φ̃(λt)Φ̃(t)−1.

Let θ : Λ×E → Γ be the associated cocycle to E. It follows from Fubini’s theorem
that there exists x0 ∈ D such that ρ = ρx0

: Λ → G is a homomorphism with kernel
N and for any λ ∈ Λ, γ ∈ Γ, a.e. x ∈ D and a.e. (λ1, z) ∈ Λ ×D, we have

ρx(λ) = F (x0, x)
−1ρ(x)F (x0, x)

and

Φ̃((γ, λ)(x0, λ1, z)) = ρ(λ)Φ̃(x0, λ1, z)τ(γ)
−1.

We show that ρ(Λ) is a subgroup of finite index in G. Define a Borel map
ϕ : E → G by

ϕ(t) = F (x0, x)Φ̃(t)

for t = (x, λ1, z) ∈ E. Put

θ′(λ, t) = ϕ(λ · t)τ ◦ θ(λ, t)ϕ(t)−1

for λ ∈ Λ and t ∈ E. Since λ · t = λθ(λ, t)t, we see that

Φ̃(λ · t) = Φ̃(λθ(λ, t)t) = Φ̃(λt)τ ◦ θ(λ, t)−1

and

θ′(λ, t) = F (x0, x)Φ̃(λ · t)τ ◦ θ(λ, t)Φ̃(t)−1F (x0, x)
−1

= F (x0, x)Φ̃(λt)Φ̃(t)−1F (x0, x)
−1

= F (x0, x)ρx(λ)F (x0, x)
−1 = ρ(λ) ∈ ρ(Λ).

It follows from Lemma 6.2 that ρ(Λ) is a subgroup of finite index in G.

Finally, we construct a Borel map Φ0 : Σ → G. Note that {x0}×Λ×D ⊂ Ω̃ is a
Γ × Λ-invariant Borel subset isomorphic to Σ as Γ × Λ-spaces. It follows from the
choice of x0 that the composition of the restriction of Φ̃ to {x0} × Λ ×D and the
map G 3 g 7→ g−1 ∈ G is a desired map. �

Combining Corollary 5.9 and Theorem 6.1, we obtain Theorem 1.1.

Proof of Theorem 1.2. First, suppose that κ(M 1) ≥ κ(M2). We may assume that
κ(M1) ≥ 2. By Theorem 1.1, we can find an injective homomorphism Γ(M 1; 3) →
Aut(C(M2)) with finite cokernel. By using Theorem 2.5 and restricting the homo-
morphism to some subgroup Γ1 of finite index in Γ(M1; 3), we can construct an
injective homomorphism from Γ1 into Γ(M2) with finite cokernel. It follows from
[36, Theorem 2] that M1 = M0,6 and M2 = M2,0. Similarly, if we assume that
κ(M1) ≤ κ(M2), then it can be shown that M1 = M0,6 and M2 = M2,0. �
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7. Rigidity for a direct product of mapping class groups

We need to review Monod-Shalom’s technique in [31, Section 5.1].
Let Γ1, . . . ,Γn be torsion-free discrete groups in the class C, mentioned in Section

1, and let Λ1, . . . ,Λn be torsion-free discrete groups. Put Γ = Γ1 × · · · × Γn and
Λ = Λ1 × · · · × Λn. Let us denote

Γ′
i =

∏

j 6=i

Γj , Λ′
i =

∏

j 6=i

Λj

for i ∈ {1, . . . , n}. Suppose that we have a ME coupling (Σ,m) of Γ and Λ.
In the above situation, we can find a bijection t : {1, . . . , n} → {1, . . . , n} and

fundamental domains Y,X ⊂ Σ of the Γ-, Λ-actions on Σ, respectively, satisfying

Λt(i)Y ⊂ ΓiY, ΓiX ⊂ Λt(i)X

for any i ∈ {1, . . . , n}. Let Σi be the space of ergodic components of the Γ′
i×Λ′

t(i)-

action on (Σ,m) for i ∈ {1, . . . , n}, which is naturally a Γi × Λt(i)-space. Define

a measure µi (resp. νi) on Σi by projecting the restricted measure on ΓiY (resp.
Λt(i)X) through the natural map ΓiY → Σi (resp. Λt(i)X → Σi). Then

(a) µi and νi are absolutely continuous with respect to each other.
(b) both µi and νi are invariant for the Γi × Λt(i)-action on Σi.

(c) if Y (resp. X) is the image of Y (resp. X) in Σi, then it is a fundamental
domain of the Γi-action on (Σi, µi) (resp. the Λt(i)-action on (Σi, νi)).

Moreover, both µi(Y ) and νi(X) are finite.

These claims are shown in the proof of [31, Theorem 1.16], where the ergodicity
of (Σ,m) is assumed. However, we can show the above claims along the same line
without this assumption.

Let

ci(x) =
dµi
dνi

(x), x ∈ Σi

be the Radon-Nikodym derivative, which is positive and finite a.e. on Σi. It follows
from the condition (b) that the function ci is invariant for the Γi × Λt(i)-action.
Put

Σi,n = {x ∈ Σi : n < ci(x) ≤ n+ 1}

for n ∈ N. Then Σi =
⊔

n∈N
Σi,n up to null sets. It follows from the condition (c)

that Σi,n is a ME coupling of Γi and Λt(i) with respect to µi for each n ∈ N (if Σi,n
has non-zero measure).

In this situation, we suppose the following condition: for i ∈ {1, . . . , n} and

j ∈ {1, 2}, let M j
i be a surface with κ(M j

i ) > 0 and M j
i 6= M1,2,M2,0. Assume that

Γi (resp. Λi) is a torsion-free subgroup of finite index in Γ(M 1
i )� (resp. Γ(M2

i )�)
for each i.

Remark that the mapping class group Γ(M) is in C for a surface M with κ(M) ≥
0 ([19, Corollary B]) and this property is preserved under measure equivalence and
in particular, commensurability up to finite kernel ([31, Corollary 7.6]). Note that
M1
i and M2

t(i) are diffeomorphic for any i by Theorem 1.2 and let gi be an isotopy

class of a diffeomorphism M2
t(i) →M1

i . Let

πg :

n
∏

i=1

Γ(M2
i )� →

n
∏

i=1

Aut(C(M1
i ))



36 YOSHIKATA KIDA

be the isomorphism defined by

πg(γ1, . . . , γn) = (π(g1γt(1)g
−1
1 ), . . . , π(gnγt(n)g

−1
n ))

for γi ∈ Γ(M2
i )�, where we denote by the same symbol π the natural homomorphism

Γ(M)� → Aut(C(M)) for a surface M . By applying Corollary 5.9 to each ME
coupling Σi,n of Γi and Λt(i), we can find an almost Γi×Λt(i)-equivariant Borel map

Φi : Σi → (Aut(C(Mi)), π, πgi
), where πgi

: Γ(M2
t(i))

� → Aut(C(M1
i )) is defined by

using gi. Then we can define a Borel map Φ: Σ →
∏n
i=1 Aut(C(M1

i )) by

Φ(x) = (Φ1(p1(x)), . . . ,Φn(pn(x)))

for x ∈ Σ, where pi : Σ → Σi denotes the natural projection. It is easy to see that

Φ((γ, λ)x) = π(γ)Φ(x)πg(λ)
−1

for any γ ∈ Γ, λ ∈ Λ and a.e. x ∈ Σ.
Hence, we have shown the following:

Theorem 7.1. For i ∈ {1, . . . , n} and j ∈ {1, 2}, let M j
i be a surface with κ(M j

i ) >

0 and M j
i 6= M1,2,M2,0. Assume that Γi (resp. Λi) is a torsion-free subgroup of

finite index in Γ(M1
i )� (resp. Γ(M2

i )�). Put Γ = Γ1 × · · · ×Γn, Λ = Λ1 × · · · ×Λn.
Suppose that we have a ME coupling (Σ,m) of Γ and Λ. Then we can find the
following:

(a) a bijection t on the set {1, . . . , n};
(b) an isotopy class gi of a diffeomorphism M2

t(i) →M1
i for each i;

(c) an almost Γ × Λ-equivariant Borel map

Φ: Σ →

(

n
∏

i=1

Aut(C(M1
i )), π, πg

)

.

Corollary 7.2. The conclusion of Theorem 7.1 holds even if Γ (resp. Λ) is a
subgroup of finite index in Γ(M 1

1 )� × · · · ×Γ(M1
n)� (resp. Γ(M2

1 )� × · · · ×Γ(M2
n)�).

Proof. It is easy to check that if κ(Mi) > 0 and Γi is a finite index subgroup of
Γ(Mi)

�, then the natural homomorphism

Γ1 × · · · × Γn → Aut(C(M1)) × · · · × Aut(C(Mn))

is almost an isomorphism and ICC. By Lemma 5.8 and Theorem 7.1, we obtain the
corollary. �

Combining Theorem 6.1 and the above corollary, we can obtain Theorem 1.3.
The following corollary determines all isomorphisms between finite index subgroups
of a direct product of mapping class groups (see also [23, Section 8.5]).

Corollary 7.3. For i ∈ {1, . . . , n}, let Mi be a surface with κ(Mi) > 0 and Mi 6=
M1,2,M2,0, and let Γ be a finite index subgroup of G = Γ(M1)

� × · · · × Γ(Mn)
�.

Suppose that we have an injective homomorphism τ : Γ → G with finite cokernel.
Then we can find a bijection t on the set {1, . . . , n} and an isotopy class gi of a
diffeomorphism Mt(i) → Mi for each i such that for any γ = (γ1, . . . , γn) ∈ Γ, we
have

τ(γ) = (g1γt(1)g
−1
1 , . . . , gnγt(n)g

−1
n ).
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Proof. We identify Γ(Mi)
� and Aut(C(Mi)) via the natural isomorphism. Consider

the self ME coupling (G, π, τ) of Γ. It follows from Corollary 7.2 that we can find
the following:

(a) a bijection t on {1, . . . , n};
(b) an isotopy class gi of a diffeomorphism M2

t(i) →M1
i for each i;

(c) an almost Γ × Γ-equivariant Borel map

Φ: (G, π, τ) → (G, π, πg).

Put h = (h1, . . . , hn) = Φ(e) and define an automorphism πhg of G by

πhg(s) = (h1g1st(1)g
−1
1 h−1

1 , . . . , hngnst(n)g
−1
n h−1

n )

for s = (s1, . . . , sn) ∈ G. Define a G×G-equivariant map

Ψ: (G, π, πg) → (G, π, πhg)

by Ψ(s) = sh−1 for s ∈ G. Since (G, π, τ) is also a ME coupling of G and Γ, we see
that Φ is G× Γ-equivariant by Lemma 5.8. It is easy to see that Ψ ◦ Φ(e) = e and
thus, Ψ ◦ Φ = id. Therefore, τ is the restriction of πhg . �

8. Lattice embeddings of the mapping class group

In this final section, we give another application of Corollaries 5.9 and 7.2,
following [13]. We describe all lattice embeddings of a finite direct product of
mapping class groups into a locally compact second countable (lcsc) group. We
fix notations as follows: let n be a positive integer and Mi be a surface with
κ(Mi) > 0 for i ∈ {1, . . . , n}. Put G0 = Γ(M1)

� × · · · × Γ(Mn)
� and G =

Aut(C(M1)) × · · · × Aut(C(Mn)). Let π : G0 → G be the natural homomorphism.

Theorem 8.1. Let Γ be a finite index subgroup of G0. Suppose that we have a
lattice embedding σ : Γ → H into a lcsc group H. Then there exist the following
two maps:

(i) an almost Γ × Γ-equivariant Borel map Φ: (H, σ, σ) → (G, π, π), which
satisfies Φ(h1h2) = Φ(h1)Φ(h2) for a.e. (h1, h2) ∈ H ×H;

(ii) a continuous homomorphism Φ0 : H → G such that Φ0(h) = Φ(h) for a.e.
h ∈ H and Φ0(σ(γ)) = π(γ) for any γ ∈ Γ. Moreover, ker(Φ0) is compact.

Proof. First, we show the assertion (i). To prove this, we may assume that Mi 6=
M1,2,M2,0 for all i by using Lemma 5.8. We identify Γ(Mi)

� and Aut(C(Mi)) via
the natural isomorphism. Applying Corollary 7.2 to the self ME coupling H of Γ
with the Haar measure, we can find a bijection t on the set {1, . . . , n}, an isotopy
class gi of a diffeomorphism Mt(i) → Mi and an almost Γ × Γ-equivariant Borel
map

Φ′ : (H, σ, σ) → (G, π, πg).

Define a Borel map F : H ×H → G by

F (h1, h2) = Φ′(h−1
1 )−1Φ′(h−1

1 h2)Φ
′(h2)

−1

for h1, h2 ∈ H . Then for any γ ∈ Γ and a.e. (h1, h2) ∈ H ×H , we have

F (h1σ(γ), h2) = F (h1, h2) = F (h1, h2σ(γ)−1),

F (σ(γ)h1, σ(γ)h2) = πg(γ)F (h1, h2)π(γ)−1.

Thus, F induces a Borel map f from X = (H/σ(Γ)) × (H/σ(Γ)) to G such that

f(γx) = πg(γ)f(x)π(γ)−1
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for any γ ∈ Γ and a.e. x ∈ X , where the Γ-action on X is induced from the diagonal
one on H × H through σ. By projecting the finite Γ-invariant measure on X to
G through f , we obtain a finite measure µ on G invariant under the action of the
diagonal subgroup of Γ × Γ on (G, πg , π). It follows that t = id and gi ∈ Γ(Mi)

�.
Put g = (g1, . . . , gn) ∈ G. The support of µ is {g} and F (h1, h2) = g, that is,
Φ′(h−1

1 h2) = Φ′(h−1
1 )gΦ′(h2) for a.e. (h1, h2) ∈ H ×H .

Define a G × G-equivariant map Φ′′ : (G, π, πg) → (G, π, π) by Φ′′(γ) = γg for
γ ∈ G. Then the composition Φ = Φ′′ ◦ Φ′ is a Γ × Γ-equivariant Borel map from
(H, σ, σ) to (G, π, π) and it satisfies Φ(h−1

1 h2) = Φ(h−1
1 )Φ(h2) for a.e. (h1, h2) ∈

H ×H .
Next, we show the assertion (ii). It follows from [40, Theorems B.2, B.3] that

there exists a continuous homomorphism Φ0 : H → G such that Φ0(h) = Φ(h) for
a.e. h ∈ H . For any γ ∈ Γ and a.e. h ∈ H , we have

π(γ)Φ(h) = Φ(σ(γ)h) = Φ0(σ(γ)h) = Φ0(σ(γ))Φ0(h) = Φ0(σ(γ))Φ(h),

which implies π(γ) = Φ0(σ(γ)) for any γ ∈ Γ.
Since ker(Φ0) is essentially equal to Φ−1(e), which has finite measure, we see

that ker(Φ0) is compact. �

Proof of Theorem 1.4. It follows from Theorem 8.1 that there exists a continuous ho-
momorphism Φ0 : H → G such that K = ker(Φ0) is compact. Let H0 = Φ−1

0 (π(Γ)).
These groups satisfy the conditions in the theorem. �
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[18] U. Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, preprint,
math.GT/0409611.
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