> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The ternary Goldbach problem

Harald Andrés Helfgott

May 2013

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The ternary Goldbach problem: what is it? What was known?

Ternary Golbach conjecture (1742), or three-prime problem:

Every odd number $n \ge 7$ is the sum of three primes.

(Binary Goldbach conjecture: every even number $n \ge 4$ is the sum of two primes.)

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The ternary Goldbach problem: what is it? What was known?

Ternary Golbach conjecture (1742), or three-prime problem:

Every odd number $n \ge 7$ is the sum of three primes.

(Binary Goldbach conjecture: every even number $n \ge 4$ is the sum of two primes.)

Hardy-Littlewood (1923): There is a *C* such that every odd number $\geq C$ is the sum of three primes, if we assume the generalized Riemann hypothesis (GRH). **Vinogradov (1937)**: The same result, unconditionally.

Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Bounds for more prime summands

We also know: every n > 1 is the sum of $\leq K$ primes (**Schnirelmann**, 1930),

> Harald Andrés Helfgott

Introduction

The circle method The major arcs Minor arcs

Conclusion

Bounds for more prime summands

We also know: every n > 1 is the sum of $\leq K$ primes (Schnirelmann, 1930), and after intermediate results by Klimov (1969) ($K = 6 \cdot 10^9$), Klimov-Piltay-Sheptiskaya, Vaughan, Deshouillers (1973), Riesel-Vaughan..., every even $n \geq 2$ is the sum of ≤ 6 primes (Ramaré, 1995)

every odd n > 1 is the sum of ≤ 5 primes (**Tao, 2012**).

> Harald Andrés Helfgott

Introduction

The circle method The major arcs Minor arcs

Conclusion

Bounds for more prime summands

We also know: every n > 1 is the sum of $\leq K$ primes (Schnirelmann, 1930), and after intermediate results by Klimov (1969) $(K = 6 \cdot 10^9)$, Klimov-Piltay-Sheptiskaya, Vaughan, Deshouillers (1973), Riesel-Vaughan..., every even $n \geq 2$ is the sum of ≤ 6 primes (Ramaré, 1995) every odd n > 1 is the sum of ≤ 5 primes (Tao, 2012).

Ternary Goldbach holds for all *n* conditionally on the generalized Riemann hypothesis (GRH) (**Deshouillers-Effinger-te Riele-Zinoviev, 1997**)

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Bounds for ternary Goldbach

Every odd $n \ge C$ is the sum of three primes (Vinogradov) Bounds for *C*? $C = 3^{3^{15}}$ (Borodzin, 1939), $C = 3.33 \cdot 10^{43000}$ (Wang-Chen, 1989), $C = 2 \cdot 10^{1346}$ (Liu-Wang, 2002).

> Harald Andrés Helfgott

Introduction

The circle method The major arcs Minor arcs Conclusion

Bounds for ternary Goldbach

Every odd $n \ge C$ is the sum of three primes (Vinogradov) Bounds for *C*? $C = 3^{3^{15}}$ (Borodzin, 1939), $C = 3.33 \cdot 10^{43000}$ (Wang-Chen, 1989), $C = 2 \cdot 10^{1346}$ (Liu-Wang, 2002). Verification for small *n*:

every even $n \le 4 \cdot 10^{18}$ is the sum of two primes (Oliveira e Silva, 2012);

taken together with results by Ramaré-Saouter and Platt, this implies that every odd $5 < n \le 1.23 \cdot 10^{27}$ is the sum of three primes; alternatively, with some additional computation, it implies that every odd $5 < n \le 8.875 \cdot 10^{30}$ is the sum of three primes (Helfgott-Platt, 2013).

> Harald Andrés Helfgott

Introduction

The circle method The major arcs Minor arcs Conclusion

Bounds for ternary Goldbach

Every odd $n \ge C$ is the sum of three primes (Vinogradov) Bounds for *C*? $C = 3^{3^{15}}$ (Borodzin, 1939), $C = 3.33 \cdot 10^{43000}$ (Wang-Chen, 1989), $C = 2 \cdot 10^{1346}$ (Liu-Wang, 2002). Verification for small *n*: every even $n \le 4 \cdot 10^{18}$ is the sum of two primes (Oliveira

e Silva, 2012);

taken together with results by Ramaré-Saouter and Platt, this implies that every odd $5 < n \le 1.23 \cdot 10^{27}$ is the sum of three primes; alternatively, with some additional computation, it implies that every odd $5 < n \le 8.875 \cdot 10^{30}$ is the sum of three primes (Helfgott-Platt, 2013).

We have a problem: $8.875 \cdot 10^{30}$ is much smaller than $2 \cdot 10^{1346}$.

> Harald Andrés Helfgott

Introduction

The circle method The major arcs Minor arcs Conclusion

Bounds for ternary Goldbach

Every odd $n \ge C$ is the sum of three primes (Vinogradov) Bounds for *C*? $C = 3^{3^{15}}$ (Borodzin, 1939), $C = 3.33 \cdot 10^{43000}$ (Wang-Chen, 1989), $C = 2 \cdot 10^{1346}$ (Liu-Wang, 2002). Verification for small *n*:

every even $n \le 4 \cdot 10^{18}$ is the sum of two primes (Oliveira e Silva, 2012);

taken together with results by Ramaré-Saouter and Platt, this implies that every odd $5 < n \le 1.23 \cdot 10^{27}$ is the sum of three primes; alternatively, with some additional computation, it implies that every odd $5 < n \le 8.875 \cdot 10^{30}$ is the sum of three primes (Helfgott-Platt, 2013).

We have a problem:

 $8.875\cdot 10^{30}$ is much smaller than $2\cdot 10^{1346}.$

We must diminish C from $2 \cdot 10^{1346}$ to $\sim 10^{30}$.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Exponential sums and the circle method The circle method (or "Hardy-Littlewood") is based on exponential sums:

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Exponential sums and the circle method The circle method (or "Hardy-Littlewood") is based on exponential sums: in this case, on the sums

$$S_{\eta}(\alpha, x) = \sum_{n=1}^{\infty} \Lambda(n) e(\alpha n) \eta(n/x),$$

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Exponential sums and the circle method The circle method (or "Hardy-Littlewood") is based on exponential sums: in this case, on the sums

$$S_{\eta}(\alpha, x) = \sum_{n=1}^{\infty} \Lambda(n) e(\alpha n) \eta(n/x),$$

where

 $\eta(t) = e^{-t}$ (Hardy-Littlewood), $\eta(t) = 1_{[0,1]}$ (Vinogradov), $\Lambda(n) = \log p$ if $n = p^{\alpha}$, $\Lambda(n) = 0$ if *n* is not a prime power (**von Mangoldt** function) $e(\alpha) = e^{2\pi i \alpha} = \cos 2\pi \alpha + i \sin 2\pi \alpha$ (traverses a circle as α varies within \mathbb{R}/\mathbb{Z})

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Exponential sums and the circle method The circle method (or "Hardy-Littlewood") is based on exponential sums: in this case, on the sums

$$S_{\eta}(\alpha, x) = \sum_{n=1}^{\infty} \Lambda(n) e(\alpha n) \eta(n/x),$$

where

 $\eta(t) = e^{-t}$ (Hardy-Littlewood), $\eta(t) = 1_{[0,1]}$ (Vinogradov), $\Lambda(n) = \log p$ if $n = p^{\alpha}$, $\Lambda(n) = 0$ if n is not a prime power (**von Mangoldt** function) $e(\alpha) = e^{2\pi i \alpha} = \cos 2\pi \alpha + i \sin 2\pi \alpha$ (traverses a circle as α varies within \mathbb{R}/\mathbb{Z})

The crucial identity:

 $\sum_{\substack{n_1+n_2+n_3=N}} \Lambda(n_1)\Lambda(n_2)\Lambda(n_3)\eta(n_1/x)\eta(n_2/x)\eta(n_3/x)$ $= \int_{\mathbb{R}/\mathbb{Z}} (S_{\eta}(\alpha, x))^3 e(-N\alpha) d\alpha.$

We must show that this integral is > 0.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Major and minor arcs

We partition \mathbb{R}/\mathbb{Z} into intervals ("arcs") $\mathfrak{m}_{a,q} \subset (a/q - 1/qQ, a/q + 1/qQ)$ around $a/q, q \leq Q$, where $Q \leq x$. (Farey fractions)

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Major and minor arcs

We partition \mathbb{R}/\mathbb{Z} into intervals ("arcs") $\mathfrak{m}_{a,q} \subset (a/q - 1/qQ, a/q + 1/qQ)$ around $a/q, q \leq Q$, where $Q \leq x$. (Farey fractions)

If $q \le m(x)$, we say $\mathfrak{m}_{a,q}$ is a major arc; if q > m(x), we say $\mathfrak{m}_{a,q}$ is a minor arc.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Major and minor arcs

We partition \mathbb{R}/\mathbb{Z} into intervals ("arcs") $\mathfrak{m}_{a,q} \subset (a/q - 1/qQ, a/q + 1/qQ)$ around $a/q, q \leq Q$, where $Q \leq x$. (Farey fractions)

If $q \le m(x)$, we say $\mathfrak{m}_{a,q}$ is a major arc; if q > m(x), we say $\mathfrak{m}_{a,q}$ is a minor arc.

In general, up to now, $m(x) \sim (\log x)^k$, k > 0 constant.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Major and minor arcs

We partition \mathbb{R}/\mathbb{Z} into intervals ("arcs") $\mathfrak{m}_{a,q} \subset (a/q - 1/qQ, a/q + 1/qQ)$ around $a/q, q \leq Q$, where $Q \leq x$. (Farey fractions)

If $q \le m(x)$, we say $\mathfrak{m}_{a,q}$ is a major arc; if q > m(x), we say $\mathfrak{m}_{a,q}$ is a minor arc.

In general, up to now, $m(x) \sim (\log x)^k$, k > 0 constant.

Let $\mathfrak M$ be the union of major arcs and $\mathfrak m$ the union of minor arcs.

We want to estimate $\int_{\mathfrak{M}} (S_{\eta}(\alpha, x))^3 e(-N\alpha) d\alpha$ and bound $\int_{\mathfrak{m}} |S_{\eta}(\alpha, x)|^3 d\alpha$ from above.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The major arcs

To estimate $\int_{\mathfrak{M}} (S_{\eta}(\alpha, x))^3 e(-N\alpha)$, we need to estimate $S_{\eta}(\alpha, x)$ for α near a/q, q small $(q \leq m(x))$.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The major arcs

To estimate $\int_{\mathfrak{M}} (S_{\eta}(\alpha, x))^3 e(-N\alpha)$, we need to estimate $S_{\eta}(\alpha, x)$ for α near a/q, q small $(q \leq m(x))$.

We do this studying $L(s, \chi)$ for Dirichlet characters mod q, i.e., characters $\chi : (\mathbb{Z}/q\mathbb{Z})^* \to \mathbb{C}$.

$$L(s,\chi) := \sum_{n} \chi(n) n^{-s}$$

for $\Re(s) > 1$; this has an analytic continuation to all of \mathbb{C} (with a pole at s = 1 if χ is trivial). We express $S_{\eta}(\alpha, x)$, $\alpha = a/q + \delta/x$, as a sum of

$$S_{\eta,\chi}(\delta/x,x) = \sum_{n=1}^{\infty} \Lambda(n)\chi(n)e(\delta n/x)\eta(n/x)$$

for χ varying among all Dirichlet characters modulo q.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The explicit formula

"Explicit formula":

$$\mathcal{S}_{\eta,\chi}(\delta/x,x) = [\mathcal{F}_{\delta}(1)x] - \sum_{
ho} \mathcal{F}_{\delta}(
ho)x^{
ho} + ext{small error},$$

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The explicit formula

"Explicit formula":

$$\mathcal{S}_{\eta,\chi}(\delta/x,x) = [F_{\delta}(1)x] - \sum_{
ho} F_{\delta}(
ho)x^{
ho} + ext{small error},$$

(a) the term $F_{\delta}(1)x$ appears only for χ principal (~ trivial), (b) ρ runs over the complex numbers ρ with $L(\rho, \chi) = 0$ and $0 < \Re(\rho) \le 1$ (called "non-trivial zeroes"), (c) F_{δ} is the Mellin transform of $\eta(t) \cdot e(\delta t)$.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The explicit formula

"Explicit formula":

$$\mathcal{S}_{\eta,\chi}(\delta/x,x) = [F_{\delta}(1)x] - \sum_{
ho} F_{\delta}(
ho)x^{
ho} + ext{small error},$$

(a) the term $F_{\delta}(1)x$ appears only for χ principal (~ trivial), (b) ρ runs over the complex numbers ρ with $L(\rho, \chi) = 0$ and $0 < \Re(\rho) \le 1$ (called "non-trivial zeroes"), (c) F_{δ} is the Mellin transform of $\eta(t) \cdot e(\delta t)$.

Mellin transform of a function *f*:

$$\mathcal{M}f=\int_0^\infty f(x)x^{s-1}dx.$$

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The explicit formula

"Explicit formula":

$$\mathcal{S}_{\eta,\chi}(\delta/x,x) = [F_{\delta}(1)x] - \sum_{
ho} F_{\delta}(
ho)x^{
ho} + ext{small error},$$

(a) the term $F_{\delta}(1)x$ appears only for χ principal (~ trivial), (b) ρ runs over the complex numbers ρ with $L(\rho, \chi) = 0$ and $0 < \Re(\rho) \le 1$ (called "non-trivial zeroes"), (c) F_{δ} is the Mellin transform of $\eta(t) \cdot e(\delta t)$.

Mellin transform of a function *f*:

$$\mathcal{M}f=\int_0^\infty f(x)x^{s-1}dx.$$

Analytic on a strip $x_0 < \Re(s) < x_1$ in \mathbb{C} .

It is a Laplace transform (or Fourier transform!) after a change of variables.

Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Where are the zeroes of $L(s, \chi)$?

Let $\rho = \sigma + it$ be any non-trivial zero of $L(s, \chi)$.

What we believe:

 $\sigma = 1/2$ (Generalized Riemann Hypothesis (HRG))

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Where are the zeroes of $L(s, \chi)$?

Let $\rho = \sigma + it$ be any non-trivial zero of $L(s, \chi)$.

What we believe:

 $\sigma = 1/2$ (Generalized Riemann Hypothesis (HRG))

What we know:

 $\sigma \le 1 - \frac{1}{C \log q |t|}$ (classical zero-free region (**de la Vallée Poussin**, 1899), *C* explicit (McCurley 1984, Kadiri 2005)

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Where are the zeroes of $L(s, \chi)$?

Let $\rho = \sigma + it$ be any non-trivial zero of $L(s, \chi)$.

What we believe:

 $\sigma = 1/2$ (Generalized Riemann Hypothesis (HRG))

What we know:

 $\sigma \leq 1 - \frac{1}{C \log q|t|}$ (classical zero-free region (**de la Vallée Poussin**, 1899), *C* explicit (McCurley 1984, Kadiri 2005)

There are zero-free regions that are broader asymptotically (**Vinogradov-Korobov**, 1958) but narrower, i.e., worse, in practice.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Where are the zeroes of $L(s, \chi)$?

Let $\rho = \sigma + it$ be any non-trivial zero of $L(s, \chi)$.

What we believe:

 $\sigma = 1/2$ (Generalized Riemann Hypothesis (HRG))

What we know:

 $\sigma \le 1 - \frac{1}{C \log q|t|}$ (classical zero-free region (**de la Vallée Poussin**, 1899), *C* explicit (McCurley 1984, Kadiri 2005)

There are zero-free regions that are broader asymptotically (**Vinogradov-Korobov**, 1958) but narrower, i.e., worse, in practice.

What we can also know:

for a given χ , we can verify GRH for $L(s, \chi)$ "up to a height T_0 ". This means: verify that every zero ρ with $|\Im(\rho)| \leq T_0$ satisfies $\sigma = 1/2$.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Verifying GRH up to a given height

For the purpose of proving strong bounds that solve ternary Goldbach, zero-free regions are far too weak. We must rely on verifying GRH for several $L(s, \chi)$, $|t| \leq T_0$.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Verifying GRH up to a given height

For the purpose of proving strong bounds that solve ternary Goldbach, zero-free regions are far too weak. We must rely on verifying GRH for several $L(s, \chi)$, $|t| \leq T_0$.

For χ trivial ($\chi(x) = 1$), $L(s, \chi) = \zeta(s)$. The Riemann hypothesis has been verified up to $|t| \le 2.4 \cdot 10^{11}$ (Wedeniwski 2003), $|t| \le 1.1 \cdot 10^{11}$ (Platt 2012, rigourous), $|t| \le 2.4 \cdot 10^{12}$ (Gourdon-Demichel 2004, not duplicated to date).

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Verifying GRH up to a given height

For the purpose of proving strong bounds that solve ternary Goldbach, zero-free regions are far too weak. We must rely on verifying GRH for several $L(s, \chi)$, $|t| \leq T_0$.

For χ trivial ($\chi(x) = 1$), $L(s, \chi) = \zeta(s)$. The Riemann hypothesis has been verified up to $|t| \le 2.4 \cdot 10^{11}$ (Wedeniwski 2003), $|t| \le 1.1 \cdot 10^{11}$ (Platt 2012, rigourous), $|t| \le 2.4 \cdot 10^{12}$ (Gourdon-Demichel 2004, not duplicated to date).

For $\chi \mod q$, $q \le 10^5$, GRH has been verified up to $|t| \le 10^8/q$ (**Platt** 2011) rigourously (interval arithmetic).

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Verifying GRH up to a given height

For the purpose of proving strong bounds that solve ternary Goldbach, zero-free regions are far too weak. We must rely on verifying GRH for several $L(s, \chi)$, $|t| \leq T_0$.

For χ trivial ($\chi(x) = 1$), $L(s, \chi) = \zeta(s)$. The Riemann hypothesis has been verified up to $|t| \le 2.4 \cdot 10^{11}$ (Wedeniwski 2003), $|t| \le 1.1 \cdot 10^{11}$ (Platt 2012, rigourous), $|t| \le 2.4 \cdot 10^{12}$ (Gourdon-Demichel 2004, not duplicated to date).

For $\chi \mod q$, $q \le 10^5$, GRH has been verified up to $|t| \le 10^8/q$ (**Platt** 2011) rigourously (interval arithmetic).

This has been extended up to $q \le 2 \cdot 10^5$, *q* odd, and $q \le 4 \cdot 10^5$, *q* pair ($|t| \le 200 + 7.5 \cdot 10^7/q$) (**Platt** 2013).

Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

How to use a GRH verification

We recall we must estimate $\sum_{\rho} F_{\delta}(\rho) x^{\rho}$, where F_{δ} is the Mellin transform of $\eta(t) e(\delta t)$.

Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

How to use a GRH verification

We recall we must estimate $\sum_{\rho} F_{\delta}(\rho) x^{\rho}$, where F_{δ} is the Mellin transform of $\eta(t)e(\delta t)$.

The number of zeroes $\rho = \sigma + it$ with $|t| \leq T$ (*T* arbitrary) is easy to estimate.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

How to use a GRH verification

We recall we must estimate $\sum_{\rho} F_{\delta}(\rho) x^{\rho}$, where F_{δ} is the Mellin transform of $\eta(t)e(\delta t)$.

The number of zeroes $\rho = \sigma + it$ with $|t| \leq T$ (*T* arbitrary) is easy to estimate.

We must choose η so that (a) $F_{\delta}(\rho)$ decays rapidly as $t \to \infty$, (b) F_{δ} can be easily estimated for $\delta \leq c$.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

How to use a GRH verification

We recall we must estimate $\sum_{\rho} F_{\delta}(\rho) x^{\rho}$, where F_{δ} is the Mellin transform of $\eta(t)e(\delta t)$.

The number of zeroes $\rho = \sigma + it$ with $|t| \leq T$ (*T* arbitrary) is easy to estimate.

We must choose η so that (a) $F_{\delta}(\rho)$ decays rapidly as $t \to \infty$, (b) F_{δ} can be easily estimated for $\delta \leq c$.

For $\eta(t) = e^{-t}$, the Mellin transform of $\eta(t)e(\delta t)$ is

$$F_{\delta}(s) = rac{\Gamma(s)}{(1-2\pi i\delta)^s}$$

Decreases as $e^{-\lambda|\tau|}$, $\lambda = \tan^{-1} \frac{1}{2\pi|\delta|}$, for $s = \sigma + i\tau$, $|\tau| \to \infty$. If $\delta \gg 1$, then $\lambda \sim \frac{1}{2\pi|\delta|}$. Problem: $e^{-|\tau|/2\pi\delta}$ does not decay very fast for δ large!

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The Gaussian smoothing

Instead, we choose $\eta(t) = e^{-t^2/2}$. The Mellin transform F_{δ} is then a parabolic cylinder function.

Estimates in the literature weren't fully explicit (but: see Olver). Using the saddle-point method, I have given fully explicit upper bounds.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The Gaussian smoothing

Instead, we choose $\eta(t) = e^{-t^2/2}$. The Mellin transform F_{δ} is then a parabolic cylinder function.

Estimates in the literature weren't fully explicit (but: see Olver). Using the saddle-point method, I have given fully explicit upper bounds.

The main term in $F_{\delta}(\sigma + i\tau)$ behaves as

$$e^{-\frac{\pi}{4}|\tau|}$$

for δ small, $\tau \to \pm \infty,$ and as

$$e^{-\frac{1}{2}\left(rac{|\tau|}{2\pi\delta}
ight)^2}$$

for δ large, $\tau \to \pm \infty$.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Major arcs: conclusions

Thus we obtain estimates for $\mathcal{S}_{\eta,\chi}(\delta/x,x)$, where

$$\eta(t)=g(t)e^{-t^2/2},$$

and *g* is any "band-limited" function:

$$g(t) = \int_{-R}^{R} h(r) t^{-ir} dr$$

where $h: [-R, R] \rightarrow \mathbb{C}$.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Major arcs: conclusions

Thus we obtain estimates for $\mathcal{S}_{\eta,\chi}(\delta/x,x)$, where

$$\eta(t)=g(t)e^{-t^2/2},$$

and g is any "band-limited" function:

$$g(t) = \int_{-R}^{R} h(r) t^{-ir} dr$$

where $h : [-R, R] \to \mathbb{C}$. However: valid only for $|\delta|$ and q bounded!

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Major arcs: conclusions

Thus we obtain estimates for $\mathcal{S}_{\eta,\chi}(\delta/x,x)$, where

$$\eta(t)=g(t)e^{-t^2/2},$$

and g is any "band-limited" function:

$$g(t) = \int_{-R}^{R} h(r) t^{-ir} dr$$

where $h: [-R, R] \to \mathbb{C}$. However: valid only for $|\delta|$ and q bounded!

All the rest of the circle must be minor arcs; m(x) must be a constant M.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Major arcs: conclusions

Thus we obtain estimates for $\mathcal{S}_{\eta,\chi}(\delta/x,x)$, where

$$\eta(t)=g(t)e^{-t^2/2},$$

and g is any "band-limited" function:

$$g(t) = \int_{-R}^{R} h(r) t^{-ir} dr$$

where $h: [-R, R] \to \mathbb{C}$. However: valid only for $|\delta|$ and q bounded!

All the rest of the circle must be minor arcs; m(x) must be a constant *M*. (Writer for *Science*: "Muenster cheese" rather than "Swiss cheese".) Thus, minor-arc bounds will have to be very strong.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Back to the circle

We use two functions η , η_* instead of a function η .

Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Back to the circle

We use two functions $\eta,\,\eta_*$ instead of a function $\eta.$ It is trivial that

 $\int_{\mathfrak{m}} |S_{\eta}(\alpha, x)|^{2} |S_{\eta_{*}}(\alpha, x)| d\alpha \leq \max_{\alpha \in \mathfrak{m}} |S_{\eta_{*}}(\alpha, x)| \cdot L_{2}, \quad (1)$

where $L_2 = \int_{\mathfrak{m}} |S_{\eta}(\alpha, x)|_2^2 d\alpha$.

Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Back to the circle

We use two functions $\eta,\,\eta_*$ instead of a function $\eta.$ It is trivial that

$$\int_{\mathfrak{m}} |S_{\eta}(\alpha, x)|^{2} |S_{\eta_{*}}(\alpha, x)| d\alpha \leq \max_{\alpha \in \mathfrak{m}} |S_{\eta_{*}}(\alpha, x)| \cdot L_{2}, \quad (1)$$

where $L_2 = \int_{\mathfrak{m}} |S_{\eta}(\alpha, x)|_2^2 d\alpha$. Bounding L_2 is easy (~ $x \log x$ by Plancherel).

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Back to the circle

We use two functions $\eta,\,\eta_*$ instead of a function $\eta.$ It is trivial that

$$\int_{\mathfrak{m}} |S_{\eta}(\alpha, x)|^{2} |S_{\eta_{*}}(\alpha, x)| d\alpha \leq \max_{\alpha \in \mathfrak{m}} |S_{\eta_{*}}(\alpha, x)| \cdot L_{2}, \quad (1)$$

where $L_2 = \int_{\mathfrak{m}} |S_{\eta}(\alpha, x)|_2^2 d\alpha$. Bounding L_2 is easy (~ $x \log x$ by Plancherel).

We must bound $|S_{\eta_*}(\alpha)|$, $\alpha \sim a/q + \delta/x$, q > M.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Back to the circle

We use two functions $\eta,\,\eta_*$ instead of a function $\eta.$ It is trivial that

$$\int_{\mathfrak{m}} |S_{\eta}(\alpha, x)|^{2} |S_{\eta_{*}}(\alpha, x)| d\alpha \leq \max_{\alpha \in \mathfrak{m}} |S_{\eta_{*}}(\alpha, x)| \cdot L_{2}, \quad (1)$$

where $L_2 = \int_{\mathfrak{m}} |S_{\eta}(\alpha, x)|_2^2 d\alpha$. Bounding L_2 is easy (~ $x \log x$ by Plancherel).

We must bound $|S_{\eta_*}(\alpha)|$, $\alpha \sim a/q + \delta/x$, q > M.

It is possible to improve (1): Heath-Brown replaces $x \log x$ by $2e^{\gamma}x \log q$. A new approach based on **Ramaré**'s version of the large sieve (cf. *Selberg*) replaces this by $2x \log q$.

The idea is that one can give good bounds for the integral over the arcs with denominator between r_0 and r_1 (say).

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

What weight η_+ ?

The main term for the number of (weighted) solutions to $N = p_1 + p_2 + p_3$ will be proportional to

$$\int_{0}^{\infty} \int_{0}^{\infty} \eta_{+}(t_{1})\eta_{+}(t_{2})\eta_{*}\left(\frac{N}{x}-t_{1}-t_{2}\right) dt_{1} dt_{2}, \quad (2)$$

whereas the main error terms will be proportional to $|\eta_+|^2 |\eta_*|_{\infty}$.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

What weight η_+ ?

The main term for the number of (weighted) solutions to $N = p_1 + p_2 + p_3$ will be proportional to

$$\int_{0}^{\infty} \int_{0}^{\infty} \eta_{+}(t_{1})\eta_{+}(t_{2})\eta_{*}\left(\frac{N}{x}-t_{1}-t_{2}\right) dt_{1} dt_{2}, \quad (2)$$

whereas the main error terms will be proportional to $|\eta_+|^2 |\eta_*|_{\infty}$.

To maximize (2) (divided by $|\eta_+|^2|\eta_*|_{\infty}$), define $\eta_+(t)$ so that (a) it is approximately symmetric around t = 1, (b) it is (almost) supported on [0, 2].

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

What weight η_+ ?

The main term for the number of (weighted) solutions to $N = p_1 + p_2 + p_3$ will be proportional to

$$\int_{0}^{\infty} \int_{0}^{\infty} \eta_{+}(t_{1})\eta_{+}(t_{2})\eta_{*}\left(\frac{N}{x}-t_{1}-t_{2}\right) dt_{1} dt_{2}, \quad (2)$$

whereas the main error terms will be proportional to $|\eta_+|^2 |\eta_*|_{\infty}$.

To maximize (2) (divided by $|\eta_+|^2|\eta_*|_{\infty}$), define $\eta_+(t)$ so that (a) it is approximately symmetric around t = 1, (b) it is (almost) supported on [0, 2].

Solution: since $\eta(t) = g(t)e^{-t^2/2}$, we let *g* be a band-limited approximation to $e^t \cdot I_{[0,2]}$.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

What weight η_* ?

In order to estimate S_{η_*} on the major arcs, we want a η_* whose Mellin transform decreases exponentially for $\Re(s)$ bounded, $\Im(s) \to \pm \infty$.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

What weight η_* ?

In order to estimate S_{η_*} on the major arcs, we want a η_* whose Mellin transform decreases exponentially for $\Re(s)$ bounded, $\Im(s) \to \pm \infty$.

To estimate S_{η_*} on the minor arcs, we prefer a η_* with compact support bounded away from 0.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

What weight η_* ?

In order to estimate S_{η_*} on the major arcs, we want a η_* whose Mellin transform decreases exponentially for $\Re(s)$ bounded, $\Im(s) \to \pm \infty$.

To estimate S_{η_*} on the minor arcs, we prefer a η_* with compact support bounded away from 0.

Vinogradov chose $\eta_* = 1_{[0,1]}$. We would like: $\eta_+(x) = f *_M f$, where

$$(f *_M f)(t_0) = \int_0^\infty f(t) f\left(\frac{t_0}{t}\right) \frac{dt}{t},$$

f of compact support (e.g. $\eta_2 := f *_M f$, $f = 2 \cdot \mathbf{1}_{[1/2,1]}$, as in Tao).

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

What weight η_* ?

In order to estimate S_{η_*} on the major arcs, we want a η_* whose Mellin transform decreases exponentially for $\Re(s)$ bounded, $\Im(s) \to \pm \infty$.

To estimate S_{η_*} on the minor arcs, we prefer a η_* with compact support bounded away from 0.

Vinogradov chose $\eta_* = \mathbf{1}_{[0,1]}$. We would like: $\eta_+(x) = f *_M f$, where

$$(f *_M f)(t_0) = \int_0^\infty f(t) f\left(\frac{t_0}{t}\right) \frac{dt}{t},$$

f of compact support (e.g. $\eta_2 := f *_M f$, $f = 2 \cdot 1_{[1/2,1]}$, as in Tao).

Solution: $\eta_* := \eta_0 *_M f *_M f$, where η_0 has a Mellin transform with exponential decay.

Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

What weight η_* ?

In order to estimate S_{η_*} on the major arcs, we want a η_* whose Mellin transform decreases exponentially for $\Re(s)$ bounded, $\Im(s) \to \pm \infty$.

To estimate S_{η_*} on the minor arcs, we prefer a η_* with compact support bounded away from 0.

Vinogradov chose $\eta_* = \mathbf{1}_{[0,1]}$. We would like: $\eta_+(x) = f *_M f$, where

$$(f *_M f)(t_0) = \int_0^\infty f(t) f\left(\frac{t_0}{t}\right) \frac{dt}{t},$$

f of compact support (e.g. $\eta_2 := f *_M f$, $f = 2 \cdot 1_{[1/2,1]}$, as in Tao).

Solution: $\eta_* := \eta_0 *_M f *_M f$, where η_0 has a Mellin transform with exponential decay.

If we know $S_{f*f}(\alpha, x)$ or $S_{\eta_0}(\alpha, x)$, we know $S_{\eta_*}(\alpha, x)$.

Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The new bound for minor arcs

Theorem (Helfgott, May 2012 – March 2013)

Let $x \ge x_0$, $x_0 = 2.16 \cdot 10^{20}$. Let $2\alpha = a/q + \delta/x$, gcd(a, q) = 1, $|\delta/x| \le 1/qQ$, where $Q = (3/4)x^{2/3}$. If $q \le x^{1/3}/6$, then $|S_{\eta_2}(\alpha, x)|/x$ is less than

$$\frac{R_{x,\delta_0 q}(\log \delta_0 q + 0.002) + 0.5}{\sqrt{\delta_0 \phi(q)}} + \frac{2.491}{\sqrt{\delta_0 q}}$$

$$\begin{aligned} &+ \frac{2}{\delta_0 q} \min\left(\frac{q}{\phi(q)} \left(\log \delta_0^{7/4} q^{13/4} + \frac{80}{9}\right), \frac{5}{6} \log x + \frac{50}{9}\right) \\ &+ \frac{2}{\delta_0 q} \left(\log q^{\frac{80}{9}} \delta_0^{\frac{16}{9}} + \frac{111}{5}\right) + 3.2 x^{-1/6}, \end{aligned}$$
where $\delta_0 = \max(2, |\delta|/4),$

 $R_{x,t_1,t_2} = 0.4141 + 0.2713 \log \left(1 + \frac{\log 4t_1}{2 \log \frac{9x^{1/3}}{2.004t_2}} \right)$

The ternary Goldbach problem	Th
Harald Andrés Helfgott	
Introduction	
The circle method	П

The major arcs

Minor arcs

Conclusion

The new bound for minor arcs, II

Theorem (Helfgott, May 2012 – March 2013, bound for q large)

If $q > x^{1/3}/6$, then

 $|S_{\eta}(\alpha, x)| \le 0.27266x^{5/6}(\log x)^{3/2} + 1217.35x^{2/3}\log x.$

The ternary Goldbach problem	The new bo	
Harald Andrés Helfgott		
Introduction		
The circle method	Theorem (H	
The major arcs	for <i>q</i> large)	
Minor arcs	ior q large)	
Conclusion	If $q > x^{1/3}/6$,	

The new bound for minor arcs, II

Theorem (Helfgott, May 2012 – March 2013, bound for *q* large)

If $q > x^{1/3}/6$, then

 $|S_{\eta}(\alpha, x)| \le 0.27266x^{5/6}(\log x)^{3/2} + 1217.35x^{2/3}\log x.$

For $x=10^{25},\,q\sim1.5\cdot10^5,\,|\delta|<8$ (the most delicate case)

 $R_{x,\delta_0 q} = 0.5833...$

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Worst-case comparison

Let us compare the results here (2012-2013) with those of Tao (Feb 2012) for q highly composite, $|\delta| < 8$:

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Worst-case comparison

Let us compare the results here (2012-2013) with those of Tao (Feb 2012) for q highly composite, $|\delta| < 8$:

q_0	$\frac{ S_{\eta}(a/q,x) }{x}$, HH	$\left \frac{ S_{\eta}(a/q,x) }{x} \right $, Tao
10 ⁵	0.04521	0.34475
1.5 · 10 ⁵	0.03820	0.28836
2.5 · 10 ⁵	0.03096	0.23194
5 · 10 ⁵	0.02335	0.17416
10 ⁶	0.01767	0.13159
10 ⁷	0.00716	0.05251

Table: Upper bounds on $x^{-1}|S_{\eta}(a/2q, x)|$ for $q \ge q_0$, 2 · 3 · 5 · 7 · 11 · 13 $|q, |\delta| \le 8, x = 10^{25}$. The trivial bound is 1.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Worst-case comparison

Let us compare the results here (2012-2013) with those of Tao (Feb 2012) for q highly composite, $|\delta| < 8$:

q_0	$\frac{ S_{\eta}(a/q,x) }{x}$, HH	$\left \frac{ S_{\eta}(a/q,x) }{x} \right $, Tao
10 ⁵	0.04521	0.34475
1.5 · 10 ⁵	0.03820	0.28836
2.5 · 10 ⁵	0.03096	0.23194
5 · 10 ⁵	0.02335	0.17416
10 ⁶	0.01767	0.13159
10 ⁷	0.00716	0.05251

Table: Upper bounds on $x^{-1}|S_{\eta}(a/2q, x)|$ for $q \ge q_0$, 2 · 3 · 5 · 7 · 11 · 13 $|q, |\delta| \le 8, x = 10^{25}$. The trivial bound is 1.

Need to do a little better than $1/2 \log q$ to win. Meaning:

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Worst-case comparison

Let us compare the results here (2012-2013) with those of Tao (Feb 2012) for q highly composite, $|\delta| < 8$:

q_0	$\left \frac{ S_{\eta}(a/q,x) }{x}, HH \right $	$\left \frac{ S_{\eta}(a/q,x) }{x} \right $, Tao
10 ⁵	0.04521	0.34475
1.5 · 10 ⁵	0.03820	0.28836
2.5 · 10 ⁵	0.03096	0.23194
5 · 10 ⁵	0.02335	0.17416
10 ⁶	0.01767	0.13159
10 ⁷	0.00716	0.05251

Table: Upper bounds on $x^{-1}|S_{\eta}(a/2q, x)|$ for $q \ge q_0$, $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13|q, |\delta| \le 8, x = 10^{25}$. The trivial bound is 1.

Need to do a little better than $1/2 \log q$ to win. Meaning: GRH verification needed only for $q \le 1.5 \cdot 10^5$, q odd, and $q \le 3 \cdot 10^5$, q even.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The new bounds for minor arcs: ideas

Qualitative improvements:

> Harald Andrés Helfgott

Introduction

- The circle method
- The major arcs

Minor arcs

Conclusion

The new bounds for minor arcs: ideas

Qualitative improvements:

- cancellation within Vaughan's identity
- $\delta/x = \alpha a/q$ is a friend, not an enemy:

> Harald Andrés Helfgott

Introduction

- The circle method
- The major arcs

Minor arcs

Conclusion

The new bounds for minor arcs: ideas

Qualitative improvements:

- cancellation within Vaughan's identity
- δ/x = α a/q is a friend, not an enemy: In type I: (a) decrease of η̂, change in approximations; In type II: scattered input to the large sieve
- relation between the circle method and the large sieve – in its version for primes;
- the benefits of a continuous η (also in Tao, Ramaré),

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Cancellation within Vaughan's identity

Vaughan's identity:

ł

$$\Lambda = \mu_{\leq U} * \log -\Lambda_{\leq V} * \mu_{\leq U} * 1 + 1 * \mu_{>U} * \Lambda_{>V} + \Lambda_{\leq V},$$

where $f_{\leq V}(n) = f(n)$ if $n \leq V$, $f_{\leq V}(n) = 0$ if n > V. (Four summands: type I, type I, type II, negligible.)

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Cancellation within Vaughan's identity

Vaughan's identity:

I

$$\Lambda = \mu_{\leq U} * \log -\Lambda_{\leq V} * \mu_{\leq U} * 1 + 1 * \mu_{>U} * \Lambda_{>V} + \Lambda_{\leq V},$$

where $f_{\leq V}(n) = f(n)$ if $n \leq V$, $f_{\leq V}(n) = 0$ if n > V. (Four summands: type I, type I, type II, negligible.) This is a gambit:

- Advantage: flexibility we may choose U and V;
- Disadvantage: cost of two factors of log. (Two convolutions.)

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Cancellation within Vaughan's identity

Vaughan's identity:

I

$$\Lambda = \mu_{\leq U} * \log -\Lambda_{\leq V} * \mu_{\leq U} * 1 + 1 * \mu_{>U} * \Lambda_{>V} + \Lambda_{\leq V},$$

where $f_{\leq V}(n) = f(n)$ if $n \leq V$, $f_{\leq V}(n) = 0$ if n > V. (Four summands: type I, type I, type II, negligible.) This is a gambit:

- Advantage: flexibility we may choose U and V;
- Disadvantage: cost of two factors of log. (Two convolutions.)

We can recover at least one of the logs.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Cancellation within Vaughan's identity

Vaughan's identity:

$$\Lambda = \mu_{\leq U} * \log -\Lambda_{\leq V} * \mu_{\leq U} * 1 + 1 * \mu_{>U} * \Lambda_{>V} + \Lambda_{\leq V},$$

where $f_{\leq V}(n) = f(n)$ if $n \leq V$, $f_{\leq V}(n) = 0$ if n > V. (Four summands: type I, type I, type II, negligible.) This is a gambit:

- Advantage: flexibility we may choose U and V;
- Disadvantage: cost of two factors of log. (Two convolutions.)

We can recover at least one of the logs.

Alternative would have been: use a log-free formula (e.g. Daboussi-Rivat); proceeding as above seems better in practice.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

How to recover factors of log

In type I sums: We use cancellation in $\sum_{n \le M: d \mid n} \mu(n) / n$. This is allowed: we are using only ζ , not *L*. This is explicit: **Granville-Ramaré**, **El Marraki**, **Ramaré**.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

How to recover factors of log

In type I sums: We use cancellation in $\sum_{n \le M: d|n} \mu(n)/n$. This is allowed: we are using only ζ , not *L*. This is explicit: **Granville-Ramaré**, **El Marraki**, **Ramaré**.

Vinogradov's basic lemmas on trigonometric sums get improved.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

How to recover factors of log

In type I sums: We use cancellation in $\sum_{n \le M: d|n} \mu(n)/n$. This is allowed: we are using only ζ , not *L*. This is explicit: **Granville-Ramaré**, **El Marraki**, **Ramaré**.

Vinogradov's basic lemmas on trigonometric sums get improved.

In type II sums: Proof of cancellation in $\sum_{m \le M} (\sum_{d > U} \mu(d))^2$, even for *U* almost as large as *M*.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

How to recover factors of log

In type I sums: We use cancellation in $\sum_{n \le M: d \mid n} \mu(n)/n$. This is allowed: we are using only ζ , not *L*. This is explicit: **Granville-Ramaré**, **El Marraki**, **Ramaré**.

Vinogradov's basic lemmas on trigonometric sums get improved.

In type II sums: Proof of cancellation in $\sum_{m \le M} (\sum_{d > U} \mu(d))^2$, even for *U* almost as large as *M*.

Application of the large sieve for primes.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The "error" $\delta/x = \alpha - a/q$ is a friend

In type II:

- $\widehat{\eta}(\delta) \ll 1/\delta^2$ (so that $|\eta''|_1 < \infty$),
- if δ ≠ 0, there has to be another approximation a'/q' with q' ~ x/δq; use it.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

The "error" $\delta/x = \alpha - a/q$ is a friend

In type II:

- $\widehat{\eta}(\delta) \ll 1/\delta^2$ (so that $|\eta''|_1 < \infty$),
- if δ ≠ 0, there has to be another approximation a'/q' with q' ~ x/δq; use it.

In type II: the angles $m\alpha$ are separated by $\geq \delta/x$ (even when $m \geq q$). We can apply the large sieve to *all* $m\alpha$ in one go. We can even use prime support: double scattering, by δ and by **Montgomery**'s lemma.

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Final result

All goes well for $n \ge 10^{30}$ (or well beneath that). As we have seen, the case $n \le 10^{30}$ is already done (computation).

> Harald Andrés Helfgott

Introduction

The circle method

The major arcs

Minor arcs

Conclusion

Final result

All goes well for $n \ge 10^{30}$ (or well beneath that). As we have seen, the case $n \le 10^{30}$ is already done (computation).

Theorem (Helfgott, May 2013)

Every odd number $n \ge 7$ is the sum of three prime numbers.