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A. We construct a two-parameter family of actions ωk,a of the Lie algebra sl(2,R)
by differential-difference operators on RN . Here, k is a multiplicity-function for the Dunkl
operators, and a > 0 arises from the interpolation of the Weil representation and the mini-
mal unitary representation of the conformal group. We prove that this action ωk,a lifts to a
unitary representation of the universal covering of S L(2,R), and can even be extended to
a holomorphic semigroup Ωk,a. Our semigroup generalizes the Hermite semigroup stud-
ied by R. Howe (k ≡ 0, a = 2) and the Laguerre semigroup by T. Kobayashi and G.
Mano (k ≡ 0, a = 1). The boundary value of our semigroup Ωk,a provides us with (k, a)-
generalized Fourier transforms Fk,a, which includes the Dunkl transform Dk (a = 2) and
a new unitary operator Hk (a = 1) as a Dunkl-type generalization of the classical Hankel
transform. We establish a generalization of the Plancherel theorem, and the Heisenberg
uncertainty principle for Fk,a. We also find explicit kernel functions for Ωk,a and Fk,a for
a = 1, 2 by means of Bessel functions and the Dunkl intertwining operator.

1. I

The classical Fourier transform is one of the most basic objects in analysis; it may be
understood as belonging to a one-parameter group of unitary operators on L2(RN), and this
group may even be extended holomorphically to a semigroup (the Hermite semigroup)
I(z) generated by the self-adjoint operator ∆ − ‖x‖2. This is a holomorphic semigroup of
bounded operators depending on a complex variable z in the complex right half-plane, viz.
I(z + w) = I(z)I(w).

The primary aim of our study is to analyze the Dunkl Laplacian ∆k and to construct a
deformation of the classical situation, namely, a generalization Fk,a of the Fourier trans-
form, and the holomorphic semigroup Ik,a(z) with infinitesimal generator ‖x‖2−a∆k −‖x‖a,
acting on a concrete Hilbert space deforming L2(RN). We investigate these operators Fk,a

and Ik,a(z) in the context of integral operators as well as representation theory.
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The deformation parameters in our setting consist of a real parameter a and a parameter
k coming from Dunkl’s theory of differential-difference operators associated to a finite
Coxeter group; also the dimension N and the complex variable z may be considered as
parameters of the theory. We point out, that already deformations with k ≡ 0 are new.
They might provide interesting generalizations of classical pseudo-differential calculus,
and possibly new generators of stochastic processes. Also our study could provide new
insights about the analysis of Dunkl operators and Dunkl Laplacians, since we in particular
construct a new Hermite–Dunkl semigroup Ik,2(z) and a new Hankel–Dunkl transform
Fk,1.

In the diagram below we have summarized some of the deformation properties by in-
dicating the limit behaviour of the holomorphic semigroup Ik,a(z); it is seen how various
previous integral transforms fit in our picture. In particular we obtain as special cases the
Dunkl transform Dk [2] (a = 2, z = πi

2 and k arbitrary), the Hermite semigroup I(z) [5]
(a = 2, k = 0 and z arbitrary), and the Laguerre semigroup [7] (a = 1, k ≡ 0 and z
arbitrary).

The ‘boundary value’ of the holomorphic semigroup Ik,a(z) from Re z > 0 to the imag-
inary axis gives rise to a one-parameter subgroup of unitary operators. The specialization
Ik,a(πi

2 ) will be called as a (k, a)-generalized Fourier transform Fk,a (up to a phase factor),
which reduces to the Fourier transform (a = 2 and k ≡ 0), the Dunkl transform Dk (a = 2
and k arbitrary), and the Hankel transform (a = 1 and k ≡ 0).

The basic machinery of the present article is to construct triples of differential-difference
operators generating the Lie algebra of S L(2,R), and see how they are integrated to unitary
representations of the universal covering group.

One further aspect of our constructions is the link to minimal unitary representations of
two reductive groups.
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(k, a)-generalized Fourier transform Fk,a

a→2 a→1

xz→ πi
2

holomorphic semigroup Ik,a(z)

a→2

←−−−
−−−−−
−−− −−−−−−−−−−−→

a→1

Ik,2(z) Ik,1(z)

z→ πi
2

←−−
−−−

−−−−−→k→0 k→0

←−−
−−−

−−−−−→z→ πi
2

Dunkl transform Dk Hermite semigroup I(z) Laguerre semigroup Fk,1

k→0

−−−−−→ ←−−
−−−z→ πi

2 z→ πi
2

−−−−−→ ←−−
−−−k→0

Fourier transform Hankel transform

..
..

..
.

⇐ ‘unitary inversion operator’⇒
..

..
..

.

the Weil representation of
the metaplectic group Mp(N,R)

the minimal representation of
the conformal group O(N + 1, 2)

D 1. Special values of holomorphic semigroup Ik,a(z)

2. H  Ik,a(z)    k  a

Our holomorphic semigroup Ik,a(z) is built on Dunkl operators [1]. To fix notation, let
C be the Coxeter group associated with a reduced root system R in RN . For a C-invariant
function k ≡ (kα) (multiplicity function) on R, we set 〈k〉 := 1

2

∑
α∈R kα, and write ∆k for

the Dunkl Laplacian on RN . This is a differential-difference operator, which reduces to the
Euclidean Laplacian when k ≡ 0.

We take a > 0 to be yet another deformation parameter, and introduce the following
differential-difference operator

∆k,a := ‖x‖2−a∆k − ‖x‖a. (2.1)
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Here, ‖x‖ is the standard norm of x ∈ RN . We define a density function ϑk,a(x) on RN by

ϑk,a(x) := ‖x‖a−2
∏

α∈R
|〈α, x〉|kα . (2.2)

In the case a = 2 and k ≡ 0, we have ϑ0,2(x) ≡ 1 and recover the classical setting where

∆0,2 =

N∑

j=1

∂2

∂x2
j

−
N∑

j=1

x2
j , the Hermite operator on L2(RN).

Here are remarkable properties of our differential-difference operator ∆k,a:

Theorem A. Suppose a > 0 and a + 2〈k〉 + N − 2 > 0.
1) ∆k,a extends to a self-adjoint operator on L2(RN , ϑk,a(x)dx).
2) There is no continuous spectrum of ∆k,a.
3) All the discrete spectra of ∆k,a are negative.

The (k, a)-generalized Laguerre semigroup Ik,a(z) is defined to be the semigroup with
infinitesimal generator 1

a∆k,a, that is,

Ik,a(z) := exp
( z
a

∆k,a

)
, for Re z ≥ 0. (2.3)

We note that I0,2(z) is the Hermite semigroup I(z), and I0,1(z) is the Laguerre semigroup
(see [5], [7], respectively).

Theorem B. Suppose a > 0 and a + 2〈k〉 + N − 2 > 0.
1) Ik,a(z) is a holomorphic semigroup in the complex right-half plane {z ∈ C : Re z > 0}

in the sense that Ik,a(z) is a Hilbert–Schmidt operator on L2(RN , ϑk,a(x)dx) satisfying

Ik,a(z1) ◦Ik,a(z2) = Ik,a(z1 + z2), (Re z1,Re z2 > 0),

and that the scalar product (Ik,a(z) f , g) is a holomorphic function of z for Re z > 0, for
any f , g ∈ L2(RN , ϑk,a(x)dx).

2) Ik,a(z) is a one-parameter group of unitary operators on the imaginary axis Re z = 0.

3. (k, a)- F  Fk,a

As we mentioned in Theorem B (2), the ‘boundary value’ of the holomorphic semigroup
Ik,a(z) on the imaginary axis gives a one-parameter family of unitary operators. The
underlying idea may be interpreted as a descendent of Sato’s hyperfunction theory [12]
and also that of the Gelfand–Gindikin program (see [4] and references therein) for unitary
representation of real reductive groups.

The case z = 0 gives the identity operator, namely, Ik,a(0) = id. The particularly
interesting case is when z = πi

2 , and we set

Fk,a := c Ik,a

(πi
2

)
= c exp

( πi
2a

(‖x‖2−a∆k − ‖x‖a)
)
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by multiplying the phase factor c = exp(iπN+2〈k〉+a−2
2a ). Then, the unitary operator Fk,a for

general a and k satisfies the following significant properties:

Theorem C. Suppose a > 0 and a + 2〈k〉 + N − 2 > 0.

1) Fk,a is a unitary operator on L2(RN , ϑk,a(x)dx).
2) Fk,a ◦ E = −(E + N + 2〈k〉 + a − 2) ◦Fk,a. Here, E =

∑N
j=1 x j∂ j.

3) Fk,a ◦ ‖x‖a = −‖x‖2−a∆k ◦Fk,a, Fk,a ◦ (‖x‖2−a∆k) = −‖x‖a ◦Fk,a.
4) Fk,a is of finite order if and only if a ∈ Q. Its order is 2p if a is of the form a =

p
q , where

p and q are positive integers that are prime to each other.

We call Fk,a a (k, a)-generalized Fourier transform. As indicated in Diagram 1, Fk,a

reduces to the Euclidean Fourier transform F on RN if k ≡ 0 and a = 2; to the Dunkl
transform Dk introduced by C. Dunkl himself in [2] (Ek in his notation) if k > 0 and a = 2.

Thus, in these classical setting, our approach uses the following expressions of Fk,a:

F = exp(
iπN

4
) exp

πi
4

(∆ − ‖x‖2) (Fourier transform),

Dk = exp(
iπ(2〈k〉 + N)

4
) exp

πi
4

(∆k − ‖x‖2) (Dunkl transform).

For a = 1 and k ≡ 0, the unitary operator F0,1 = exp( iπ(N−1)
2 ) exp

(
πi
2 ‖x‖(∆ − 1)

)
arises as

the unitary inversion operator of the Schrödinger model of the minimal representation of
the conformal group O(N + 1, 2) (see [7]). Its Dunkl analogue

Hk (= Fk,1) := exp
(
iπ(2〈k〉 + N − 1)

2

)
exp

(
πi
2
‖x‖(∆k − 1)

)

is an involutive unitary operator on L2(RN , ϑk,1(x)dx) whose kernel is explicitly given by
using the formula (4.4) below.

Our study also contributes to the theory of special functions, in particular orthogonal
polynomials; indeed we derive several new identities, for example, the (k, a)-deformation
of the classical Hecke identity where the Gaussian function and harmonic polynomials in
the classical setting are replaced respectively with exp(− 1

a‖x‖a) and polynomials annihi-
lated by the Dunkl Laplacian. We also have:

Theorem D (Heisenberg type inequality). Let ‖ ‖k denote by the norm on the Hilbert
space L2(RN , ϑk,a(x)dx). Then,

∥∥∥∥ ‖x‖ a
2 f (x)

∥∥∥∥
k

∥∥∥∥ ‖ξ‖ a
2 Fk,a f (ξ)

∥∥∥∥
k
≥ 2〈k〉 + N + a − 2

2
‖ f (x)‖2k

for any f ∈ L2(RN , ϑk,a(x)dx). The equality holds if and only if f is a scalar multiple of
exp(−c‖x‖a) for some c > 0.
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This inequality was previously known by Rösler [11] for the a = 2 case (i.e. the Dunkl
transform Dk). On the other hand, for a = 1, we may think of the function where the
equality holds in Theorem D as a ground state in physics terms; indeed when a = c = 1 it
is exactly the wave function for the Hydrogen atom with the lowest energy.

4. I   Ik,a(z)  Fk,a

The Euclidean Fourier transform is given by the integral against the kernel (2π)−
N
2 e−i〈x,ξ〉,

and the Hermite semigroup is given by the Mehler kernel. In this section, we discuss the
integral expression of the (k, a)-generalized Fourier transform Fk,a and a holomorphic
semigroup Ik,a(z), as a generalization of the above mentioned case (k ≡ 0, a = 2).

In this subsection, we assume k ≥ 0. Dunkl’s intertwining operator Vk is a topological
linear isomorphism of the space of continuous functions on RN , which intertwines the
Dunkl operators and the directional derivatives [2]. For a continuous function h(t) of one
variable, we set hy(·) := h(〈·, y〉) (y ∈ RN), and define

(Ṽkh)(x, y) := (Vkhy)(x).

Then (Ṽkh)(x, y) is a continuous function on (x, y) ∈ RN × RN .
Suppose more generally that h is a continuous function on the closed interval [−1, 1].

By using the Laplace type representation of Vk (see Rösler [11]), we see that (Ṽkh)(x, y)
is well-defined as a continuous function on B × B, where B denotes the unit ball in RN .
Further, (Ṽkh)(x, y) = (Ṽkh)(y, x). We note that (Ṽkh)(x, y) = h(〈x, y〉) if k ≡ 0.

For a > 0 and a non-negative multiplicity function k, we introduce the following nor-
malization constant

ck,a := (
∫

RN
exp

(
−1

a
‖x‖a

)
ϑk,a(x)dx)−1. (4.1)

The constant ck,a can be explicitly found by means of the gamma function owing to the
work by Selberg, Macdonald, Heckman, Opdam, and others (see [9]).

Let Ĩλ(w) = (w
2 )−λIλ(w) be the normalized modified Bessel function of the first kind, and

Cν
m(t) is the Gegenbauer polynomial. We set

J (b, ν; w; t) =
Γ(bν + 1)

ν

∞∑

m=0

(m + ν)
(w

2

)bm
Ĩb(m+ν)(w)Cν

m(t). (4.2)

Then, the summation (4.2) converges absolutely and uniformly on any compact subset of

U = {(b, ν,w, t) ∈ R+ × R × C × [−1, 1] : 1 + bν > 0}.
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In particular, J (b, ν; w; t) is a continuous function on U. The special values at b = 1, 2 are
given by

J (1, ν; w; t) = ewt, (4.3)

J (2, ν; w; t) = Γ

(
ν +

1
2

)
Ĩν− 1

2

(w(1 + t)1/2

√
2

)
. (4.4)

We introduce the following continuous function of t on the interval [−1, 1] with parameters
r, s > 0 and z ∈ {z ∈ C | Re z ≥ 0} \ iπZ

hk,a(r, s; z; t) =
exp

( − 1
a(ra + sa) coth(z)

)

sinh(z)
2〈k〉+N+a−2

a

J

(
2
a
,

2〈k〉 + N − 2
2

;
2(rs)

a
2

a sinh(z)
; t
)
.

By using the polar coordinate x = rω, y = sη, we set

Λk,a(x, y; z) = Ṽk
(
hk,a(r, s; z; ·))(ω, η).

Here is an integration formula of the holomorphic semigroup Ik,a(z).

Theorem E. Suppose a > 0 and k is a non-negative multiplicity function. Suppose Re z ≥
0 and z < iπZ. Then, Ik,a(z) = exp( z

a∆k,a) is given by

Ik,a(z) f (x) = ck,a

∫

RN
f (y)Λk,a(x, y; z)ϑk,a(y)dy, (4.5)

where ck,a is as in (4.1).

5. H   L2(RN , ϑk,a(x)dx)

There is an obvious action of the Coxeter group C on L2(RN , ϑk,a(x)dx). In addition, we
see that there is a hidden action of the universal covering group ˜S L(2,R) commuting with
C. This action is the key to the proof of Theorems A to E.

5.1. sl2 action.
We introduce the following differential-difference operators on RN \ {0} by

E+
k,a :=

i
a
‖x‖a, E−k,a :=

i
a
‖x‖2−a∆k, Hk,a :=

2
a

N∑

i=1

xi∂i +
N + 2〈k〉 + a − 2

a
.

Our operator ∆k,a = i
a (E+

k,a − E−k,a) can be interpreted in the framework of the (infinite
dimensional) representation of the Lie algebra sl(2,R):

Lemma F. The differential-difference operators {Hk,a,E
+
k,a,E

−
k,a} form an sl2-triple for any

multiplicity-function k and any non-zero complex number a.



8 SALEM BEN SAÏD, TOSHIYUKI KOBAYASHI, AND BENT ØRSTED

Special cases of Lemma F was previously known: the case k ≡ 0 and a = 2 is the
classical harmonic sl2-triple (e.g. Howe [5]), the case k > 0 and a = 2 by Heckman [3],
and k ≡ 0 and a = 1 by Kobayashi and Mano [7].

Lemma F fits nicely into the theory of discretely decomposable representations of re-
ductive groups [6], and we see that the above representation of sl(2,R) on C∞0 (RN \ {0})
lifts to the universal covering group ˜S L(2,R):

Theorem G. If a > 0 and a + 2〈k〉 + N − 2 > 0, then the representation of sl(2,R) lifts to
a unitary representation of ˜S L(2,R) on L2(RN , ϑk,a(x)dx).

The above unitary representation in the case N = 1 and k ≡ 0 is essentially the same
with Kostant’s realization [8] of highest weight representations of ˜S L(2,R). For N ≥ 2,
this unitary representation contains countably many irreducible components of ˜S L(2,R),
which we can find explicitly by using Laguerre polynomials for general k and a.

5.2. Hidden symmetries for a = 1 and 2.
Theorem G asserts that the Hilbert space L2(RN , ϑk,a(x)dx) has a symmetry of the direct
product group C × ˜S L(2,R) for all k and a. It turns out that this symmetry becomes larger
for special values of k and a. In this subsection, we discuss these hidden symmetries.

First, in the case k ≡ 0, the Dunkl-Laplacian ∆k becomes the Euclidean Laplacian ∆, and
consequently, the Hilbert space L2(RN , ϑ0,a(x)dx) has a larger symmetry O(N) × ˜S L(2,R).

Next, we observe that the Lie algebra of the direct product group O(N) × ˜S L(2,R) may
be seen as a subalgebra of two different reductive Lie algebras sp(N,R) and o(N + 1, 2):

o(N) ⊕ sl(2,R) ' o(N) ⊕ o(1, 2) ⊂ o(N + 1, 2),
o(N) ⊕ sl(2,R) ' o(N) ⊕ sp(1,R) ⊂ sp(N,R).

Correspondingly, there are the following symmetries in the Hilbert space L2(RN , ϑ0,a(x)dx)
for a = 1, 2:

O(N + 1, 2)̃

a→ 1
−−−−
−→

C × ˜S L(2,R)
k→0−−−−→ O(N) × ˜S L(2,R)

(k, a: general)
−−−−−→

Mp(N,R)

a→ 2

D 2. Hidden symmetries in L2(RN , ϑk,a(x)dx)
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For a = 2, this unitary representation of Mp(N,R) is nothing but the Weil representation,
and its realization on L2(RN) is called the Schrödinger model. For a = 1, the unitary repre-
sentation of O(N + 1, 2)̃ (a double covering of the conformal group) on L2(RN , ‖x‖−1dx) is
irreducible and has a similar nature to the Weil representation. Both of them are so-called
the minimal representations and, in particular, they attain the minimum of their Gel’fand–
Kirillov dimensions among the unitary dual.

In this sense, our continuous parameter a > 0 interpolates two minimal representa-
tions of different reductive groups by keeping smaller symmetries. The (k, a)-generalized
Fourier transform Fk,a gives a unitary inversion corresponding to the non-trivial Weyl
group element in the L2-model of minimal representations.

Detailed proof will appear elsewhere.
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