A NOTE ON THE CYCLE MAP MODULO TORSION FOR POINTS

 byHélène Esnault

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3

A NOTE ON THE CYCLE MAP

 MODULO TORSION FOR POINTSby
Hélène Esnault ${ }^{1}$

In [B], theorem (6.1), S. Bloch proves that on a surface X with $p_{g}=q=0$, the degree map on the Chow group of points $\mathrm{CH}^{2}(\mathrm{X})$ is realized as $\operatorname{deg}: \mathrm{CH}^{2}(\mathrm{X})=\mathrm{H}_{\mathrm{zar}}^{2}\left(\mathrm{X}, \mathrm{x}_{2}\right) \rightarrow \mathbb{Z} \subset \mathrm{H}_{\mathrm{an}}^{2}\left(\mathrm{X}, \mathrm{x}_{2}^{\mathrm{an}}\right)$, where $\quad \boldsymbol{x}_{2}$ and $x_{2}^{\text {an }}$ are the sheaves of K_{2} groups in the zariski and the classical topology, and where the map comes from the change of topology.

In this note we generalize this using the DeligneBeilinson cohomology.

Let X be an algebraic proper smooth scheme of dimension n over C. We consider the morphism of Zariski sheaves

$$
f_{p, q}: \mathscr{F}_{\mathscr{D}}^{q}(p) \longrightarrow \mathscr{H}_{\mathscr{D}, \mathrm{an}}^{q}(p)
$$

[^0]where $\mathscr{X}_{\mathscr{F}}^{q}(p)$ (resp. $\mathscr{F}_{\mathscr{F}, \text { an }}^{q}(p)$) is the Zariski sheaf associated to the Deligne-Beilinson cohomology $H_{\mathscr{D}}^{q}(\mathrm{U}, \mathrm{p})$ (resp. to the analytic Deligne cohomology $H_{\mathscr{D}}^{\mathrm{q}}$, an (p)) modulo torsion, and $f_{p q}$ is the forgetful morphism (1.2), (1.3).

We prove that $H_{z a r}^{n}\left(f_{n n}\right)$ is the cycle map for points (modulo torsion) with values in the Deligne-Beilinson cohomo$\operatorname{logy} H_{g}^{2 n}(X, n)$ (2.6). As $f_{p p}$ is injective (1.3), this implies that the kernel of the Albanese map (modulo torsion) is coming from

$$
\begin{equation*}
\mathrm{H}_{\mathrm{zar}}^{\mathrm{n}-1}\left(\mathrm{X}, x_{\mathscr{D}, \mathrm{an}}^{\mathrm{n}}(\mathrm{n}) / x_{\mathscr{q}}^{\mathrm{n}}(\mathrm{n})\right) . \tag{2.7.1}
\end{equation*}
$$

Moreover if the Betti cohomology $H^{2 n-2}(X, Q)$ is generated by the Betti classes of algebraic cycles (which implies that $H^{n-2}\left(X, \Omega_{X}^{n}\right)=0$ and is equivalent to it on a surface), then the kernel of the Albanese map (modulo torsion) is exactly $\mathrm{H}_{\mathrm{zar}}^{\mathrm{n}-1}\left(\mathrm{X}, *_{\mathrm{g}, \mathrm{an}}^{\mathrm{n}}(\mathrm{n}) / *_{\mathscr{g}}^{\mathrm{n}}(\mathrm{n})\right)$ (2.8).

We define a sheaf x_{g}^{q},an (p) in the classical topology (1.6) with a natural morphism $H_{z a r}^{n}\left(X, x_{\mathscr{D}, \mathrm{an}}^{\mathrm{n}}(\mathrm{n})\right) \rightarrow \mathrm{H}_{\mathrm{an}}^{\mathrm{n}}\left(\mathrm{X}, x_{\mathscr{D}, \mathrm{an}}^{\mathrm{n}, \mathrm{an}}(\mathrm{n})\right)$ which we show to be the degree map (3.2).

I thank U. Jannsen for several useful conversations.

§1. Definition of the sheaves

Through this section X is an algebraic smooth scheme over \mathbb{C} of dimension n.
1.1 For each Zariski open set U, of good compactification $j: U \rightarrow \bar{U}$ such that $\bar{U}-U$ is a normal crossing divisor, we consider on $\overline{\mathrm{U}}$ the complexes
and

$$
\operatorname{Rj}_{*}^{m} n_{U}^{2 p}=j_{*}^{m} \Omega_{U}^{2 \mathrm{p}}=\lim _{\ell \geqslant 0} \Omega_{\mathrm{U}}^{2 \mathrm{p}} \quad(\ell \cdot(\overline{\mathrm{U}}-\mathrm{U}))
$$

where Ω_{U}^{*} is the holomorphic de Rham complex on U and j^{m} is the meromorphic extension. If $\Omega \dot{\bar{U}}(\log (\overline{\mathrm{U}}-\mathrm{U}))$ denotes the holomorphic de Rham complex on U with logarithmic poles along $\bar{U}-U$, and $F^{p}(\log (\bar{U}-U))$ denotes its Hodge-Deligne F filtration $\Omega \frac{\sum \mathrm{P}}{\mathrm{U}}(\log (\bar{U}-U))$, one has morphisms

$$
\begin{align*}
& \Omega_{\bar{U}}^{\dot{U}}(\log (\bar{U}-U)) \rightarrow j_{*}^{m} n_{U}^{\dot{U}} \tag{1.1.1}\\
& F^{p}(\log (\bar{U}-U)) \rightarrow j_{\hbar}^{m} \frac{\sum p}{U}
\end{align*}
$$

by forgetting the growth condition at infinity.
1.2 We consider the following presheaves in the Zariski topology: U \rightarrow
a) $\quad F^{p_{H}}{ }^{q}(U, p):=H^{q}(U, \mathbb{Q}(p)) \cap F^{p}{ }^{q}(U, \mathbb{C})$
$\left.\alpha^{\prime}\right) \mathrm{F}^{\mathrm{p}_{\mathrm{H}}}{ }_{(\mathrm{U}, \mathbb{C})}$
 class of ω in $H^{q}(U, \mathbb{C})$ lies in $\left.H^{q}(U, \mathbb{Q}(p))\right)$
r) $H^{q}(U, p):=H^{q}(U, Q(p))$
$\left.\gamma^{\prime}\right) H^{q}(U, \mathbb{C}), \quad H^{q}(U, \mathbb{C} / \mathbb{Q}(p))=H^{q}(U, \mathbb{C}) / H^{q}(U, p)$
б) $\quad H_{\mathscr{j}}^{q}(U, p):=H^{q}\left(\bar{U}, \operatorname{cone}\left(R j_{*} \mathbb{Q}(p)+F^{p}(\log (\bar{U}-U))\right.\right.$
$\longrightarrow \operatorname{Rj}_{\star} \mathbb{C}$ [-1]), the Deligne-Beilinson
cohomology of U

$$
\left.\left.\longrightarrow R j_{\star} \mathbb{C}\right)[-1]\right) \text {, the analytic Deligne }
$$

cohomology of U.
The morphisms (1.1.1) define forgetful morphisms

$$
\begin{aligned}
& f_{p q}: H_{\mathscr{D}}^{q}(U, p) \rightarrow H_{\mathscr{D}, \mathrm{an}}^{q}(\mathrm{U}, \mathrm{p}) \\
& \mathrm{g}_{\mathrm{pq}}: \mathrm{F}_{\mathrm{H}}^{\mathrm{q}}(\mathrm{U}, \mathrm{p}) \rightarrow \mathrm{Hol}_{\mathscr{Q}}^{\mathrm{pq}}(\mathrm{U})
\end{aligned}
$$

For $p=q, f_{p p}$ and $g_{p p}$ are injective ([E],(1.1)).
 ${ }_{\mathbb{E}}^{\mathrm{q}, \text { an }}(\mathrm{p})$ the zariski sheaves associated to $\alpha, \alpha^{\prime}, \beta, \gamma, \gamma^{\prime}, \delta, \epsilon$.

The morphisms of sheaves
$f_{p q}: *_{\mathscr{D}}^{q}(p) \longrightarrow \#_{D, a n}^{q}(p)$
$g_{p q}: \mathscr{s}_{\mathbb{Q}}^{p q} \longrightarrow \Omega_{\mathbb{Q}}^{p q}$
are injective for $p=q$ (1.2).
1.4 By [E], (1.1) one has a commutative diagram of exact sequences:
$0 \rightarrow \star^{p-1}(\mathbb{C} / \mathbb{Q}(p)) \longrightarrow \mathscr{H}_{\mathscr{D}}^{p}(p) \longrightarrow \mathscr{S}_{\mathbb{Q}}^{p p} \rightarrow 0$

By [B.O] (2.3), (0.3) one has $H_{2 a r}^{p-1+\ell}\left(X, x^{p-1}(\mathbb{C} / \mathbb{Q}(p))=0\right.$ for $\ell>0$, and by $[\bar{b}]$ one has: $H_{z a r}^{q}\left({ }^{(T)}(p)\right)=0$ for $q>p$, $H_{z a r}^{P}\left(X, X_{\mathscr{O}}^{P}(\mathrm{p})\right)=\mathrm{CH}^{\mathrm{P}}(\mathrm{X})_{Q^{\prime}}$, the Chow group of codimension p cycles modulo torsion. Therefore one has

Lemma

$$
\begin{aligned}
& \text { 1) } \quad H_{Z a r}^{p}\left(X, X_{\mathscr{G}}^{\mathrm{p}}(\mathrm{p})\right)=\mathrm{H}_{\text {Zar }}^{\mathrm{p}}\left(\mathrm{X}, \mathrm{~F}_{\mathbb{Q}}^{\mathrm{pp}}\right) \\
& \left|H_{z a r}^{p}\left(f_{p p}\right)=H_{z a r}^{p}\left(g_{p p}\right)\right| \\
& H_{\text {zar }}^{\mathrm{p}}\left(\mathrm{X}, \mathrm{H}_{\mathscr{D}}^{\mathrm{p}}, \text { an }(\mathrm{P})\right)=\mathrm{H}_{\mathrm{zar}}^{\mathrm{p}}\left(\mathrm{X}, \cap_{\mathbb{Q}}^{\mathrm{Pp}}\right)
\end{aligned}
$$

2) $H_{z a r}^{q}\left(X, g_{Q}^{p p}\right)=0$ for $q>p$.
1.5

Lemma One has
$x^{n+\ell}(k)=x^{n+\ell}(\mathbb{C} / Q(k))=0 \quad e \geq 1$
$\mathfrak{F}_{\mathrm{Q}}^{\mathrm{n}, \mathrm{n}+\ell}={\underset{\mathrm{C}}{\mathrm{C}}}_{\mathrm{n}, \mathrm{n}+\ell}^{\mathrm{n}}=0 \quad \ell \geq 1$
$\mathscr{X}_{\mathscr{D}}^{\mathrm{n}+1}(\mathrm{n})=\mathscr{X}^{\mathrm{n}}(\mathbb{C} / \mathbb{Q}(\mathrm{n})) / \mathscr{F}_{\mathbb{C}}^{\mathrm{n}}, \mathrm{n}$
$x_{g}^{n+\ell}(n)=0 \quad \ell \geq 2$
$\Omega_{Q}^{n, n+\ell}=\pi_{D, \mathrm{an}}^{n+\ell}(n)=0$
$\ell \geq 1$

Proof, As each point has a fundamental system of affine neighbourhoods, one has
$x^{n+\ell}(k)=x^{n+\ell}(\mathbb{C} / \mathbb{Q}(k))=\mathscr{F}_{\mathbb{Q}}^{n, n+\ell}=\mathscr{F}_{\mathbb{C}}^{n, n+\ell}=0$ for $\ell \geq 1$. This implies, via the exact sequence on each zariski open set U

$$
0 \rightarrow H^{n+\ell-1}(\mathbb{C} / \mathbb{Q}(n)) / F^{n} \rightarrow H_{9}^{n+\ell}(n) \rightarrow F^{n} H^{n+\ell}(n) \rightarrow 0
$$

that $\mathscr{X}_{\mathscr{D}}^{\mathrm{n}+1}(\mathrm{n})=\mathscr{X}^{\mathrm{n}}(\mathbb{C} / \mathbb{Q}(\mathrm{n})) / \mathscr{F}_{\mathbb{C}}^{\mathrm{n}}, \mathrm{n}$
and that $\pi_{\mathscr{D}}^{\mathrm{n}+\ell}(\mathrm{n})=0$ for $\ell \geq 2$.

For U affine, one has $\mathbb{H}^{n+\ell}\left(\bar{U}, j_{*}^{m}{ }_{\Omega}^{2 n}\right)=H^{\ell}\left(\bar{U}, j_{*}^{m} \|^{n}\right)=0 \quad$ for $\ell \geq 1$, and therefore $\Omega_{\mathbb{Q}}^{n, n+\ell}=0 \quad \ell \geq 1$. On the other hand, for U affine, one has surjections

$$
\mathbb{H}^{n}\left(\bar{U}, j_{*}^{m} n^{2 n}\right)=H^{0}\left(\bar{U}, j_{*}^{m} n^{n}\right) \rightarrow H^{n}(U, \mathbb{C}) \rightarrow H^{n}(U, \mathbb{C} / Q(n))
$$

This implies, via the exact sequence on each Zariski open set U

$$
\begin{aligned}
& 0 \rightarrow H^{n+\ell-1}(\mathbb{C} / \mathbb{Q}(n)) / H^{n+\ell-1}\left(j_{\hbar}^{n_{n}^{2}}\right) \rightarrow H_{90}^{n+\ell}, \text { an }(n) \\
& \mathrm{Hol}_{\mathbb{Q}}^{\mathrm{n}, \mathrm{n}+\ell} \\
& 0
\end{aligned}
$$

that $\mathrm{x}_{\mathrm{g}, \mathrm{an}}^{\mathrm{n}+\ell}(\mathrm{n})=0$ for $\ell \geq 1$.
1.6 If U is a Zariski open set, we may also define $H_{\mathscr{P}, \mathrm{an}}^{q, a n}(\mathrm{U}, \mathrm{p}):=\mathbb{H}^{q}\left(\mathrm{U}\right.$, cone $\left.\left.\left(\mathbb{Q}(\mathrm{p})+\Omega_{\mathrm{U}}^{2 \mathrm{p}}\right) \rightarrow \mathbb{C}\right) \quad[-1]\right)$. The morphism $\quad j_{*}^{m} n_{U}^{2 p} \rightarrow j_{*} n_{U}^{2 p} \quad$ defines $\quad a \quad$ morphism $H_{\mathscr{D}, \mathrm{an}}^{q}(\mathrm{U}, \mathrm{p}) \rightarrow \mathrm{H}_{\mathscr{D}, \mathrm{an}}^{q, a n}(\mathrm{U}, \mathrm{p})$, and therefore a morphism from $\mathbb{\#}_{\mathscr{D}, \mathrm{an}}^{q}(\mathrm{p})$ to the Zariski sheaf associated to $H_{\mathscr{D}, \mathrm{an}}^{q, a n}(\mathrm{U}, \mathrm{p})$.

As $H_{\mathscr{F}}^{q, a n}(U, p)$ is also defined in the classical topology, we denote by $x_{\mathscr{9}, a n}^{q, a n}(p)$ the associated sheaf in the classical topology. Recall that $\operatorname{dim} X=n$.

Lemma -

If $n=1$, one has $x_{g}^{1, \text { an }}(1)=0^{*} /$ torsion, the sheaf of holomorphic invertible functions modulo torsion, quasi isomorphic to $0 / \mathbb{Q}(1)$ via the exponential map. If $n>1$, one has $\quad x_{g, a n}^{n, a n}(n)=\Omega^{n}$, the sheaf of holomorphic n-forms. Especially if X is proper one has if $n=1$ $H_{a n}^{1}\left(X, X_{X, a n}^{1, \text { an }}(1)\right)=\mathrm{CH}^{1}(X)_{Q^{\prime}}$, the Chern group of points modulo torsion, if $n>1 H_{a n}^{n}\left(X, X_{\mathscr{D}, a n}^{n}, a n(n)\right)=\mathbb{C}=H_{a n}^{n}\left(X, \Omega^{n}\right)$.

Proof. For each analytic open set U, one has an exact sequence

$$
\begin{aligned}
0 \rightarrow H^{n-1}(\mathbb{C} / \mathbb{Q}(n-1)) \rightarrow & H_{0, \text { an }}^{n,}(n) \rightarrow\left(\omega \in H^{0}\left(U, Q^{n}\right),\right. \\
& \text { whose cohomology class in } \\
& \left.H^{n}(U, \mathbb{C}) \text { lies in } H^{n}(U, \mathbb{Q}(n))\right\} \rightarrow 0
\end{aligned}
$$

As each point has a fundamental system of neighbourhoods U for which $H^{n}(U, \mathbb{C})=0$, the sheaf associated to the cokernel is $\quad \Omega^{n}$. If $\quad n>1$, then $H^{n-1}(U, \mathbb{C} / \mathbb{Q}(n-1))=0 \quad$ for a fundamental system of good neighbourhoods U of each point, and therefore $\pi_{d, a n}^{n}$, n n $=\Omega^{n}$. If $n=1$, one has on each open set

$$
H_{\mathscr{X}, \mathrm{an}}^{1, \mathrm{an}}(\mathrm{U}, 1)=\mathrm{H}_{\mathrm{an}}^{1}(\mathrm{U}, Q(1) \rightarrow 0) \underset{\exp }{\simeq} \mathrm{H}^{0}\left(\mathrm{U}, 0^{*} / \text { torsion }\right)
$$

§2 Description of the cycle map for points modulo torsion

Through this section, X is a proper smooth algebraic scheme of dimension n over \mathbb{C}.
2.1 Proposition. One has

$$
H_{z a r}^{n}\left(X, \mathscr{H}_{g, a n}^{n}(n)\right)=H_{g}^{2 n}(X, n)
$$

Proof. By (1.3), one has

$$
H_{z a r}^{n}\left(x, x_{g, a n}^{n}(n)\right)=H_{z a r}^{n}\left(x, n_{Q}^{n, n}\right)
$$

As each point has a fundamental system of affine neighbourhoods, one has an exact sequence of Zariski sheaves,

$$
(2.1 .1) \quad 0 \rightarrow \Omega_{\mathbb{Q}}^{p, p} \rightarrow \Omega_{\mathbb{C}}^{p, p} \rightarrow \mathbb{*}^{p}(\mathbb{C} / \mathbb{Q}(p)) \rightarrow 0
$$

where $\Omega_{Q}^{p, p}$ is the Zariski sheaf associated to the presheaf
 sheaf of closed holomorphic p forms on U which are meromorphic at infinity. By (1.4), $\mathbb{x}^{\mathrm{n}+\ell}(\mathbb{C} / \mathbb{Q}(k))=0$ for $\ell 21$, and by [B.0], (6.2), (6.3), (3.9), (2.3) one has

$$
\begin{gathered}
H_{z a r}^{n-1}\left(X, \mathscr{H}^{n}(\mathbb{C} / Q(n))\right)=H^{2 n-1}(X, \mathbb{C} / \mathbb{Q}(n)) \\
H_{Z a r}^{n}\left(X, \mathscr{H}^{n}(\mathbb{C} / \mathbb{Q}(n))\right)=H^{2 n}(X, \mathbb{C} / \mathbb{Q}(n))=\mathbb{C} / \mathbb{Q}(n)
\end{gathered}
$$

and $H_{z a r}^{n-2}\left(X, X^{n}(\mathbb{C} / Q(n))\right.$ is a quotient of $H^{2 n-2}(X, \mathbb{C} / Q(n))$.

2.1.2. Lemma

a) One has
$\Omega_{a l g}^{n}=\Omega_{\mathbb{C}}^{n, n}$, where $\Omega_{\text {alg }}^{n}$ is the zariski sheaf of algebraic n forms and

$$
\begin{aligned}
H_{z a r}^{q}\left(x, \Omega_{a l g}^{n}\right) & =H_{z a r}^{q}\left(x, \Omega_{\mathbb{C}}^{n, n}\right) \\
& =F^{n_{H} n+q}(x, \mathbb{C})
\end{aligned}
$$

B) The map

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{zar}}^{\mathrm{q}}\left(\mathrm{X}, \mathrm{n}_{\mathbb{C}}^{\mathrm{n}, \mathrm{n}}\right) \rightarrow \mathrm{H}_{z \operatorname{ar}}^{\mathrm{q}}\left(\mathrm{X}, x^{\mathrm{n}}(\mathbb{C} / \mathbb{Q}(\mathrm{n}))\right. \\
& \quad \| \\
& \mathrm{F}_{H^{n+q}}(\mathrm{X}, \mathbb{C}) \longrightarrow \text { quotient of } H^{\mathrm{n}+\mathrm{q}}(\mathrm{X}, \mathbb{C} / \mathbb{Q}(\mathrm{n}))
\end{aligned}
$$

for $q=n-2, n-1, n$ arising from (2.1.1) is the natural one.

Proof α) By [S], one has

$$
\mathrm{H}_{z a r}^{q}\left(\mathrm{x}, \mathrm{n}_{\mathrm{alg}}^{\mathrm{n}}\right)=\mathrm{F}_{\mathrm{H}^{\mathrm{n}}} \mathrm{n}_{(\mathrm{X}, \mathbb{C})} .
$$

Applying a simplified argument a la Grothendieck, we have for the presheaves on each Zariski open set

$$
\begin{aligned}
& \Gamma\left(\mathrm{U}, \Omega_{\mathrm{alg}}^{\mathrm{n}}\right)=\underset{\ell \underset{Z}{\mathrm{im}}}{\lim } \Gamma\left(\overline{\mathrm{U}}, \mathrm{n}_{\mathrm{alg}}^{\mathrm{n}}(\ell \cdot(\overline{\mathrm{U}}-\mathrm{U}))\right. \\
& =\underset{\ell \geqslant 0}{\lim m} \Gamma\left(\bar{U}, n_{\mathbb{C}}^{\mathrm{n}, \mathrm{n}}(\ell \cdot(\overline{\mathrm{U}}-\mathrm{U})) \quad\right. \text { (GAGA) } \\
& =\Gamma\left(\mathrm{U}, \mathrm{R}_{\mathbb{C}}^{\mathrm{n}, \mathrm{n}}\right) .
\end{aligned}
$$

Therefore the two zariski sheaves $\Omega_{a l g}^{n}$ and $\Omega_{\mathbb{C}}^{n, n}$ are the same.
B) The spectral sequence $\mathrm{E}_{2}^{\mathrm{pq}}=\mathrm{H}_{\mathrm{zar}}^{\mathrm{p}}\left(\mathrm{X}, \mathbb{*}^{\mathrm{q}}(\mathbb{C})\right)$ is coming from the second spectral sequence of hypercohomology for the algebraic de Rham cohomology [B.O], (6.9). Therefore for each zariski open set the map $H^{0}\left(U, n_{a l g}^{n}\right) \rightarrow \mathbb{H}^{n}\left(U, \Omega_{a l g}^{0}\right)$, where $\Omega_{\text {alg }}^{0}$ is the algebraic de Rham complex, defines the map of sheaves $\quad \Omega_{\text {alg }}^{n} \rightarrow x^{n}(\mathbb{C}) \quad$ via Grothendieck's isomorphism $\mathbb{H}^{n}\left(U, \Omega_{a l g}^{\bullet}\right)=H^{n}(U, \mathbb{C}) \quad[G]$. This proves $\left.\beta\right)$.

Go back to the proof of (2.1).

The sequence (2.1.1) gives rise to an exact sequence
$\mathrm{F}^{\mathrm{n}^{2 n-1}}(\mathbb{C}) \xrightarrow{\alpha} H^{2 \mathrm{n}-1}(\mathbb{C} / \mathbb{Q}(\mathrm{n})) \rightarrow \mathrm{H}_{\mathrm{zar}}^{\mathrm{n}}\left(\Omega_{\mathbb{Q}}^{\mathrm{n}, \mathrm{n}}\right) \rightarrow$ $\rightarrow F^{n^{2 n}}(\mathbb{C}) \xrightarrow{\beta} H^{2 n}(\mathbb{C} / \mathbb{Q}(n))$
$\begin{aligned} H_{z a r}^{n}\left(X, \Omega_{\mathbb{Q}}^{n, n}\right) & =\mathbb{H}^{2 n}\left(X, \operatorname{cone}\left(\mathbb{Q}(n)+F^{n} \longrightarrow \Omega^{\bullet}\right)[-1]\right) \\ & =H_{\mathscr{P}}^{2 n}(X, n) \\ & =H_{z a r}^{n}\left(X, X_{\mathscr{Q}}^{n}, a n(n)\right)\end{aligned}$

2.2 Remark

As $F^{n} H^{2 n-1}(\mathbb{C}) \cap H^{2 n-1}(Q(n))=0, \alpha$ is injective; as β is the natural map (2.1.2), β is surjective.

One has the known extension

$$
\begin{aligned}
& 0 \rightarrow \frac{\text { Alb } X}{\text { torsion }}=H^{2 n-1}(\mathbb{C} / \mathbb{Q}(n)) / F^{n} H^{2 n-1}(\mathbb{C}) \rightarrow H_{\mathscr{Q}}^{2 n}(n) \rightarrow \mathbb{Q} \rightarrow 0 \\
& 11 \\
& H^{2 n}(Q(n)) \cap F^{n}
\end{aligned}
$$

2.3 Denote by alg the subgroup of $H^{2 n-2}(X, Q)$ generated by the Betti classes of algebraic cycles in $\mathrm{CH}^{\mathrm{n}-1}(\mathrm{X})_{\mathbb{Q}}$.

Lemma One has

$$
H_{\operatorname{zar}}^{n-2}\left(X, x^{n}(\mathbb{C} / \mathbb{Q}(n))\right)=\left(\frac{H^{2 n-2}(X, Q)}{\operatorname{alg}}\right) \otimes_{\mathbb{Q}} \mathbb{C} / \mathbb{Q}(n) .
$$

Proof By [B.O], (6.3), (7.4) and by (1.4) one has an exact sequence

$$
0 \rightarrow H_{z a r}^{n-1}\left(X^{n-1}(Q)\right) \rightarrow H_{a n}^{2 n-2}(X, Q) \rightarrow H_{\operatorname{zar}}^{n-2}\left(x^{n}(Q)\right) \rightarrow 0
$$

with $H_{z a r}^{\mathrm{n}-1}\left(X^{\mathrm{n}-1}(Q)\right)=\frac{\mathrm{CH}^{\mathrm{n}-1}(\mathrm{X})_{Q}}{\begin{array}{c}\text { Cycles which are algebraic } \\ \text { equivalent to zero }\}_{Q}\end{array}}$
2.4 Proposition One has
$H_{z a r}^{n-1}\left(X, \Omega_{\mathbb{Q}}^{n, n}\right)=\left(\frac{H^{2 n-2}(X, Q)}{a l g}\right) \otimes_{Q} \mathbb{C} / \mathbb{Q}(n) / F^{n_{H}}{ }^{2 n-2}(X, \mathbb{C})$.

Proof. Take the cohomology of (2.1.1) applying (2.1.2), (2.3) and the fact that α is injective (2.2).
2.5 Consider the diagram of exact sequences
(2.5.1)

The Bloch-Ogus theory for the Deligne-Beilinson cohomology
tells us that there is a spectral sequence
$\mathrm{E}_{2}^{\mathrm{pq}}=\mathrm{H}_{\mathrm{zar}}^{\mathrm{p}}\left(\mathrm{X}, \mathrm{X}_{\mathscr{D}}^{\mathrm{q}}(\mathrm{n})\right)$ converging to $\mathrm{H}_{\mathscr{\Phi}}^{\mathrm{p}+\mathrm{q}}(\mathrm{X}, \mathrm{n})$. As $\dot{X}_{\mathscr{D}}^{\mathrm{n}+\ell}(\mathrm{n})=0$
for $\ell>1$ (1.5), one obtains the following exact sequence
(2.5.2)
$H_{z a r}^{n-1}\left(X_{\mathscr{D}}^{n}(n)\right) \longrightarrow H_{g}^{2 n-1}(x, n) \longrightarrow H_{z a r}^{n-2}\left(x_{g}^{n+1}(n)\right) \longrightarrow$
$\longrightarrow H_{z a r}^{n}\left(x_{\mathscr{D}}^{n}(n)\right) \longrightarrow H_{\mathscr{D}}^{2 n}(n) \longrightarrow H_{z a r}^{n-1}\left(x_{\mathscr{D}}^{n+1}(n)\right)$

By (1.3) and [B.0] (7.4), one has a map
(2.5.3)

$$
\begin{aligned}
& H_{z a r}^{\mathrm{n}-1}\left(\chi^{\mathrm{n}-1}(\mathbb{C} / \mathbb{Q}(\mathrm{n}))=\frac{\mathrm{CH}^{\mathrm{n}-1}(\mathrm{X})_{\mathbb{Q}}}{\begin{array}{c}
\text { \{cycles which are algebraic } \\
\text { equivalent to zero }\}_{\mathbb{Q}}
\end{array}} \otimes_{\mathbb{Q}} \mathbb{C} / \mathbb{Q}(\mathrm{n})\right. \\
& \longrightarrow H_{z_{\text {ar }}}^{\mathrm{n}-1}\left(\mathrm{x}_{\mathrm{g}}^{\mathrm{n}}(\mathrm{n})\right) \longrightarrow \mathrm{H}^{2 \mathrm{n}-2}(\mathbb{C} / \mathbb{Q}(\mathrm{n})) / \mathrm{F}^{\mathrm{n}} \\
& \text { \| } \\
& H_{\mathscr{D}}^{2 n-1}(n)
\end{aligned}
$$

2.6 The map from (2.5.2)

$$
\mathrm{H}_{\mathrm{zar}}^{\mathrm{n}-2}\left(\mathscr{H}_{\mathscr{D}}^{\mathrm{n}+1}(\mathrm{n}) \longrightarrow \mathrm{H}_{\mathrm{zar}}^{\mathrm{n}}\left(\mathcal{X}_{\mathscr{D}}^{\mathrm{n}}(\mathrm{n})\right) \underset{(1.4)}{=} \mathrm{H}_{\operatorname{zar}}^{\mathrm{n}}\left(\mathscr{F}_{\mathbb{Q}}^{\mathrm{nn}}\right)\right.
$$

is coming from the cohomology of the vertical right sequence and the horizontal top sequence of (2.5.1). This implies

Theorem $H_{z a r}^{n}\left(f_{n n}\right)=H_{z a r}^{n}\left(g_{n n}\right)$ is the cycle map $\Psi: \mathrm{CH}^{\mathrm{n}}(\mathrm{X})_{Q} \longrightarrow \mathrm{H}_{9}^{2 \mathrm{n}}(\mathrm{n})$.

Proof. The first equality is (1.4)1. Let I be the image of Ψ in $H_{\mathscr{P}}^{2 n}(n)$, I, be the image of $H_{z a r}^{n}\left(g_{n n}\right)$ in $H_{\mathscr{D}}^{2 n}(n)$ (2.1).

One has a commutative diagram of exact sequences

As I and I^{\prime} are subgroup of $H_{9}^{2 n}(n)$, one has $I=I^{\prime}$.
2.7 Corollary One has

1) $\left.\operatorname{im~}_{H_{z a r}^{n-2}\left(x_{Q}\right.}^{\mathrm{n}+1}(\mathrm{n})\right)$ in $\mathrm{CH}^{\mathrm{n}}(\mathrm{X})_{Q}$

$$
=H_{\operatorname{zar}}^{\mathrm{n}-1}\left(x_{\mathscr{F}}^{\mathrm{n}}, \text { an }(\mathrm{n}) / x_{\mathscr{g}}^{\mathrm{n}}(\mathrm{n})\right) \text { in } \mathrm{CH}^{\mathrm{n}}(\mathrm{X})_{\mathbb{Q}} \text { is the kernel of } \psi
$$

2) $\mathrm{H}_{\mathrm{zar}}^{\mathrm{n}-1}\left({x_{g}}_{\mathrm{n}+1}^{(n)}\right)$

$$
\begin{aligned}
& H_{\text {zar }}^{\text {n-1 }}\left(\mathbb{X}_{g} \mathrm{n}, \mathrm{an}(n) / \mathbb{X}_{g}^{\mathrm{n}}(\mathrm{n})\right) \text { surjects into } \\
& H_{\operatorname{zar}}^{n-1}\left(\Omega_{\mathbb{C}}^{n, n} / \mathscr{F}_{\mathbb{C}}^{n, n}\right) \text {. }
\end{aligned}
$$

Proof 1) is consequence of $I=I^{\prime}$, and 2) of the
 (1.4.) 2. and of (2.6) and (2.5.1).
2.3. Corollary If $H^{2 n-2}(X, Q)$ is generated by the Betti class of algebraic cycles in $\mathrm{CH}^{\mathrm{n}-1}(\mathrm{X})_{Q}$, then one has

$$
H_{z a r}^{n-2}\left(x_{g}^{n+1}(n)\right)=H_{z a r}^{n-1}\left(x_{g, a n}^{n}(n) / x_{g}^{n}(n)\right)
$$

and this group is the kernel of the Albanese mapping modulo torsion. Moreover in this case one has $H_{\operatorname{zar}}^{\mathrm{n}-1}\left(\Omega_{\mathbb{C}}^{n, n} / \mathbb{G} \mathbb{C}^{n}, n\right)=0$.

Proof. By (2.4), $\quad H_{z a r}^{n-1}\left(\Omega_{Q}^{n, n}\right)=0$. Therefore by (2.6) $\operatorname{Ker} \Psi=H_{z a r}^{n-1}\left(X_{\Phi, a n}^{n}(n) / x_{q}^{n}(n)\right)$. By (2.5.3) and (2.5.2), $\operatorname{Ker} \Psi$ is also $H_{z a r}^{n-2}\left(x_{g}^{n+1}(n)\right)$. Apply (2.7.2).

§3 Description of the degree map for points modulo torsion

Through this section X is an algebraic smooth proper scheme over \mathbb{C} of dimension n.
3.1 In (2.1.1) one has defined a map

$$
\Omega_{\mathbb{Q}}^{n, n} \rightarrow \Omega_{\mathbb{C}}^{n, n}
$$

Lemma The degree map $H_{\mathscr{G}}^{2 n}(X, n) \xrightarrow{\text { deg }} H^{2 n}(X, \mathbb{C})=\mathbb{C}$ is the map $H_{z a r}^{n}\left(X, \Omega_{\mathbb{Q}}^{n, n}\right) \rightarrow H_{z a r}^{n}\left(X, \Omega_{\mathbb{C}}^{n, n}\right)$.

Proof By (2.1) one has $H_{g}^{2 n}(X, n)=H_{z a r}^{n}\left(X, n_{Q}^{n, n}\right)$ and by (2.1.2) the map

$$
\begin{aligned}
H_{z a r}^{n}\left(x, \Omega_{\mathbb{Q}}^{n, n}\right) \rightarrow H_{z a r}^{n}\left(X, \Omega_{\mathbb{C}}^{n, n}\right) & =F^{n_{H}^{2 n}}(x, \mathbb{C}) \\
& =H^{2 n}(x, \mathbb{C})=\mathbb{C}
\end{aligned}
$$

is the natural one.
3.2 Denote by just for a moment the zariski sheaf associated to the presheaf $H_{\mathscr{D}, \mathrm{an}}^{\mathrm{n}, \text { an }}(\mathrm{U}, \mathrm{n})$. The map $\mathbb{H}_{\Phi, \mathrm{an}}^{\mathrm{n}}(\mathrm{n}) \rightarrow \mathcal{H}$ (1.6) defines a map $H_{z a r}^{n}\left(X, X_{\mathscr{D}, \mathrm{an}}^{\mathrm{n}}(\mathrm{n})\right) \rightarrow \mathrm{H}_{\mathrm{zar}}^{\mathrm{n}}(\mathrm{X}, *)$. There is also the map arising from the change of topology $H_{z a r}^{n}(X, *) \rightarrow H_{a n}^{n}\left(X, X_{\mathscr{D}, \mathrm{an}}^{\mathrm{n}, \mathrm{an}}(\mathrm{n})\right)$. This gives a commutative diagram

Theorem The map of change of topology δ is the degree map for $n>1$ and the identity if $n=1$.
proof. Just apply (3.1) on the left vertical arrow and (1.6) on the right vertical arrow for $n>1$, and (1.6) for $n=1$.

REFERENCES

[\bar{b}] A. BEILINSON: Higher regulators and values of L functions, Sov. Prob. Math. 24, Moscow Viniti (1984), translation in J. Soviet Math. 30, 2036-2060 (1985).
[B] S. BLOCH: Lectures on Algebaic Cycles, Publ. Duke University, Durham, (1980).
[BO] S. BLOCH, A. OGUS: Gersten's conjecture and the homology of schemes, Ann. Sc. Ec. Norm. Sup. 4 série, t 7, 181-202 (1974).
[E] H. ESNAULT: On the Loday Symbol in the DeligneBeilinson cohomology, MPI Preprint 88-8.
[G] A. GROTHENDIECK: On the De Rham cohomology of algebraic varieties, Publ. Math. IHES, 29, 95-103 (1966).
[S] J.P. SERRE: Géometrie algébrique et géométrie analytique, Ann. Inst. Fourier, 6 (1956).

[^0]: ${ }^{1}$ supported by Heisenberg Programm; Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3, Fed.Rep. of Germany

