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Abstract

In this paper we will estimate the smallest length of a minimal geo-
desic net on an arbitrary closed Riemannian manifold Mn in terms
of the diameter of this manifold and its dimension. Minimal geode-
sic nets are critical points of the length functional on the space of
immersed graphs into a Riemannian manifold. We prove that there
exists a minimal geodesic net that consists of m geodesics connecting
two points p, q ∈ Mn of total length ≤ md, where m ∈ {2, ..., (n + 1)}
and d is the diameter of Mn. We also show that there exists a
minimal geodesic net with at most n + 1 vertices and (n+1)(n+2)

2
geodesic segments of total length ≤ (n + 1)(n + 2)FillRadMn ≤

(n + 1)2nn(n + 2)
√

(n + 1)!vol(Mn)
1

n .

These results significantly improve one of the results of [NR2] as
well as most of the results of [NR1].

Introduction

0.1 Stationary geodesic nets.

Definition 0.1 Let Γ be a graph immersed into a Riemannian manifold
Mn satisfying the following conditions:

(1) each edge of Γ is a geodesic segment;

(2) the sum of unit vectors at each vertex tangent to the edges and directed
from this vertex equals to zero.

We will then call Γ a stationary (or minimal) geodesic net in M n.
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Here, by a graph we mean a multigraph. That is, we allow loops and
multiple edges between vertices.

The above conditions ensure that this immersed graph is a stationary
point for the length functional on the space of immersed graphs. That is, let
Γ be a stationary geodesic net on Mn, let v be a smooth vector field on Mn,
let Φv(t) denote the corresponding 1-parameter family of diffeomorphisms
of Mn, and lv,Γ(t) = length(Φv(t)(Γ)). Then the first variation of the length

functional implies that
dlv,Γ

dt
(0) = 0.

Note that our definition of a stationary geodesic net is slightly different
from the definition of J. Hass and F. Morgan ([HM]), who asked that each
edge is embedded and that different geodesic segments do not intersect.

Consider the geometric object that consists of two points in M n and
three minimal geodesic segments joining them. Suppose that the sum of
the unit vectors tangent to these segments equals zero at each vertex. This
object will be called a minimal (or stationary) θ-graph, (see fig. 1 (a)). It
is one of the simplest examples of geodesic nets.

Minimal θ-graphs were first considered by J. Hass and F. Morgan, (see
[HM]).
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Figure 1: Geodesic Nets.

The conjecture of Hass and Morgan states that there exists a stationary
θ-graph on any closed convex surface M in R3, such that its edges do not
intersect or self-intersect. This conjecture had been proven for all convex
surfaces in R3 that are sufficiently close to the standard sphere, ([HM]).

In [NR2], among other results, we had shown that on any closed Rie-
mannian manifold with a non-trivial second homology group there exists
either a non-trivial θ-graph, or a closed geodesic, or a stationary figure 8 of
length smaller than or equal to 3d, (see fig. 1 (b)). Stationary figure 8 is
a minimal geodesic net that consists of two geodesic loops with a common
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vertex p, such that the sum of the four unit vectors tangent to the loops at
p and directed from p equals zero .

In this paper we will prove the theorem generalizing the above result.
Let us begin with the following definition:

Definition 0.2 (Stationary m-cage.) Let p, q be two distinct points of a
Riemannian manifold Mn, joined by m geodesic segments, with an addi-
tional condition that the sums of unit vectors tangent to the above geodesic
segments, directed from points p and q are equal to zero. We will call a graph
defined in such a way a stationary m-cage. We will call a graph that consists
of two vertices joined by m, not necessarily geodesic, segments, without any
stationarity condition, simply an m-cage. Moreover, in the case when p = q
the graph that consists of k ≤ m− 1 geodesic loops starting and ending at p
will be called a stationary m-cage, if the sum of all unit vectors tangent to
non-constant geodesic segments and directed from p equals zero.

A stationary m-cage is an example of a minimal geodesic net. Let us remark
also that the length of the cage will be defined as the sum of lengths of
individual segments.

Examples. Obviously, a closed geodesic is a stationary 2-cage, a min-
imal θ-graph will be an example of a stationary 3-cage, and so will be a
stationary figure 8. In the latter case two points p and q coincide and the
length of the third segment equals zero. Some examples of stationary 4-cages
can be found on figure 2.

0.2 Main results. In the next section we will prove the following theorem.

Theorem 0.3 Let Mn be a closed Riemannian manifold of dimension n
and of diameter d. Let q be the smallest number such that πq(M

n) 6= {0}.
Then there exists a non-trivial stationary m-cage, Cgm on Mn, where 2 ≤
m ≤ (q +1), such that the length of Cgm is bounded above by md. It follows
that the smallest length of a stationary geodesic net in M n is bounded above
by (q + 1)d and, thus, by (n + 1)d.

Examples. When q = 2, Theorem 0.3 becomes Theorem 1 of [NR2]
that was cited above. Suppose that Mn is diffeomorphic to S3 or, more
generally, q = 3. In other words, π1(M

n) = π2(M
n) = {0}, but π3(M

n) 6=
{0}. Then the conclusion of the theorem will be that there exists a geodesic
net of length ≤ 4d of one of the following shapes: (a) two vertices joined
by at most four geodesic segments, or (b) a “flower”: two or three geodesic
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Figure 2: Examples of stationary 4-cages.

loops based at the same point p with the stationarity condition at that point,
or (c) a closed geodesic.

Thus, Theorem 0.3 generalizes Theorem 1 of [NR2]. It also significantly
improves Theorem 1 in [NR1], which states that under the same hypothesis
as that of Theorem 0.3 above, there exists a non-trivial stationary 1-cycle
on Mn that consists of at most (q+2)!

2 geodesic segments such that its length

is at most (q+2)!d
4 . For example, suppose Mn is diffeomorphic to S3. Then

the conclusion of this theorem would be that there must exist a non-trivial
stationary 1-cycle that consists of at most 60 segments of length ≤ 30d.
However, if we assign a weight 2 to every edge in a stationary m-cage pro-
vided by Theorem 0.3, we obtain a stationary 1-cycle (i. e. a geodesic net
that represents a cycle) of length at most 8d.

While in [NR1] we have obtained the first curvature-free bounds for the
length of a stationary 1-cycle in terms of diameter and, separately, in terms
of volume of a manifold, presently, we have significantly improved the con-
stants in Theorems 1 and 2 of [NR1] and, more importantly, obtained a bet-
ter understanding of the shapes of graphs that must exist on M n. The main
idea behind the new proofs is the following: Consider a non-contractible
sphere in Mn of smallest dimension. Unless there exists a minimal object
of a certain shape of small length, we can construct a homotopy connecting
this sphere with a point, thus, reaching a contradiction. The construction of
the homotopy, in its turn, is based solely on the fact that curve/net short-
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ening processes depend continuously on the initial object, assuming there is
no critical points of a smaller length. Or looking at this idea from a different
angle, the existence of the minimal objects is a reason, why the shortening
processes are not continuous, and the spheres are not contractible. Note
also, that in order to construct those homotopies, we need neither to foliate
spheres by cycles or nets nor to make an explicit use of spaces of cycles or
varifolds, (other than the existence of a flow that deforms it to a manifold
in the absence of minimal objects), and this is precisely what allows us to
better understand the geometry of the minimal objects in question and to
obtain better estimates.

Note that by similar methods one can also prove the following estimate
for the smallest length of a non-trivial stationary geodesic net in terms of
the filling radius, defined by M. Gromov in [G].

Definition 0.4 [G] Let Mn be an abstract manifold topologically imbedded
into the Banach space of bounded Borel functions f on M n, denoted as
X = L∞(Mn), where the imbedding of Mn into X is the map that assigns
to each point p of Mn the distance function p −→ fp = d(p, q). Then the
filling radius FillRadMn is the infimum of ε > 0, such that Mn bounds in
the ε-neighborhood Nε(M

n), i.e. homomorphism Hn(Mn) −→ Hn(Nε(M
n))

vanishes, where Hn(Mn) denotes the singular homology group of dimension
n with coefficients in Z, when M is orientable, and with coefficients in Z2,
when M is not orientable.

Informally speaking, suppose Mn is isometrically imbedded into some
metric space X, then, by the filling radius of M n, subject to this imbedding,
we mean the smallest ε, such that Mn bounds in the ε-neighborhood of Mn.
For example, the filling radius of the standard 2-dimensional sphere in the
Euclidean space R3 is exactly the radius of this sphere. Now, to define
the filling radius FillRadMn, we take the infimum over all the isometric
imbeddings. It turns out that such infimum is achieved by isometrically
imbedding Mn into the space L∞(Mn) of bounded Borel functions on Mn.
It was shown by M. Katz ([M]) that FillRadM n ≤ d

3 , where d is the diameter
of Mn.

The following result is due to M. Gromov, (see [G]).

Theorem 0.5 [G] Let Mn be a closed connected Riemannian manifold.

Then FillRadMn ≤ gc(n)(vol(Mn))
1

n , where gc(n) = (n + 1)nn(n + 1)!
1

2

and vol(Mn) denotes the volume of Mn.
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Here we prove the following theorem:

Theorem 0.6 Let Mn be a closed Riemannian manifold of dimension n.
Then there exists a stationary geodesic net with at most (n+2) vertices and

at most (n+1)(n+2)
2 geodesic segments of length ≤ (n+1)(n +2)FillRadM n,

where FillRadMn denotes the filling radius of Mn. Its underlying graph
can be obtained from the complete graph by performing one of the following
operations finitely many (possibly zero) times: identifying two vertices and
collapsing an edge to a point.

The estimate of Katz in combination with Theorem 0.6 will lead us to
the result that the length of a shortest geodesic net on a closed Riemannian
manifold is bounded by (n+1)(n+2)d

3 , which is certainly worse than the es-
timate of Theorem 0.3. Therefore, the main application of Theorem 0.6
would be to combine it with the volume estimate for the filling radius of M.
Gromov, to obtain the volume estimate for the length of a shortest geodesic
net.

Combining our Theorem 0.6 with Theorem 0.5 we obtain the following
corollary.

Corollary 0.7 Let Mn be a closed Riemannian manifold. Then there exists
a stationary geodesic net consisting of at most (n + 2) vertices and at most
(n+1)(n+2)

2 segments of total length ≤ (n + 1)(n + 2)gc(n)(vol(M n))
1

n .

Observe that in [NR1] we have shown the existence of a stationary 1-

cycle with ≤ (n+2)!
2 segments of length ≤ (n + 2)!FillRadMn. Our present

results sharply reduce the values of the constants and provide a much more
specific information about the shape of a minimal object.

0.3 The scheme of the proofs of Theorems 0.3 and 0.6. The proof
of Theorem 0.3 is given in the next section. In section 1.1 we describe the
proof in the easier cases of q = 1 and q = 2 and sketch the basic ideas in the
general case. Section 1.2 contains the formal proof.

The rough scheme of the proof goes as follows. We begin with a non-
contractible map of a sphere of a smallest possible dimension. Assuming
there is no “small” geodesic cages, we extend the map to a disc, thus reaching
a contradiction. This extension process reduces to problem of “filling” m-
cages by m-discs for all values of m ≤ q + 1, which can be performed by
means of an inductive bootstrap procedure: For every m at the mth step
we consider an m-cage and construct an (m− 1)-sphere and m-disc “filling”
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this cage. A sphere is obtained by gluing discs, just as we glue (m − 1)-
dimensional simplices in the boundary of an m-simplex to obtain a sphere,
(only, since one of those simplices is small, we treat it as a point). An m-disc
is constructed by producing a 1-parameter family of (m − 1)-spheres that
start with the original sphere and end with a point. This family of spheres is
created by contracting the original m-cage to a point, (using an assumption
that there is no “small” geodesic cages) and at each time constructing an
(m − 1)-sphere, as it was discussed before. Here we also use a fact, that in
the absence of minimal objects those spheres will change continuously. This
proof uses a length shortening process for m-cages, which is an adaptation
of a general length shortening process introduced in [NR1]. For the sake of
completeness we discuss how to adapt the process of [NR1] to the case of
m-cages in section 2.

In section 3 we prove Theorem 0.6. The proof is based on the com-
bination of the ideas from the proof of Theorem 0.3 and the trick by M.
Gromov from [G] involving filling Mn by a polyhedron W n+1 in L∞(Mn),
attempting to extend the identity map on M n to W n+1 and obtaining a
geodesic net as an obstruction to this extension.

1 The proof of Theorem 0.3.

1.1 The main ideas of the proof. First, let us describe the main ideas
underlying the proof of Theorem 0.3.

Three thin tentacles are made of short curves.

p

qγ1

γ2

γ3

Figure 3: A thin-tentacled 2-sphere.
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1.1.1 The case q = 1. Observe that a simple argument shows that if M n

is not simply connected then the length of a shortest closed geodesic on
Mn is bounded above by 2d, where d is the diameter of M n: Consider a
non-contractible loop f : S1 −→ Mn. We subdivide S1 into segments such
that the diameter of each segment in the subdivision of f(S1) induced by f
is smaller than some small δ. Let D2 be the standard 2-disc triangulated as
a cone over the triangulation of S1. Assuming that the length of a shortest
closed geodesic is > 2d+ δ one can extend f to D2 as follows. First, we map
the center of the disc p̃ to an arbitrary point p of M n. Next, we extend to the
1-skeleton of D2 by mapping edges of the form [p̃, ṽi] to minimal geodesic
segments [p, vi] connecting p with vi = f(ṽi) of length ≤ d. Thirdly, we
extend to 2-skeleton by assigning to a 2-simplex [p̃, ṽi, ṽj ] a disc generated
by a curve shortening homotopy connecting the image of its boundary (of
length ≤ 2d + δ) with a point, thus reaching a contradiction. It is at the
last stage that we use our assumption about nonexistence of short geodesics.
Finally, we let δ go to zero.

γ3

γ1 γ2γ32

1 γ2γ3

(b)

γ1 γ
γ1 γ2γ3

(c)

γ1 γ2γ3

γ

γ2
γ3γ3

γ1

(a)

2
γ1 γ2γ3

γ1 γ

γ3
γ1 γ2γ3

2
γ1 γ2γ3

γ1 γ

Figure 4: Deforming a 2-sphere to a point

1.1.2 The case q = 2. Next, consider the case of q = 2, that is the case of
a simply connected manifold Mn with a non-trivial second homotopy group.
This is the case considered in [NR2]. The idea of the proof was to consider
a subdivision of S2 by three meridians, connecting the North and the South
poles, into three 2-cells. One can introduce a notion of a “thin-tentacled”
2-sphere in M (see fig. 3), which is a non-contractible map of the subdi-
vided S2 into M that takes the 0-skeleton into some two points p, q and the
1-skeleton into three curves γ1, γ2, γ3 each of length at most d, where d is



R. Rotman 9

the diameter of M . The 2-skeleton is mapped by considering three pairs of
curves: γ1∪−γ2, γ2∪−γ3 and γ3∪−γ1, (see fig. 4(a)) and contracting each
curve to a point by a curve shortening process. Next, we try to continuously
deform the 1-skeleton γ1 ∪ γ2 ∪ γ3 of the thin-tentacled sphere to a point
in a way that decreases its total length (see fig. 4(b)). This leads to a 1-
parameter family θτ , τ ∈ [0, 1] of (not stationary) θ-graphs, that begins with
the original θ-graph and ends with a point, (see fig. 4(b)). At each time τ ,
we can then consider three digons and apply the curve shortening process to
each of them, (see fig. 4(a)). Assuming that there are no periodic geodesics
of length ≤ 3d, each of those digons can be contracted to a point without the
length increase, resulting in three discs, which, in turn, can be glued together
to form a 2 sphere S2

τ . As the length of θ-graph becomes small, the length
of each geodesic segment becomes small, thus, the lengths of all three digons
become small. Therefore all three discs forming a thin-tentacled sphere S 2

τ

become small as well, and the resulting sphere converges to a point. There-
fore, if M is diffeomorphic to S2 then deforming the 1-skeleton together with
the assumption l(M) > 3d will also deform M to a point along itself, (see
fig. 4(c)) thus reaching a contradiction. That S2

τ changes continuously with
τ is due to the fact that the curve shortening process depends continuously
on a curve, unless there is a short closed geodesic present. To illustrate this
assertion, consider the standard 2-sphere. Let E be its equator that divides
this sphere into northern and southern hemispheres. When one applies, let’s
say, Birkhoff Curve Shortening Process to parallels σN (t) and σS(t) that are
close to E in the northern and the southern hemisphere, respectively, one
sees that σN (t) contracts to the north pole and σS(t) contracts to the south
pole of S2. So there is, of course, no continuity of a curve shortening process
with respect to the original curve, but only due to the existence of a closed
geodesic E. A similar situation occurs with geodesic nets.
1.1.3 The general case. The idea of the proof in the case of an arbitrary q
is the following. Given a non-stationary m-cage, and assuming there are no
“small” stationary i-cages for i ≤ m, it is possible to “fill” this m-cage with
an (m−1)-dimensional sphere and an m-dimensional disc. The procedure of
filling m-cages is a bootstrap procedure, that is in order to “fill” an m-cage
with a sphere, we need to be able to “fill” its (m − 1)-subcages with a disc.
A sphere is then obtained by gluing those discs. And, in order to “fill” an
(m − 1)-cage with a disc, it is necessary to be able to “fill” some auxiliary
(m− 1)-cages with spheres. Formally speaking, the “filling” is a continuous
map from the space of m-cages to the space of maps of Sm−1 (or Dm) to
Mn, so that the m-cage will be an image of m meridians of Sm−1 = ∂Dm.
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More specifically, here is what we do. Let us first assume, for the sake of
the exposition that q = 3. Consider a non-contractible map f : S3 −→ Mn,
from a finely triangulated sphere to Mn. Assuming that the conclusion of
Theorem 0.3 is not satisfied, we will extend this map to the 4-dimensional
disc D4, triangulated as a cone over S3.

4

Cg
4

4−cage generates four 3−cages.  

Cg
4
τalong the cages and repeating the construction

of a 3−sphere at each time              will lead to a τ

Decreasing the length of the original 4−cage to zero

1−parameter family of 3−spheres which will end with a point.

e 1
e 3

e 4
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τ
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Gluing of the four 3−discs results in a 3−sphere.

Each of the 3−cages generates a 3−disc that "fills’’ this 3−cage.

(a)

Figure 5: Extending to 3-skeleton.

Step 1. As in case of q = 2, we will begin by extending to 0, 1-skeleta,
by mapping the center of the disc p̃ to an arbitrary point p of a manifold and
the edges of the form [p̃, ṽi] to minimal geodesic segments [p, vi], connecting
p with corresponding vertices of the triangulation induced by f . To extend
to 2-skeleton, we need to extend to every 2-simplex [p̃, ṽi1 , ṽij ]. Its boundary
is mapped to a closed curve of small length, which, in the absence of “short”
closed geodesics, can be homotoped to a point without the length increase,
resulting in a 2-disc [p, vi1 , vi2 ]. We map the 2-simplex to the 2-disc.
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Step 2. To extend to 3-skeleton, consider an arbitrary 3-simplex σ̃3
i =

[p̃, ṽi1 , ṽi2 , ṽi3 ]. The image of its boundary is a 2-dimensional sphere that
is obtained by gluing 1-small disc, that we, for convenience, will treat as a
point and 3 large discs. If we ignore this small disc and consider the natural
CW structure of this sphere, then what we have is a 3-cage, “filled” by a
2-sphere, that is a 2-sphere that is obtained by gluing three 2-discs that arise
out of this cage. To extend to 3-simplex, we need to contract this 2-sphere
to a point, or to “fill” the 3-cage by a 3-disc [p, vi1 , vi2 , vi3 ]. This 3-disc is
obtained by constructing a 1-parameter family of 2-spheres that begins with
the original sphere and ends with a point, as it had been described in the
introduction.

Step 3. Finally, consider an arbitrary 4-simplex σ̃4
i = [p̃, ṽi1 , ..., ṽi4 ]. Its

boundary is mapped to a 3-sphere that is obtained by gluing five 3-discs:
one of them, [vi1 , ..., vi4 ] is very small and can be treated as a point q. Thus,
this sphere is essentially constructed by taking two points p and q, joining
them by four geodesic segments e1, ..., e4, (thus, obtaining a 4-cage Cg4),
considering four triples of these segments and “filling” them by four 3-discs,
(see fig. 5 (a)). We now want to construct a 4-disc that “fills” the 4-cage. In
order to do that we construct a 1-parameter family S3

τ , τ ∈ [0, 1] of 3-spheres
that starts with our sphere and ends with a point. This is done as follows:
apply the curve shortening process to Cg4 to obtain a 1-parameter family
of cages Cg4

τ . At each time τ , take four triplets of segments and for each of
the triplet construct a 3-disc that “fills” this triplet as it was done in Step
2. Assuming that there are no “short” geodesic 4-cages S3

1 will be a point,
(see fig. 5 (b)).

1.2 Proof of Theorem 0.3.

Proof of Theorem 0.3. It is well known that if π1(M
n) 6= {0}, then there

exists a non-contractible closed geodesic of length ≤ 2d, (as it was shown in
1.1.1). Therefore, we can assume that q ≥ 2. Assume that πi(M

n) = {0}
for i = 1, ..., q − 1, and that πq(M

n) 6= {0}. Let f : Sq −→ Mn be a non-
contractible map from the standard sphere to a manifold M n. Assume that
Sq has been triangulated in such a way that the diameter of each simplex
in the induced triangulation is less than some small δ > 0. Assuming that
the length of a smallest stationary m-cage is greater than md for m =
2, ..., (q + 1), we will extend f to Dq+1, the standard disc, triangulated as a
cone over Sq, thus, obtaining a contradiction.

Our extension procedure will be inductive on skeleta of Dq+1. Let us
begin with 0-skeleton. It consists of only one additional point, namely, the
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center of the disc, that will be denoted as p̃. We will assign to this point
an arbitrary point p ∈ Mn. Next we will continue with the 1-skeleton. To
an arbitrary 1-simplex of the form [p̃, ṽi], where ṽi is a vertex of Sq we will
assign a minimal geodesic segment [p, vi], connecting p with vi = f(ṽi). To
extend to the 2-skeleton, we use the assumption that the length of a shortest
closed geodesic is > 2d+δ. Consider an arbitrary 2-simplex σ̃2

i = [p̃, ṽi1 , ṽi2 ].
Its boundary [ṽi1 , ṽi2 ]− [p̃, ṽi2 ]+ [p̃, ṽi1 ] is mapped to a closed curve of length
≤ 2d+ δ. Let us use the Birkhoff Curve Shortening Process to contract this
curve to a point. (We can assume without loss of generality that there is
no closed geodesic of length ≤ 2d, since otherwise the theorem immediately
follows). We will map the above simplex to a (possibly singular) disc σ2

i

that is generated by the above homotopy.

Next we will extend to 3-skeleton as follows: consider an arbitrary 3-
simplex σ̃3

i = [p̃, ṽi1 , ṽi2 , ṽi3 ]. The boundary of this simplex is mapped to the
following spherical cycle [vi1 , vi2 , vi3 ] − [p, vi2 , vi3 ] + [p, vi1 , vi3 ] − [p, vi1 , vi2 ].
For the sake of simplicity of the exposition, let us treat [vi1 , vi2 , vi3 ] as a
point that we will denote by q (see the Remark following the proof). So,
what we have is a sphere obtained by connecting the points p and q by
minimal geodesic segments e1, e2, e3 and then contracting each of the digons
αi = ei − ei mod 3+1, i = 1, 2, 3 to a point by the Birkhoff Curve Shortening
Process. Let us use the assumption that the length of any stationary 3-
cage, (i.e. θ-graph) is > 3d. Therefore, the above θ-graph is contractible to a
point without the length increase (See the description of a length shortening
process for m-cages in Section 2 below). Let us denote the family of θ-
graphs generated by this homotopy as θt. Each θt gives rise to three digons
αit, i = 1, 2, 3. Each of those digons is contractible to a point by Birkhoff
Curve Shortening Process, assuming there are no “short” geodesics. This
gives us a sphere (S2

i )t at each time t. We claim, that those spheres change
continuously with t. This is due to the fact, that in the absence of closed
geodesics, the Birkhoff Curve Shortening Process depends continuously on
a curve. Therefore, as θ-graph is being contracted to a point, the sphere
is being contracted to a point as well. We will map σ̃3

i to the (possibly
singular) disc σ3

i generated by the above family of spheres.

Next, let us extend to 4-skeleton: consider an arbitrary 4-simplex
σ̃4

i = [p̃, ṽi1 , ṽi2 , ..., ṽi4 ]. Its boundary is mapped to the spherical cycle
Σ4

j=0(−1)j [vi0 , ..., v̂ij , ..., vi4 ], where vi0 = p. Let us again assume that
[vi1 , ..., vi4 ] is so small that it can be treated as a point denoted by q. So,
this spherical cycle then consists of two points p and q, four geodesic seg-
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ments [p, vij ], j = 1, 2, 3, 4, that we will denote as ej , j = 1, 2, 3, 4, six discs
of dimension 2 obtained by contracting six digons to a point, and four discs
of dimension 3 obtained by contracting four 2-spheres to a point, (in order
to contract these spheres to a point we use the previous step of the construc-
tion involving contracting 3-cages to a point). Assuming that there is no
“small” stationary 4-cages, it is possible to use a curve shortening process
described in Section 2 below to contract 4-cage to a point. As it is being
contracted to a point, it generates the family of spheres S3

t that starts with
the spherical cycle that corresponds to the boundary of the above’s simplex
and that ends with a point. Let us denote the 4-cage at time t as Cg4

t . S3
t is

constructed by performing the above process for Cg4
t , namely, by contract-

ing each of the digons of Cg4
t to a point using the Birkhoff Curve Shortening

Process, and then by contracting each of the four resulting 2-spheres. These
spheres are being contracted using the previous step of construction. To do
so, we contract the corresponding 3-cages that are obtained from Cg4

t by
forgetting one of its four segments. Then we glue the resulting four 3-discs
thus obtaining a 3-sphere. (These discs correspond to four of five faces of
the boundary of the standard 4-simplex. We assign a point to the fifth disc.)
This 1-parameter family of 3-spheres can be regarded as a 4-disc σ4

i . We
will map σ̃4

i to this disc.

Now suppose we have extended in such a manner to k-skeleton of
Dq+1, k ≤ q. It follows that, assuming there is no “small” k + 1-
cages, we can extend to k + 1-skeleton of Dq+1 as follows. Let σ̃k+1

i =
[p̃, ṽi1 , ..., ṽik+1

] be an arbitrary (k + 1)-simplex. Its boundary is mapped to

Σk+1
j=0(−1)j [vi0 , ..., v̂ij , ..., vik+1

], where vi0 = p. Once again, let us, for the
sake of the exposition, treat [vi1 , ..., vik+1

] as a point that we will denote by
q.

Let us denote the edges [p, vij ] as ej, j = 1, ..., k + 1. Assuming that
there are no “small” stationary (k +1)-cages, the cage obtained from p, q by
joining it with (k + 1) geodesic segments ej is contractible to a point by a
length decreasing process along cages Cgk+1

t described in Section 2 below.
Corresponding to each such cage, we can construct a sphere Sk

t that starts
with the original spherical cycle and ends with a point. Here we use the
previous step of the induction. Thus, we obtain a disc σk+1

i , and we can
extend the map to (k +1) skeleton of Dq+1. We can continue until we reach
the dimension q + 1 obtaining a contradiction.

2

Remark. Let us consider a sphere in the manifold M n obtained by
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taking a small 2-simplex [vi1 , vi2 , vi3 ] and a point p, connecting p with each
vij by a minimal geodesic segment ej , j = 1, 2, 3, and finally, by contracting
each of the closed curves ej+[vij , vij mod 3+1

]−ej mod 3+1, where j = 1, 2, 3 to a
point, (see fig. 6 (a)). We claim that for all practical purposes [vi1 , vi2 , vi3 ]
can be treated as a point q. Simply take q ∈ [vi1 , vi2 , vi3 ]. Consider the
boundary ∂[vi1 , vi2 , vi3 ] = [vi2 , vi3 ]−[vi1 , vi3 ]+[vi1 , vi2 ]. Let us denote each of
the segments [vij , vij mod 3+1

] as sj , j = 1, 2, 3. Without loss of generality, we
can assume that s1+s2+s3 can be contracted to q in [vi1 , vi2 , vi3 ] without the
length increase. Moreover, each of the vertices, vij will trace a trajectory σj

of length ≤ ε(δ), such that ε approaches 0 as δ approaches 0. Let us denote
the images of sj under the homotopy as sjt, and the trajectories traced at the
time t as σjt Then instead of curves ej +[vij , vij mod 3+1

]−ej mod 3+1 consider
new curves ej +σjt +sjt−σj mod 3+1t

−ej mod 3+1 of length ≤ 2d+2ε(δ)+3δ,
(see fig. 6 (b), (c)). Each of those curves is contractible to a point without
the length increase, assuming there is no short geodesics. Moreover, at t = 1
we will obtain the sphere that is constructed as follows: take two points p
and q and connect them with three segments e∗j = ej + σj , j = 1, 2, 3. Then
take three digons e∗j − e∗j mod 3+1 and contract them to the point, (see fig.
6 (d). Thus, the initial and the final 2-spheres are homotopic. We can
eventually let δ go to 0. The same idea works in higher dimension as well.

q

p

q

p

q

p

e 1
* e 2

*

e 3*

σ
1

σ
2

σ 3

(d)

vi 3vi 1 vi 2

p

e 1

e 2
e 3

vi 1
vi 2

vi 3

(a) (b)

(c)

Figure 6: A small 2-simplex can be ignored.
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2 Length shortening proces for m-cages.

In this section we will describe a length shortening process for m-cages. A
similar length shortening process for curves was introduced by G. Birkhoff
and is described in detail in section 2 of [C]. Consider the length functional
on the space Cm

L of the immersed m-cages of length ≤ L. One can construct
a flow on Cm

L that decreases the length functional, assuming there is no sta-
tionary m-cages of length ≤ L. Note that closed curves and points can also
be regarded as m-cages. We claim that in such a case there exists a defor-
mation retraction of Cm

L to Mn, such that the length functional decreases
along the trajectory of the deformation. Consider an m-cage consisting of
two vertices a and b and m curves αi, i = 1, ...,m that join those vertices.

The length shortening process we will describe is very similar to the
Birkhoff Curve Shortening Process.

We will begin by replacing the curves αi’s by piecewise geodesics. This
is done by subdividing each of the curves into many equal “small” segments,
each of length ≤ injrad(Mn)/4, where injrad(Mn) denotes the injectivity
radius of Mn, and then replacing each small segment by the minimal geodesic
segment. Clearly, the original m-cage and the new piecewise geodesic m-
cage will be homotopic by a length-decreasing homotopy. Moreover, this
homotopy will continuously depend on the initial cage. (This observation is
analogous to the starting point of Birkhoff Curve Shortening Process, (see
[C])).

Thus, we find a deformation retraction of Cm
L to a finite dimensional

space that we will denote FCm
L , such that the length of an arbitrary edge

does not increase during this deformation.

FCm
L can be regarded as a subset of (Mn)N for a sufficiently large N .

Let Cgm ∈ FCm
L . We can define a vector of steepest descent tangent

to FCm
L at Cgm. It will be defined as follows: consider all the vertices,

(i.e. non-smooth points of m-cage). There will be many vertices, where two
geodesic segments come together and two points a and b, where m geodesic
segments come together. If a = b, there will be one point where ≤ 2m
tangent vectors come together.

At each vertex consider the sum of the diverging unit vectors tangent
to geodesic segments meeting at this vertex, (see fig. 7). This collection
of vectors tangent to Mn constitutes the vector of the steepest descent for
Cgm. Note also, that it will also “work” for m-cages that are sufficiently
close to Cgm. That is, for any m-cage, sufficiently close to Cgm, if we
parallel transport our vector to that m-cage, we will obtain a vector such
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that the first variation of the length functional in the direction of this vector
will be negative. Now choosing an appropriate locally finite partition of
unity we can construct a vector field on FCm

L such that the first variation
of the length functional in the direction of this field is negative and FCm

L

deforms to FCm
0 in a finite time.

will have to add three unit vectors.
so at each of those points we

,bmeeting at pointandameeting at point 
There will be three geodesic segments

this point.
geodesic segments meeting at
unit vectors tangent to two
At a typical point we will add

b

a

Figure 7: Length Shortening Process for θ-graph.

This process is a very much simplified version of the process described in
paper [NR1], (see the proof of a Morse-theoretic type lemma for the space of
1-cycles made of at most k segments, (Lemma 3) in [NR1], in which we show
that, assuming there are no non-trivial stationary 1-cycles in the space of
1-cycles Γx

k made of at most k segments of length ≤ x, then the space Γ0
k of 1-

cycles of 0 length is a deformation retract of Γx
k). All the technical difficulties

that arise during this deformation were dealt with in [NR1]. One can find it
summarized for θ-graphs in [NR2], (see section 3: Length-decreasing process
for θ-graphs). During this length shortening process, it can happen that the
length of one of the edges becomes 0 and the two points a and b coincide.
We will then have to move this unique vertex in the direction of the sum of
all unit vectors tangent to geodesic segments and diverging from this vertex.
Another difficulty is that despite the fact that the total length of each cage
decreases, the distance between two neighboring vertices can increase. We
want this distance to remain smaller than injradM n. Otherwise we will not
be able to connect the endpoints by a unique geodesic segment. Therefore,
to resolve this difficulty, we apply the flow only for the time t = injradMn

4 .

Then we stop, divide each segment into equal segments of length ≤ injradMn

4
and replace it by a piecewise geodesic curve, as it was done in the beginning.
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Then we apply the flow again for t = injradMn

4 etc.
Under this curve shortening process the m-cage converges either to a

stationary m-cage, (possibly degenerate, where two vertices coincide and
lenghts of one or more segments equal zero), or to a point.

3 The proof of Theorem 0.6.

The proof of 0.6 is very similar to that of Theorem 0.3, except that instead
of contracting m-cages, we will be contracting 1-skeletons of simplices. The
spheres and discs are then built out of those 1-skeletons in a similar fashion.

Proof of Theorem 0.6. Let us begin by assuming that the shortest length of
a minimal geodesic length is > (n+1)(n+2)FillRadM n. By the definition of
the filling radius of Mn, Mn bounds in the (FillRadMn + δ)-neighborhood
of Mn in L∞(Mn). Let W be a chain, such that Mn = ∂W , when Mn is
orientable and Mn = ∂W mod 2, when Mn is not orientable. Moreover, let
W fill Mn in the (FillRadMn + δ)-neighborhood of Mn. WLOG we can
assume that W is a polyhedron, (see [G]). Let W and M n be triangulated in
such a way that the diameter of any simplex in this triangulation is smaller
than some small δ > 0.

One can show that there exists a singular (n + 1)-chain on M n, such
that the boundary of this chain is homologous to the boundary of W , which
would be a contradiction. This chain is constructed by induction on the
dimension of skeleta of W .

Let us begin with 0-skeleton. To each vertex w̃i ∈ W we will assign a
vertex wi ∈ Mn, that is closest to w̃i. That is d(w̃i, wi) ≤ FillRadMn +
δ. Next, to extend to 1-skeleton, we will assign to each edge of the form
[w̃i, w̃j ] ⊂ W\Mn a minimal geodesic segment [wi, wj ] connecting wi and wj

of length ≤ 2FillRadMn + 3δ. Now, let us go to 2-skeleton. Let σ̃2
i0,i1,i2

=
[w̃i0 , w̃i1 , w̃i2 ] be an arbitrary 2-simplex. Its boundary is mapped to a closed
curve of length ≤ 6FillRadMn +9δ. Assuming there are no closed geodesics
of smaller length, (since we consider them as minimal geodesic nets) we can
contract this curve to a point without the length increase. Moreover, this
curve shortening homotopy can be arranged to depend continuously on a
curve, in the absence of “short” closed geodesics. We will map σ̃2

i0,i1,i2
to a

surface that is generated by above mentioned homotopy, that we will denote
as σ2

i0,i1,i2
.

Next let us go to 3-skeleton. Consider an arbitrary 3-simplex σ̃3
i0,i1,i2,i3

=
[w̃i0 , ..., w̃i3 ]. By the previous step of the induction, its boundary is mapped
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to the following chain: Σ3
j=0(−1)jσ2

ii,...,̂ij,...,i3
. Consider its 1-skeleton. It

will be a (not geodesic) net, that we will denote by Ki. Let us apply a
length shortening process for nets to continuously deform it to a point. (We
will not explicitly describe this length shortening process, but it can be
found in [NR1] and it is very similar to the length shortening process for
m-cages). At each time t during this deformation, we can use the net (Ki)t
to construct a 2-dimensional sphere S2

t in a way that is analogous to the
similar construction in the proof of Theorem 0.3. This 1-parameter family
of 2-spheres can be regarded as a 3-disc that we will denote as σ3

i0,...,i3
. We

will assign it to σ̃3
i0,...,i3

. We can continue in a similar fashion until we reach
the (n + 1)-skeleton of W , thus constructing a singular chain on M n, that
has the fundamental class [Mn] as its boundary, and therefore, arriving at
a contradiction.
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