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On the Geometry of Affine Immersions
Katsumi Nomizu and Ulrich Pinkatl
Our purpose is to offer a new approach to affine differential geometry
based on the notion of affine immersion of an affinely connected manifold
(M",9) into an ambiant manifold (M™,¥). Inthe present paper we are mostly
concerned with the case wherem =n+ 1 and particularly ﬁnﬂ is the ordinary

affine space Rm'l and prove several theorems on affine immersions which are

closely related to known results on isometric immersions in Rlemannian or
pseudo-Riemannian geometry.

In Sections | and 2 we define the notion of affine immersion, develop several
formulas, reformulate some of the basic notions in classical affine differential
geometry and discuss several examples. In Section 3 we study affine
immersions of R" into ptl and prove Theorem | which is an analogue of the
cylinder theorem for compiete flat hypersurfaces in euclidean and Lorentzian
spaces. In Section 4 we prove Theorem 2 concerning affine immersions of a

"metric connection which gives a precise statement of the result hinted at by
Cartan [1] and indicated by Norden in the Appendix of [6]}.We obtain a few
f:orollarioa concerning rigidity of affine immersions. In Section S we prove
Theorem 3 on the non-existence of affine immersion into RM™*! of a compact
manifold with an equiaffine connection with strictly negative-definite Ricci

tensor.



i. Affine immersions.

Throughout this paper, we deal with affine connections without torsion so
_this condition wiil not be mentioned each time.

Let M be an n-dimensicnal differentiable manifold with an affine connection
v, and let M be an (n+t)-dimensional differentiable manifold with an arffine
connection V. By an affine immersion f: (M,9) = (M,¥) we mean an
immersion M — M for which there exists locally (that is, around each point of
M) atransversal vector field £ along f which has the following property: if X

and Y are arbitrary vector fields on M, we have

Ty 1Y) = 1,0 9yY) + h(X,V)E,
where the left-hand side denotes the covariant derivative with respect to X of
the vector f_1eid f«(Y) along f and the first term of the right-hand side is the ‘

tangential component and the second term is the transversal component, It is

easy to check that h is a symmetric bilinear form on each tangent space
TX(N). We may simplify the equation by dropping f, and write
(1 Vv = vyY +hn(X,Y)E.

In particular, if h is 0 at x (that is.?:‘xY is tangent to M), then we say that f

is totally geodesic at x. Obviously, this condition is independent of the choice

of L. We have



Proposition 1. Let f: (M,9) = (M, ¥) be an affine immersion and ¢, and

¢, two asgsociated trangversal fields, Thenthe directions (£,]and(&,]can

differ only on the interior of the set where h vanishes (i.e, on totally geodesic

pieces).

Proof. Write

(2) b, =Z+9k,,

where Z is a vector'fjeld tangent to M and ¢ is a function on M. We have then
VY =00+ ho(X,Y)Es = Y+ ho(X,Y)Z+ 9 ho(X,Y)E,.

Comparing it with (1), we have

hz(x,Y)Z=0 and ?hz(X,Y)=h3(X,Y).
If fis not totally geodesic at x, then there exists X,Y € TX(M) such that hz(X,Y)

=0, Then Z=0atx. Thus &,=9%, . o

It also follows that whether h is nondegenerate is independent of the choice
of £. We say f i3 nondegenerate if h is.

For an affine immersion f: (M,v) = (M, V) we also write

(3) Yy b=-S(X)+7(X)E,
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where -S(X) denotes the tangential component. It is easily verified that S is a
tensor field of type (1,1) and * is a 1-form. We call Sthe shape gperator and

T the transversa] conpection form for f.




Following the standard routine for geometry of hypersurfaces, we may now
compute

the tangential compongnts tan [R(X,Y)2] and tan[ R(X,Y)¢t ]
and

the transversal components trans [R(X,Y)Z] and trans {R(X,Y)¢]
interms of the curvature tensor Rof (M,9), h, S, T etc. We obtain

ELQ.QQ.&II].Q.II 2.

I tan [R(X,Y)Z ]=R(X,Y)Z - [h(Y,Z)SX - h(X,Z)SY]

11 trans[R(X,Y)Z)= (94h)(Y,2) + ©(X) h(Y,2)- (9yh)(X,Z) - 7(X)h(X,2Z)

I tan (ROX,Y)E] = - (9yS)(Y) + T(X)SY + (9yS)(X) - 7(Y)SX

IV trans [R(X,Y)E] = - h(X,8Y) + h(SX,Y) + 2 dv(X,Y).

We now consider certain important special cases.

For an affine connection v on M, the Ricci tensor Ric is defined by
(4) Ric(Y,Z) = trace {X— R(X,Y)Z}.
Ric may not be symmetric. It is known that Ric is symmetric if and only if
around each point there is a parallel volume element, namely, a nonzero
n-form w suchthat Vw=0. If Mis simply connected, it follows that Ric is
symmetric if and only if M admits a volume element w parallel relative to v,
that is, if and only if (M, V) is equiaffine. (M,V,w) is called an g_gyj_a_f_ﬁ_n_g
structure.

1t (M, ¥,®) 1s an equiaffine structure and f: (M,9) = (F, ¥) an affine



immersion and £ an associated transversal field, then we define a volume

element w on M by

(5) W(XyyeensXpy) = D(Xyyunn, Xy k)
where {X;,...,X}is any basis in T,(M). Using (1), (3) and (5) we see that

(6) vyw = T(X) @ .

It follows that (M, 9,w) is an equiaffine structure if and only if T =0,
If (M,v,w) and (M,¥,%) are equiaffine structures, f: (M,v) = (f,¥)

an affine immersion, then an associated transversal field is called equiaffine if
(5) holds for any basis { X;,...,X, } inT, (M)} . Wehave v =0. Assuming

that f is totally geodesic nowhere, the agsociated transversal field £ is now
uniquely determined because of (3).

Remark. The study of affine immersion of an equiaffine connection into flat
affine space is equivalent to what is called relative geometry, see [6], [7], [8].

We have

Proposition 3, If (M, 9,w) and (M, ¥, %) are equiaftine structures and if t

is an affine immersion: (M,v) — (M, ¥),_then an associated transversal vector

field £ can be chosen to be equiaffine.
Proof. Simply multiply & by ¢ = w(X,...,X,)/ CS(X, rereaXp £). o

Recall that two affine connections v and v (both with zero torsion) on a

manifold M are projectively related if there is a 1-form ¢ on M such that



(7)) T = OyY +p(X)Y +p(Y)X

for all vector fields X and Y. See, for example, [5].

A change from 9 to V is called a projective change. An affine connection
9 is said to be projectjvely flat if it can be changed projectively to a flat affine
connection ¥ (i.e. zero curvature tensor R).

Suppose an affine connection ¥ on a differentiable manifoid M has
symmetric Ricci tensor (in pgrticular,suppose it is equiaffine). For dim M .3,
v is projectively flat if and only if the projective curvature tensor
(8) W(X,Y)Z= R(X,Y)Z - [¥(Y,Z2)X - ¥(X,Z)Y], where ¥ =Ric/(n-1)

is identitcally 0. FordimM=2, 9is projectivély flat if and only if ¥ satisfies
Codazzi's equation:  (9y¥)(Y,Z) = (vy¥)(X,Z). If dimM23 andif W =0,

then ¥ satisfies Codazzi's equation. On tﬁe other hand, if dimM =2, then W is
automatically Q.
If (M,9) is projectively flat, then

(9)  R(X,Y)Z=%(Y,Z)X - ¥(X,2)Y.

We now consider the formulas [ - [V in certain special cases.
a. Case where (M,¥) is profectively flat:

R(x,Y)Z= 7% (Y,2)X - §(X,2)Y is tangential. Thus

la. R(X,Y)Z= F(Y,Z)X - ¥(X,2)Y + h(Y,Z)SX - h(X,Z)SY - Gauss-

From this, we get

Ric(Y,2) = (n-1)%(Y,Z) + h(Y,Z) tr S - h{SY,2Z).



In particutar, if ¥ is flat, we have
R(X,Y)Z=h(Y,2)SX - h(X,2)sY

Ric (Y,Z) =h(Y,Z) tr S - h(SY,Z).

Ila. (vxh)(Y,Z) + t(X)h(Y,2Z) = (VYh)(X,Z) + v(Y)h(X,Z) -Codazzi-

We set
(10)  C(X,Y,2) = (9gh)(Y,2) + =(X)n(¥,2),
which is symmetric inY and Z like h, as well as in X and Y by virtue of [Ia, thus

symmetric inX,Y, and Z. We call C the cyhic form of the affine immersion.

This is a generalization of the classical cubic form in affine differential

geometry.

b. Cage where (M,v,w),(M,¥,®) are equiaffine and the transversal field

¢ is equiaffine:

Since T = 0, we get

IIb. (9yh)(Y,2) = (th)(X,Z) - Codazzi for h -
b, (9y8)(X) = F(Y,£)X = (94S)(Y) - F(X, )Y

In particular, if ¥ is flat, (9yS)(X) =(9yS)(Y) - Codazzi for S-

IVb. h(SX,Y) = h(X,SY) - Ricci-
2. Examples.

We discuss some examples of affine immersions.

Example ! - Isometricallv immersed hypersurface. Let (M,g) bea



Riemannian manifold of dimension n with Levi-Civita connection v. Let (ﬁ,a') be
a Riemannian manifold of dimension n+1 with Levi-Civita connection ¥ . If f:
(M,9) = (M,3) is an isometric immersion, then f:(M,9) = (M, ¥) 1s an affine
immersion with a transversal vecotr field £ given locally as a unit normal
vector fieid.

Example 2 - Affine. cylinder. Roughly speaking, an affine cylinder in R ! is
a hypersurface generated by a parallel family of affine (n-1)-spaces R"'i(t).

each through a point of ¥ in R, we define an affine cylinder immersion

precisely as foilows.

Let ¥(t) be a smooth curve in R™ ! and E(t) a vector field along ¥(t). Let
R™! be an affine (n-1)-space in R™1 and consider all parallel (n-1)-spaces
and denote by R"" ! (p) the one through p. We assume that

(i) ¥(t), £(t) and R11(%(t)) are linearly independent;

(it) v°(t) =p(t)E(t), wherep=p(t) is a certain differentiable function.

Now we define a mapping f: R® = R™! as follows. write M =R x " s0
every point of R" is written as (t,y), t €R, y € 1, l;et

f(t,y) = ¥(t) +y.
For this immersion f, we take a transversal field
E(t,y) = ¢(t) translatedto f(t,y)

by virtue of condition (i). It is easy to verify that f is an affine immersion of

R" = R™!. For the curve x(t) = (t,0) in K", we have



Ve f0q) = (1) =p()E(L)  so h(d/at,a/at) = p(t).

In the special case where we cantake & = %" and furthermore ¥ and 3™ are

linearly independent, we calt it a proper affine cylinder. Inthis case, we see

from %’tﬁ - 3" = f (5(d/2t)) + v(3/3t)¥y" that S never vanishes. We also

see that h never vanishes.

Example 3 - Graph immersjon. Let (M"*9) be a manifold with a flat affine

connection and ¢! (M"'V) - R" an affine immersion. Thus ¢ is an immersion
such that every point p of MM has a neighborhood U on which ¢ is an
affine-connection preserving diffeomorphism with an open neighborhood V of
9(p) in R". Consider R" as a hyperplane H in Rn+I and let £ be a paraliel
vector field transveral to H. For any differentiable function F: Mh—b R, we
define f:M" = &M by f(x) =¢(x) + F(x)&, for xeM".
| We have

fo(Y) =9, (Y) + (dF)(Y) & for YeT (MM

so fis animmersion. For vector fieids X and Y on Hn, we have

Tofel¥) = ¥y 0, (Y) + Ty (YF £) =9, (94Y) + (XYF)E

Thus f is an affine immersion with H(.X,Y) =XYF - (VXY )F, which coincides

with the Hessian of F. Thus f is nondegenserate if the HessianHis
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nondegenerate. We have aiso S=0.

Conversely, we may prove

Proposition 4. Suppose ( M,¥) Is a flat connection and f: ( M",v) = R/
an affine immersion such that 3=0. Then it is affinely equivaient to the qra
immersion for_a certain ion F: MM — R.

Proof. By assuming a transveral field £ to be equiaffine, S =0 implies that
%’XE, = 0, that is, £ is & constant (parallel) vector field. LetH= R"be s

hyperpiane in R™ which is transversaito £. Let w :R™ ' — #7 be the
projection along the direction of £ sothat  « f: MM = g7 i3 an affine immersion
with image W, an open subset of R7. We can find a differentiable function F: M"
=R such that f(x)= (me«f)(x)+F(x)E. Thus fis a graph immersion. 0
Examole 4 - Centro-affine hvpersurface. Suppose f:M— B!~ (o} is an
immersed hypersurface such that relative to o in g1 the position vector

—_— _—
o f(x) is always transversal to f(M) at f(x). Take £ =- of(x)’as

a transversal vector field for f. Then '5)(5, =-X sothat t=0and S=1

(identity). By writing ¥yf (Y )= f,(v,Y) + h(X.‘Y)L, we see that vyY is
indeed an affine connection (with zero torsion) on M.Thus f :(M,9) S g
an affine immersion. This is called a centro-affine hypersurface. From the
formula (Ib) we get

(11) R(X,Y)Z =h(Y,Z)X - h(X,2)Y, ¥(Y,Z)=nh(Y,Z).
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Propogition 5, For a centro-affine hypersurface f: (M, 9) - ( R”ﬂ-{o},??')
and for any function x: M = R+, the mapping  x—x(x)f(x) _defines a
centro-affine hvpersurtace M (M, v') = ( R™! -{o}, ¥) where v.is
projectivelty relatedto ¢ _by

VY= 9y Y +o(X)Y +p(Y)X, where p=dlog}9.

Conversely, any projective change of (M,V) can be logally obtaiped in this
manner.

The proof is straightforward and omitted. 8]

Corollary. Let (M,v,w) _be g differentiable mapifold with a projectively
flat equiaffine connecton, Then (M,9) can be locally realized as a
centro-affine hypersurface in R™1-(o}.

Proof. If (M, v') is flat, then it can be Tocally realized as a piece of a
hyperplane with induced volume element wg in Rt -{0}. Now we can make 3
projective change back to v by modifying this hyperplane by a suitable function
X, namely, \ =w/w0. a]

Example 5- Conormal immersgion .

Let f: (M,7,w) = R s a nondegenerate affine immersion of an equiaffine
structure with an equiaffine transversal field £. We'denote by Rn+l the vector
space dual to the vector space lt“+1 underlying the affine space R"'” . We

define vi M =R, - {0} as follows.
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For x€M, v, is anelement of R ., suchthat
(12) v (Y)=0 for YET (M) and v (§,)=1,
where Y and &x are considered as elements of the vector space R”'” naturally

identified with Tx( R ). Denoting by ¥ the usual flat connection in Rt
we have

(13)  (Fyv)(&) =0 and (Tyv)(f,X) =-h(Y,X) forall X,Y € T,(M).
Since h is nondegenerate, we see that if ('f."yv )(f,X) =0 for all X, then Y =0.
Since ?‘."Yv = v, (Y), it follows that the mapping v is nonsingular. Hence we may

consider v: M =R, - {0} as a centro-affine hypersurtace, called the

conormal immersion for f.

Taking -v as the transveral vector field as in Example 4 we write
(14) Ty (v (D) = v (95,Y) - 0 (X, Y)v,

where 9* is an affine connection on M and h* the second fundamental form.
These are related to the affine connection ©, the affine metric h and the affine

shape operator S fot the original hypersurface fi M -)R"” in the following way:

(15) hx(X,Y) = h(5X,Y) (also equal to ¥,(xY) as in Example 4)

(16) X h(Y,Z) =h(9*,¥,2) + h(vyZ,Y)

and
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(7) By = (wgY + 9%Y)/2,

where ¥ denotes the Lavi-Civita connection for the affine metric h.

The formulas (15) and (16) ;re consequences of basic formulas for f and
(12),(13) and (14). (17) follows from (16). They can be found, in different
notations, in [6], p.127-129. It is a classical fact that the cubic form C for f

vanighes if and only if 9= 9 = v*,

Example 6 - Blaschke immersion. Suppose f: (M,V,w) = (M,¥,@) is an

affine immersion with equiaffine transversal field. If, furthermore, fis
nondegenerate and if w coincides with the volume element wy, of the

nondegenerate metric h, then we say that fis a Blaschke immersion. For the
case where (M,V,d) is an ordinary affine space R with the flat affine
connection and the standard volume element given by the determinant, this is
exactly the kind of affine immersion which has been the primary object of study
in affine differential geometry developed by Blaschke and hig school in the
period 1910-40, The first step in the subject is-to prove, for the standard
equiaffine structure in R , the following basic res.ult.

Let M be a hypersurface in.'nmerséd in R“H . For any choice of a transversal

vector field £ , define an affine connection ¢ and the bilinear form h by

equation (1). Whether h is nondegenerate or not i3 independent of the choice of
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£, and we say that M i{s nondegenerate if h is. Denots by w, the volume element

for h.

Propogition 6. _If Mis a nondegenerate hypersurface immersed in R+ ,
there i3 a untque choice of & guch that
i) wy, goincides with w_defined by w(X;,...,X5) = @(X,...,Xp, £);

i) (M,v,w) is equiaffine.

This unique £ is called the affine normal and the corresponding h the affine

metric.

The proof of Proposition 6 can be found in [4].
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3. Affine immersions g - Rnﬂ
In this section we are interested in classifying all affine immersions: M =
RO - R"H. We always choose an equiaffine transversal field £ as we may. -

From Section 1 we have the formuias

h(Y,Z) SX =h(X,Z) SY - Gauss equation in case R=0 -

(vyn)(Y,Z) = (vyh)(X,Z) - Codazzi equation for h -

(vyS)(Y) = (vyS)(X) - Codazzi equation for S -

h{SX,Y) = h(X,5Y) - Ricci equa{ion -.

If h is identically O, then f is totally geodesic and f(R") is an affine
hyperplane in i . If S is identically O, then by Proposition4 fis a graph,
immersion,

In the general case, let 2= {x&M;S, =0, h=0}. Weprove

Lemma t. For eachx€Q, Ker h=Ker S and its dimensionis n-1i.

Proof. For each x€ Q the equality Ker h=Ker S follows directly from
the definition and the Gauss equ.ation. If for some x € Q we had rank S22,
then there would be tangent vectors X and Y such that SX and SY are linearly
independent. The Gauss equation then would imply X, Y €Ker h=Ker S, a

contradiction. 0

For x € Q, the subspace N, =Kerh, =KerS, C TX(M) is called the

relative nullity space at x.

Lemma 2. The distribution N: x — Nx on Q is involutive and totally
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geodesic.

Proof. It is sufficient to show that N is totally geodesic, that is, for

vector fields Y,Z belonging to N, 9yY €N. Inthe equation of Codazzi for h:
(vxh)(Y,Z) = (th)(X,Z) take Y,Z € N. Then we get
X h(Y,2) - h(9yY, Z) - h(Y, 9yZ) =Y h(X,2) - h(9yX,2) - h(X,9y2)

and hence h(X,vYZ) = 0. This being valid for all X, we have 9yZ € N. O

Now if L is a eaf of the relative nullity foliation N, L Is totally geodesic in

M =R". Indeed, f(L) is totally gecdesic in R, our goal is to show that

each leaf L is complete. Let X be a geodesic starting at X inthe leaf L.
To show that X extends for all values of t in L, first extend it as a geodesic
in M. It is sufficient to show that X, lies in Q, because then it lies in L. 3o

suppose there is b > 0 such that beQ and xtEQ for all t <Db.

We need

Lemma 3. Let X be a vector field on some open subsat W of ( containing

the geodesic x;, 0 <t ¢ b, such that ?yX = 0, X €N, and X at x; equals the

—
tangent vector x, for O<t <b. Let Ube a parallei vector fieid on M =R’

which is transversal to the hyperplane H=R""! of M =&" that contains L.

Then

(1) Write 9 X =p U+Z at each point p€Q N H, where Z, €N,

the function y satisfies Xu = - ;;2 along Xy 0<t<b.
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(ii) Write SU =xU+ W at each point p€V, where W e Tp(H). Then the

function » satisfies X\ = -y )\ _along X, 0ct<b.

(i) tet p=h(U,U) onV, Then Xpe=-pup along x, 0<t<b,
Proof.
(1) (v X) =Vy(pU+2Z)=(Xp) Ut p 9yZ+ 9l = (Xpg) U modN.
Since R =0, we have along X%, 02t<b
(VUKD = Iy uX =t Tg xX =T T u e X
=-u9X - VX == .%U mod N,

Hence (Xu)U= - ;LZU mod N and Xp = - gz.

(i) From the Codazzi equation for S

Uy (SU) - S(vyl) = v,,(SX) - S (v )X),
we get along X4y Qgt<hb
OOU + X(TyU) + 9yW = - p SU=-pn (MY + W)
and  (X\)U= -l modN. Thus Xa=-ux along x,.
(1ii) We have along Xty 0t <D
Xp = XKU,U) = (9yh)(U,U) - 2h(vyU,U) = (9 ;h)(X,U) -
= U h(X,U) - h{oX,U) - h(X, 9. U) = - u h(U,U) = - np. a

Now we can conclude the proof that Xy € Q as follows. The equations in

(i), (ii) and (iii) are
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du/dt=- pn%  d/dt=- g, dp/dt = - gy for 0<t< b.
Thus u is identically 0 or p. = 1/(t+a) for some a. It follows that x =

constant or x = 1/c(t+a) and the same for p. In all cases, neither x nor ¢
approaches 0 ast — b, Now at the point p= xb’ this means SU= 0 as well as
h{u,u) = 0. Thus p€ Q.

With completeness of L established, we know x; € L for all t. Thus the

possibility of u =1/(t+a) is exciuded. Hence u = 0 and thus x» andp are
equal to constants on the leaf L.
We can now prove

Proposition 5. Let f:R" — K™ be an affine immersion such that S and

h vanish nowhere. Then f is affine-equivalent to a proper affine cylinder

immersion.

Proof. Inthe foregoing discussions, we now have Q2 =R" . We have
already proved that each leaf of the relative nullity foliation is complete.
Thus each leaf is a hyperplane in R7, and all leaves are parallel
hyperplanes because they are'disjoint from each other.

We take a vector U transversal to all these hyperplanes and consider a

line X4 in the direction of of U. Write R""(t) for the leaf through the point
% . Since each leaf i3 mapped totally geodesically, f( R”'l(t)) is an affine
(n-1)-space in R“ﬂ. Also, if Yt is a parallel vector field along X¢ such

that Y, & T, ( A" }(t)), then



b
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¥y £ (Yy) = 1,(9,Y,) + (U, Y,) = 0.

Thus f,(Y,) is parallel in R™*1. This shows that all subspaces f(R"'(t))

are parallel to each other,
Now it is easy to verify that f is affinely equivalent to a proper affine

cylinder immersion based on the parallel family f( R”"(t)) and the curve
¥(t) = f(x) . The original transversal field &, is in the direction of ¥"(t).

We can now state

Theorem!. Let f:R® = R™"! be an affine immersion. Then Q = {xeR";

Sx #0, h, = 0}, if_not empty, i.s the union of parallel hyperplanes. Each

connected component 2, of 2 15 a strip consisting of parailel hyperplanes

and f:Q, — AT affinely equivalent to a proper affine cylinder

immersion.
Remark. On each component of RN -u 5; is a mixture of graph

immersions and totally geodesic immersions. Qne can easily construct
examples piecing together different types of affine immersions, but proving a

general description is not sasy.

Corollary. An analytic immersion f: R" - Rn'” is either totaily

qoedesic or affinely equivalent to a qraph immersion or affinely equivalent to

an affine cylinder immersion.

Proof. If h or Sis identically 0, we know that f is totally geodesic or a

graph immersion. Otherwise, the open subset Q i3 dense. On each
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connected component ch , fis a proper affine cylinder immersion. Since Q

is dense, all these immersions of the components extend to an affine ¢ylinder
immersion f. 0

Remark. It is not difficuilt to construct a c® affine immersion MZ - R:" of
the affine Mdbius band r‘l2 = sz?, where ¢ i3 the affine map : (x,y) —

(x+1,-y). Bythe corollary, however,there can be no analytic immersion of

this kind.
4, Affine immersions of pseudo-riemannian manifolds

We prove the following theorem which is a precise statement for the
result of Cartan and Norden mentioned in the introduction.

Theorem 2. Let (M",g) be a pseudo-riemannian manifold, ¥ its

Levi-Civita connection and f: ( M7, 9) — ! an affine immersion with a .

transversal field £. If fis nondegenerate, we have either

(i) v is flat and f is a graph immersion;

or

(it) v is not flat and R™! admits a parallel pseudo-riemannian metric

relative to which f is an isometric immersion and £ is perpendicular to

f( MM,
Proof,.We first establish

Lgmmg.qlzg_g (M,h) be a pseudo-riemannian manifold and let ¢ and. v*n_g

two affine connections with zero torsion on M which are conjugate relative to

h, that is,
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X h(Y,Z) = h(9yY,Z) + h(Y,9%,2)

for all vector fields X,Y and Z. Let B be a nonsingular (1,1) tensor field

which is symmgtric relative to h and define pseudo-riemannian metrics g and

9" by
g(X,Y) =h(BX,Y) and  g*(x,Y) =n(B™'x,Y).

hon (Wyg)(Y,2) + (V*xd')(Y.Z)ao for all vector flelds X,Y and Z. In

"part1cular, v is the Levi-Civita connection for g if and only if v* is the

Levi-Civita connection for g*.

Proof. We have
(9% Y, 2) =x g*(¥,2) - ¢* (v%Y,2) - g% (¥,9%2)
=Xh-(B'1Y,Z) - h(e*yy, 8712) - (7YY, 9%2)
=xh(87'Y,2) - {x h(Y, 87'2) - n(Y,9,B712)}
- {xn(z, 871Y) - n(z,9,87'x))
= n(z, 9, B7'Y) + n(Y,9,8712) - x n(y, 87'2).
Reblacing Y,Z by BY, BZ we get
(9* ) (BY,BZ) = h(BZ,VyY) + h(BY,9yZ) - Xh(BY,Z)
= 9(Z,9yY) + g(Y,9yZ) - Xg(Y,Z) = - (9y4g)(Y,Z). o
To prove the theorem, we may assume that £ is equiaffine and we consider

the conormal Immersfon vi (M7, 7*) = R ., . We recall that the affine

connection v* is conjugate to ¥ relative to the form h for f; ¢f. equation
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(16).

Singe h is nondegenerate, we may write g(X,Y) = h(BX,Y), whereBis a
certain nonsinguiar (1,1) tensor symmetric relative to h. We define a
pseudo-riemannian metric gl|t by g*(X,‘f) = h(B'IX,Y). By the ilemma, we
see that 9* is the Levi-Civita connection for g'.

Now the conormal immersion being a centro-affine immersion, we know
that 9* is projectively flat. Since v* is the Levi-civita connection for g*.
it follows by a theorem of Dini-Beltrami that g" has constant sectional
curvature, say, ¢. The form hx for the conormal immersion is, by equation
(11), equal to the normalized Ricci tensor x*, which is in this case equal to
¢ g% Thus hx=c g%, in particular, ¢*n*=0.

Case (i): ¢=0. Then v* is flat. Since hx =0, by (15) the shape
oper;ator S for f i3 0 and by the Gauss equation v is flat. By Proposition 4 we

conclude that f is a graph immersicn.
Case (i{): ¢ =0, We shall showthat IR, admits a parallel

pseudo-riemannian metric < , >* such that

vy (X), v (YDH* = g% (X,Y) for X,Y €T, (M)

v, vy (X)>* =0 for XeT (M)

v, v¥* = - 1/c.
For this purpose, we define < , »* in each Tv(x)(nnﬂ) using exactly the
above three equations and show that this metric tensor field along v is

paraliel in R, . Thus we wish to verify
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(x) XU, v = «%u,v ot + U, ¥y o?

for all vector fields U and V along v and a vector field X on M.
If UandV are of the form v,(Y) and v, (2}, where Y and Z are vector
fields on M, the equation (%) reduces to (v*yg}(Y,Z) = 0.
IfU=v,(Y)and V=v, then X <v,(Y),v>* =0 and

¢CTULY T 2 ¢ Tv (1),v 0% = v (9,0), 0% + ¥ (X, Vv, »*
= h*(X,Y) <v,v>F = - n¥(X,Y)/c
as well a8 <U, FyV> = < v, (X), vy (Y)> = g*(X,Y) . Thus (*) is satisfied.

Finally, if U=V =v, (x) is obvious.
Now it remains to show that R"'” admits a parallel pseudo-riemannian

metric < , > such that
Fo(X), (Y =g(X,Y), < (X),E>=0, <E,b>=-1/c
for all vector fields X and Y on M. Indeed, using the nondegenerate form

<, >* in R 4+1s we identify R ., with R (both as vector spaces) by

ue Ry~ 6(u) € B! with w(o(u)) = cu,w>* for all we R, We then

define < , >in R™! as the dual inner product, namely,
X, Y> =<7 1(x), o 1 (Y)»* for X,ye R,

In order to show that this inner product < , > is the desired one, we first

remark the following fact. Let u=v,(X) for X €T, (M).Then for any Y €

T, (M) we have v, (Y) (8(u)) = Cv,(Y), ve(X)* = g*(X,Y). Onthe other



24
hand, v(6{(u))=0. It follows that 8(u) = - f,,(B'lx), where B is a certain
nonsingular (1,1) tensor. We have

g*(X,Y) = v, (Y)8(u) = - v, (") (1,87 X)) =n( B 'X,Y),
where we use the relation (13). Now for X,Y we have
1,0B71X) == 00 vy (X)), (B 1Y) = - 8(vy(Y))
and
CEBTIX), F (B Y = v (X), v (Y% = g*(X,Y).
Replacing X,Y by BX, BY in this equation we obtain
¢f (XD, f,(Y)> =g*(BX,BY) = h( B”'BX,BY) = h(X,BY).
But as in the lemma, h(X,BY) = g(X,Y). Hence
g(X,Y) = <f (X), f (Y.

The other identities are obvious from 8(v) =E£. The proof of the theorem is
now complete. a
We state a few corollaries.

Corollary 1. Let (MN,g) be a pseudo-riemannian manifold, ¢ its

Levi-Civita connection, and f: ( M",9) — R™! an affine immersion. If the

Ricci tensor of g is nondegenerate, then li"+I admits a parallel

pseudo-riemannian metric such that f is an isometric immersion and the

transversal field is perpendicular to f(MN).

Proof. From Ric(Y,Z) = h(Y,Z) trS - h(SY,Z), it follows that h is
nondegenerate if the Ricci tensor {3 nondegenerate.

Corollary 2. Let g be a riemannian metric on S2 with Gaussian curvature
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K > 0 and Levi-Civita connection 7. Then there exists an affine immersion f:
(SZ,V) - l?3 which is unique up to an affine transformation of R3 .
Proof. By the solﬁtion to Weyl's problem (see, for example, [9], p.226)

(Sz,g) has an isometric imbedding f into euclidean space RZ’ with standard
metric and it is rigid. Sof: (Sz,v) - R3 is an affine imbedding. Suppose fy

: (sz,v) — R3 is another affine immersion. Theorem 2 implies that it is
isometric relative to a certain parallel pseudo-riemannian metric ¢ , > in
R3. This metric must be Euclidean to accommodate a compact surface with
positive definite metric induced on it. Since one ¢an find an affine

transformation A of R3 which transforms the metric ¢ , > into the standard

metric, it follows that Ae I'I is an isometric immersion into R3 with

standard euclidean metric, and as such, congruent to f. This means that f,

differs from f by an affine transformation. D

Corollary 3. Let g be the standard riemannian metric on S” with constant

sectional curvature 1. For every affine immersion f: (Sn,v) - R"” , the

image f( sM) is an ellipsoid (relative to a Euclidean metric).

Corollary 4. Let (H™,g) be the hyperbolic space with standard riemannian

metric of constant sectional curvature -1. Then every affine transformation

f: (H",7) = R™! i3 an isometric immersion of (H",g) into R™! with flat

Lorentz metric. If n2 3, f(M™") is affinely congruent to one component of

"the two-sheeted hyperboloid -xo2 + x12 LACII xnz =-1, Xg 2 0.

Remark 2. Inthe proof of Theorem 2, the sign of ¢ generally depends on
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'the affine immersion f,

3. Egquiaffine immersions of compact manifolds

1t is a standard theorem in euclidean differential geometry that a compact
riemannian manifold (M,,9) with negative-definite Ricci tensor cannot be

isometrically immersed in a euclidean space llnﬂ: any compact immersed
hypersurface has to be locally strictly convex somewhere and the Ricci
tensor is positive-definite at convex points. For affine immersions this
argument does not apply, because convexity does not imply positivity of the
Ricci tensor. For example, the hyperbolic space HM can be .affinely imbedded
as one component of a two-sheeted hyperboloid.

We can still prove

Theorem 3. Let (M", v,w) be a compact equiaffine manifold with

negative-definite Ricci tensor (or more generally, with nondegenerate, but

not positive-definité, Ricci tensor). Then (MM, 9) does not admit an affine

immersfon into R™ !,

Proof. Let f: (MP,9) —P‘ R™! be an affine immersion. We choose a
transversal field to be equiafﬂqe. As in Corollary 1 in Section 4, h is
nondegenerate with the Ricci tensor. Thus v;ewing MM as a hypersurface in
euclidean space R"*I , the usual second fundamental form is proportional to h
and thus nondegenerate. It foliows that M7 is diffeomorphic to Sn, his
definite, and f( MM) is a strictly convex hypersurface (fo example, see {4],

p.41). By diagonalizing S relative to h, we see that Ric for ¢ is positive-
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definite at a point whera the bilinear form B(Y,Z) = h(SY,Z) is positve-
definite. We shall show that there is such a point, contradicting the
assumption on Ric and thus concluding the proof of Theorem 3.

From Example 5 recall that (n-1)B is equai to the Ricci tensor of the
conormal connection ¥ on M, which is equiaffine and projectively flat. Thus

our' assertion will follow from the next lemma.

Lemma. Let ¥ be a projectively flat equiaffine connection on S" with

volume element w. Then there are points on S" where the Ricci tensor of V

i positive-definite.

Proof . Recall that (S", ¥) is projectively equivalent to ( 5",74), where

Vo is the standard affine connection (Levi-Civita connection) on S" (see, for

example [3]). Consider S as a unit sphere in R we may obtain a
centro-affine Immersion 9: 5" — R™! 5o that the induced volume element
coincides with ®. The induced connection v” is projectively flat and
coincides with ¥, since they have the same volume element. See, for
example, [5], Proposition 2.

Thus we may consider ¢: s - R"'” , where the image ¢( gn ) is star-
shaped with respect {o the origin, Let p be a point where a nondegenerate
height function has 2 maximum. Then ¢( s ) is strictly convex towards the

origin at p, and thus by (11) Ric is positive-definite at p. a
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On fhe Geometry of Affine Immersions
Katsumi Nomizu aﬁd Ulvrichl Piﬁkall
Our purpose is to offer a new approach to affine differential vge‘ometr‘y’
haséd on the noiion of affine immersion of an affinely connected manifold |
(Mn,v).intg an ambiant manifold (ﬁm,ﬁ). In the present paper" we are mostly'

concerned with the case where m =n+ 1 and particularly M™! is the ordinary
‘ affine space R”ﬂ and prove several theorems on affine immersions which are

closely related t‘o known resuits on isometric immersions m Riemannian or
| pseudo-Riémannién geometry. -

In Sections 1 and 2 we define the notion of affine immersion, develop several
formuia#, reformulate some of the b.asic notfons in clas'sic_ai‘ éffihe,differential ,
geometry and discuss several examples. _ In Section 3 we study éffine
immersions of R" into g1 and prove Thebrem 1 which is aﬁ analogue of the
cylinder theorem for complete flat hypersurfaces in euclidean and 'Larentzian
spaces.' In Section 4 we prove Theorem 2 concernin§ affine im‘mersions of a.
metric connection which gives a precise statement of the resuli_hinted at by
Cartan [1] and indicated by Norden in the Appenldix' of [6].We 'o_btairi a few
corollaries concerning rigidity of affl:ne immersions. 'In Sectioﬁ S we prove
Theorem 3 on the non-existence of affine imme_rsion into- R of compaét
manifold with an équiaffine connection with strictly negative-definife Ricpi'

tensor.



1. Affine immersions.

Th.roudhout this paper, we deal with affine cbqnections u;itﬁdut torsion so
.this condIvt‘ion will not be rﬁentioned eacﬁ time.

Let M be an n-dimensionval’differentiable manifold with én affine connection
v, and let ¥ be an (n+1)-dimensional differentiable manifol-d with an affine
connection ¥. By an affine immersion f: (M,9) — (ﬁ;'ﬁ)-we mea:n an‘
ifnmersioﬁ M =M for which therg exists locally (that is, around each point of
M) é transversal v‘ector fféld t along f which ﬁas the following property: if X

land Y are arbitrary vector fields on M, we have

Vy (Y)Y = 1,0 9yY) + h(X,Y)E :
where the left-hand side denotes the covariant derivative with respect to X of
the vector field f«{Y) along f and the first te‘bm of the right-hand side is the

tangential component and the second term is the t,rans»?ersal component. It is

easy to ch.eck that h is la symmetric bilinear form on each tangént space |
_ TX(M). We may simplify the ‘équatio.n by drbpﬁing fe .and write
(1) ¥y = o7 +h(X,V)E.

" In particular, if h is 0 at x (’t‘hat is,VxY is tangent to M), then we say that f '

is totally geodesic at x. Obviously, this condition is independent of the choice

.of £ . We have



Proposition T. Let f: (M,v) = (M, ¥) be an affine immersion and &, and
¢, two associated transversal fields. Then the directions [£,]and [§,] can

differ only on the interior of the set where h vanishes (i.e. on totally geodesic

pieces).

Proof. Write
(2) ~E,2='2.+cy§;],
where Z is a vecto:l; ‘field tangent toM and ¢ is a vfunction on M. We hgve then
¥ XY =9 x¥+ hp(X,Y)E, - VY + ha(X,Y)Z + ¢ ho(X,Y)E,. -
Comparing it with (1), we have

ho(X,¥)Z=0  and 9 hy(X,Y) =h(X,Y).
If f is not totally geodesic at x, then there exists X,Y € T, (M) such that ho(X,Y) -

=0. Then Z=0.at x. Thus o =9k, . | | Y -
It also follows that whether h is nondegenerate is indepéndent qf the choice
.of £E. We say fis nondeggner‘afe if his.
For an affi'ne‘immersion f: (M,v) = (ﬁ;’e’) »we also write

(3)  Vyt=-s5(X)+7(X)E,

where -S{X) denotes the tangential component. It is easily verified thatSis a

tensor field of type (1,1) andt isa 1-form. We call S the shape operator and

T the transversal connection fo'rm fo}' f.
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Following th.e standard routine for ngmetry of hype.f;surfaces_, we may now
compute | |
the tangential components tan [ﬁ()_(,Y)Z] and tén[ R(X,Y)¢E )
and - |
the transversal components trans [ﬂ'(X,Y.)Z] and trans [R(X,Y)E]
interms of the curvature tensor‘R of (M,v), h, S, * etc.’} We obtain
Proposition 2. . |

I tan [R(X,Y)Z J=R(X,Y)Z - .[h(Y,2)SX - h(X,Z)SY]

I trans[R(X,Y)Z]= (93h)(Y,2Z) + 7(X) h(Y,Z)- (9yh)(X,2) .- T(XIh(X,Z)

HI tan [ROX,Y)E] = - (9yS)(Y) + 7(X)SY + (9yS)(X) - =(Y)SX

IV trans [R(X,Y)E]=- h(X,5Y) + ',h(SX,Y) +2 d'!'(X,Y).A

IWe now consider certain important special cases.

~For an affine connection ¥ on M, the Ricci tensor Ric {s defined by
(4) ‘ Ric(Y,Z) = trace {X— R(X,Y)Z}.
Ric may not be symmetric. It 'is knov)n that Ric is symmetric if and only if .
around each point there is a parallel vol‘ume_elemvent, namely, a nonzero
n-form w suchthat vw=0. IfMis simply'con'nected, it follows that Rié i8
symmetric if and only if M a-dmits; a voluma; elemént w paralle'l relative to v,
that is, if and only if (M,v) is equiaffine. (M,V,w) is called an gg_g]gt_fmg
structure.

1f (7, ¥, %) 1s an equiaffine structure and f: (M,v) = (¥, ¥) an affine



immersion and £ an associated transversal field, then we define a volume

element w on M by
(5) W(XqyeneyXp) = D(Xqpunn Xy k)
where {X,...,X,}is any basis in-Tx(M). Using (1), (3) and (5) we see that

(6) VXO):T(X) W .

It follows that (M,V,w) is an equiaffine structure'If.and only if' T =0,
If (M,v,w) and (¥,V,®) are equiaffine structures, f: (M,v) = (M, V)

an affine immersion, then an associated transversal field is called equiaffine if
(5) holds for any basis { X;,...,X, }inT, (M) . Wehave v=0. Assuming

tﬁat fis totally geodesic nowhere, the associated transvers;l figld £ is now
uniquely determined becausel of (5). | |
| Remark. The study of affine immersion of an equiaffine connection iﬁt_o flat
affine space ?s equivalent to whét is called relative geometry, see [6], [7], [8].
We have | _ | |
Proposttion 3, If (M,v,w) .and (M, ¥,%) are equiaffine structures and if f

~ is an affine immersion: (M,v) = (M, ¥), then an associated transversal vector

field £ can be chosen to be equiaffine.
Proof. Simply multiply ¢ by 9= &(Xy,...,X,)/ @(Xy,... . X, £).  ©

Recall that two affine connections Vand Vv (both with zero torsion) on a

manifold M are projectively related if there is a 1-form ¢ on M such that



(7)  UyY= vxv+p(x)Y+p(Y)x

. for all vector fields XandY. See, for.examplé, [S].

A change from ¥ to V is called a projective change. An affine connection
V is said to be projectively flat if it can be chénged projectively toua flat affjne
~ connection V (i.e. zero curvature téns&r R).

Suppose an affiné connection V. on a differéntiable manifold M has
symmetric Bicci tensor (in particqlar,suﬁpose it is equiaffine). For dimM™ 23,
vis projecth)ely flat_ if and on'l.y 1vf the brojective.curv.ature tensor
(8) W(x,viz_= R(X,Y)Z - ‘[r(Y',Z)X - $(X,2)Y), where ¥ =Ric/(n-1)
is identitcally‘o.‘ For dim M =2, 9 is projectively flat if and only if i‘ satisfies
Codazzi's equation: (v_xv)(Y,Zj = (VY"U)(X,"Z). If dimM23 énd ifW= b,
then ¥ satisfies Codazzi's equation. On the other hand, if dimM=2, thenW is‘
atomatically 0.

If (M, V) is projectively flat, then
() ROLY)Z=¥(Y,2)% - ¥(X,2)Y.

We now consider the formulas I - IV in certain special cases.

a. Case where (M,¥) is chjgcgjvely' flat:
R(X,Y)Z= F(Y,2)X - ¥(X,Z)Y is tangential. Thus
Ia. R(X,Y)Z= %¥(Y,Z)X - ’f(x,z)Y + h(Y,Z)SX - h(X,Z)SY - Gauss-
From this, we get |

Ric(Y,Z) = (n-1)¥(Y,Z) + h(Y,Z) tr S-- h(SY,Z). |



In particular, if ¥ is flat, we have
R(X,Y)Z = h(Y,Z)SX - h(X,Z)SY

Ric.‘(Y,Z) = h(Y,Z) fr S - h(SY,2). |
Ia. (9yh)(Y,2) + -r(X)h(Y‘,Z) =~(v‘Yh)(x,z) +7(Y)h(X,Z) -Codazzi-
~We set ”
(10) g(i,v,zi = (vxh)(Y,Z) + T(X)n(Y,2),
which is symmetricinY and Z like h, as welvl» as in X and Y by virtue of lla', thus
symmetric. in X,Y, and Z." We caU C.thg cubic form of the affine irnm'ersion.‘
| This is a g'engralization of the classical cubic form in affine differenfiél

geometry.

b. Case where (M,9,w),(M,¥,®) are e}quiaffine and the transversal field
¢ is equiaffine:
Since T =0, we get
SIb. (9yh)(Y,2Z) = (9yh)(X,2) - Codazzi for h - -
b, (9yS)(X) - F(Y,E)X = (9y5)(Y) - F(X, )Y
In particular, if ¥ is flat, (9yS)(X) = (94S)(Y) - Codazzi for §-
IVb. h(SX,¥) = h(X,SY) - Ricci- -

2. Examples.

We discuss some examples of affine immersions.

Example ! - Isometricallv immersed hvpersurface. Let (M,q) be a



Riemannian manifold of dimension n with Levi-Civita connection V. Let (ﬁ_,a') be
a Riemannian manifold of dimension n+l with Levi-Civita connection ¥ . If f:
(M,g)’—)‘(ﬁ,fd') is al1 lsometrlc'immersion, then f:(M,v) = (l”i,??’) is an affine
immersion with a transversal vecotr field £ given locally as a unit norrllal
vector field. |

Example 2 - Affine cylinder. Roughly speaking, an affine cylinder in R s

a hypersurface generated by a parallel family of affine (n-1)-spaces R 1),
each through a point of ¥ in R™1. We define an affine cylinder immersion
precisely as follows, o

Let ¥(t) be a smooth curve in Rn” and £(t) a vector field along ll“(t) Let
R"™! be an affine (n-1)-space in R"” and consider all parallel (n l) spaces
and denote by R"” l(p) the one through p. We assume that

(i) 'O"(t) E(t) and R T($(t)) are linearly mdependent‘

(ii) b‘“(f) =p(t)E(t), where ¢ =p(t) is a certain differentiable function.

Now we defllle a mapping f: R" = &M as follows. Write R =R x R""' 50
every point of R” is written as (t,y), At ER, y € R, Let

ft,y) = ¥(t) +y.
‘For this immersion f, we ta‘ké a transvers.al field
ECt,y) = E(t) tran'slateq‘to flt,y)

by virtue of condition (i). 1t is easy to verlfy that f is an affine immersion of

R™ = 8™, For the curve x(t) = (t,0) in R", we have



V1) = 70 =p(DE() 50 h(2/2t,2/2t) = p(t).
In the specia-l‘ case where we carj‘take t=13 _and furthermore‘ v'van‘dv‘o‘A‘", are
linearly independent, we ca_Hv it a proper affine cylinde‘ry.v In_ this case,'Awe see
'fr.om ﬁte =¥ = f,(5(3/3t)) + ‘-r(a/at)vv" that S never vanishes. We also

see that h never vanishes.

1

Example 3 - Graph immersion. Let (M v) be a manifold with a flat affine

‘connection and g: (MMg) - g" an affine immersion. Thus ¢ is an im‘mersi‘on
such tﬁat e‘v‘ery point p of MM has a neighborhgod U on which-? 15 an
affiﬁe-cdnnection .presgrving diffeomorphism With,an 'oben neighborhood V of
¢(p) in 'Rn, Consider R" as a hyperplane H in _R"fl and let £ be a parallel
vector fileld transveral tc; H. For any differer;ti}a.ble function F: Mo R, we'
define f: h" —gﬂ""' by f(x) ;?(x) +F(x)E, for xeM".
" We have |
fx(Y) =9*(Y)l+ (dF)(Y) & for YT (M")

sofis an immersiqn. For vector fié]ds’ X an;i Y on'HA”, we have

| i‘ixf,(v); Fy 94 Y) + ¥y (YF £) =9, (4Y) F (XYFOE

= f,(7,Y ) + (XYF - (9,Y)F) E.

Thus f is an affine immersion with Fi‘f')(.Y) =XYF - (va )F, which coincides

with the Hessian of F. Thus fis ﬁondegenerate if the_ Hessian H is
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nondegenerate. We have also 5=0.

Conversely, we may prove

Proposition 4. Suppose ( M™,v) is a flat connection and f : ( M",¥) — g™

an affine immersion such that S=0. Then it is affinely equivalent to the graph

immersion for a certain function F: M" — R.

Proof. By assuming a transveral field £ to bé equiaffine, S=0 implieé that
?"xﬁ =0, that is, t is a constant (paraliel) vector field. LetH= R" be a

hyperplénq in R"ﬂ which is transversal to E. Letm :Et"+l - R" be the
projection along the direction of £ so th.at 7t ef:MN —RM is an affine immersion
with image W, an open subsét of R". We can find a differentiablé fur.'n'ct.ion Fr MM
=R such that f(x-) = (mef)(x)+ F(x)F,.' Thus fis a gr‘aph im_mers%on. !
Example 4 - Centro-affine hipersurface. Suppose f: M S - (o isan
immersed hypersurface such that relative to 04 in R™ 1 the posifidn vector

o f(x) is always transversal to f(M) at f(x). Take & =- of(x) as

a transversal vector field for f. Then ?fxf_ =-X sothat t=0and S=1

(identity). By writing 'e"xf,,,(Y )= f,,('va) +'h(X,Y')E.. weisée that V,.(Y i.s
indeed ﬁn affine connection {with zero torsion) on M.Thus f :(M, V) —}.Rnﬂ .is
an affine immersion. Thig is called a centro-affine hypersurface. From the
formula (16) we get

(1)~ ROGYIZ=h(Y,2)X - h(X,2)Y, #(Y,Z) = h(Y,2).
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Proposition 5. For a centro-affine hypersurface fi (M,9) = ( R"ﬂ-{o}‘,'\’f)

and for any function X\ M = R+, the mapping x—x(x)f(x) _definesa
centro-affine hypersurface \f: (M, v') = ( R"™! -{o}, ¥) where vis

projectivelty relatedto v by -

¥y Y= 9y Y +p(X)Y +p(Y)X, where ¢=dlog¥.

Conversely, any projective change of (M,v') can be locally 6btgined in this

manner.

The proof is straightforward and omitted. ' : o

Corollary. _Let (M,v;w)~ be a differentigble manifold with a projectively

flat equiaffine connecton. Then (M,v_) cah be Iocgilv realized as a

centro-affine hypersurface in . -{o}.

Proof. If (M, ¥') is flat, then it can be locally realized as a piece of a
hyperplane with induced vvolume element Wy in Rr'ﬂ -{o}. Now we can make a
projective change back to v by modifying'thAis hyperplane by a suitable function

\, namely, X\ qn/cbo. - o

Example 5- Conormal immersion .

Let f: (M,7,w) = R"ﬂ is a nondegenerate affine immersion of an equiéffine
structure with an equiaffine transversal field §. We denote by R, the vector
.space dual to the vector space R"ﬂ underlying the affine sbace R"'” . We

define v: M =R, ,- {0} as follows.
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For x€M, Vy is an element of Rnﬂ such that
G2 w0 for‘ YET (M) and v, (E)=1,
Where Y and E,x' are consiqered as eleﬁentg of the vector space R“ﬂ naturally -
identified with T,( B™*'). Denoting by ¥ the usual fiat connection in 'R,'M,
we have |
(13)  (Fyv)(d) = 0. and (Vyv N1, X) = ' h(Y,X) for all X,*’ € T (M).
Since h is nondegenerate, we see that if (Vyv )(f,FX) =0 for all X, then Y = 0.

Since '\'fyv =v,(Y), it follows that the mapping v is nonsingular. Hence we may

consider viM =R, - {0} as a centro-affine hypersurfacg; called the

conormal immersion for f.

Taking -v as the transveral vector field 8s in Example 4 we white
(14) Ty (v (Y)) = v (9 50) - M (X, YDy,
where v"‘ is an affine 6onnection on M and h* the second fundamental form.

These are related to the affine connection ¥, the affine rnet'ric h and the affine

shape operator S fot the original hypersurface f: M —m"*' in the following way:

(15) h*(X,Y) = h(SX,Y) (also equal to ‘o'*(%Y’,)"as in Example 4)

(16) X h(Y,2) = h(v*\Y,Z) + h(9yZ,Y)

and
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17y Uy - WY + Y2,
where ? denotes the Levi-Civita qbnnection for the affine metric h.

The for.mﬁlas (15) and (16) ;’nr‘e consequences of basic formulas for f and -
(12),(13) and (14).’ (17) follows from (16). They can be found, in different

notations, in [6], p.127-129. It is a classical fact that the cubic form C for f

vanishes if and only if v =% = 9%,

Example 6 - Blaschke immersion. Suppose f: (M,v,w) = (M, ¥,®) is an

affine immersion with equiaffine transversal field. If, furthermore, fis
: nondegener”ate' and if w coincides with the volume element ""h of the

nondegéneréte metric h, then we say that f is a Blaschke immersion. For the
, c.és‘e Whére (M,9v,o) is an ordinary affine space R with the flat affine
connection and the stand-ard vdlﬁme element giyen by the determinanf, this is
exacﬂy the kind of éffine'immersion which has been the primary obfect of étudy
in affine differential geometr;/ developed Sy Blaschke and his school in‘the‘
peritvad 1910-40. T'.he first step in the sﬁﬁjgct is to prove, for the standard
equiaffine structure in R"H , the following bésic result. |

_LetM bea hypersurface immersed i‘n .I%""-'1 . For any choice of a tr‘ansv.ere;al
vec;tor' field £ ', define an affine cbnnectiﬁn v and the bilinéar form h by

equation (1).'. Whetﬁer h is nondegenerate or not is independent of the choice of
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t, and we say that M is nondedenerate if h is. Denote by W, the volume e]ement .

“ for h.

Proposition 6. _If M is a_nondegenerate hypersurface immersed in g ,

there is a unigge choice of £ such that

i) oy qoincides with w 'defined by Q(X] yeresXp) = '&(X] yeresXns £

i) (M,v,w) is equiaffine.

This unique £ is call'ed the affine nor‘mal .and the corresponding h the affine
metric. |

The proof of Proposition 6 cah be found in [4].
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3. Affine immersions R"— M1

In this section we are interested in classifying all affine immersions: M =
R - R"ﬂ . We always choose an equiaffine transversal f;‘éld t as we may. «
From Section 1 we have the formulas

h(Y,Z) SX = h(X,Z) SY - Gauss equation in case R=10 -

(vyh)(Y,Z) = (vyh)(X,Z) - Codazzi equation for h -

(74S)(Y) = (7y8)(X) - Codazzi equation for S -

~ h(sX,Y) = h(X,SY) - Ricci equation -.
If h is identically 0, then f'is totally geodesic and f(R") is an affine

R

‘hyperplane in . If Sis identically 0, then by Proposition 4 fis a graph _

immersion.

In the general case, let Q= {x€M;S, =0, h0}. Weprove.

Lemma Iy. For each x € Q, Ker h = Ker S. and its dimen_sion is n-1.

Proof.‘ For each X€ Q the‘equality Ker h=Ker S follows directly from
‘thé. defir.li‘tion and the Gagsé equation. If fob'some .x-e Q wé had rank S 2 2,
thenlthehe would bg tangént vectors X and Y such_that SX ana SY are linearly
“independent. Thé Gavuss‘ equation then would imply X, Y&Ker h --AKgr S, é

contradiction. : ' o
For x € Q, the subspace N, =Ker h, =Ker Sx c Tx(M) is called the

‘ relative nullity space at x.

Lemma 2. The distribution N: x—= N, on Q is involutive and totally -
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geodesic.

Proof. It is sufficient to show that N is totally geodesic, thét is, for

vector fields Y,Z belonging to .N, VyY €N. Inthe equatfon of .Cdd'azzi forh: .
(vxh)(Y,Z) = (vyh)(X,2) take Y,Z‘e'N. Then wé get |

X h(Y,2) - h(vyY, 2) - h(Y, vxi) =Y h(X,2) - h(v§x,z) - h(X,9y2)
and hel‘nce h(X;vYZ) = 0. This being valid for éll X,-:we have VyZ € N. o

Now if L is a leaf of the relative nullity foliation N, L is totally geodesic in

M =R", Indeed, f(L) is totally geodesic in R"” . Our goal is to show that

each leaf L is complete. Let xt~be a geodesic starting at X0 in the leaf L.
To show that Xy extends for all values of t in L, first extend it as a geodesic
in M. It i's sufficient to show that X4 lies in Q, because then it liesinL. So .

suppose there is b > 0 such that Xp £Q and xt‘E Q for all t<b.

We need

Lemma 3. Let X be a vector field on some open subset W of Q containing

the geodesic x;, 0 <t < b, suchthat vyX=0, X€N, and X at x, equals the

- .
tangent vector x; for O<t <b. Let Ube a parallel vector field on M =g"

which is transversal to the hyperplane H=R""! of M =R" that contains L.

(i) Write 9 X =u U+Z at each point p€ @ N H, where Zo €Ny, Then

the function s satisfies Xu = - u2 along X, O<t<b.
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('ii) Write SU =xU+W at each goiht pEV, where W€ Tp(-H). Then the

function . satisfies X\ = u \ _along X4y O0st<b.
(i) Let 9=.h(U,U)gr_1'V. Then Xp=-ue along x;, 0 ¢t < b.
Proof. |
(f) VX(V.UX) =U(pU+Z)=(Xp) U +u' UyZ t Uyl = (Xp) U n;odN. '
Since R =0, we have along X, 0Lt <D |
X (7 X) = ‘7[>:<,u]"_= T Yy, xX - ‘7,; u+ X
=-,;'va - VX = - x2U  mod .
Hence . (X_p.)Ué -.uZU quN and Xp,.'= - ;;2.
(i1) From the Codazzi gquation for S
Ix(8U) - é('vxu)‘= ICORE (9,0,
we get along X¢ s Dct<h
(XU + X(9y0) + TyW = nSU= - (Y + W)
and (XX)U= - p AU mod N. Thus X = - p\ along xt-.
(iij) We ﬁave aiong .xt, 0ct<b
Xp = XKU,U) = (9yh)(U,U) - 2h(Tyl,U) = (7,h)(X,U)
=U h(X,U) - h(9X,U) ;'h(‘X, V‘UU) =-n h(U,US =" ape CI; _
Now we caﬁ conqluqe lt.he pboof that Xp € Q a.s follows.. The eﬂquations lin :

(i), (ii) and (iii) are |
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du/dt = - w2 dvdt=-ap, dp(dt%- on for Oct<b.
Thus p is identicallyQor pu= I/(t+al) for some a. It followé thaf v1.=
constant or x¥ 1/c(t+a) and the séme for p In all casés, neither x nohp
| approaches 0 as t—b. Now at the point P=Xp this means SU= 0 as well aé
h(U,U) = 0. Thus pe€ Q..
With completeness of L established, we know x;. € L for_all t. 'Thus the

possibility of u = 1/(t+a) is exciuded. Hencé p=0andthusx andp are
equal to constants on the leaf L.

We can now prove

—- | eme—

Proposition 5. Let ‘f: RN - R"ﬂ be an affine immersion'such that S and

h vanish nowhere. Thenfis affine-equiValent to a proper affine cylihder

immersion.

Proof. In thekforegoing discussions, we now héve Q=R" . We have
already proved that each leaf of t.he relative nullity foliation isv cohplete.
Thus each leaf is a hyperplane in Rh , énd all leaves are parallel
hyperplanes because they are disjoint from each other.

We take a vector U transversal to all these hyp‘erplanes and consider a

line x, in the direction of of U. Write R™"'(t) for the leaf through the point
;. Since each leaf is mapped totally geodesically, f( R“"(t)) is an affine
"(n-1)-space in R, Also, if Y, is a parallel vector field along x; such

that Y, € T, ( R""1(t)), then
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LANOAL f,,(‘tht) +h(U,Y) - 0.
~ Thus f,(Y,) is parallel in R, This shows that, all subspaces f(R""' (1))
are par;allel to each other. |

Now it is easy to verify-that f is affinely equivalent to a pr.oper affine
cylinder.immersion based on t:hé parallel i’ar.n-ny f( R"V"(t)') ahd the c‘u~rve '
¥(t) - f(;(t) '. The ‘or.‘ig.inal trahsveréél fieid &y is. iln th‘e direction of v"(t)..

We can now state |

Theorem!. Let f: " > R™! be an affine immersion. Then Q = {x€ R";

3x =0, hxae 0}, if not empty, is the union of paral_lel hyperplanes. Eaph

connected component Qa of @ 1is a strip consisting of paraliel hyperplanes‘

and f: Qa - IRn+1 is affihely equivalent to a proper affine cylinder -

immersion.

Remark. On each component of RN - u .Q_a is a mixture of graph
immersions and totally geodesic immersions. One can easily construct

examples piecing together different types 6f'affine immersions, but proving'a

general description is not easy.

| Corollary. An analytic immersion f: RN — R"“ is either totally

qgoedesic or affinely equivalent to a graph immersion or affinely equivalent to

an affine cylinder immersion.
" Proof. If horSis identic_ally 0, we know that f is totally geodesic or a

graph immersion. Otherwise, the open subset 0 is dense. On each
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connected component Qo: , fis a proper affine cylinder immersion. Since 2

is dense; all these immersions of thevcomponents:extend to an af_fine 'c'ylinder
immersion f. . . o o)

'B_e_m_a_r_lg. It s not difficult to cbnstruct a C*® affine 1mmei‘sion MZ - R3 of
the affine Mobius band M2 = 522/?, where ¢ is the affin'e map : (x,ry)‘ - _

(x+1,-y). Bythe corollary, however,there can be no analytic immersion of

this kind.

4. Affine immersions of gseudo-riemgnni‘gn manifolds
We prove the following theorem which is a precise statement for the .
result of Cartan and Norden mentioned in the introduction.

Iheorem 2. Let (M",qg) be a pseudo-riemannian manifold, v its

Levi-Civita connection and f: ( M, 9) — R™! an affine immersion with a

transversal field &. Iffis nondegénerate. we have either

(i) visflat and f is 8 graph immersion;

or

(1) v is not flat and R™ 1 admits a parallel pseudo-riemannian metric‘

relative to which f is an isometric immersion and ¢ is perpendicular to
(MM,
Proof.We first establish

Lemma. Let (M,h) be a_pseudo-riemannian manifold and Jet v and. v* be

two affine connections with zero torsion on M which are conjugate relative to

h, that is,
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X h(Y,2) = h(¥yY,2) + h(Y,9%,2)

for all vector fields X,Y and Z. ‘LetBbea nonsinghlar (1,1) tensor field

which is symmetric relative to h and define pseudo-riemanm‘ah metrics g and
g by

g(X,Y) =h(BX,Y) and  g*(X,Y) =h(B"'X,Y).

- Then (vy0)(Y,2) + (_V*Xd‘)(Y,Z) =0 for all vector flelds X,Y and Z. In

: barticular, v is the Levi-Civita connection for g if and only if v” is the

Levi-éivita connection fpr g*‘. o
Proof. We have
(9 %d)(Y,2) X g"Y,2) - ¢* (9%Y,2) - o (v,9%2)
=xn(8"'Y,2) - h(v*,Y, é"z)‘- h(B-ly, v*2)
=xh(87'Y,2) - (X ﬁ(v, 87 12) - h(Y;vx B'2))
‘ - (Qc'n(z, B™Y) - h(Z, vy B™1X))
= h'(Zl, B 'Y) + (Y, v, 8712) - X (Y, 8°12).
‘R_eplacing Y,Z.bly BY, Bé we gét
(974d)(BY,BZ) = h(BZ,vyY) + n(BY,vxi) - Xh(BY,Z)
= g(Z,7yY) + (Y, 9y2) - Xg(Y,2) = - (vxg)(Y,Z)V: | | o
To prove the theorem, we méy a;sume that t is equiaffine and we consider
thé conormal immerston v (M%) - Rn+y - We recall that ihé afﬂng |

connection v'f is conjugate to v relative to the form h for f; cf. equation
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(16).

Since h is nondegenerate, we may wrftelg()(,Y) = h(BX,Y), whereB is a
certaiﬁ nonsingular (_1,1) tensor symmetric relative to h. We define a
pseudd-riemannian metric g* by g*(X,Y) = h(Bf'X,Y). By the lemma, we
see that v* ,‘is the Levi-Civita connection for g*. |

Now the conormal immersion being a centro-affine immersibn, we know
that ©* Is projectively flat. Since v* 1s‘the Le‘vll-lclvlta connection for g*,
it follows by a theorem of Dini'_-Belframi that g* has constqnt “sectional.
curvature, say, ¢. The forh h* for the ;:‘onorma‘l immersion is, bf equation
(11), equal to the normalized Ricci tensor ¥*, which is in this case equal to
c g*-' Thus hx =c g*, in partli'cula,r', ¥*n*=o0.

Case (.i)= ¢=0. Then v* is flat. Since h* =0, by (15) the shape.
operator S for f fs 0 and by the .Gauss equation Y; is flat. By Proposition 4 wé
conclude that f IS a gl“a‘pr‘\ immgrsion. | :

Case (ii): ¢ = 0. We shall show that . Ri.,", admits a parallel

pseudo-riemannian metric < , >* such that‘

,(v?,()(), ;/,,(Y))" = g*(X,Y‘) | for X,Y ET-x(ﬂ) '

v, vy (X) »*=0 for Xe T, (M)

<v,;>* =-1/c. -
For this purpose, \#e define < , | * in each Tv(x)(m n+l).‘ using exactly the
above three eqli.lat‘ions‘and shoy that this metrii; tensor field along v is

parallel in R .. Thus we wish to verify
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(x) X<U,v>*= <%’va NP+ U,V ot
~ for all vector fields U and V along v and a vector field X on M.'
If UandV are of the form v, (Y.) and v',,(zf), where Y and Z are vector

fields on M, the equation (x) reduces to (v*,g9(¥,2) = 0.

IfU=v,(Y)and V=v, then X<v,(Y),v»* =0 and
CHULYOF = < Fyv (N, T = v (9,0, 0% ), Vv, v
=h*(X,¥) cv,v* = - h*(x,Y)/c

as well as <, ¥y V> = < v (X), v (YD =g*(X,Y) . Thus (x) is satisfied.

Finally, if U=V =v, (%) is obvious.

Now it remains to show that R™*! admits a parallel pseudo-riemannian

metric < , > such that
Fp(X), f (YD =0(X,Y), <f,(X),E>=0, <E,E>=-1/c
. for all vector fields X and Y on M.. Indeed, using the nondegenerate form

<, >* in 'Rn+1' we identify ‘Rnﬂ ‘with R"H (both as vector spaces) by

UE Ry — B(u) € R with w(8(u)) =<u ,w>* for all we R, We then

define < , >in Rnﬂ as the dual inner product, namely,
XY =¢071(x), 7' (YH* for x,ye g™!,

In order to show that this inner product <, is the desired one, we first

remark the following fact. Let u=v,(X) for X €T _(M).Then for any Y €

T, (M) we have v, (Y) (8(u)) = <vg(Y) , v,(X)>* = g*(X,Y). On the other.
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hand, v(6(u)) =0. It follows that @(u) = - f,,,(B"X), where B is a certain
nonsingular (.1 , 1) tensAor. We ha.ve
| 9*(5<,Y) = v, (Y)o(u) = - v*(Y)(f,(B'IX)j = h( B;.‘x,'Y)‘,
wher.e' we use the relation (13). Now for X,Y we h.ave

(BT = 0(vy (X)), Ay 51Y) = - o vy (YD)
» , . ,
. ‘<f*( a"X), f (B YD = v (X), v (Y% = g*(X,Y). |
_Replacing X,Y by BX, BY in this equatioﬁ we obtain |

<0 X), f,(Y)>=g*(BX,BY) = h( B”'BX,BY) = h(X,BY).
But‘as in the lérnma, h(X,BY) = g(X,Y). Hence
| g(X,Y) = <f,(X), f (Y.

The other identities are obvious from 8(v) =Et. The proof of the theorem is
now complete. | | o
~We state a few corollaries.

Corollafy 1. Let (MM,g) be a pseudo-riemannian manifold, v its

Levi-Civita connection, and f: ( M",v) — R™! an affine immersion. If the

Ricci tensor of g is nondegenerate, then R““ admits a parallel

pseudo-riemannian metric such that f is an isometric immersion and the

transversal field is perpendicular to f(ﬂ").

Proof. From Ric(Y,Z) = h(Y,Z) trS - h(SY,Z), it follows that h is
nondegener.ate if the Ricci tensor is nondegenerate.

Corgllary 2. Letgbea riemannian metric on 52 with Gaussian curvature
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K > 0 and Levi-Civita connection V. Then there exists an affine immersion f:
(SZ,V) - B whicﬁ is unique ‘up to an affine t_fansfc;rmétion of R3
Proof. By the solution to Weyl's préblem (see, for example, [9], p'.226) :

(Sz,g) has an isometric imbedding f into euclidean space R vgith standard
metric and it is rigid. Sof:(S%,9) = R is an affine imbedding. Suppose f,

: (SZ,V)' — B is another affine immersion. Theorem 2 implies that it is
isometric relativeto a ceftain parallel pseudo-rie;ﬁanﬁian metric < , >in .
R3. This metric must be Euclidean to accommodate a compact surface with

~ positive definite metric induced on it. Since one can find an affine |

transformation A of R3 v)hich transforms the mgtric < , »intothe standarq

metric, it follows that Ae'fI is an fsometric immersion into IR3 with - |

'standard euclidean metric, and as such, congruent to f. This means that fy

differs from f by an affine transformation. = | o

Corollary 3. Let g be the standard riemannian metric on S” with constant -

sectional curvature 1. For every affine immersion f: (S7,9) = B™!, the

image f( sM) is an ellipsoid (relative to a Euclidean metric).

Corollary 4. Let (H",g) be the hyperbolic space with standard riemannian

metric of constant sectional curvature -1. Then every affine transformation

f: (H",9) = R™! is an isometric immersion of (H",g) into ®™! with flat

Lorentz metric. If nx 3, f(M") ig affinely congruent to onexcomgonent of

2

;»;;the two-sheeted hyperboloid -xoz + xIZ t--- +x S=-1, Xg ? 0.

n

Remark 2. Inthe p'roof of Trheorem 2, the Asign of ¢ generally depends on
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the affine immersion f.

5. Equiaffine i sions of compact manif

It is a standard theorem in euclidean differential geometry that a compact
riemannian manifold (M'n,g) with negative-definite Ricci tensor cannot be

isometrically immersed in a'aucli&ean space B™1: any compact immersed
hypers‘urf.ace has to be locally strictly convex somewhere and the Ricci

_ tensor i3 positive-definite at conv.e'x points. For affine immersions this
argument does not apply, because convexity does not imply positivit}/ of the
Ricci tensor. For example, the hyperbolic spacé Hln can be affinely imbedded
as one component of a two-sheeted ﬁyperbolpid‘,

We can still prove

Iheorem 3. Let (M", v,w) be a compact equiaffine manifold with

negative-definite Ricci tensor (or more generally, with nondegenerate, but

not positive-definite, Ricci tensor). Then (M", V) does not admit an affine

immersion into Rm‘ .

Proof. Letf: (MM, 9) — R™! be an affine immersion. We choose a
transversal field to be equiaffine. As’in Corcﬂlary | in Section 4, his
nondegenerate with the Ricci tensor. Thus viewing MmN és_ a hypersurface in

g , the usual second fundamental form is pr}oportional toh

euclidean space
and thus nondegenerate. It follows that MM is diffeomorphic to s™, his

definite, and f( MM is a 'str'ictly convex hypersurface (fo example, see {4],

p.41). By diagonalizing S relative to h, we see that Ric for ¥ is positive-
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definite at a point where the bilinear form B(Y,Z) = h(SY,Z) is pogitve-
definite. We shalrl show that there is such a poinf, contradicting the
assumption on Ric and thus cbnclulﬂing th_e prénf of Theorem 3.

From Example 5 recall fhat (n-1)B is equal 'tolthe Ricci tensor of the
conorma‘_l connection 9* on M, which is equiaffine and plr;ojectively flat'.k_ThUS

our. assertion will follow from the next I'emma.

B Lemma. ,L_g:_'fr' be a projectively flat equiaffine connection on S" with

-volume element . Then there are points on S" where the Ricci tensor of ¥

is positive-definite.

Proof . Recall that (s",¥) is projectively equivalent to ( S",vo), where

v is the standard affine connection (Levi-Civita 'connection) on 5" (»see, for

example [3]). Consider S" as a unit sphere' in B! | We may obtain a
centro-affine immersion ? SN = f"*! 5o that 'the induced volume elerneht
coincides with &. The induced connection 9" is pr.ojgctively flat and
qbincides with ¥, since they have the samé volume element. See, for
example, [S], Proposition 2.

Thus we may consider ¢: s" = g™ | where the image ¢( 5" ) is star-
shaped with r;espect to the origin. Letp be}a point where a nohdegeneraté
height function has a maximum, Then 9( S"_) is strictly convex tﬁwards the

origin at p, and thus by (11) Ric is positive-definite at p. a
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