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Preliminary Foreword 

In August and September 1984 I delivered a series of lectures 

on the representation theory of reductive groups at the East China 

Normal University in Shanghai. I had been asked before to prepare 

some lecture notes. This is the first part of a revised and 

extended version of the notes I had written for those lectures. 

When writing down the first version I had not yet decided 

about the precise contents of my lectures. Therefore I included 

more than I could hope to cover in the lectures (and than I did 

cover). On the other hand, some parts of the theory about which 

I lectured (the relationship with the representations of finite 

groups) were not covered in the written notes as I had not had 

enough time before leaving for Shanghai. 

In this revised version of my notes I intend to deal also 

with these matters miSSing in the original version. The first part 

written up so far contains the general theory of group schemes 

and their representations upto the amoung that appears to be 

necessary for the more concrete representation theory of reductive 

groups and of their most important subgroups (like Borel subgroups, 

Frobenius kernels, finite groups of Lie type). 

This first part contains an introduction to some fundamental 

concepts in the theory of algebraic groups as schemes, group 

schemes, quotients, factor groups, algebras of distributions, 

Frobenius kernels. The main source in these matters is [SGA 3) 

to which one should add [T] in the case of algebras of distributions. 
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The books [OG] and [W] contain more accessible approaches to the 

theory. I nave tried to be understandable to someone who has not 

read these books but is familiar with linear algebraic groups 

(in the sense of [Bo],[Hu],[Sp]) and fundamental notions of 

commutative algebra (especially flatness) and of algebraic geometry. 

So I give all the definitions and indicate the proofs where they 

are not too involved but give a feelingwhat standard arguments 

look like. In the case of deeper results I usually refer to [DG] 

from where I usually take also the terminology. 

Furthermore this first part contains an introduction to the 

main tools in the representation theory o~ algebraic group schemes 

like induction, injective modules, cohomology, associated sheaves, 

reduction mod p and to some special aspects of the representation 

theory of finite group schemes. Most things done here are general

izations of constructions in the representation theory of (finite) 

abstract groups and of Lie groups. I have therefore usually not 

tried very hard to trace all sources and to attribute priorities. 

The list of references is divided into three parts. The 

first one contains text books on algebraic groups and related topics 

to which is referred by a letter code like [BO]. The second part 

contains research articles on representations of algebraic groups 

and related topics to which is referred by the family name of the 

auth:>r(s) like [Curtis 2]. ·The last part contains references from 

other areas of mathematics to which is referred to by numbers like 

[ 3 ] • 

I should like to thank Henning Haahr Andersen for his useful 
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comments on the first version of these notes and to thank Prof. Cao 

Xihua, his colleagues and his students for the hospitality they 

showed during my stay in Shanghai and for the patience with which 

they listened to my lectures. 
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I General Theory 

1. Schemes 

The reader is assumed to be familiar with the theory of 

algebraic groups as exposed in the text books by Borel, Humphreys 

and Springer (i.e. in [Bo], [Hu], [Sp]). He also ought to know the 

fundamental properties of varieties as to be found in these books. 

Though we are interested mainly in representations of such groups 

it will be necessary to look at more general objects, called group 

schemes, and similarly at the corresponding objects in algebraic 

geometry, called schemes. 

It is the purpose of this first chapter t9 give the necessary 

introduction to schemes following the functorial approach of [DG]. 

This approach appears to be most suitable when dealing with group 

schemes later on. After trying to motivate the definitions in 1.1 

we discuss affine schemes in 1.2 - 1.6. What is done there is 

fundamental for the understanding of everything to follow. As far 

as arbitrary schemes are concerned it is most of the time enough 

to know that they are functors with some properties so that all 

affine schemes are functors and so that over an algebraically 

closed field any variety gives rise to a scheme in a canonical way. 

Sometimes, e.g. when dealing with quotients, it is useful to 

know more. So we give the appropriate definitions in 1.7 - 1.9 

and mention the comparison with other approaches to schemes and 

with varieties in 1.11. The elementary discussion of a base change 

in 1.10 is again necessary for many parts later on. 

A ring or an associative algebra will always be assumed to have 
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a 1 and homomorphisms are assumed to respect this 1. Let k be a 

fixed commutative ring. Notations of linear algebra (like Hom,~) 

without special reference to a ground ring always refer to structures 

as k-modules. A k-algebra is always assumed to be commutative 

and associative. (For non-commutative algebras we shall use the 

terminology:algebras over k.) 

1.1 Before giving the definitions I want to point out how 
= 

functors arise naturally in algebraic geometry. Assume for the 

moment that k is an algebraically closed field. 

Consider a Zariski closed subset X of some k n and denote 

by I the ideal of all polynomials f E k[T 1 ,T 2 , .•• ,Tn ] with 

f(X) = o. Instead of looking at the zeroes of I only over k 

we can look also at the zeroes over any k-algebra A, i.e. at 

~(A) = {x E Anlf(x) = 0 for all f E I}. The map A~ ~(A) from 

{k-algebras} to {sets} is a functor: Any homomorphism ~: A ~ A' 

n n n of k-algebras induces a map ~: A ~ (A') l(a1,a2, .•. ,an)~ 

(~(al),~(a2),···,~(an» 

and f E k[T1 , ••• ,Tn ]. 

with f(~n(x» = ~(f(x» for all x E An 

Therefore n 
~ maps ~(A) to X(A'}. = 

Denote its restriction by .~(~): ~(A) ~ ~(A·). For another homomor-

phism ~': A' + An of k-algebras one has obviously X(~')X(~) = = = 
~(~'o~) proving that ~ is indeed a functor. 

A regular-map from X to a Zariski closed subset Y of some 

km is given by m polynomials f
1
,f

2
, ••• ,f

m 
E k[T

1
,T2 , ••• ,Tn ] 

as f: X + Y, x~ (f 1 (x},f2 (x), ••• ,fm(x». The fi define for 

each k-algebra n m ( A a map f(A): A + A , x~ (f
1

(x), ••• ,fm x». 

The comorphism * f(k} : k[T
1

, ••• ,T
m

] + k[T1, ••• ,Tn ] maps the ideal 
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defining Y into the ideal I defining X. This implies that 

any f(A) maps X(A) 
== 

into yeA). 
:; 

The family of all f {Al defines 

a morphism f: X -+- y 
= = = of functors, i.e. a natural transformation. 

The more general discussion in 1.3 (cf. 1.3(2» shows that the map 

f~ f is bijective (from {regular maps X -+- y} to {natural trans-
= 

formations .X -+- Y}). 
== = 

Taking this for granted we have embedded the category of all 

affine algebraic varieties over k into the category of all 

functors from {k-algebras} to {sets} as a full subcategory. This 

embedding can be extended to the category of all algebraic varieties, 

see 1. 11. 

One advantage of working with functors instead of varieties 

(i.e. of working with X instead of 
== 

X) will b~ that it gives a 

natural way to work with "varieties" over other fields and also 

over rings. Furthermore we get also over k (algebraically closed) 

new objects in a natural way. Instead of working with I we might 

have taken any ideal If C k[T
1

, ••• ,Tn] defining X, i.e. with 

X = {x E kn\f(x) == 0 for all f E I'} or, equivalently by Hilbert's 

Nullstellensatz, with II' ==1. Replacing I by I' in the 

definition of X we get a functor, say 
== 

XI = I 
with ~'(A) = ~(A) 

for each field extension A ~ k (or even each integral domain), 
if I '1= I'. 

but with ~(A') F ~(A) for some A / Such functors arise in a 

natural way even when we deal with varieties and they play an 

important role in representation theory. 

Before giving the proper definitions let us describe the 

functor X without using the embedding of X into kn. For each 
== 
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k-algebra A we have a bijection HO~_alg(k[TI,T2, ••• ,Tn],A) ~ An, 

sending any a to (a(T1 ),a{T2), ••• ,a(Tn ». The inverse image of 

~(A) consists of those a with 0 = f(a(TI), ••• ,a(T
n

» = a(f) 

for all f E I, hence can be identified with H~_alg(k[Tl,T2"'.' 

Tn]/I,A). As k[T
1

,T2 , ••• ,Tn ]/I is the algebra k[X] of 

regular functions on X we have thus a bijection ~(A) = 
HO~_alg(k[X],A). If ~: A + A' is a homomorphism of k-algebras, 

then ~(~) corresponds to the map HO~_alg(k[X],A)~ HO~_alg 

(k[X],A') with a + ~.a. A morphism f: X + Y is given by its 

comorphism f*: key] + k[X]. Then the morphism 

by !(A): HO~_alg(k[X],A) ~ HO~_aI9{k[y],A), 

any k-algebra A. 

f: X ~ Y is given = = ::: 
* a t-+ aof for 

1.2 (k-functors). Let us assume k to be arbitrary again. = 
In the definitions to follow we shall be rather careless about the 

foundations of mathematics. Instead of working with "all" k-algebras 

we should (as in [DG]) take only those in some universe. We leave 

the appropriate modifications to the interested reader. 

A k-functor is a functor from the category of k-algebras to the 

category of sets. 

Let X be a k-functor. A subfunctor of X is a k-functor 

Y with yeA) c. X(A) and Y(~) = X(q»·IY(A) for all k-algebras 

A,A' and all q> E Ho~ I (A,A'). x-a 9 

Obviously a map Y which associa~es to each k-algebra A a 

subset yeA) c: X(A) is a subfunctor if and only if X(q»Y(A)~ yeA') 

for each homomorphism ~: A ~ AI of k-algebras. 
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For any family (Yi)iEI of sub functors of X we define their 

intersection n Y 
iEI i 

through ( n Y ~(A) = n (Y. (A) 
iEI' iEI 1. 

for each 

k-algebra A. This is again a subfunctor. The obvious definition 

of a union is not the useful one, so we shall nob·denote it by 

For any two k-functors X,X' we denote by Mor(X,X') the set 

of all morphisms (i.e. natural transformations) from X to X'. 

For any f E Mor(X,X') and any sub functor Y' of X, we define 

-1 the inverse image f (Y') of Y' under f 

f(A)-I(y, (A» for each k-a1gebra A. Clearly 

through 

f- 1 (Y') 

f- 1 (Y') (A) = 

is a sub-

functor of X. (The obvious definition of an image of a subfunctor 

-1 is not the useful one.) Obviously f commutes with intersections. 

For two k-functors X1 ,X2 the direct product 

defined through (X1
xX2 )(A) = X1(A)XX2(A) for all 

X1xX2 is 

A. The project-

ions Pi: x1xX2 ~ Xi are morphisms and (X1 xX2 ,Pl,P2) has the 

usual universal property of a direct product. 

For three k-functors x1 ,X2 ,S and two morphisms f 1 : Xl ~ S, 

f 2 : X2 ~ S the fibre product X1x SX2 (relative f 1 ,f2 ) is 

defined through 

The projections from X1 x
S

X2 to Xl and X2 are morphisms and 

X1 xSX2 together withthese projections has the usual universal 
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property of a fibre product. Of course we may also regard x
1

xSX2 

as the inverse Lmage of the diagonal sub functor DSC SxS (with 

~(A) = {(s,s)ls E S(A)} for all A) under the (obvious) morphism 

(f1 ,f2 ): X1xX2 ~ SxS. (On the other hand inverse images and inter

sections can also be regarded as special cases of fibre products.) 

1.3 (Affine Schemes). For any nEN the functor An 

A and An (Ip) n . (al,···,an ),-,,+-= Ip . with ~n(A) = An for all 

(lp(al), •• "Ip(an » for all Ip: A~ AI is called the affine n-sEace 

over k. (We use sometimes also the notation 

doubtful which k we consider.) Note that 

A~ when it may be 

AO is the functor 

with ~O(A} = {OJ for all A. Hence there is for each k-functor 

X exactly one morphism from X to A ° (i. e • f\, ° is a final 

object in the category of k-functors) and, that we can regard any 

direct product as a fibre product over 1\0. 

For any k-algebra R we can define a k-functor SPkR through 

(SPkR)(A) = HO~_alg(R,A) for all A and (SPkR)(~): HO~_alg(R,A) 

~ HO~_alg (R,A I), a ~ lSI oa for all homomorphisms Ip: A ~ A I. We 

call SPkR the spectrum of R. Any k-functor isomorphic to some 

SPkR is called an affine scheme over k. (Note that theSPkR 

generalize t~e functors ~ considered in 1.1.) For example the 

affine n-space An is isomorphic to SPkk[ T l' ••• ,Tn] (and will 

usually be identified with it), where k[Tl, ••• ,Tn ] is the 

polynomial ring over k in n variables Tl, •.• ,Tn . 

We can recover R from SPkR. This follows from: 

Yonedals Lemma: For any k-algebra R and any k-functor X 

the maE f~ f(R) (idk ) is a bijection 
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Indeed, take any k-algebra A and any a E Ho~ 1 (R,A) = 
K-a 9 

(SPkR) (A). As f is a natural transformation, we have X(a)of(R) 

= f(A)o(SPkR) (a). Let us abbreviate xf = feR) (idR). As (SPkR) 

(a)(idR) = a.idk = a, we get 

(1) f(A)(a) = X(a)(xf ). 

This shows that f is uniquely determined by x f and indicates 

how to construct an inverse map. For each x E X(R) and any 

k-algebra A let fx(A): (SPkR) + X(A) be the map ar+ X(a){x). 

Then one may check that fx E Mor(SPkR,X) and that X~ fx is 

inverse to f~ xf' 

An immediate consequence of Yonedals lemma is 

for any k-algebras R,R I
• We denote this bijection by f~ f* 

and call the comorghism corresponding to f. 

(k[T1 ) ,R) + R under a""'" a (T1) we get especially 

A1 -(3) Mar (SPkR, ) + R. 

As HO~_alg 

For an~ k-functor X we denote MOr(x,~1) by k[X]. This 

set has a natural structure as a k-algebra and (3) is an isomorphism 

k[ SPkR]':;' R of k-algebras. (For f l' f2 E k[ Xl define f 1 +f2 

through (f
1
+f2 ) (A) (x) ~ fl(A)(~)+f2(A}{X) for all A and all 
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x E X(A). Similarly flf2 and af l for a E k are defined). 

We shall usually write f(x) = f(A) (x) for x E X(A} and 

f E k[X]. Note that for X = SPkR and fER ~ k[X] we have 

f(x) = x(f) for x E (SPkR)(A) = HO~_alg(R,A). 

The universal property of the tensor product implies immediately 

that a direct product X1 xX2 of affine schemes over k is again 

an affine scheme over k with k[X1xX2] = k[X l ]. k[X2 ]. More 

generally a fibre product X1 xSX2 with x1 ,X2 ,S affine'schemes 

is an affine scheme with 

1.4 (Closed Subfunctors of Affine Schemes). Let X be 
= 

an affine scheme over k. 

For any subset Ie k[X] we define a subfunctor V(I) of X 

through 

(1) V(I)(A) = {x E X(A) If(x) = 0 for all f E I} 

a {~ E HO~_alg(k[X],A)I~(I) = O} 

for all A. (It is immediate to check that this is indeed a sub-

functor, i.e. that X(~)V(I) (A)~V(I)(A') for any homomorphism 

~: A -+- AI • ) 

Of course V(I) depends only on the ideal generated by I 

in k[X]. We claim: 

(2) The map I ........ VCI) from {ideals in k[X]} to {subfunctors 

of X} is injective. 



9 

More precisely we claim for two ideals 1,1' of k[X]: 

(3) I <::'I'·~;==:» V(I)-:>V(I'). 

Of course the direction "~" is trivial. On the other hand, 

consider the canonical map a: k[X] + k[X]/I' whidl we regard as an 

element of X(k[X]/I'). As a(I') = 0 it belalgs to V(I' }(k[xl/I'). If 
, 

V(I' )eV(I), then a E V(I) (k[X)/I) ani a(I) = 0, hence Ie. I'. 

We call a subfunctor Y of X closed, if it is of the form 

Y = V (I) for some ideal Ie k [X] • Obvious ly any closed sub functor 

is again an affine scheme over k as 

(4) VCI) = SPk(k[X]/I). 

(5) 

For any family (Ij )jEJ .of ideals in k[X] one checks easily 

n"V(I.) = 
jEJ J 

v ( 1: I
J
.). 

jEJ 

Thus the intersection of closed subfunctors is closed again. 

For each sub functor Y of X there is a smallest closed 

subfunctor Y of X with Y{A)CY{A) for all A. (Take the 

intersection of all closed subfunctors with the last property.) 

This subfunctor Y is called the closure of Y. We really do 

not have to assume here that Y is a subfunctor: Any map Y will 

do which associates to each A a subset Y (A) c. X (A). We can for 

example fix an A and consider a subset Me::. X (A) • Then the 

closure M of M is the smallest closed subfunctor of X 

with Mc..M(A). 
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Let 1 1 ,12 be ideals in k[X]. Because of (3) the closure 

of the subfunctor A~ V(I1)(A) U V(I2 ) (A) is equal to veIl n 12 ), 

If A is an integral domain, then one checks easily that 

V(I1)(A) U V(I 2) (A) = V(I l nI 2) (A). For arbitrary A this 

equality can be false. Still we define the union as 

Let f: X, + X be a morphism of affine schemes over k. One 

easily checks for any ideal I of k[X] that 

(6) f-IV(I) = V(k[X' ]f*{I». 

Thus the inverse image of a closed subfunctor is again a closed 

subfunctor. For any ideal I'ck[X'] the closure of the subfunctor 

~ f(A)(V(I')(A» is V«f*}-lI'). This functor is also 

denoted as f(V(I'», but we do not want to define f(V(I'» here. 

For two affine schemes X1 ,X2 over k and ideals 

IIC k[Xl ] ,I2C k(X21 one checks eas,ily 

If S is another affine scheme and if morphisms Xl + S, X2 + S 

are fixed, then one gets 

(Use e.g. that toqether with 

(5),(6) wher~ Pi: X1xSX2 + Xi for i = 1,2 are the canonical 

projections. ) 
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W (Open Sub functors of Affine Schemes) Let X be an 

affine scheme over k. 

A subfunctor Y of X is called open, if there is a subset 

IC:k[X]' with Y = 0(1) where we set for all k-algebras A: 

(1) 0(1) CA) = {x E X(A) I t Af(x} = A} 
fEI 

= {aEHO~_alg(k[X],A}IAa(I) = A}. 

Note that (1) defines for each ideal 1 a subfunctor: For each 

~ E HO~_alg(A,A'} and each x E 0(1) (A) one has ~ A'f(X(~)x) = 
fEl 

E A'~(f(x» = A'~( t Af(x)} = A'~(A) = AI. Obviously: 
fEl fEI 

(2) If A is a field, then D(I} (A) = U {XEX(A) If(x) F OJ. 
fEl 

Of'course, the right hand side in (2) would be the obvious choice 

for something open. But it does not define a sub functor as 

homomorphisms between k-algebras are not injective in general. 

Therefore we have to take (1) as the appropriate generalization 

to rings. 

For I of the form I = if} for some f E k[X] one writes 

Xf = D(f) = D({f}) and gets 

(3) Xf(A) = {aEH~_alg(k[X] ,A) I aCf) EA
x

}, 

hence 

where k[Xl f = k[X][f-1 ] is the localization of k[X] at f. 

So the open sub functors of the form Xf are again affine schemes. 
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For arbitrary I, however, D(I) may be no longer an affine scheme. 

Obviously DCI) depends only on the ideal of k[X] generated 

by I. As any proper ideal in any ring is contained in a maximal 

ideal, we have for any A 

DCI) CA) = {aEHo~_algCk[X],A) la(I) ¢!!! for any m E Max (A) } 

= {aEHo~_alg(k[X],A) I a!!! EO (I) (A/!!!) for any!!!EMax(A)} 

where Max(A) is the set of all maximal ideals of A and 

the composed map k [ X]~ A can ~ A/!!!. Thi s shows that 0 ( I ) 

is uniquely determined by its values over fields and especially 

that DC I) = 0 ( II) for any ideal I c:.k [X]. Denote for each 

prime ideal P <: k[X] the quotient field of k[X]/P by Op 

and the canonical homomorphism k[X] + k[XYP + Op by ap • Then 

is 

As If' is the intersection of all prime ideals P..:> I of k[X], 

we get for any two ideals 1,1' of k[X] 

( 5 ) D ( I ) C D ( I ')~ II c. If'. 

Thus Ir+O(I) is a bijection {ideals I of k[X] with I = II) 

+ {open subfunctors of X}. 

For two ideals 1,1' in k[X] one checks easily 

(6) 0(1) n D(I') = 0(1 n I') = O(I·r) 
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and gets especially for any f,f' E k[X] 

For any ideal I in k[X] one has: 

(8) If ·A is a field, then X(A) is the disjOint union of D(I)(A) 

and V(I) (A) • 

For arbitrary A the union may be smaller. Also the next statement 

may be false for arbitrary A: Consider a family· (Ij)jEJ of 

ideals in k[X]. Then obviously 

(9) If - A is a field, then U D(I j ) CA) = D( 1: I j ) (A). 
jEJ jEJ 

For any morphism f: X, + X of affine schemes over k one has 

for any ideal IC:k[X] as one may check easily. We get especially 

for any f' E k[X] 

(11) 

For any fibre product x1xSX2 of affine schemes over k 

(with respect to suitable morphisms) and any ideals I1Ck[X11, 

12 C. k [X2 ] one has 

(Argue as for 1.4(8).) 

1.6 (Affine Varieties and Affine Schemes) An affine scheme 
=== 
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X is called .algebraic, if k[X] is isomorphic to a k-algebra of 

the form k[T1 , ••. ,Tn ]/1 for some n E N and a finitely 

generated ideal I in the polynomial ring k[T1 , ••• ,T
n

]. It is 

called reduced, if k[X] does not contain any nilpotent element 

other than O. 

Assume until the end of this section 1.6 that k is an 

algebraically closed field. Any affine variety X over k defines 

as in 1.1 a k-functor ~ which we may identify with SPk[X], 

One gets in this way exactly all reduced algebraic affine schemes 

over k. For two affine varieties X,X' one has Mor(X,X') ~ 

HO~_alg(k[X,],k[X]) = Mor(~,~'). So we have indeed embedded the 

category of affine varieties as a full subcategory into the 

category of affine schemes. 

When dOing this, one has to be aware of several points. Any 

closed subset Y of an affine variety X is itself an affine 

variety. The functor Y is the closed subfunctor VCI) c~ 

where I = {f E k[x]lf(Y) = oJ. In this way one gets an 

embedding {closed subsets of X} + {closed subfunctors of ~}. 

On the level of ideals (cf. 1.4(2» it corresponds to the inclusion 

{ideals I of k[X] with I = II} c.. {ideals of k[X]}. The 

embedding is certainly compatible with inclusions (i.e. Y c: y.~ 

1 c.~'), but in general not with intersections: It may happen 

that ! n Y' is strictly larger than Y 0 Y'. Take for example = 
in X = k 2 (where k[X] = k[T1 ,T2 ]) the line Y = {(a,O) la E k} 

and the parabola Y' 2 = {(a,a)la E k} • Then Y n Y' = {(O,O)}. 

The ideals I,ll of Y,yl = (T 2 ) and I I 
2 

are I = (T1-T2), 



hence I+I' - (T~,T2) ~ (T1 ,T2) 

V(I+I')~ V(T1 ,T2 ) = I n X'. 
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and Y n X, = V(I) n V{I') = 
= = 

So, when regarding affine varieties as (special) affine schemes, 

we have to be careful, whether intersections are taken as varieties 

or as schemes. The same is true for inverse images and (more 

generally) for fibre products. 

Similar problems do not arise with open subsets. To any open 

yeX we can associate the ideal I = {f E k[X) I f (X-X) = O} 

and then the open subfunctor D(I) which we denote by ~. Because 

of 1.5(5) the map X ...... Y 
== 

is a bijection from {open subsets of xl 

to {open sub functors of X} which is compatible with intersections. 
= 

It follows from 1.5(10),(12) that this bijection is also 

compatible with inverse images and fibre products. (In case Y is 

affine the notation ~ is compatible with the earlier one.) 

l=Z (Open Subfunctors) (Let k again be arbitrary.) 

Let X be a k-functor. A subfunctor X ex is called open if 

for any affine scheme X' over k and any morphism f: X' ~ X 

there is an ideal Ie k[X'] with f- 1 (X) = D(I). 

Note that this definition is compatible with the one at the 

beginning of 1.5 because of 1.5(10). From 1.5(6) one gets 

(1) If X,X' are open subfunctors of X, then so is Y n Y'. 

Let f: X' ~ X be a morphism of k-functors. Then one has 

obviously: 

(2) If X is an open sub functor of X, then f- 1 (X) is an 

open subfunctor of X'. 
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Let x1 ,x2 ,s be k-functors and suppose x1
x
SX2 is defined 

with respect to some morphisms. Then pne gets (using y 1xSY2 = 
-1 -1 

Pl (Y1 ) n P2 (Y 2»· 

(3) If Yl~Xl and Y2C X2 are open subfunctors, then y l xSY2 

is an open subfunctor of x
1

x
S

X
2

, 

Let Y,Y' be open subfunctors of X. Then: 

(4) Y = Y'~ yeA) = Y' (A) for each k-algebra A which is a 

field. 

(Of._oau:.l!e ":::::9 U is trivial. In order to show"4=-" suppose 

Y F Y'. Then there is some k-algebra A with yeA) F Y' CAl. 

Assume that there is x E yeA) with x ~ Y'(A). Via yeA) ~ 

Mor(SPkA,y) CMor(SPkA,X) regard x 

Then idA E x-leA) (A), ¢ x-I(Y')(A), 

as a morphism SPkA + X. 

hence x-ICY) F x-l(y'). 

Now the result follows from the discussion preceding 1.S(S).} 

A family (Yj}jEJ of open subfunctors of X is called 

an open covering of X, if X(A) = u y).(A) for each k-algebra 
jEJ 

A which is a field. 

If X is affine and if Yj = D(I j ) for some ideal I.Ck[X], 
J 

then formula 1.5(9) implies that the D(I j ) form an open covering 

of X if and only if k[X] = r I .• A comparison with the case 
jEJ J 

of an affine variety shows that this is the appropriate generali-

zation of the notion of an affine cover. Note that especially 

Then the Xf i 
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r 
form an open coverin2 of X if and only if k[X] = E k[X]f i • 

i=1 

1&1 {Local Functors) As the notion of an affine scheme 

generalizes the notion of an affine variety we want to define the 

notion of a scheme generalizing the notion of a varieties. 

Certainly a scheme should (by analogy) be a k-functor admitting an 

open co~ering by affine schemes. This is however not enough. 

Consider two k-functors X,Y and an open covering (Yj)jEJ 

of Y. If X,Y correspond to geometric objects then a morphism 

f: Y + X ought to be determined by its restrictions fly. 
J 

to all 

Furthermore, given for each j a morphism f.: Y. + X such thea J 

fjlYjOYj' = fj' IYjoy j , for all j,j' E J,/there ought to be 

a (unique) morphism f: Y + X with fl = f. Y. J 
J 

for all j. 

other words, the sequence 

(1) 
a 

Mor(Y ,X)_a_~,. n Mor(Y, ,X)===tt n Mor(Y. ny, ,X) 
jEJ J y j,j'EJ J ] 

ought to be exact where 

resp. y «fj)jEJ) has 

fj' IYjoYjl . 

a(f) = (fIYj)jEJ and 8«fj )jEJ) 

(j,j')-component fjly.ny" resp. 
J J 

In 

For arbitrary X'Y~Yj) the sequence (1) will not be exact. 

So we define a k-functor X to be local if the sequence (1) is 

exact for all k-functors Y and all open coverings (Yj)jEJo 

(One can express this as saying that the functor Mor(?,X) is a 

sheaf in a suitable sense.) 
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For any k-alqebra R and any f1, ••• ,fr E R with 
r 
t Rfi "" R 

1==1 

the SPk(Rf) form an open covering of the affine scheme SPkR. 
i 

In this case the sequence (1) takes (because of Yoneda's lemma) 

the form 

r 
(2) X(R)... I X(Rf )_--).~ n X(Rf f ) 

i=l i i~i, j~r i j 

where the maps have components of the form X(a) with a one of 

the canonical maps R'" Rf or Rf ... Rf f. Now one can prove 
iii j 

(cf. [OG], I, §1, 4.13) 

~iticn: A k-functor X is local. if ani cnly if far any k-alsre!>ra R arXi any 

r 
I Rf = R the seguence (2) is exact. 

i=1 1 

(Note that in [OG] the second property is taken as the definition 

of "local". ) 

For Rand fl, ••• ,fr as in (2) the sequence 

r 
(3) R ... n R l n Rf f 

i=1 fi l~i, j~r i j 

(induced by. the natural maps R ... Rf and Rf ... Rfifj) i i 
is exact. 

(This is really the description of the structural sheaf on Spec R 

e.g. in [ Ha ] , II, 2.2.) For an affine scheme X over k 

the exactness property of Han I (k[X],?) = XC?) x-a g shows that 

the exactness of (3) implies the exactness of (2). Thus we get 

(4) Any affine scheme over k is a local k-functor. 
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Consider k-algebras A1,A2, ••• ,An and the projections 
n n 

Pj: n Ai ... A .• 
1=1 J 

If we apply (2) to R = n Ai and the 
i=l 

fi = (0, ••• ,0,1,0, ••• ,0), then we get 

(5) 
n 

If X is a local functor, then XC n Ai)~ 
i=1 

(The bijection maps any x to (X(Pi)x)l<i<n') 

n 
n X(A.) 

i=1 ~ 

1.9 (Schemes) A k-functor is called a scheme (over k), if it 

is local and if it admits an open covering by affine schemes. 

Obviously 1.8(4) implies 

(1) Any affine scheme over k is a scheme over k. 

The category of schemes over k (a full subcategory of 

{k-functors}) is closed under important operations: 

(2) If X is a local k-functor Crespo a scheme over k) and if 

XI is an oEen sub functor of X, then X' is local (resp. a scheme). 

In the situation of 1.8(1) the injectivity of a for X 

implies its injectivity for X'. In order to show the exactness 

for X one has to show then for any f E Mor(Y,X) such that each 

f
lYj 

factors through 

The assumption implies 

Xli that also f factors through XI. 

Y
j 

Cf-1 (X' ) for each j ., hence by the 

definition of an open covering that f- 1 (X')(A) = yeA) for each 

k-algebra A which is a field. Then 1.7(4) implies yef-l(x,) 

and f factors through X'. 'In order to get the affine covering 

of X' in case X is a scheme one can restrict to the case 
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where X is affine, hence X· = D(I) for same ideal. Then the 

(Xf)fEl form an open affine covering. 

Let x1 ,x2 ,S be k-functors and form X1
x
S

X
2 

with respect to 

suitable morphisms. Then: 

The proof may be left to the reader. 

~ (Base Change) Let k' be a k-algebra. Any k'-algebra 

A is in a natural way also a k-algebra, just by combining the 

structural homomorphisms k + k' and k' + A. We can therefore 

associate to each k-functor X a k'-functor ~, by ~,(A) = 
X(A) for any k'-algebra A. For any morphism f: X + X, of 

k-functors we get a morphism f~:~, + Xk. of k'-functors simply 

by fk,(A) = f (A) for any k' -algebra A. In this way we get a 

functor X~ XJC" f\-+ fk I from {k-functors} to {k I -functore:} 

which we call base change from k to k'. 

For any subfunctor Y of a k-functor X the k'-functor 

Yk, is a sub functor of ~I. Furthermore the base change commutes 

with taking inverse images under morphisms, with taking inter

sections of sub functors and with forming fibre products. 

The univ~rsal property of the tensor product implies that 

(SPkR)k' .. Spk , (RC!tk') for any k-algebra R. In other words, 

if X is an affine scheme over k, then ~, is an affine 

scheme over k' with k' [Xk, ] .. k[X] CSk'. For any 1.deal I of 

k[X] one gets then V(I)k I = V(l ek') and D(l)k
' 

= D(I8 k') • 
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(Well, we really ought to replace It!> k' in these formulas by 

its canonical image in k[X) CD k', but for once we shall indulge 

in some abuse of notation.) 

For any k'-algebras A,R one has 

Thus we have embedded SPk,R as a sub functor into (SPkR)k'. 

For any ideal I of R denote the corresponding sub functors as 

in 1.4/5 by V(I),D(I)~SPkR and Vkt(I),Dk,(I)~ SPk,R. Then one 

sees immediately ~,(I) = (SPk,R) n D(I)k' and Vk , (I) = 
(SPk,R) n V(I)k t • 

Using the last results it is easy to show for any open sub

functor Y or a k-functor X that Ykt is open in Xk ,. If X 

is a local k-functor, then obviously Xkt is a local kt-functor. 

Now it is easy to show that ~. is a scheme over k' if X 

is one over k. 

1.11 ("Schemes") In text books on algebraic geometry (like = 
that by Hartshorne to which I shall usually refer in such matters) 

another notion of scheme is introduced which I shall denote by 

Itsche~s" in case q distinction is useful. A "scheme" is a 

topological space together with a sheaf of k-algebras and an open 

covering by "affine schemes".. The" affine schemes II are the prime 

spectra Spec(R) of the k-algebras R endowed with the Zariski 

topology and a sheaf having sections Rf on each Spec(Rf ) ~ 

Spec(R) for all fER. To each such "scheme" X one can 
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associate a k-functor I via I(A) = Mor(Spec A,X) for all A. 

on the other hand one can associate in a functorial way to 

each k-functo.r X a topological space Ixi together with a 

sheaf such that ISPkRI = Spec(R) for each k-algebra R. It 

turns out that Ixi is a "scheme" if and only if X is a scheme 

and that x~ Ixi and XI~ X' are quasi-inverse equivalences 
= 

of categories. (This is the content of the comparison theorem 

[DG], I, §1, 4.4.) 

One property of this construction is that the open subfunctors 

of any k-functor X correspond bijectively to the open subsets 

of lxi, cf. [DG], I, §1, 4.12. More precisely, if Y is an 

open sub functor of X, then !Y! can be identified with an open 

subset of Ixl and the k-algebra of sections in \YI of the 

structural sheaf of Ixl is isomorphic to Mor(y,p\l), ibid. 4. 

14/15. 

Suppose that k is an algebraically closed field. Consider 

a scheme X over k which has an open covering by algebraic 

affine schemes. We can define on X(k) a topology such that the 

open subsets are the Y(k) for open sub functors YCX. The map 

Y...-.. Y(k) turns out to be injective ([OG], I, §3, 6.8). We can 

define a sheaf (QX(k) on X(k) through ~(k) (YCk» = 
Mor(Y I AI). Then X 1-+ (X(k), ~(kt is a faithful functor and its 

image contains all variet~es over k in the usual sense. 
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2 • ~roup SChemes and I¥!presenta tions 

In this section we define group schemes and modules over these 

objects and discuss their f und amen tal properties. As in chapter 1 

we follow more or less [OGl. 

After making the definitions of k-groupfunctors and k-group 

schemes in 2.1 we describe some ex~ples in 2.2. The relationship 

between algebraic groups and Hopf ~+gebras generalizes to group 

schemes. This is done in 2.3/4.· (We always assume our group 

schemes to be affine.) We then discuss the class of diagonalizable 

group schemes in 2.5 and group operations in 2.6. 

We then go on to define representations (2;7) and to discuss 

the relationship between G-modules and k[G]-comodules (2.8). 

We generalize standard notions of representation 

theory to G-modules: submodules (2.9), fixed points (2.10), 

centralizers and stabilizers (2.12), and simple modules (2.14). 

The definition of a submodule has some unpleasant aspect which 

disappears only when G is a flat group scheme (i.e. a group 

scheme such that k[G] is a flat k-module). This is the reason 

why we shall restrict ourselves later on to such groups. We also 

discuss one special property of representations of group schemes: 

They are locally finite (2.13). Furthermore we describe 

representations of diagonalizable group schemes (2.11) and mention 

results about modules for trigonalizable and unipotent groups over 

fields (in 2.14). Here we refer to [DG] for the proofs (which 

require the notion of factor groups). Otherwise all proofs are 

rather elementary. 



24 

~ (Definitions) A k-group functor is a functor from the 

category of all k-algebras to the category of groups. We can 

regard any k-group functor also as a k-functor by composing it 

with the forgetful functor from {groups}.,.,'~o {setsL In this way 

we can and shall apply all ideas and no~ions fro~:pection 1 also 

to k-group functors. For two group:fup.cto~s 'G,H we shall 

denote by Mor(G,H) the set of all morphisms (= natural trans

formations) from G to H considered as k-functors, and by 

Hom(G,H) the set of all morphisms.frQm G to H considered as 

k-group functors. So Hom(G,H)consipts of those f E Mor(G,H) 

with f(A) a group homomorphi'm for'each k-algebra A. These 

elements are called homomorphisms from G' to H. 

A k-group scheme is a k-group':furictor which is an affine 

scheme over k when considered as a k-functor. (Of course, we 

really ought to call such an object an affine k-group scheme and 

drop the word "affine" in the definition of a k-group scheme. 

But we shall consider only affine group schemes and then it is more 

economical to call them group schemes.) An algebraic k-group 

is a k-group scheme which is algebraic as an affine scheme. A 

k-group scheme is called reduced if it is so as an affine scheme. 

Over an algebraically closed field the category of algebraic 

groups as in [Hu] or [spl can be identified with the subcategory 

of all reduced algebraic k-groups. 

Let G be a k-group functor. A subgroup functor of G is 

a sub functor H of G such that each H(A) is a subgroup of 

G(A). The intersection of subgroup functors is again a subgroup 
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functor. The inverse image of a subgroup functor under a homomor

phism is again one •. A direct product of k-group functor is again 

a k-group functor, so is a fibre product if the morphisms used in 

its definition. are homomorphisms of k-qroup functors. 

A subgroup functor H of G is called normal Crespo central) 

if each H{A) is a normal (resp. central) subgroup of G(A). 

Again, normality is preserved under ~ng intersections and inverse 

images under homomorphisms. The kernel ker ~ of a homomorphism 

~: G + G' is always a normal subgroup scheme. 

A closed subgroup scheme of a k-group scheme G is a subgroup 

functor H which is closed if considered as a subfunctor of the 

affine scheme Gover k. If G and H are algebraic k-groups 

we simply call H a closed subgrou£ of G. 

A k-group functor G is called commutative, if all G(A) 

are commutative. 

~ (Ex~les) The notations introduced here for special 

group functors G and their algebras k[Gl will be used always. 

The additive grouE over k is the k-group functor G with a 

Ga(A) = (A,+) for all k-alqebras A. It is an algebraic k-group 

with k[Ga ] isomorphic to (and usually identified with) the 

polynomial ring k[T] in one variable. 

Any k-module M defines a k-group functor M with a 

M (A) 
a = (Me A,+) for all A. (So we have G • k ). If M is 

a a 

finitely generated and projective as a k-modu1e, then M is an a 

algebraic k-qroup with k[Ma 1 = S(M*), the synunetric algebra over 
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• M • In case M "" k n for some 

G XG x ••• xG a a a (n factors) and 

we may 

with 

The multiplicative grouE over k is the k-group functor Gm 

with Gm(A) = A = {units of A} for all A. It is an algebraic 

-1 k-group with k[Gm] : k[T,T ]. 

Any k-module M defines a k-group functor GL(M) with 

GL(M)(A) = (EndA(M ~A»x called the general linear groue of M. 

In case M = kn we may identify GL(M) with GLn whp-re GLn(A) 
.. 

is the group of all invertible (nxn)-matrices over A. Obviously 

GLn is an algebraic k-group with k[GLn ] isomorphic to the 

localization of the polynomial ring k[Tij,l~i,j~n] with respect 

to {(det) n I nEt\) } • More generally, if M is a finitely 

generated and projective k-module, then the k-functor 

~ ff (M* ~ ) A~ EndA{M ~A) can be identified with the a ine scheme ~ M a 

from above and GL(M) with the open sub functor O(det). For 

such M (projective of finite rarudthe determinant defines a 

homomorphism of algebraic k-groups GL(M) -+ G • 
m 

Its kernel is 

denoted by SL(M) and called the seecial linear group of M. 

It is an algebraic k-group. Similarly we define SLn~GLn. Note 

that GL = G and SL = 1 = the group functor associating to 
1 m n 

each A the trivial group {l}. 

For each n EN let Tn be the algebraic k-group such 

that Tn(A) is the group of all invertible upper-triangular 

(nxn)-matrices of A, i.e. of all upper-triangular matrices 
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x 
such that all diagonal entries belong to A. One may identify 

k[Tn1 ~ k[Tijll~i~<n,T~ill~i~n]. Furthermore let Un be the 

algebraic k-group such that each UnCAl 

having all diagonal entries equal to 1. 

~ k[Ti,ll<i<j<n]. 
J - -

consists of all 

We may identify 

gET (A) 
n 

k[Un ] 

For any n E N we denote by ).l(n) the group functor with 

n 
).l(n) (A) = {a E Ala = 1} for all A. It is an algebraic k-functor 

with k{J.l(n») = k[T]/(Tn-l) and a closed subgroup of Gm. 

Let P be a prime number and assume pI = 0 in k. Then we 

can define for each r E~ a closed subgroup 
r 

through Ga,r(A) = {a E AlaP = OJ. 

G a,r of 

2.3 (Group Schemes and Hopf Algebras) Let G be a k-group 

functor. The group structures on the G{A) define morphisms of 

k-functors mG: GxG + G (such that each mG(A): G{A)xG{A) + 

G(A) is the multiplication) I and IG: SPkk + G (such that 1G (A) 

maps the unique element of (SPkk) (A) to the 1 of G(A», and 

iG: G + G (inducing on each G(A) the map 9 + g-1). 

NoW assume G to be a k-group scheme. Then these morphisms 

correspond uniquely to their comorphisms fiG:::: m~: k[ G) + k ~ ] <:81 

kEG] (called comultiplication) I and EG = I~: k[G] + k (called 

counit or aUgmentation), and 0G = i~: k[G] + keG] (called 
r 

coinverse or antipode). So, if AG(f) = r f &f' 
i=1 i i 

f E kEG], 

and any A. 

r 
then f(g1 g 2) = E f i (g1)f1(92 ) for each 

i=1 

Furthermore we have £G(f) = f(l) and 

f(g-1) for any 9 E G(A) and any A. 

for some 
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We shall drop in our notations the index G, whenever no 

confusion is possible. 

As in the case of algebraic groups (cf. [Bo), 1.5 or [Hu], 

7.6 or [Sp], 2.1.2) the group axioms imply that A,e,a satisfy 

(1) (id e A). A = (A e id)o A, 

(2) (£ • id)o A = id = (id ii d. A I 

( 3 ) (a • id). A = £ = (id ii a ). A • 

(Here we denote by cpi)1/I the map aea'~ cp(a)1/I(a') in contrast 

to cp e 1/1 : a. a' ....... cp (a) ., l/J ( a') and by £ the endomorphism 

a...... ~ ( a)l of k [ G ] • ) 

A morphism cp: G + G' between two k-group schemes is a 

homomorphism if and only if its comorphism * cp : k[G'] -+" k[G] 

satisfies 

(4) 

If so, then one has automatically 

(5) 

and 

(6) 

A Hopf alsebra over k is an associative (not necessarily 

commutative) algebra Rover k together with homomorphisms of 

algebras A: R -+" ReR, £: R + k, and a: R + R satisfying (1)-(3). 

A homomorphism between two Hopf algebras is a homomorphism of 

algebras satisfying additionally (4)-(6) (with the appropriate 
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changes in the notation.) We call R commutative, if it is so 

as an algebra, and coconunutative, if sol:. = 1:., where s: R C!D R ... 

R. R is the map a.b ...... be a. 

Let R be a commutative Hop£ algebra over k. Then we can 
on 

define/each (SPkR)(A) = HO~(R,A) a mul~iplication via a6 = 
(aGiB)ol:.. In this way we get on SPkR a structure as a k-group 

scheme. It is elementary to see that we get in this way a functor 

{commutative Hopf algebras over k}... {k-group schemes} which 

is quasi-inverse to G~ k[G]. Thus these categories are anti

equivalent. 

Note that G is commutative,if and only if "keG] is coconunutative. 

2.4 (Continuation) Let us look at the Hopf algebra structures ==== 
on k[G] on our examples in 2.2. In the case of Ga one has 

I:.(T) = 1dtT + TGP1,E(T} = 0, and aCT) = -T. Similar formulas 

hold for the 

E: (T) == 1, and 

and 

G a,r 

aCT) 

In the case of 

-1 

one has I:.(T) = T8 T, 

= T • In GLn 
one has 

(the Kronecker delta). 

n 
I:.(T,),) = E T, ® 

~ m=l l.m 

The formula 

is more complicated. Furthermore one has tJ.(det) = 

detedet, E (detl = 1, and -1 a(det) == det • 

Let G be a k-group scheme and set II = ker E, the 

aUgmentation ideal in k[G]. One has keG] = kl e II and 

ar+ al,k + kl is bijective. This implies k[G]~ k[G] = k(lC9>l) 

• (keI
l

) ., (I
1
_k) • (1

1
81

1
). The formula 2.3(2) implies 

for all f Ell 
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and then the formula 2.3(3) implies 

(2) a(f) E -f+I~ for all f Ell' 

Set 

(3) X(G) = Hom(G,G
m

). 

This is a commutative group in a natural way. The embedding of 

affine schemes G C. G = A 1 yields an embedding m a 

which is compatible with the multiplication. Take f E k[G1. 

* One has f (T) = f. Therefore 2.3(4) implies easily 

(4) X(G) ~ {f E k[G1If(l) = I,AG(f) = faf}. 

Of course AG(f) = f&f implies f(1)2 = fO). If fO)::: 0, 

then f(g} = f(g.l) = f(g)f(1) ::: 0 for all 9 E G(A) and all A, 

hence 

(4') If k is an integral domain, then X(G) ~ {f E k[G]~G(f) ::: 

fC8Jf,f "f: OJ. 

Let me refer to [DG], II, §1, 2.9 for the proof of 

(5) If k is a field, then X(G) is linearly independent. 

(This is just another variation on the theme "linear independence 

of characters".) Usually we shall write the group law in X(G) 

additively. 

Let I be an ideal in k[G]. USing 1.4(6),(1) one checks 
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easily that V(I) is a subgroup functor if and only if 

(6) A(I)Clek[G]+ k[G]$I, £(1) = 0, o(I)<::I. 

If 80, it will be a normal subgroup if and only if 

(7) 

where 

with 

C*(I)c.k[Gle I, 

c* is the comorphism of the conjugation map c: GxG + G 

-1 
c(A) (g1,g2) = g1g291 for all A and 9 1 ,92 E G(A). One 

may check that 

(8) c* = tf>(A8id)oA 

~ (Diagonalizable Groups) Let A be a commutative group 

(written multiplicatively) and let us identify A with the 

canonical basis of the group algebra k[A]. We make k[A] into 

a commutative and cocomutatlive , Hopf algebra via A 0,) == ). e). 

and £(A) = 1 and o(X) = A-I for all A E A. In this way we 

associate to A a k-group scheme which we denote by Diag(A). 

If A is finitely generated, then Diag(A) is an algebraic k-group. 

We call a k-group scheme ~iagonalizable, if it is isomorphic 

to Diag(A) for some commutative group A. For example 

Gm .. Diag(Z) and JJ(n) oM Diag(Z/ (n» are diagonalizable. We 

get also direct products of these groups as Diag( A1 x A2 ) A 

Diag(A1 )x"Diag(A2 ) for all commutative groups A
1

,A 2 • 

Any group homomorphism a: Al + A2 induces a homomorphism of 
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which is a homomorphism of 

HOpf algebras, hence we get a homomorphism Oiag(a): o.iag(A 1 ) + 

oiag(A
2

) of k-group schemes. Thus A~ Oiag(A) is a functor 

from {commutative groups} to {k-group schemes} which maps 

{finitely generated commutative groups} into {algebraic k-groups}. 

Suppose that k is an integral domain. Then an easy compu

tation shows (cf. [OG], II, §l, 2.11) for all A,A' 

(1) X(Diag(A» .:::. A (k integral) 

and 

(2) Homgp(A,A')~Hom(Diag(A,),Oiag(A» (k integral) 

Thus in this case oiag(?) is an anti-equivalence of categories 

from {commutative groups} to {diagonalizable k-group schemes}. 

Furthermore A is finitely generated if and only if Diag(A) is 

an algebraic k-group. We get from (1) that a k-group scheme G 

is diagonalizable if and only if X(G) is a basis of .k[G] 

(for k integral). 

2.6 (Operations) Let G be a k-group functor. A left 

operation of G on a k-functor X is a morphism a: GxX + X 

such that for each k-algebra A the map a(A): G(A)xX(A) + X(A) 

is a (left) operation of the group G(A) on the set X(A). We 

usually write gx instead of a(A) (g,x) for 9 E G(A) and 

x E X(A). We can similarly define right operations. 

For example the conjugation map c in 2.4 is an operation 

of G on itself. Other operations of G on itself are by 

left ja(A)(g,g') = gg') -1 
and right (a(A)(g,g') =g'g) 
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multiplication. 

Let k' be a .k-algebra. Then any operation of G on a 

k-functor X defines in a natural wayan operation of Gk, on ~,. 

For any operation a as above we set 

(1) XG(k) = {x E x(k) Igx = x for all g E G(A) and all A}. 

(This is done by some abuse of notation. The x in gx = x is 

really the image of x under the map X(k) + X(A) corresponding 

to the structural morphism k + A. We shall stick to this abuse.) 

We can define a subfunctor XG of X, the fixed Eoint functor 

via 

(2) 

= {x E :l(A)! gx = x for all g E G(A'} and all A-

algebras A I } 

See [DG], II, §l, nO 3 for elementary properties of xG and of 

normalizers and centralizers, also defined there. 

Suppose G acts on another k-group functor H such that 

each G(A) acts on H(A) through group automorphisms. Then we 

can define the semi-direct product G14I where each (G ~H) (A) 

is the usual semi-direct product G(A)~H(A). As a k-functor 

G ~ H is of course the direct product of G and H. 

Let H,N be subgroup functors of G such .. that H normalizes 

N, i.e. that each H(A) normalizes N(A). We can then construct 

HKN as above and get a homomorphism cp: Hli<N + G via (h,n) ....... 
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hn for all h E H(A), n E N(A) and all A. Its kernel is 

isomorphic to H n N under h~ (h,h- l ) for all h E H(A) n N(A) 

and all A. If ~ is an isomorphism, then we say that G is the 

semi-direct product of H and N and write G = H J( N. (If G 

is a k-group scheme and G = H ~ N, then necessarily H and N 

are closed subgroup schemes.) 

2.7 (Representations) Let G be a k-group factor and M a 

k-module. A representation of G on M (or: a G-module structure 

on M) is an operation of G on the k-functor Ma (as in 2.2) 

such that each G(A) operates on Ma(A) = MSA through A-linear 

maps. Such a representation gives for each A a group homomor-

phism G(A) x 
+ End

A 
(M eA) , leading to a homomorphism G + GL{M) 

of group functors. Vice versa, any such homomorphism defines a 

representation of G on M. There is an obvious notion of a 

G-module homomorphism (or G-equivariant map) between two G-modules 

M and M'. The k-module of all such homomorphisms 1s denoted 

The representations of G on the k-module k, for example, 

correspond bijectively to the group homomorphisms from G to 

GL I = Gm, i.e. to the elements of X(G). For each A E X(G) 

we denote k considered as a G-module via A by k A• In case 

A = 1 we simply write k. 

Given one or several G-modules we can construct in a natural 

way other G-modules. For example 

(1) Any direct sum of G-modules is a G-module in a natural way. 
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(2) The tensor product of two G-modules is a G-module in a 

natural way. 

(3) Any sY!!!tric and exterior 'pOWer of a G-module is a G-module 

in a natur'al way. 

In (3) for example we consider for each commutative ring R 

the functor FR from R-modules to itself with 

We have for each R-algebra R' canonical isomorphisms FR(M)~RR' 

::. FR' (MeRRI) for all R-module M, i.e. the functors M~ 

FR(.M)~RR' and M ...... F
R

, (M9 RR') are isomorphic. If M is a 

G-module, then G operates on the functor A..- FA (M®A) , each 

g E G(A) via FA(g). By our assumption this functor is isomorphic 

to Fk{M)a' hence we get a G-module structure on Fk(M). The 

functor M~ AnM has the same property, hence we can argue as 

above. OUr reasoning can easily be extended to functors in 

several variables and then yields (1),(2). 

If we deal with contravariant functors (FR)R in our 

situation above, we ought to let g E G(A) act via 

This applies to the functor MH- M* which will however "commute 

with ring extensions" only when restricted to finitely generated 

and projective modules. Thus we get 

(4) ~ M be a G-module which is finitely generated and 

projective over k. ~ M* is a G-module in a natural way. 

For M as in (4) one has canonically * M ® H' .::. Hom(M,M') 

for any k-module M'. So we get combining (2) and (4) 

(5) ,Let M,M' ~ G-modules with M finitely generated and 
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and projective over k. Then Hom(M,M') is a G-module in a 

natural way. 

The following result is obvious from the definitions: 

(6) Let k' be a k-algebr'a and MaG-module. Then M (9 k' is 

a Gk,-module in a natural way. 

Another way, how representations arise, is from an operation 

of G on an affine scheme X. Then we get a G-module structure 

on k[X]: If '1 E G(A) and f E k[X] e A = A[XA] for some 

k-al'1ebra 

f(g-1 x) 

A, 

resp. 

then '1f E A[XA] is defined through ('1f)(x) = 
= f(x'1) (for a left resp. ri'1ht operation) for 

all 

'1 in 

x E X(A') 
-1 

'1 x or 

G(A') ••. ). 

= XA(A') and all A-algebras 

x'1 is really the ,image of 

A' • 

9 

(Again, the 

under G(A)-+ 

In case G is a k-group scheme we get thus the left and ri'1ht 

regular representations of G on keG] derived from the action 

of G on itself by left and ri'1ht multiplications. We shall 

always denote the correspondin'1 homomorphisms G -+ GL(k[G]) by 

Pi and Pr •· The coinverse 0G 

from keG] with Pr to keG) 

is an isomorphism of G-modules 

with Furthermore the conju'1ation 

action of G' on itself gives rise to the conjugation representation 

of G on k[G]. 

~ (The Comodule Map) Let G be a k-group scheme. If M 

is a G-module then idk[G] E G(k[G]) = Endk_alg(k[G]) 

M®k[G], so we get a k-linear map AM: M -+ M8k[G] 

acts on 

with AM(m) = 
idk [ G] (m 81) for all m E M. We call AM the comodule map of the 
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G-module M. Xt determines the representation of G on M 

completely: For any k-algebra A and any 9 E G(A) ~ H~_alg(K(G],A) 

we have a commutative diagram 

G(k[G]) x(Mek[G]) -----~> M®k[G] 1 G(g) • (i~. g) 1 idMdl9 

G(A) x (Me A) ~ Me A 

by the functorial property of an operation. As G(g)~ = 90~ for 

any cp E G(k(G]), we have g ... G(g)idk[G]' hence g(mel) ~ 

(idMijg)oAM{m) for all m E M. More explicitly, if AM(m) = 

r 
t mi 8 f i ' then 

i=1 

r 
(1) g(m81) = t mit)fi(g). 

i=l 

The fact that each G(A) operates on MeA (i.e. g(g'm) = 

(ggl)m and 1m = m) yields easily the following formulas I 

and 

If- MI is another G-module and if ~: M ~ MI is a linear map, 

then cp is a homomorphism of G-modules if and only if 

A comodule over the HOp£ algebra k [G] is a k-module M 
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together with a linear map AM: H + HI) k[G] such that (2),(3) 

are satisfied. A homomorphism between two comodules is a linear 

map satisfying (4). So we have defined a faithful functor from 

{G-modules} to {k[G]-comodules}. On the other hand, any k[G)-

comodule gives rise to a G-module: Just take (1) as a definition. 

In this way we can see that the two categories of G-modules and of 

k[G]-comodules are equivalent. 

Let a: XxG + X be an action of G on an affine scheme X 

over k. Then k[X] is a G-module in a natural way (see 2.7) and 

the comodule map Ak[X]:k[xl + k[X] ~ k[G] is easily checked to be 

the comorphism * a • If we take X = G and the action by right 

multiplication, we get thus 

(5) 

(We write and also A 
PR, 

below instead of in order 

to indicate Which representation is considered.) For the left 

regular action one gets 

(6) 

with s(f~f') = f' Sf for all f,f'. For the conjugation 

representation on k[G] the comodule map is equal to 

Remark: Suppose for the moment that k is an algebraically 

closed field and that G is a reduced algebraic k-group. There is 



39 

a natural notion of representations of G(k) as an algebraic 

group (or of a rational G(k)-module), cf. [Hul, p. 60. One can 

show as above that the category of G(k)-modules is equivalent to 

the category of comodules over k[G{k)] = k[G], hence to that of 

G-modules. (To a G-module M we associate the operation of G(k) 

on M given by the definition of a G-module.) Similarly one can 

show that the notions of G-submodules (to be defined in 2.9) and of 

G(k)-submodules COincide, using 2.9(1), and that MG(k) = MG (to 

be defined in 2.10), using 2.10(2}. Furthermore, one has 

HomG(M,M') = HomG(k) (M,M') for any two G-modules M,M' (using 

(4) above). 

~ (Submodules) Let G be a k-group functor. If k is a 

field, we can define a submodule of a G-module M as a subspace 

NCo M such that N ~ A is a G{A) -stable submodule of M®A for 

each k-algebra A. Then N itself is a G-module in a natural way. 

For arbitrary k this works out well as long as the natural map 

N~A + MalA is injective for each A, e.g. if N is a direct 

summand of M. Taking only such "pure" submodules (as in (OG], 

II, 1.3/4) will be too restrictive and not allow kernels and 

images of all homomorphisms. 

So let us define a submodule of a G-module M to be a 

k-submodule N of M which has itself a G-module structure such 

that the inclusion of N into M is a homomorphism of G-modules. 

If so, then MIN has a natural structure as G-module: We have for 

each A an exact sequence of G(A)-modules N0A + M~A + (M/N)®A 

~ O. We call MIN the fac·tor module of M by N. It has the 
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usual property of a factor module. 

Still, our definition of a submodule has one disadvantage. 

A given k-submodule N of M may conceivably carry more than one 

structure as a G-module. In' order to prevent this we shall prefer 

to make special assumptions on our group and not on the modules. 

An affine scheme X over k is called flat if k[X] is 

a flat k-module. A k-group scheme is called flat, if it is so as 

an affine scheme. This property is obviously preserved under base 
change. 

Assume now that G is a flat'k-group scheme. If N is a 

submodule of a G-module M, then NGDk[GJ is a G(k[G])-stable 

submodule of M<8k [G] (by our assumption of flatness). Then we 

get obviously 

(1) 6
M

(N)CNOJ k[G] 

and 

The second equality implies together with 2.8 that the G-module 

structure on N is unique. On the other hand, if N is a 

k-submodule of M satisfying (1), then (2) defines a G-module 

structure on N and N is a G-submodule of M. So the G-submodules 

of M are exactly the k-submodules N satisfying (1). 

Using 2.8(4) one checks now easily: 

(3) Let G be a flat k-iroup ·scheme. For each homomorphism 

<p: M ... M I of G-modu les i tske'rnel ker ( <p) and its imaie im ( <p) 
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.!.£!!. G-submodules of M resp. M·. 

We get from this that the G-modules 

form an abelian category (for G flat). Under the same 

assumption intersections and ~ of submodules are again submodules. 

Note that inductive limits exist in the category of G-modules 

(for G-flat): Just take the inductive limit as k-modules: This is a 

factor module of the direct sum (which is O.K. by 2.7(1» where we 

divide by a sum of images of homomorphisms. 

~ (Fixed Points) Let G be a k-group scheme and M a 

G-module. Set 

(1) MG = {m E Mlg(m& 1) = mel for all 9 E G(A) and all A}. 

This is a k-submodule of M and its elements are called the fixed 

points of G on M. We call M a trivial G-module, if G M = M • 

In the notations of 2.6 one has MG = (Ma)G(k). If we take 

9 = idk[G) E G(k[G]) in (1), then we get 

(2) KG - {m E MIAM(m) = m ~ 1}. 

This description of MG as kernel of AM-idM~ 1 yields 

(3) ~ k' be a k-algebra which is flat as a k-module. Then 

CM.k')\' = MG e k'. 

In case k is a field, this implies of course 

(See [OG], II, §2, 1.6 for a generalization to k-group functors.) 

If ~: M + M' is a homomorphism of G-modules, then obviously 

~(MG)C:(M,)G. In this way M + KG is a functor from {G-modules} 

to {k-modules} which we call flxed point functor (relative to G). 
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It is certainly additive. We get from (2): 

(4) If G is flat, then the "fi:xed pO"int functor is left exact. 

Furthermore, it commutes with taking direct sums, intersections 

of submodules, and direct limits (but in general not with arbitrary 

inductive limits). 

If we consider k[G] as a G-module via the left or right 

regular representation, then the definition immediately yields: 

(5) k[G]G = kl 

Let M' be another G-module and suppose that M is finitely 

generated and projective over k. We can then regard Hom(M,M' ) 

as a G-module and get easily 

(6) Hom(M,M,)G = HomG(M,M'). 

Therefore (3) implies 

(7) Let k' be a flat k-algebra and let M be finitely generated 

and projective as a k-module. Then the canonical map 

HomG(M,M' ) Cib k' -+ Hom (Mek' ,M'~ k') Gk, 

is an isomorphism for all G-modules M'. 

This generalizes to the case where M is a direct limit of 

such modules, hence to all M when k is a field, and to all flat 

M when k is a Dedekind ring. 
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We can generalize (1)-(4) as follows. For each ). E X(G) set 

( r) for all 9 E G(A) and all A}. 

Then: 

(2') 

(3') !2f. k' as in (3) we have (M ~ kj), ~ 1 = M). ® k'. 

(4') If G 1s flat, then the functor M~ M). is left exact. 

Furthermore, we have 

( 8) If k is a field, then the sum of all M 
), ." 

is direct. 

(If ta).m). = 0, where a). E k,m), E M)" then o = toM (1': a), m ), ) 
). ). 

= t a).n;.® A • Now apply 2.4(5).) 
). 

~ (Representations of Diagonalizable Group Schemes) Let 

to be a commutative group and take G = Diag(A) as in 2.5. As 

k[G) is a free k-module with basis A we can write the comodule 

map ~ for any G-module M as 

(1) toM(m):c E pi(m)® ). 
).EA 

for suitable p). E End(M). Ueing the description of toG1EG in 

2.5 and the formulas 2.8(2),(3) one checks easily (cf. fOG], II, 

§2, 2.5) that t p = id and p).p). • = 0 for ). f: ). I and 
)'EA ). M 

2 
p). == p). for all ).. This implies that M is the direct sum of 

all p). (M) , that 
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61sing 2.10(6» and 

It follows easily that for all G-modules M,M' 

(4) HomG(~,M') ~ n Hom(MA,Ml) 
AEA 

and that the functor M~ MA is exact for all A. 

If we consider for example k[G] und then we get 

(5) for all A E A. 

Let (e(A»AEA be the canonical basis of the group ring 

~[A] over ~. So e(A)e (A') - e(A+A'), if we agree to write A 

additively. If M is a G-module such that each MA is a finitely 

generated projective k-module, then we define its formal character 

(6) ch M - t rk(MA)e(A). 
AEA 

For an exact sequence 0 ~ M' ~ M ~ M" ~ 0 of G-modules of this 

type one has 

(7) ch M - ch M' + ch M". 

For two G-modules M
1

,M2 of this type, also M1e ~ has this 

property and one has 

One uses for (8) that for any M1,M2 and all A,>.' E A 
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(One can qeneralize (6) to the case where the MA are only assumed 

to be finitely qenerated over k and where we replace ~ by the 

Grothendieck qroup of these k-moaules.) 

If k' is a k-alqebra, then one has obviously for all A: 

If ch(M) is defined, then so is ch(Mk, > and it is equal to 

ch(N). 

2.12 (Centralizers and Stabilizers) Let G be a k-group -
scheme and MaG-module. 

For any subset ScM we define its centralizer ZG(S) as the 

subgroup functor of G with 

(1) ZG(S) (A) = {q E G(A) (g(m-l) = mel for all m E S}. 

Obviously ZG(S) depends only on the k-module generated by S. 

It is equal to the intersection of all zG(m) with m E S. 

For any k-submodule N M we define its stabilizer StabG{N) 

in G as the subgroup functor of G with 

(2) StabG(N)(A). {q E G(A)lg(n<a 1) E NcaA for all n EN}. 

Here iiiiA is the canonical image of N eA in MeA. 

For two k-submodules N'CN of M we define another subgroup 

functor of G through 

(3) ~',N(A) = {q E G{A) Ig(nel) - net 1 E N'g» A for all n E N}. 
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Suppose that Nt and M are free k-modules and that Nt is 

a direct summand. Choose a basis (ei)iEI of M containing a 

basis (e j ) jEJ for some J c. I of N'. For any n E N there are 

ai(n) E k and f E keG] (almost all 0 in both cases) with i,n 

(4) If M is a free k-module, then each ZG(S) is a closed 

subgroup scheme of G. 

(5) If M and N are free k-modules and if N is a direct 

sununand of H, then StabG(N) is a closed subgroup scheme of 

(6) If M and Nt are free k-modules and if Nt is a direct - -
sununand of M, then ~, IN is a closed subgrouE scheme of G. -

The assumptions on M and N,N' are always satisfied over 

a field. In general one can replace "free" by "projective of 

finite rank", see [DG], II, §2, 1.4. 

2.13 (Local Finiteness) Let G be a flat k-group scheme === 
and MaG-module. 

G. 

We know that any intersection of G-submodules of M is again 

a G-submodule. So for each subset S of M there is a smallest 

G-submodule of M containing S. It is called the G~submodule 
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generated by S and usually denoted by kGS. (Note that in 

general kGS ~ kG(k)S, the k-G(k)-submodule of M generated 

by s.) 

r 
Now take m E M and write A M(m) = t mi &f. 

i=1 ]. 
with mi E M 

and fl E k [G). We' claim 

r 
(1) kGm c: E km

i
. 

i=1 

r r 
Let us write H' = E kmi • As 

1=1 
1m = m we have m = .1: fi(m)mi E M. 

].=1 

The same argument proves NC H' where we set N = {mlE HI 
AM{ll}.> E HI ~ k [G]}. Obviously mEN. So it will be enough to 

show that N is a G-submodule of H, 1.e. that AM(N}<= N ® k[G]. 

By definition N = A;1(M8k[G]). Using the flatness of k[G] we 

-1 get N®k[G] = (A
H

8>ldk [G]) (H'\2>k[G]e k[G]). Therefore it is 

enough 'to show (AHStidk[G])AH(N)C-M' ek[G] E:> k[G]. By 2.8(2) 

the left hand side is equal to (1dM~ A
G

) AM(N) c:. (idH® AG) 

(HI@ k[G])C- H'(I!;) k[G1 ~ k[G]. 

As kGm 

therefore may 
r 

is a G-submodule we have AH(m) E (kGm)& k[G]. 

choose the mi above all in kGm. Then kGm = 

t kmi • This shows: 
1=1 

(2) Each kGm ~ m E M is a finitely generated k-module 

and: 

We 

(3) Each finitely generated k-sUbmodule in M is contained in a 

G-submodule of H whi'ch f8 'fi'nftely generated over k. 

This property ls usually expressed as "any G-module is locally 
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finite". 

In the case of a field one can show: 

r 
(4) If k is a field and if AM(m) = E mi~ fi 

i=l r 
linearly independent, then kGm = t kmi i=1 

with -

(We may assume that also the mJ are linearly independent. 

If (mj) i.9!.s is a basis of kGm then there are a ji E k with 

r 
ro' = E ajimi for all j (by (1» and .there are f' E k[G] j i=1 j 

s r r s 
with AM(m) = E m!e fl = E mi ® ( E a'i f !), hence fi = ,E a ji fj 

j=l) j i=1 i=l J J )=1 

for all L Hence r = s and the claim.) 

2.14 (Simple Modules) In this subsection we assume that k 

is a field. Let G be a k-group scheme. 

As usual a G-module M is called simple (and the corresponding 

representation is called irreducible) if M F 0 and if M has no -
G-submodules other than 0 and M. It is called semi-simple if it 

is a direct sum of simple G-submodules. For any M the sum of 

all its simple submodu1es is called the socle of M and denoted 
if 

by SOCGM (or simple by soc M, lit is clear which G is 

considered) • It is the largest semi-simple G-submodu1e of M. 

For a given simple G-module E the sum of all simple G-submodu1es 

of M isomorphic to E is called the E-is2typic component of 

SOCGM (or the isotypic component of type E) and denoted by 

(soc~)E· 

By 2.13(3) each element in a G-modu1e is contain~d in a 
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finite dimensional submodule. This implies: 

(1) Each simple G-module is finite dimensional. 

(2) If M !!-! G-module with M F 0, then socGM F o. 

For any G-module M and any s~ple G-module E the map 

'P t8> e f-+ 'P (e) is an isomorphism 

where 0 = EndG(E). 

(Of course the algebra Dover k is finite dimensional and a 
. , 

skew field by Schur's lemma. If k is algebraically closed, 

then 0 = k.) 

Each one-dimensional representation is irreducible. The 

isotyplc component of socGM of type kA is just MA• 

G We get especially M = (SOCGM)k. 

The discussion in 2.11 shows: 

(4) If G is a diagonalizable k-group scheme, then each G-module 

is semi-simple. 

The socle series or (ascending) Loewy series of M 

o C soclM = socGM c. sOC2M c soc
3

M C ••• is defined iteratively 

through Boc(K/soci _
l

M) = SOCiM/SOCi_lM. Again because of 

2.13(3) one has 

(5) U sociM = M. 
i>O 

Any finite dimensional G-module M has a 'composition series 

(or Jordan-HOlder series). The number of factors isomorphic to a 
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given simple G-module E is independent of the choice of the 

series. It is called the multiplicity of E as composition 

factor of M and usually denoted by [M:E) or [M:E]G' 

If G is an algebraic k-group, then it is called trigonalizable 

(resp. unipotent), if it is isomorphic to a closed subgroup of 

Tn (resp. Un) for some n eN (cf.2.2). One can show HDG], 

IV, §2, 2.5 and 3.4): 

(6) G tri2onalizable~ Each simple G-module has dimension one. 

(7) G unipotent~ Up to isomorphism k is the only simple 

G-module. 

If we assume G be to an arbitrary k-group scheme, then we may 

take these results as definition~. For unipotent G we deduce 

SOCGM = MG for each G-module. We get using (2): 

(8) G unipotent~ For each G-module M ~ 0 we have MG F O. 

Any decomposition of M into a direct sum of two submodules 

leads to the corresponding decomposition of soc M.·If soc M 

is simple, then M has to be indecomposable. Therefore (8) 

and 2.10{lO) imply 

(9) If G· is unipotent, then k[G] is indecomposable 

(for p .. ...2!19 P r ). 
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3. Induction and Injective Modules 

In the representation theory of finite groups or of Lie groups 

the process of inducing representations from a subgroup to the 

whole group is an important technique. The same holds for algebraic 

group schemes. So we start this section with the necessary 

definitions (3.3), prove elementary properties (3.4-3.6) and 

describe some easy special cases (3.7/8). All this is a more or 

less straightforward generalization of what is done in the finite 

group case or the Lie group case. We have however to assume that 

the group G and its subgroup are flat. 

We then use the induction functor to show that the category of 

G-modules contains enough injective objects, i.e. that each G-module 

can be embedded into an injective one (3.9). 

In the case where our ground ring k is a field we can be 

more precise. Then the injective G-modules are determined up to 

isomorphism by their socle and any semi-simple G-module M occurs 

as a socle of such an injective G-module, the injective hull of M. 

The indecomposable injective G-modules are just the injective hulls 

of the simple G-modules. We get especially a decomposition of K[G] 

generalizing the decomposition of the regular representation of a 

finite group into principal indecomposable modules. (These results 

are proved in 3.10-3.17.) 

Let me mention as a source [Green 1] for the last part (3.12-

3.17). For the first part one may compare [Haboush 2], [Cline/ 

Parshall/Scott 3] or [Dankin 1]. (There is not much point in 
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attributing priorities for these generalizations.) 

We assume from 3.2 on that G is a flat k-group scheme and 

from 3.10 on that k is a field. 

~ (Restriction) Let G be a k-group functor and H a 

subgroup functor of G. Each G-module M is an H-module in a 

natural way: Restrict the action of G(A) for each k-algebra A 

to H(A). We get in this way a functor 

res;: {G-modules}----+) {H-modules} 

which is obviously exact. It commutes with the elementary 

operations on G-modules described in 2.7(1)-{4). 

If G and H are group schemes, then we get the comodule map 

for res~M from AM as (idM-y).AM where y: k[G] + k[H] is 

the restriction of functions. 

3.2 Lemma: Let H,H' be = subgrouE schemes of a k-grouE 

functor G such that HI normalizes H and is flat. Let M be 

a G-module. Then ~ is an HI-submodule of M. 

Proof: It is easy to check that the comodule map AM:M + 

M \9 k [H] of M considered as an H-module is a homomorphism of 

H'-modules, if we regard k[H] as an H'-module under the conjugation 

action. The same holds for the map mt-+- AMem) - mel. Therefore 

its kernel MH is an HI-submodule. 

~ (Induction) Let H be a subgroup scheme of G. For 

each H-module M there is a natural (GxH)-module structure on 
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Mek[G]: Let G .operate trivially on M and via the left regular 

representation on k[G], let H operate as given on H and via 

the right regular representations on k[G], and then take tensor 

products. Now (Ml9k[G])H is a G-submodule of Me>k [G 1 by 

lemma 3.2. We denote this G-module by in~M and call it the 

induced module of M from H to G. Obviously 

in~: {H-modules }--~) {G-modules} 

is a functor. 

~t us mention that we can interprete the operation of GxH 

on Mek[G] in a different way. We have Mek[G] = M (k[G]) ::. a 

Mor(G,Ma ) by 1.3 and more generally (Mek[G])GrA::' (MClPA)C8>A 

(k[G]8 A) = (MeA) eAA[G
A

] ::. MorA (G
A

, (MeA) a) for each k-algebra 

A. Any (g,h) E G(A) xH{A) acts on some fEMorA (GA, (MeA) a) 

through 

(1) «g,h)f) (x) = h(f(g-lxh» 

for all x E G(A') and all A-algebras A'. (Let me remind you 

that there is some abuse of notation going on: We really ought to 

write «g,h) f) (A') (x) == hA' f(A') (g~~ xhA,) with gA' E G(A') 

the imaqe of g under the map G(A) ~ G(A') defined by the 

structural map A ~ A', similarly for h
A
,.) In this inter

pretation we have 

(2) in~M ~ {f E Mor(G,Ma)lf(gh) = h-1f(g) for all 

g E G(A),h E H(A) and all k-algebras A} 
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and the operation of G is by left translation (in a natural sense). 

l=! Proposition: ~ H be a flat subgroup scheme of G. 

a) The. functor in~ is left exact. 

b) The functor in~ commutes with formin9 direct sums, inter

sections of submodules, and direct limits. 

Proof: a) As we assume G to be flat, the functor M ....... Mek[G] 

is exact. Therefore the claim follows from 2.10(4). 

b) All these constructions commute with tensoring with a flat 

k-module and with the fixed point functor (cf. 2.10). 

Remark: If the fixed point functor ?H is exact, then 

obviou~ly also inai is exact. So in~ is certainly exact 

whenever H is diagonalizable (by 2.11). 

3.5 For any k-module M let EM: Me k[G] ... M be the . ==== 
linear map EM = idMe EGO If we take the identification M ® k[G]':: 

Mor{G,Ma } we have EM(f} = fO). We shall use the notation EM 

also for the restrictions of to various submodules of 

Mek[G]. 

Proposition (Frobenius Reciprocity): Let H be a flat 

subgroup scheme of G and M an H-module. 

a) EM: in~M ... M is a homomorphism of H-modules. 

b) For each'G-module N the map 
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Proof: a) We have for all A, all h E H(A) and 

b) In order to define an inverse consider for each ,E HO~(N,M) 
and any x EN the morphism .Cx) E Mor(G,Ma ) with .(x}(g) = 
(" ca idA) (9- 1 (x<a 1» for all A and all 9 E G(A). Using the 

description in 3.3(2) one checks easily that .(x) E ind~M c 

Mor(G,Ma ). Another straightforward calculation shows ~ E aomG 
G (N,indHM) and that the maps ,~. and ~ ~ £Mo~ are inverse 

to each other. 

3.5 (Transitivity of Induction) The last result implies of 

course (for G,ll as above): 

(1) The functor G G indH is right adjoint to resH• 

. G 
This of course determines indfl 

(One can also say that the pair 

up to isomorphism by 3.4.b.) 

uniquely up to isomorphisms. 

G (indHM'£M> is uniquely determined 

Let H' be another flat subgroup scheme of G with a C H'. 

We have obviously Therefore (1) yields: 

(2) There is an isomorphism 
G HI G 

indH,oindH - inda of functors. 

We can express this also in this way: Induction is transitive. 

For any H-module M we can write down isomorphisms ind~M':' 
G H' G 

indH,~indH M explicitly. To any f E indaM we associate 
~ H' ~ 
f E Mor(G,(indH M)a) with f(g)(h') = f(gh') for all 9 E G(A), 

h~,e H (A) and all A. 
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To any f E in~, (in~tM) 

leg) = f(g)(1) for all 

we associate f E Mor(G,M ) with 
a 

g € G(A) and all A. The maps f ...... 1 
and f~ f turn out to be inverse isomorphisms. 

Observe that 2.10.(3) implies 

(3) Let k' be a flat k-algebra. Then we have for each H-module 

M a canonical isomorphism 

~ Proposition 

Gk , 
.: indu (Me k' ) • 

k' 

(The Tensor Identity): Let H be a flat -
subgroup scheme of G. For any G-module N and any H-module N 

there is a canonical isomorEhism of G-modules 

Proof: Both sides may be embedded into Mor (G, (Me N) a) .::. 

M&NGI>k[G] using 3.3(2), the left hand side as 

L = {f: G -+ (MeN) If(gh) = (h-1qoh-1)f(g) for all g,h}, 
a 

the right hand side as 

R = {f: G -+ (MOlN)a\f(gh) = (h-1$1}f(g) for all g,h}. 

Here "for all. g,h" means "for all 9 E G(A),h E H(A) and all A". 

We define two endomorphisms <1,8 of Mor(G, (Me N) a) through 

(<1f) (g) = (lQ!lg}f(g) and (Sf) (g) = (ll»g-1)f(g) for all g. 

Obviously they are isomorphisms and inverse to each other. A 

straightforward calculation shows a. (L)C. R and B (R) c:..L and that 

<1,B are G-equivariant for the two actions of G we cQnsider. 



<On L we have -1 
9f = f(g ?) 

This implies the proposition. 
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and on R we have 9f = (lS) g) f (g -1?) .) 

Remark: We ought to express the proposition (the tensor 

identity) as saying: The funotors (M,N)1-+- ind;(M e res~) and 

(M,N)~ (in~M). N from {H-modules}x{G-modules} to {G-modules} 

are isomorphic. 

l.Z (Trivial Examples) We can apply all this especially 

to the subgroup schemes H = 1 and H = G. The first case yields 

(1) for any k-module M 

(where M is considered as a trivial G-module on the right hand 

side), especially 

(2) 

(Here and below k[G] is considered as a G-module via Pt.) 

'Combining (2) with 3.S.b (Frobenius reciprocity) we get for any 

G-module M 

(This can also be shown directly using matrix coefficients, cf. 

[OG], §2, 2.3.) Taking M = k in 3.6 we get for each G-module 

N an isomorphism 

where Ntr denotes the k-module N considered as a trivial 

G-module. Going back into the proof and the definitions one checks 
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that this isomorphism is given by 

If we restrict this map to the G-submodule Nek1':; N of N8k[G] 

we see: 

is an injective homomorphism of G-modules. 

(This can be checked directly, of course). 

G As resGM = M for each G-module M we have by 3.s{l) also 

(canonically) 

(6) for each G-module M. 

(In other words, any m E M is mapped to the morphism 

with g~ g-l(mel) for all g E G(A) and all A.) 

G ~ M a 

3.8 (Induction and Semi-direct Products) Let G' be a flat 
= 

k-group scheme operating on G through automorphisms and let a be 

a flat subgroup scheme of G stable under G'. We can then form 

the semi -direct products a)4 G I and G')( G I and we can regard 

a)( G' as a subgroup s cherne of G)<l G' • 

Let M be an (a>4G')-module, i.e. a k-module which is 

Simultaneously an a-module and a G'-module so that these two 

operations are compatible: g' (hm) = (g'hg,-l)(g'm). Then G' 

acts naturally on Mor(G,M
a

) .:; k[G]ca M via (g'f)(g) = 
g'(f(9,-199 ,», i.e. through the tensor product of the conjugation 
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aotion with the given aotion on M. This defines a structure of 

an (H>I G' )-module and also of a (G')4G' )-module where H,G 

G operate as usually in the oonstruction of indHM. As G' 

normalizes H, it operates also on in~M = MOrCG,Ma)H, cf. 

3 .2.. Therefore we get on in~M a structure as a (G >4 G' ) -module. 

We olaim that we have an isomorphism of (G)4G')-modules 

(1) 

G G)( G' 
We simply assooiate to f E indHM e Mor (GIMa) the map F E inclH>'I G,M 

C Mor(G)4G' ,Ma ) with F(g,g') = g,-lF(g), and to any F the 

map f with f(g) = F(g,l). The claim follows now from elementary 

caloulations. 

Taking H = 1 we get especially for any G'-module M: 

with G acting via P
t 

on k[G] and trivially on M and with 

G' acting via the conjugation action on k[G] and as given on M. 

We can also describe ind~ ~ GIN for any G-module N. There 

is an isomorphism 

(3) indG)o(G'N .:;. Mor(G' INa) ::. keG' J (I) N 
·G 

G)4 G' mapping any F E indG N c. Mor(Gl<IG',Na ) 

f(g') = F(l,g') and any f to F with 

to f· G' + N with • a 

F(g,g') = g,-lgg 'f(g'). 

This isomorphism is compatible with the G'-action if we let G' 

act on k[G'] via and trivially on N. The action of G on 
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some f: G' + Na is given by (gf)(9') = (9'99,-1)f(g'). This 

implies: 

(4) !! N is a trivial G-module, then G acts trivially on 
G>4 GI 

indG N. 

~ We define an injective G-module to be an injective object 

in the category of all G-modules. 

Proposition a) For each flat subgroup scheme H of G the 

functor ind~ maps injective H-modules to injective G-modules. 

b) Any G-module can be embedded into an injective G-module. 

c) A G-module M is injective if and only if there is an injective 

k-module I such that M is isomorphic to a direct summand of 

Ie k [G] with I regarded as a trivial G-module. 

Proof: a) This is obvious as ind~ is right adjoint to the 

exact functor 

b) Let M be a G-module. We can embed· M as a k-submodule into 

an injective k-module I. 

(a) and ind~M = Mtr<8 k[ G] 

Then I~k[G] z ind~I is injective by 

is a submodule of Ic& k[ G]. Now 

combine this with the embedding of Minto Mtra k [G 1 from 3. 7 (4) . 

c) If M is injective, then the el;llbedding M + IQ>k[G] 

constructed in the proof of (b) has to split. This gives one 

direction in (c). The other is obvious, as 18k[G] is 

injective by (a), hence also each direct summand. 

3.10 Let us assume from now on in chapter 3 that k is a 

field. Then we can simplify the last result: 
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Proposition a) ~ G-module M is injective if and only if 

there is a vector space V ~ k such that M is isomorphic 

to a direct summand of Vek[G] ~ V regarded as a trivial 

G-module. 

b) Any direct sum of injective G-modules is injective. 

c)!! M,Q ~ G-modules with 0 injective, then MeO is 

injective. 

Proof: (a) is just 3.9.c' and (b) is an immediate consequence 

of (a). If 0 is a direct summand of V& kEG] as in (a), then 

Mc2JO is a direct sunmand of M&Vek[G], which is isomorphic to 

Mtre V. k [G) by 3.7 (3) • This yields (c). 

~ Before looking at indecomposable injec'ti ve G-modules in 

general, let US treat one important example. 

Suppose G = HK G' with H a diagonalizable and G' a 

unipotent group scheme. We set for each A E X(H): 

(1) Q 

We have keG] ~ ind~k = ind~ind~ = ind~k[H] by the transitivity 

of induction and k[G} =. k). by 2.11(5) (also with respect 
)'EX(H) 

to p~, of course), hence 

(2) k[G1 ~ • Q).. 
AEX{H) 

We know by 3.S that 0). is isomorphic to keG'] when 

considered as a G·~module. Therefore 2.14{S) implies 

(3) ~ 0A is an indecomposable and injective G-module. 
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Each A E X(H) can be extended to an element of X(G) 

with GI in the kernel. We denote also this extension by 

and also the corresponding G-module by k A• For each G-module 

M the subspace G' 
M is a G-submodule by the remark to 3.2. 

Because of 2.11 it is a direct sum of one dimensional G-submodules 

of the form kA with A E X (H) • This shows especially that G' 
M 

i i d h MG' ~ 0 s a sem -simple G-module. On the other han ,we ave r 

for any simple G-module because of 2.14(7). Therefore the k). 

with A E X(H) are all simple G-modules (up to isomorphism) and 

we have 

(4) soc~ = MG' 

for any G-module M. The discussion in 3.8 shows that o .:: 
A 

kA e k[G' ] 

Then (0 )G' 
A 

where H operates on keG'] via the conjugation action • 

.:: kA <81 {k[G' ]G') = k A<akl .:: k A, hence by (4): 

This shows that in this case there is for each simple G-module 

E an indecomposable and injective G~module with socle isomorphic 
. 

to E. We want to generalize this result. At first we shall 

prove the uniqueness of such a module (up to isomorphism). 

~ Proposition: Let M,M' be injective G-modules and 

~ E HomG{M,M'). Then ~ is an isomorphism, if and only, if ~ 

induces an isomorphism socGM + SOCGMt. 

Proof: The "only if" part is obvious, so let us look at 

the "if". We ,know by 2.14(2) that 
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Assuming ~ to induce an isomorphism of the socles we get 

ker ~ = 0 and the injectivity of ~. Therefore ~(M) = M is 

an injective G-module, hence a direct summand of M'. If Ml is 

a G-stable complement, then M' .. ~(M) 1& MI implies SOCG(M') = 

SOCG~(M) e SOCGMI . The assumption SOCGM' = ~(SOCGM) yields 

SOCGMI = 0, hence Ml = 0 by 2.14(2). Therefore ~ is bijective. 

3.13 Corollary: Two injective G-modules are isomorphicl if 

and only if their socles are isomorehic. 

Proof: Because of the injectivity any isomorphism of the 

socles can be extended to a homomorphism Of the whole modules. 

Then apply 3.12. 

~ Proposition: Let M be an injective G-module and let 

~l E EndG (soc<!,) be idempotent.. Then there is ~ E EndG (M) 

idempotent with ~ I SOCGM =:: ~l' 

?roof: Consider the socle series of M as in 2.14(5). 

Let us abbreviate Mi = SOCiM. Each endomorphism of M has to 

preserve all Mi' Therefore the injectivity of M yields for 

each i an exact sequence 

where mi is the two-sided ideal 
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We deduce from M= 
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into M
j

_
i for all 

for all i,j > 1. 

U M 
i>1 i 

that 

j ~ i. This implies 

Therefore the proposition follows from a version of Hensel's lemma 

proved below. 

3.15 Proposition: Let R be a ring and let !!1:::::»!!!2:::> 

a chain of two-sided ideals of R with for all 

i, j ~ 1 and, R ::. ~ R/!!!i naturally. Then there is for each 

idempotent element e 1 E R/!!!l 

e 1 = e+!!!I· 

an idempotent element e E R with -

Proof: Because of R::' ~im R/!!!i it is enough to construct 

e 2 ,e3, ••• E R such that each ei+mi 'E R/!!i is idempotent and 

such that e i +!!!i-l = ei-1+!!!i-l for each i > 1. We define 
2 2 iteratively e i +1 = 2ei (ei -ei ) + e i . As ei+!!!i is assumed to be 

2 
idempotent we have e i +1+mi = ei+!!!i = ei+!i" Furthermore we get 

2 3 242 2 2 222 
e i +1 E 4ei (ei -ei )+ei +!!!i = 3ei(ei-ei)+ei(ei-ei)+!!!i c 2ei(~i-ei) + 

2 
e i +!i+1' hence e i +1+!!!i+l is idempotent. Therefore we can go on. 

3.16 Proposition: a) For each simple G-module E there is 

an injective G-module 0E (unique up to isomorphism) with 

E .:::. soc QE. 

b) An injective G-module is indecomposable if and only if it is 

isomorphic to QE for some ~imple G-module E. 
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c) Any injective G-module 0 is a direct sum of indecomposable 

submodules. For each Simple G-module E the number of summands 

isomorphic to E is egual to the multiplicity of E in socGO. 

Proof: Let 0 be an injective G-module. Any decomposition 

socGO = Ml $ M2 leads by 3.14 to a decomposition 0 = 0 1 $ 02· 

As we can embed any G-module into an injective G-module by 3.9.b 

we get the existence of the 0E in (a) immediately. The uniqueness 

follows from 3.13. The other parts of the proposition are now 

obvious. 

~ The module 0E from 3.16.a is called the injective hull 

of E. More generally we can find for each G-module M an 

injective G-module OM (unique up to isomorphism) with socGM ~ 

socGOM' The embedding of SOCGM into 0 can be extended to an 

embedding of M into OM' We call OM the injective hull of M. 

It is clear that this is compatible with the general definition 

e. g. in [2] , ch.X, §1, nO 9. 

In the situation of 3.16.c the number of summands isomorphic 

to 0E is equal to 

cf. 2.14(3). If we take especially Q = k[G] we get from 3.7(3) 

(1) 

where 

keG] tit • Od(E) 
E E 
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(2) deE) - dim(E)/dim(EndG(E» 

and where the direct sum is taken aver a system of representatives 

of all simple G-modules. (If k is algebraically closed, then 

deE) = dim(E) of course.) 

In the situation of 3.11 we have obviously 0l = Ok' and 
l 

3.11(2) illustrates (1) ve~ well. In the case of an unipotent 

group one has k[G] - Ok' cf. 2.14(9). 

Let us mention one standard property of injective hulls: Let 

E be a simple G-module and M a finite dimensional G-module. 

Then 

(For the notation cf. 2.14.) 
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4. Cohomology 

Throughout this chapter let G be a flat k-group scheme. 

We have shown in the last chapter that each G-module has a 

resolution by injective G-modules. Therefore we can define (right) 

derived functors of left exact functors from the category of 

G-modules. We can for example describe the Ext-functors as derived 

from the Hom-functor and we can introduce the cohomology functors 

Hn(G,?) as derived from the fixed point functor. Furthermore 

there are for each flat group scheme H of G the derived 

functors Rnind~ of the induction functor. 

After recalling some general facts about derived functors 

(4.1) and making the definitions (4.2) we prove many elementary 

properties of the derived functors mentioned above (4.3-4.13). 

We prove equalities between two derived functors and mention 

several spectral sequences. We show that the cohomology can be 

computed using an explicit complex, the Hochschild complex 

(4.14-4.16). Besides proving a universal coefficient theorem 

(4.17) this complex is used for the computation of the cohomology 

of the additive group over a field (4.20-4.27). Because of later 

applications we formulate the results at once not for Ga but 

for direct products G xG x ••• xG • a a a 

As in the last chapter there is not much point in attributing 

priorities for generalities. In addition to the papers listed 

there one ought to mention [Andersen 12] where some results were 

extended to the case of an arbitrary ground ring (instead of a 
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field_) When discussing the Uochschild complex I follow [OG} more 

or les8. The computation of U-(Ga,k) is due to [Cline/Parshall/ 

Scott/van der Kallen]. 

4.1 (Derived Functors) Let C be an abelian category 
- = 

containing enough injectives, i.~such that each object can be 

embedded into an injective object. Then certainly each object 

admits an injective resolution. We can then define the (right) 

derived functors RnF of any additive (covariant) functor F .. = 
from ~ into some other category C· • 

..::: 
We have 

and only if F is left exact. .. An object M in 

ROE =- E if 

F is called 
== 

acyclic for E, if RnF(M):: 0 for all n > o. Any short = 
exact sequence in C 

= 
gives rise to a long exact sequence in c' . = 

Suppose now that F: C + C' and F': C· +C" are additive 
:II = ... = - = 

(covariant) functors where ~,~'~" are abelian categories with 

C C' ='= having enough injectJves. 

Proposition (Grothendieck I S spectral sequence): II E I II 

left exact and if E maps injective objects in ~ to objects 

acyclic for F' 
== ' 

then there is a spectral sequence for each object 

M in C with - :: 

One can find a proof (and more background material) in the second 

edition of S. Lang's "Algebra". 

Let us mention two trivial special cases: 

(2) If ,I is exact, then ~I.R~':' aln(t'of) for all n EN. 
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(This i& obvious). 

(3) If E is exact and maps injective objects to objects acyclic 

ill ~I, ~ (RnE'). E ;; RnCE'oE) for all n EN. 

(This can be proved by degree shifting, i.e. induction on n, 

using the long exact sequence.) 

For future refe~ence let us mention that one has for any 

spectral sequence (En,m) with En,m = 0 for n < 0 or m < 0 
r 2 

converging to some abutment (Er ) an exact sequence (cf. [2], 

ch. X, §2, exerc. 15c). 

( 4) 

called the five term exact sequence. 

~ Throughout this chapter let G be a flat group scheme 

over k and H a flat subgroup scheme of G. 

We know by 2.9 and 3.9.b that the G-modules form an abelian 

category containing enough injective objects. So we can apply the 

general principles from 4.1. For example the fixed point functor 

from {G-modules} to {k-modules} is left exact. We denote its 

derived functors by n 
M~ H (G,N) and call the n-th 

(rational) cohomology group of M. 

For any G-module M the functor HomG(M,?) is left exact. 

Its derived functors are denoted (as usually) by They 

can (as always) also be defined using equivalence classes of 

exact sequences of G-modu1es. 
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Por the trivial lIIOdule k the functor 1l000G(k,?) 18 ia,*,zphic 

to the fixed pOint functor: Por each G-module M we have an 

isomorphi.m BomG(k,M) + MG with .~ .(1). We get therefore 

isomorphisms of derived functors 

(1) Ext~(k,?) ~ aD(G,?) 

The induction functor from B to G is left exact. We can 

therefore define also its derived functors Rnind~. 

W Lemma: Suppose that G is diagonalizable. Let A ~ 

an abelian grouE with G ~ Diag(A). Then one has for all G-modules 

M,N: 

a) 

b) 

c) 

for all n eN. 

Hn(G,M) = 0 for all n eN, n > o. 

...u k is a field, then n ExtG(M,N) ., 0 for all nE N, n > o. 

Proof: The first claim follows easily from 2.11(4). The 

other statements are immediate consequences. 

i.! Lemma: ~ M,N,V ~ G-modules. If V is finitely 

generated and Erojective as a k-module, then we have for all 

n E N a canqnical isomorphism 

Ext~ (N, ve N) 

Proof: We have a canonical isomorphism 

Hom(M, V.N) .:;. llom(MClJV· ,N) 
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sending any ., to the map Ill. (I ....... (a e i~) (q> (m) ) • It is easy 

to check that this induces an isomorphism 

This is functorial in N and can be interpreted as an isomorphism 

of funotors 

The functor Ve? is exact and maps injective G-modules to 

injective G-modules (cf. 3.9.c). We can therefore apply 4.1(3). 

4.5 Proposition: Let M be an H-module. -
a) For each G-module N we have a spectral sequence with 

b) There is a s~ctral sequence with 

c) !!!!:. U' be a flat subsroup scheme of G with H CHI. Then 

there is a spectral seguence with 

Proof: a) The Frobenius reoiprocity in 3.4 can be interpreted 

as an isomorphism of functors 
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BomG(N,?). ina;~ BaDB,N,?). 

As ina: maps injective B-modules to injective G-modules by 3.9.a, 

we can apply 4.1(1). 

b) This is the· special case N - k of a). 

c) Take the isomorphism in 3.5(2) and argue as in the proof -of a). 

~ We call B exact in G, if in~ is an exact functor. 

For example any diagonalizable subgroup scheme of G is exact 

in G. (See the remark to 3.4.) The last proposition implies 

obviously: 

Corollm: Suppose that H is exact in G. ~ M b! an 

H-module. 

a) For each G-module N and each n e I\J there is an isomorphism 

Ext~(N,in~M) .: n Extji(N,M) • 

b) For each n e N there is an iSODlOrphisDii 

Remark: These results are also known as -generalized 

Frobenius reCiprocity- and -Shapiro's lemma-. 

W When we regard k [G) CUJ a G-module and do not mention 

the representation explicitly, we will deal with P t or Pre 

As both structures are equivalent it is most of the time not 

necessary to specify which of these two we consider. The same 

applies to H instead of G. 
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Lemaa: Let n eN. 

a) We have ··for each G-module N: 

N if n = 0, 

o if n > o. 

b) We have for each H-module M: 

if n == 0, -
if n > o. -

Proof: a) The trivial subgroup 1 of G is exact in G as 

it is d1agonalizable (or even more trivially, as 

is obviously exact). Theref0re a) is an immediate consequence of 

4.6.b(applied to H == U and of the tensor identity. 

b) Apply the spectral sequence 4.5.c to (H,l) instead of (H' ,H). 

As 1 18 exact 1n H ~e spectral sequence together wi th the 

tensor identity yields isomorphisms 

n G .:: R ind
1 

(M) • 

As 1 18 exact in G the right hand side is 0 for n > 0 and 

equal to M 6* k[G] by the tensor identity. This implies b). 

Remark: If k 1s a field, then N~ k[G] is an injective 

G-moduJ,e by 3.10.c. Similarly M$ k[H] is an injective H-module. 

So the lemma is obvious in this case. 
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!al Proposition ('J.'he Generalized 'la_or lde~titYb 

~ N ~ G-module which is flat as a k-JDOdule. '!'hen we 

have for each B-module M and each n e N an I.samorphism 

Proof: The tensor identity may be interpreted as an 

isomorphism of functors 

ind~o(res~8 ?) .: (N C8> ?)oin~. 

Tensoring with N is exact and maps becau.e of 3.9 and 4.7.b 

G injective H-modules to modules acyclic for 1ndB• So we oan apply 

4.1(2),(3). 

4.9 (Semi-direct Products) 

Let G' be a flat k-group scheme which operates on G. We 

can therefore form the semi-direct product G~G'. 

We may regard the fixed point functor ?G by 3.2 also as 

a functor from { (G }If G' ) -modules} to· {G I -modules} • There is an 
G' G G G)4G' obvious isomorphism res 1 o? ':::I? oresG-: of functors. The 

isomorphism of k-algebras k[G>4G'].a k[G] ., k[G'] is compatible 

with the action of G via Pl· on k[G>tG') and k[G) andwith 

the trivial action on k[G'). Therefore 3.9 and 4.7 •• imply that 
G>lG' 

resG map injective module. to module. acyclic: for the fixed 

point functor. We· therefore get isomorphi_ of der.ived functors 

by 4. 1 (2) , (3) . So we have for al.l n e tJ and any (G~G')-
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.adul. M a natural structure as a G'-module on n H (G,M). 

Suppose now that G' stabilizes the subgroup scheme H of G. 

We can interprete 3.8(1) as an isomorphism 

of functors. As above 3.9 and 4.7.b imply that 

injective modules to modules acyclic for G 
inclH· Therefore 

4.1 (2) , (3) yield isomorphisms of functors (for all n EN) : 

(1) 

For H - 1 this shows that G' is exact in G~G' which is 

already clear by 3.8 (2). Similarly G is exact in G>( G' by 

3.8(3). 

4.10 Proposition: We have for each H-module M and each 

n E N an isomorphism of k-modules 

n [] ~ n G) H (H,MGJtk G) -to (R indH M. 

Proof: The definition of in~ yields an isomorphism of 

functors 

where F is the forgetful functor from {G-modules} to {k-modules}. = 
As kEG] aD? is exact and maps injective H-modules to modules 

acyclic for the fixed point functor (by 4.7.a), we can apply 

4.1(2),(3) • 

. ~ Corollarx: If k[G] is an injective H-module, then 

H is exact in G. 

Proof: Under our assumption keG] is a direct summand of 
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some "1. kIa], hence If ek[ G] of some Hi. ldti1 (tbr 

suitable 8-modules M1,M2). Then 4.10. and 4.7.a~pl:r.1:11.<cl,A1m. 

Remarks: 1) Suppose that k is a field. Then 'the corollarY 

can be proved directly as follows. If 0 + "1 + "2 + "3 + 0 

is an exact sequence of H-modules, then 0 + "1 "k[G] .. M2- keG] + 

"3 dit k[G] + 0 is an exact sequence of injective H-IIlOdUles (by 

3.10), hence split as a sequence of K-aodules. Therafora',.a1so the 

sequence of all ("iek{G1)8 .. i~(Mi) has to be exact. 

2) The example H - 1 shows that the converse will not hold in 

general. HoWever: 

4.12 PropOSition: Supegse that k is a field. Then H 

is. exact in G if and only if k[G] is an injective H-module. 

Proof: Because of 4.11 we have to prove one direction only. 

Suppose that 8 is exact in G. We have for ~ach finite dimen

sional module V by 4.4, 4.2(1) and 4.10 

for all n > o. Therefore the functor BDma(?,k[G]) is exact 

when restricted to finite dimensional B-modules. This implies 

easily the exactness on all H-modules (i.e. the injectivity o~ 

k[G]) because each H~odule is the direct limit of finite 

dimensional H-modules. 

!;.JJ PropOSition: ~ k' be a flat k-algebra. Let n e tJ. 
a) For each G-module N there is an isomorehism 
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b) For each H-module M there is an isomorphism 

Proof: We qet from 2.10(3) and 3.S(3) isomorphisms of functors , 
to which we want to apply 4.1(2),(3). This is possible as ?~ k' 

is exact and maps injective G-modules to modules acyclic for the 

~,-fixed point functor (by 3.9 and 4.7.a) and maps injective 

H-modules to modules acyclic for the induction from Hk , to Gk , 

(by 3.9 and 4.7.b). 

~ Let M be a G-module. The cohomology HO(G,M) can be 

oomputed using the Hochschild complex C'(G,M} which we are 

going to describe now. 

We set Cn(G,M) = M Ql) CRfit[G] for all n EN 
boundary maps an: Cn(G,M) + cn+1 (G,M) of the form 

where 

for 1 ~ i ~ n, 

We can interprete Cn(G,M) also as MOr(Gn,Ma ) where 

direct product of n oopies ~f G, cf. 3.3. Then the 

define 
n+1 . 

1': (-l)l.ar: 
. 0 l. l.= 

Gn is the 

an look 
i 
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like 

for 1:::.. i :::.. n, 

It is ·easy to check that an an- 1 = 0 for all n. Therefore 

(C· (G,M), a·) is a complex. We want to prove that its cohaaology 

is just HO(G,M). 

4.15 If our last claim is true, then C·(G,k[G1) ought to be = 
exact except in degree ° by 4.7.a. Let us consider k[G] as a 

G-module via so that We define for each n a 

linear map 

An elementary calculation using 

for all n > o. This implies 

the exactness of C·(G,k[G]) at each paint n > 0 whereas 

aD: CO(G,k[G1> = k[G] .... C1 (G,k[G]) .. k[G1 e k[G1 maps f to 

A(f)-f~1, hence has kernel kl. Therefore we have an exact 

sequence 

(1) • • • 

This sequence can be regarded as a sequence of homomorphisms of 
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9~~ul .. when we let G operate on ~nk[G] via on the 

f1~~tfactor and trivially on all the other factors. It is for 

this operation that k[G] + kEG] l!I k[G], fl-+ 6G(f)-fa 1 is 

G-equ1variant. If we tensor nqw (1) with M we get a resolution 

of M by acyclic modules. Furthermore we can by 3.7(4) make the 

operation of G on the factor M in any M ~ ~ik[Gl trivial, 

hence qet a resolution 

using the same notation as in 3.7(4). Therefore H"(G,M) is the 

cohomology of the complex 

G ~2 G (4) 0 + (Mtr <8> k[G]) + (Mtr Q) ~ keG]) + ••• 

As G operates trivially on all but one factor and as k[G]G = k 

the n-th term in (4) is equal to (M (go;) ~n+lk[ G]) G .:::. tr 'C:>I 

M~r & ®nk[G] III Cn{G,M). Furthermore tracing back the maps one 

finds that an is just the map from Cn(G,M) to cn+1(G,M) 

occurring in (4). (The shortest way of doing it is via the 

interpretation as functions n G + M.) This proves our claim. 

~ Let M be a G-module. 

Proposition: The cohomology of the complex C'(G,M) is equal 

to S- (G,M). -
Remark: In [OG], II, §3 the case of arbitrary group functors 
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(instead of our flat group scheme) is treated and more general 

coefficients are considered. 

4.17 We can identify C· (Gk , ,Mek') for any k-algebra k' 

with C·{G,M)Qb k'. Suppose that M is a flat k-module. Then 

also all Cn(G,M) are flat. If k has the property, that any 

submodule of a flat module is flat, then we get a universal 

coefficient theorem e.g. by [ 2], ch. X., §4, cor. 1 du tho 3 

(after re-indexing). Any Dedekinq ring has this property as 

for such a ring the notions "flat" and "torsion free n coincide 

(e.g. by [ 3 ], ch. VII, §4, prop. 22). We get therefore the 

first part of: 

Proposition: Suppose that k is a Dedekind ring. Let k' 

be a k-algebra and let n EN. 
a) There is for each G-module N which is flat over k ~ 

exact seguence 

b) There is for each H-module M which is flat over k an exact 

Note that b) follows on the level of k'-modules from a) and 4.10. 

It may be left to the reader to find the Gk,-module structure on 

the Tor-group and to prove the equivariance of the maps. 
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1:J! If It I is flat over It, then we get fxOlll 4.17. a that 

HO(G,N) cg, k' .::. HO(~I,N 8t k') which we know already from 2.10(3) 

to hold for all N. If It' is not flat, however, such a state

ment will not be true, even for flat N (1n spite of the lemma 

1.17 in [Andersen 12]). Take e.g. G = Ga and its representation 

on and get a contradiction for k -~, It' = f=20 

Such a formula will however hold for acyclic modules as then 

the last term in 4.17.a is zero. We can for example (by 4.7.a) 

take for N a direct swmnand of some E c:. It [G] where E is a 

flat k-module, regarded as a trivial G-module. If HI is another 

G-module which is finitely generated and projective over k, then 

Hom(N',N) .::. (N')*~ N is again of this type because of the tensor 

identity. So we have a canonical isomorphism HomG(H"N)~ k' .::. 

Hom<\, (N' <8 k I , N <!a k) . This generalizes to all N I which are 

flat over k by taking direct limits. This shows: 

(1) ~ N,N' be G-modules such that N' is flat over k ~ 

such that N is isomorphic to a direct summan~ of some G-module 

E6)k[G] with E flat over k. Then we have for each ~-algebra 

k' a natural isomorphism HomG(N' ,N).k I .::. Hom~, (N' Ok' .He k') • 

Let us mention as a special case, that we have for each k' 

an isomorphism 

(2) EndG.{k[G]) ~ k' .::. End<\:. (k' [<\.1) 

~ For any It there is on U·(G,k) - • Hi(G,k) a 
i>O 

structure as (associative) algebra over k. The multiplication 
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is called the cup-product and satisfies the usual anti-commutativity 

formula: If a E Hi(G,k) and b E Hj(G,k) then ab = 
(-l)i+jba. Furthermore there is (for each G-module N) a natural 

structure of a H· (G,k) - right module on H· (G,N) = i tD H (G,N). 
i~O 

Let us describe these structures using the Hochschild complexes 

for k and N. We can obviously identify en (G,k) = ®nk [G J and 

then have to write a~ in the form a~ (x) = 1 e x. Furthermore we 

identify en(G,N)~ cm(G,k) and en+m(G,N) for all n,m E rJ. 
For all a E en(G,N) and b E cm{G,k) one checks easily 

an+m(aab) = (ana)~ b+(-1)na ® ( fb). Hence a® b is a cocycle 

if a and b are so. Another simple computation shows then, 

that the cohomology class [a@bJ of a~b depends only on the 

classes [a] of a "and [b] of b. Then the action of [b] E Hm(G,k) 

on [a] E Hn(G,N) is defined through [a][bJ = [a~ b]. 

In "the case N = k we get thus the cup-product on H' (G,k) . 

Let G' be a flat group scheme operating on G through 

group automorphisms. If N is a (G)<fG' )-module (e.g. N = k), 

then Gt acts on each n H (G,N), cf. 4.9. This operation can 

be described using the Hochschild complex. The discussion above 

shows ~at Gt acts on H'(G,k) through algebra automorphisms and 

that the action of H'(G,k) on an arbitrary H·(G,N) is compatible 

with the G'-action, i.e. that H·(G,N)&H·(G,k)4H·(G~)is a homomorphism 

of G'-modules. 



82 

~ We want to discuss S-CGa,k) or (more generally) 

H·(Va,k) for a free k-module V of finite rank, say rk(V) - n. 

Of course, there is a RUnneth formula, reducing the second problem 

to the first one. But we shall prefer to formulate our results at 

once for V in order to keep track of the GL(V)-operation on 

the cohomology groups (as in 4.19). 

Choosing a basis we identify k[V] with the polynomial ring a 
k[Tl ,T2 , ••• ,Tn]. We get then an Nn-grading and an tJ -grading 

on the oomplex C·(Va,k). For each a a (a
1P 2

, ••• ,an ) E~n let 

Ci(Va,k)a be. spanned by all tensor products of monomials such 

that the degrees of Ti in the factors add up to 

Set Ci(Va,k)m equal to the sum of all C1 (Va ,k)a 

ai for each 

with m '"" laf 
n i 

(where l(al, ••• ,an>1 = E ail. Obviously the C (Va,k)m are 
i=1 

GL(V)-stable whereas the Ci(Va,k)a are not (for n > 1). As 

i. 

the comultiplication is given by ~(TJ') = 1~T.+T.~1 for all j, 
J J 

the formulas for the ai in 4.14 show aiCi(Va,k)a<: Ci+1eVa,k)a 

for all a and aiCi(v k) ~ Ci+1(V k) • Therefore we get 
a' m at m 

also gradings for the cohomology groups 

(l) Hi{V ,k) = 
a 

i fa H (V ,k) • 
meN a m 

(Note that these gradings simply describe the representations of 

the diagonal subgroup of GL(V) on the cohomology re~p. of the 

subgroup of scalar diagonal matrices.) 

~ We can now easily compute 

Lemma: Suppose that k is an integral domain. 
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n 
E kT. ;; V 

i=1 ~ 
as a GL(V)-

r 
b) If char(k) = p F 0, then 

1 n 00 

H (Va,k) = E E 
i=1 r=O 

kTl? 
~ 

Proof: We have obviously 
1 1 H (V k) = ker(a). This map is a , 

Because of 4.20(1} the monomials 

HO(V ,k} = k and aO = 0, hence 
a 

given by a1 (f) = 10f-a(f)+f® 1-

n 
II T. r (!) with 

i=1 ~ 

form a basis of ker(a l ). If at least two rei) are positive, 

then each Tr(i)~ n T~(j) occurs with coefficient -1 in 
i j;fi J 

n 
ale n Tr(i}) so that this element is different from 0. As a1 (1) = 

!r.=O i 

1 &J 1 we have to look only at 

(1) 

This is certainly 0, if r = 1. We then have to determine all 

r > 1 with all those binomial coefficients equal to O. The 

result is well known and implies the lemma. 

4.22 Keep the assumption of lemma 4.21. The cup product -== 
induces a homomorphism of G~(V}-modules 

HI (V ,k) 0 HI (V ,k) -+ H2 (V ,k). 
a a a 

Because of the anti-commutativity of the cup product (i.e. because 

of f e f'+f'~ f = a1 (ffl) for ~,f' E ker(a l
) this map has to 

factor through 

s2Hl (V k) if a' , 

2 1 
A H (Va,k), if 

char{k) = 2. 

char(k) ;f 2, and through 
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Let us denote the imaqe of this map by M. We want to show 

if char(k);:' 2, 

(1) 

if char(k):IIII 2. 

The ~age of a1 in C2 (Va ,k) K k[V.l~ k[V.] consiats of 

symmetric elements, i.e. of elements stable under f~ f'r+ f'~ f. 

If we take two different basis elements f,f' in 4.21, then 

f ca f' is not symmetric, hence the class [ f] [ f'] == [f e f'] E 

H2 (Va ,k) is non-zero. In order to get their linear independence 

we just have to observe that these tensor products arehomoqeneous 

of pairwise different degrees (except' for the trivial equality 

[f <Bl fl] = -[f'®f J). 

This proves (1) for char(k);:' 2. For char(k) - 2 we have 

still to show fe f ~ im(a 1 ) for any basis element f in 4.21. 

We can do something more general. Suppose char(k) - P F 0, 

set {I}" ~(l) for 1 < i ~ p-l and 

(2) B(f) = 

for all f E k[Va ]. (So 8(f) = feaf if char(k) == 2.) This maD 

is of CO\lrse induced from the map f....... ( Ie f+f e 1) P - 18 fP 

- fP Qll}/p on Z [ T I' ••• , T 1. U8ing this fact (or a d1l:act cal 01J a:t1al) 
n into 

mapa ker (.a 
1 ) - HI (Va ,k) /ker(a~,hence we qet a map 8 we get that 

B: Hl(Va,k) 2 
+ H (Va,k). A simple computation shows 
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for all Therefore is additive. Obviously 

i is GL(V)-equivariant and satisfies 8(af} = aPa{f) for all 

a e k. Take now for f a basis element from 4.21. Then e(f) is 

homogeneous with degree p-times the degree of f. The only element 

(up to scalar multiple) in k[VaJ having this degree is fP. 

As a1(fP) = 0, we get 8(f) I. im(a1). This concludes the proof 
r 

of (1) and shows for p =6= 2 that the S(Ti ) with 1 ~ i < n 

and r EtV span as a basis a GL(V}-submodule in H2 (Va ,k) 

intersecting M in O. 

We claim that we have found all of H2 (Va ,k) in case k is 

a field. We refer to COG], II, §3, 4.6 for the proof and just 

state the result: 

Lemma: SUEeose th~ k is a field 

a)!! char(k) = 0, then H2 (Va ,k) ~ A2H1 (Va ,k). 

b) If char(k) = 2, then g2 CVa,k) ~ S2Hl(Va ,k). 

c)!! char(k) F 2,0, ~ H2 (Va ,k) ~ A2H1 (Va ,k} e k~Hl(Va/k}. 

4.23 In order to get all of H"(Va,k), we shall reduce its 

computation to that of the cohomology of finite cyclic groups. 

This is done using a filtration of the Hochschild complex. 

Set k[Va,m] for all meN equal to the span of all 

monomials T~(1)T~(2) ••• T~(n) with rei) < m for all i. Then 

the formula A(Ti ) = l§Ti+Ti~ 1 implies A(k[Va,m])C k[Va,m] 

k[Va,m]. Set Cj(Va,k,m) =~jk[Va,m]c. ®jk[Val = Cj(Va/k). 

Then we see that 
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j!.O 

= 

its cohomology by 
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is a subcomplex of 

H" (V ,k,m) = a 

Let us denote 

For m,m' EN with m' ~ m we have an inclusion C· (Va,k,m') 

c. C· eVa,k,m), hence a homomorphism "m,m': HO (Va,k,m) ... H· (Va,k,m). 

We have obviously am,m' 0 am I,m" = am,m"' for any mil ~ m' .. 

Similarly the inclusion C·(Va,k,m) ... COCVa,k) 

homomorphism a: HO(V ,k,m} ... HO{V ,k) with m a a 

induoes a 

We get thus a homomorphism a: l!m H"(Va,k,m) ... H·(Va,k). 

Obviously HO(Va,k} is the union of all "m(U" (Va,k,m» and for 

each f E ker(am} there is m' > m with f E ker(am,m'). This 

implies 

Note that Therefore 

we can define a cup-product on each HO(Va,k,m} and the am are 

homomorphisms of algebras. Hence so is the isomorphism (1). 

Let me point out that this construction can be generalized to 

any Va-module M which is finitely generated over k. For such 

an M there is some r{M} EN 
Then all C·(Va,M,m) with m > reM) are subcomplexes of C"(Va,M) 

and we get as above 

(2) lim H" (V ,M,m)... H" (Va,k) 
... a 

. j c 
~ Obviously we can define a complement C (Va,k,m) 

to Cj(Va,k,m) in Cj(Va,k): Take the span of all tensor products 
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of all monomials not belonging to Cj(Va,k,m), ioe. where in at 

least one factor some Ti occurs with an exponent ~m. In 

j c general the C (Va,k,m) do not form a subcomplex. 

Suppose however that p 
r r 

in k. Then ACTi) = Ie TI + 

implies that all cj(Valklpr)c 

is a prime number and that 
r 

Tl? $ 1 for all i and r. 
J. 

are subcomplexes and that 

pI = 0 

This 

j r j 
H (Va,k,p) is a direct summand of H (Va,k). We may write 

4.23(1) in the form 

(l) (if pk = 0) • 

(We can generalize 4.23(2) in a similar way.) 

Of course our computations in 4.21/22 are compatible with 

this formula. In the situation of 4.21.a we have 

(2) 

in 4.22.c: 

and in 4.22.b: 

(4) 

n r-l j 
1: 1: kTP 

i 1=1 j=O 

~ The groups HO(Va,k,pr ) in 4.24 have a different 

interpretation. Let p be still a prime and suppose pI = 0 in 

k. Identify V with k n via the Ti and consider the (Frobenius) 

endomorphism F of Va with 

all (al, ••• ,an ) E An = kn.A ~ Va(A) and all A. This is an 
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endomorphism of algebraic k-groups with P*CTi ' = Tf for all i. 

The kernel V of pr is therefore also 
a,r r r 

an abqebraic k-group 

with k[Va,r1 = k[Tl, ••• ,Tnl/(Ti, ••• ,~ ). (Obviously V a,r 

is independent of the choice of the identification V ~ kn. 

Notice that V a,r is isomorphic to the direct product of n 

of the algebraic k-group G a,r introduced in 2.2.) 

copies 

Obviously the restriction of functions k[Va ] + k[Va,r1 

induces an isomorphism k[Va,r] + k[Va,r] compatible with the 

comultiplication, hence an isomorphism C'(Va,k,pr) + C'(Va,r,k) 

of complexes and an isomorphism of algebras 

Any Cj(V k pr)c a' , is just the kernel of the restriction map 

This gives a better reason for • Cj(Va,k,pr) 

to form a subcomplex and hence for the injectivity of the map 

H'(Va,k,pr) + H·(Va,k). 

Again we can generalize (1) to any V -module H, finitely a 
generated over k, and get 

(2) if pr > reM). 

Notice that the gradings on H'(Va,kl considered in 4.20 

induce similar gradings on H' (V ,k). a,r 

4.26 Let us assume that k is afield of characteristic 

p F O. It will be convenient to suppose for the moment that k 
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is finite. Consider the endomorphism F of Va as in 4.25 and 

define for each r EN, r > 0 a closed subgroup Va (pr) of 

Va via 

r 
It is defined by the ideal generated by all Ti - Ti with 1 < i < 

n. Therefore the restriction of functions induces also an isomor

phism k[Va,pr] + k[Va(pr)] compatible with the comultiplication, 

hence an isomorphism 

If A is an extension field of k, then Va(pr} CA) is 

simply the group of all points in An having all coordinates in 

the finite field f= . Let us denote this group by V(pr}. 
pr 

It is an elementary abelian p-group of order "'prn. We may regard 

k[Va(pr)] as the algebra of all functions from V(pr) to k. 

The comultiplication on k[Va(pr)] is given by the group law in 

the finite group V(pr). Therefore the Hochschild complex for 

Va(pr) computes the cohomology of the finite group V{pr). 

(Equivalently one can say that the category of V (pr)-modules a 

is -the same" as the category of k-V(pr)-modules. ) 

Now the cohomology of a cyclic group is well known (cf. 

e.g. [ 8 ]) and the cohomology of an elementary abelian group 

follows usinq the KUnneth formula. The results can be formulated 
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as follows: 

(2) If - p = 2, ~ H' (Va/k/pr) ;;. 1 r 
S8 (Va,k,p ). 

We denote here by S (M) resp. A(M) the symmetric resp. exterior 

algebra of a k-module M given its natural grading. If we put 

each element of siM in degree 2i then we write S' (M) • 

{3} If P F 2, then 

with 

These results are certainly also true, if k is finite, e.g. by 

4.16{l) • 

4.27 Combining 4.26(2),(3) with 4.24(1) we get a complete = 
description of H·(G ,k). 

a 
Before formulating the result we want 

to introduce Some notation how to describe the operation of GL(V) 

on the spaces 
n r 
E kTP 

i=l i 
and 

n _ pr 
E kB('1'i ). 

i=l 

We can define a group endomorphism of GL(V), also denoted 

by F, such that F(gv) = F(g)F(v) for all g E GL(V} (A) and 

v E V$A and all A. If we identify GL(V) ::. GL n using the 

same basis as for V ;;. kn , then F(aij ) = (ai j ) for all 

(aij ) E GLn(A) and all A. Using G we can define for each 

GL(V)-module Vi and each r E N a new GL(V)-module V' (r) 

which is equal to 

acts on V' (r) @ A 

V' 

as 

as k-module and where any q E GL(V) (A) 

Fr(g) acts on V'®A. (We shall discuss 
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such "Frobenius tWists" more systematically in 9.9}. 

j 
Writing down the effect of on the T~ in terms of 

~ 

9'1' i one sees immediately that :;. ( ~ kT.)(j) :;. v*(j). 
i=l ~ 

n j 
Similarly one gets Z kS(TI ) ~ V*(j+l). We can therefore express 

i=1 

the results as follows: 

Proposition: SUEPose that k is a field of characteristic 

p 'f: o. 

a) If P = 2, then -

~ (for all r > 0) 

b) !! P F 2, then 

:;. S( ED v*(j)} 
j::.O 

r-l 
~ S (ED V* ( j ) ) . 

j=O 

A{ ED 
j>O 

v* (j )} ® S f {ED Vi~ (j ) ) 

j ::,1 

and (for all r > O) 
• 

Remarks: 1) The explicit description of HI and H2 gives 

also the gradings of the generators of the generators of a"CVa,k) 

and a"cV r,k). All elements in v*(j) are homogeneous of degree a, 

pj wi th respect to the N -grading: 

2) If k is a field of characteristic 0, then H"(V ,k) = A(V*). 
a 

This follows e.g. from the proposition applying the universal 
coefficients theorem to ~n. 
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5. Quotients and Associated Sheaves 

Some properties of the derived functors of induction can be 

proved only by interpreting the Rnin~M as cohomology groups 

Hn(G/H~(M» of certain quasi-coherent sheaves on G/R. Before 

we can define these "associated sheaves" (5.10/11) and prove the 

equality in 5.13, we have to introduce 

the quotients G/H. 

This is a non-trivial problem. Assuming G to be a ~lat) 

group scheme and H a (flat) subgroup scheme we want G/H to be 

a scheme. The choice at first sight, the functor A~ G(A)/H(A) , 

will in general be no scheme. On the other hand, there is an 

obvious definition of a quotient scheme via a universal property 

(cf. 5.1) which however gives no information about existence and 

how the quotient looks like, if it happens to exist. 

It has turned out to be useful to construct quotients not at 

once in the category of schemes over k but in the larger category 

of all k-faisceaux. These are the k-functors having a sheaf 

property with ·respect to the faithfully flat finitely presented 

(Grothendieck) topology, cf. 5.2/3. The quotient faisceau G/H 

has a not too complicated description (5.4/5). In the most 

important cases (e.g. over a field) the quotient faisceau is a 

scheme (hence the quotient scheme) and has nice properties (5.6/7). 

It is only in this case that we can prove the relation between 

sheaf cohomology and the functors of induction mentioned above. 

One consequence of this relation is that G indH is an exact 
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functor, if G/H is an affine scheme. This can be proved more 

directly (5.8) following [Cline/Parshall/Scott 3] who prove 

also the inverse for linear algebraic groups over an algebraically 

closed field. In 5.14 we mention some more consequences, but 

will make use of deeper applications only in later chapters. 

I follow more or less [DG} in the sections 5.1 - 5.7. 

Proposition 5.13 was first proved in [Haboush 2J. Let me add that 

closely related matter is treated in (Cline/Parshall/Scott 91. 

~ (Quotients) For a linear algebraic group G over an 

algebraically closed field and a closed subgroup H of G it is 

well known how to make the coset space G/H into a variety. We 

should like to have a generalization to the case where G is a 

k-group scheme and H a closed subgroup scheme. Unfortunately 

the ·obvious" choice, i.e. the functor A~ G(A)/H(A) turns out 

to be the wrong one (in general) as it will be no scheme in general. 

Let us define instead a quotient via a universal property. 

This can be done in the more general situation of a k-group scheme 

G operating on a scheme X over k. A quotient scheme of X by 

G is a pair (Y,w) where Y is a scheme and ~: X ~ Y is a 

morphism such that w is constant on G-orbits and such that for 

each morphism f: X + Y' of schemes constant on G-orbits there is 

exactly one morphism f': Y + Y' with f'41f = f. ("Constant on 

G-orbits" means that each w(A): X(A) + yeA) is constant on the 

G(A)-orbits.) Of course, such a quotient scheme is unique up to 

unique isomorphism, if it exists ~nd that is the problem). 
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Let us give another formulation of this definition. We want 

to assume that G operates from the right. (The necessary changes 

for left actions will be obvious.) Consider the two morphisms 

~I~': XxG + X· with ~(x,g) = xg and at (x,g) = x. Then a 

morphism f: X + Y' will be constant on G-orbits if and only if 

foa = foa'. So (Y,~) is a quotient scheme if and only if 

~oa = ~oa' and if for all morphisms f: X + Y' with foa = fOal 

·there is a unique morphism f': Y + Y' with fto~ = f. (We 

assume Y,Y' to be schemes.) So a quotient scheme of X by G 

is (in categorical language) the cokernel of the pair (alai) in 

the category of schemes over k. 

This way of formulating the universal property allows for 

generalizations. Take for example a "schematic" equivalence 

relation on X, i.e. a subscheme RCXxX such that each R(A) is 

an equivalence relation on X(A). Then a quotient scheme of X 

by R is the cokernel in the category of schemes of tpe pair of 

the projections from R to X. There is a generalization of 

these two situations (i.e. of XxG -:::::;X for group actions and 

. of R ~X for equivalence relations) called groupoid.. This is 

discussed e.g. in [DG], III, §2, nO 1 • 

. 5.2. (The fppf-topology) Of course, we can define quotients 

by group actions also in larger categories than {schemes over k} 

using the same type of universal property as before but allowing 

any Y,Y' in that larger category. If we take e.g. the category 

of all k-functors , then certainly A~ X(A)/G(A} is the quotient. 

If we had now a functor from {k-£unctors} to {schemes over k} 
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left adjoint to the inclusion, then it would map Ar+ X(A)/G(A) 

to the quotient scheme. But we do not have such a functor. It 

has shown to be useful in this situation to replace the category 

{schemes over k} by a larger one for which there is such a 

functor and has nice properties. 

Any scheme X is by definition local (cf. 1.8), i.e. Y~ 

Mor(Y,X) is a sheaf in some sense: If (Y.). is an open covering 
J J 

of Y, then any a E Mor{Y,X) is uniquely determined by its 

restriction to the and one can glue morphisms 

together if they coincide on intersections. The open coverings 

were defined using the Zariski topology. 

One can now consider more general topologies, called Grothendieck 

topologies where the property "open" is no longer attached to 

subsets (or rather subfunctors) but to certain morphisms. We 

shall consider only the faithfully flat, 'finitely presented 

topology (for short "fppf" as the French is much more symmetric 

in this case), and the k-functors with the sheaf property for this 

topology will be called faisceaux (reserving the term "sheaf" to 

objects related to the Zariski topology). 

As in 1.8 it is enough to consider open coverings of affine 

schemes by affine schemes. Let R be a k-algebra~ An fppf-open 

covering of R is a finite family R1,R2, ••• ,Rn of R-algebras 

such that each Ri is a finitely presented R-module and such that 

Rl xR2x •• ,. xRn is a faithfully flat R-module. (The last condition 

is equivalent to: Each Ri is a flat R-module and Spec(R) is 

the union of the images of all Spec(Ri ), cf. [3 ), ch. II, 
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§2, cor. 4 de la prop. 4.) 

5.3 (Faisceaux) A k-functor X is called a faisceau if for 

each k-algebra R and each fppf-open covering Rl ,R2 , ••• ,Rn of 

R the sequence 

(l) 

is exact. (The maps are the obvious ones, induced by the structural 

maps and by resp. with 

a .... a4* 1 resp. a- lQlta,.) (A k-faisceau is defined as a k-functor 

which is a faisceau.) 

'For any k-algebras Rl , R2 , ••• , Rn we 
n 

can regard each Ri as a 

( n Ri)-algebra via the projection . The Ri form obviously an 
i=l n 

fppf-open covering of II Ri = R. As Ri®RRj = 0 for i 1: j 
i=l 

the exactness of (1) amounts in this case to: 

(2) The projections induce for all k-algebras Rl"",Rn a bijection 

X(R1x ••• xRn)~ X(Rl)x ••• xX(Rn). 

A single R-algebra R' is an fppf-open covering of R if and only 

if it is faithfully flat and finitely presented as an R-module. 

Let us call this an '~-R-algebra". So the exactness of (1) 

implies: 

(3)!! R is a k-algebra and if R' is an fppf-R-algebra t then 

X(R) -I- X(R' >==*X(R' @RR') is exact. 
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So the arguments above prove one direction of: 

(4) ! k-functor X is a faisceau, if and onl~ if it satisfies 

(2) and (3). 

m 
For the converse one applies (3) to R' = U Ri and (2) to UR. 

i=1 i J. 

and n Ri Q> R n R .. 
i i J 

Suppose that R' is a faithfully flat R-algebra. We have then 

an exact sequence 

o ~ R ~ R' .... R' <8> R' 
R 

where R .... R' is the structural map and where any a E R' is 

mapped to aQa 1 - lea. (This is only the beginning of a long 

exact sequence, see [DG], I, §l, 2.1. It is enough to show the 

exactness of a .... RQ R' .... Rt <3 R' .... R'<8I R'€l R' R R R R' The last map 

sends a&a' to a®-l,~a' - l<9a@a'. If this is 0, then 

o = a 9 a I - l® aa I I hence a &>a • is in the image of the previous 

map.) We can express the exactness above also as: 

~here the two maps are a H- a0l and a~ 1<St a). Now the left 

,exactness of HO~_alg{AI?) shows that each affine scheme SPkA 

over k is a faisceau. More generally one can show ([DG], III, 

§l, 1.3) 

(6) An~ scheme over k is a faisceau. 
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Let M be a k-module and k' a faithfully flat k-algebra. 

Then the same argument as above gives as an exact sequence 

0"" M"" M&k' .... M9k'ek' 

with maps m ....... m$l and meb ...... m0b01 - m@l<8>b. Applying this 

to all M~A we get: 

.. 
(7) For each k-module M the fun,ctor Ma is a faisceau and a 

local functor. 

Of course we could have mentioned the "local" part earlier. It 
n r 

follows from the fact tha.t 1: Afi = A implies that n (Af ) 
i=1 i=1 i 

is faithfully flat over A. (See also the description of the 

quasi-coherent sheaf on Spec(A) associated to MQpA in [Hal, 

II, 5.1.) 

The following property is obvious: 

(8) ~ X be a k-functor and k' ~ k-alsebra. If X ~ 

faisceau, then ~I is a faisceau. 

5.4 (Associated Faisceaux) There is a natural construction 

how to associate to each k-functor X a k-faisceau X (called 

the associated.faisceau) together with a morphism i: X .... X such 

that for all k-faisceau Y the map f~ foi is a bijection 

Mor(X,Y) .... Mor(X,Y). We get thus a functor X~ X from {k-functors} 

to {k-faisceaux} left adjoint to the inclusion of {k-faisceaux} 
cxnstructi.al 

into {k-functors}. This/should be regarded as an analogue of 

the construction of a sheaf associated to a presheaf. The details 
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~ 

may be found in [DG], III, §l, 1.8 - 1.12. I shall describe X 

only in a partirularly simple case where X is already close to 

being a faisceau. To be more precise I want to assume the following: 

(1) X satisfies 5.3(2) and X(R) + X(R'} is injective for 

!!£h k-algebra R and each !EE!-R-algebr~ R'. 

-Under this assumption X has the following form. Take a 

k-algebra A and consider for each fppf-A-algebra B the kernel 

X{B,A) of X (B}==t X(B ~AB) • If B' is an fppf-B-algebra, 

then Bt is also fppf over A and the natural inclusion from 

XeB} into X(B') maps X(B,A) into X(B',A). More precisely 

:B '& B I 
A is fppf over Boa AB, hence the standard map X (B® AB) + 

and 
X(B t & Bt) 

A is injective/we can identify X{B,A} with the inter-

section of X(B',A) and X(B). The X(B,A) with B fppf over 

A form a direct system. (If Bl,B2 are fppf over A, then 

Bl CSt AB2 is fppf over Bl and B2 .) So we can form the direct 

limit of these X{B,A) and this is our X(A): 

(2) X{A) = 11m X(B,A). 

As all maps X(B,A) + X{B',A) are injective so are all maps 

X(B,A) + X(A), we can identify X(B,A) with its image in X(A) 

and regard X1A) as the union of all X(B,A). We see especially: 

(3) For X - as in (1) each X(A} + X(A) -- is injective. 

(For arbitrary X this will not be true.) 

If A + AI is a homomorphism of k-algebras, then B fa A' 
A 

fppf over AI for any fppf-A-algebra B, and the natural map 

is 
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XeB) -+ X (BC8)AA' ) maps X(B,A) to X(BeAA' ,A'). 'raking direct 

limits we get a map X(A) -+ X(A') which is easily checked to be 

-functorial. In this way X is a k-functor. It is rather obvious 

that X inherits the property (1) from X. Consider any element 

in the kernel of X{B)-====* X(B& AB) for some fppf-A-algebra B. 

Then it belongs to X(B',B) for some fppf-D-algebra Df. The 

restrictions of the two maps from X(B) to X(B',B) are induced 

by the maps X(B' ,B) -+ X(B' 9 B (BS AB) ,B~AB) .:;. X(Bf8AB,B&AB)C 

X{B'eAB',B$AB)C X(B®AB) and X(B',B) -+ X(B'&A(BtatAB),Be~) -+ 

X(BQJ AB' ,B(9I AB) C X(B' OIJAB' ,BOAB) c. X(B&>AB) where isomorphism 

in the second step is induced by b' e(bl(Stb2)~ (b f b 1). b 2 in 

the first case and by b' (8) (b1e b 2 )'"-+- b I & (b' b 2 ) in the second 

case .. (We use here that B'c9 B' .::. B'9 (BQ B') .::. (B' ® B)e> B' 
A B A A B 

is fppf over B$AB' and 

of ker (X{B)==j X(B9 AB» 

B (8)AB' .) Therefore the intersection 

with X(B',B) is equal to ker (X (B' ,B) 

~X(B'$AB"BQ)AB» = ker(X(B')~X(B'(9AB'»= X(B',A), hence 
~ -contained in X(A). This shows that X is a faisceau. 

For any morphism f: X -+ Y into a k-faisceau Y any f{B)x 

with x E X(B,A) as above has to belong to yeA) C Y(B) so we 

- -can define f: X -+Y through f(A)x == f(B)x E Y (A) • This is 

easily checked to be a morphism and to be unique with fix == f. 

So X has indeed the universal property we wanted. 

Notice: If each f(A) is injective, so is each [(A). So we 

can regard X as a sub functor of Y. One gets easily the following: 
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(4) ~ X be a subfunctor of a k-faisceau Y such that X 
~ 

satisfies 5.3(2). ~ X is a subfunctor of Y. One has 

X(A) ={x E yeA) I there is a fppf-A-algebra B with x E X(B)}. 

It is clear in a situation as in (1), but can be proved 

also in the general situation, that taking the associated faisceau 

commutes with base change: 

(5) Let X ~ k-functor and k' ~ k-algebra. Then (X)k' 

is the faisceau associated to ~,. 

5.5 (Images and Quotients) Let f: X + Y be a morphism of 

k-faisceaux. The subfunctor Ar+ im(f(A» = f(A)X(A) of Y 

satisfies obviously 5.3(2). So 5.4(4) yields a rather precise 

description of the associated faisceau which is called the ima2e 

faisceau of f. We shall usually denote this associated faisceau 

by f(X) or im(f). So in general f(A)X(A) is properly 

contained in f(X){A). 

Notice: If X is a subfunctor of some k-functor Y and if 

both X and Yare faisceaux,then X(A) = X(B} n Y{A) for each 

k-algebra A and each fppf-A-algebra B. This is obvious from 

the description of X(A) as the kernel of X(B)==:tX{S@ AS). 

Now let G be a k-group faisceau and He' G a subgroup 

faisceau, i.e. G is a k-group functor and H is a subgroup 

functor such that both are faisceaux (as functors). Then the 

functor A~ G(A)/H(A) satisfies 5.4(1). This is clear for the 

part about direct products. If B is an fppf-A-algebra and if 

g,g' e G(A) have the property gH(B) = gIHCB), then 
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g-1g1 E G(A) n H(B) = H(A) as observed above. Therefore G(A)/ 

H(A) + G(B)/H(B) is injective. We call the faisceau associated 

to A~ G(A)/H(A) the quotient faisceau of G by H and denote 

it by G/H. (So in general (G/H)(A) F G(A)/H(A». Obviously 

the universal property of XI-+ X shows that (G/H,.) where 

w: G + G/H is the canonical map G(A) + G(A)/H(A) + (G/H)(A) 

has the universal property of a quo~ient within the category of 

{k-faisceaux}. We know by 5.4(3) that the canonical map G(A)/ 

HCA) + (G/H) (A) is injective for each A. This can be expressed 

in the following form: Consider the fibre product GlCG/HG with 

respect to • (twice). Each (GXG/HG) (A) consists of those 

(g,gl)" E G(A)xG{A) with 'II" (g) == '!r(g'), hence (by theinjectivity) 

with gH(A) = g'H(A). Therefore the maps G(A)xH(A) + G(A)xG(A) 

with (g ,h)f-*- (g,gb) induce an isomorphism 

Suppose G acts from the left on a k-functor X satisfying 

5.4(1). Let x E X(k). Then the subgroup functor StabG{x) of 

G is a faisceau where 

StabG(X)(A} = {g E G(A)lgx == x} 

for all A. We may identify the functor A~ G(A)/StabG(X) (A) 

with a subfunctor of X. Suppose now that X is a faiseeau. Then 

the associated faiseeau G/StabG(x) can be identified with a 

subfunctor of X. More precisely the morphism .x: G + X, 

g~ gx factors through G/StabG(x) and induces an isomorphism 
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onto the image faisceau of ~x which is also called the orbit 

faisceau of x • 

• e can define for each ?peration of a k-group faisceau G 

on a k-faisceau X (say from the right) a quotient faisceau X/G 

as the associated faisceau of the functor A~ X(A)/G(A}. In 

general this functor will not satisfy 5.4(1) so in general the 

description of X/G is more complicated than what is done in , 

5.4. If however each G(A) acts fixed eoint free on X{A}, 

then 5.4(1) and 5.4(3) hold and one has similar to (1) an 

isomorphism XxG + XXX/GX' One has always (X/G) (k) = X'(k) /G(k) 

if k is an algebraically closed field, e.g. by [DG], III, §1 1 

1.15. Take such k and assume X(k) and G(k) to be varieties. 

In genera!" there will be orbits of G(k) on X{k) which are not 

closed. Then X(k)/G{k) cannot be a variety such that the 

canonical map X(k) + X{k)/G(k) is a morphism. Therefore in this 

situation X/G is not a scheme. It is only for very nice 

operations (like a subgroup on a whole group) where the quotient 

faisceau leads (most of the time) to the quotient scheme. 

Let us mention one special case. Take G,H as above and 

let H operate on some k-faisceau X from the left. Then H 

operates on GxX from the right via (g,x)h = (gh,h-1x). This 

operation is fixed point free (as the operation of H on G is 

so). Let us denote the quotient (GxX)/H by GxHX and call it 

the associated bundle over G/H corresponding "to X. Notice 
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that the morphism GxH + G/H, (g,x)~ T{g) with T as above is 

constant on the H(A)-orbits and takes values in a faisceau, hence 

factors through GxHX so that we have a canonical map TX: 

GxHX + G/H. It is easily checked that the map (g,x)~ (g,(g,x)H) 

is an isomorphism from GxX to the functor A~ G(A)X(G/H) (A) 

(G(A)xX(A)/H(A). So the right hand side is a faisceau. on the 

other hand its associated faisceau is H 
GX(G/H)(GX X). $0 we get 

an isomorphism 

5.6 (Quotient Faisceaux as Schemes) Let G be an affine 

group scheme and H an affine subgroup scheme. If the quotient 

faisceau G/H happens to be a scheme, then it is because of 5~3(6) 

also the quotient scheme. 

In general G/H is not a scheme, see the counter-examples in 

[DG], III, §3, 3.3 and in [ 10] , p. 157. There are however some 

important cases where it is a scheme which we want to mention now. 

(1) If k is a field and if G and H are algebraic k-groups, 

then G/H is a scheme. 

This is proved in [DG], III, §3, 5.4. (Remember that "algebraic· 

means that k[G] and k[H] are finitely generated as k-algebras.) 

It is-a special case of the following: 

(2) If k is a Dedekind ring, if G is an algebraic k-group and 

if H is a closed and flat subgroup scheme of H, !h!!! G/H is 

a scheme. 



105 

This is proved in [ 1 ] I Thm. 4. C. 

Let us call an affine group scheme Gover k finite if 

keG] is a finitely generated projective k-module. Now one has 

(3) !! Ii is finite, then G/H is an affine ··scheme. 

This is really a special case of the following, more general result: 

(4) ~ X be an affine scheme on which G oEerates fixed point 

!E!!. If G is finite, then X/G is an affine scheme. It is 

isomorphic to SPk{k[X]G). 

Though not stated in this way this follows easily by combining 

[DG], III, §2, nO 4 and §l, 2.10. The results at the first place 

imply that k[XJ is finitely generated and projective as a 

module over k[X]G and that X/G is a subfunctor of SPk(k[X]G). 

The second result quoted implies that the inclusion k[X1Gc: k[xl 

induces an epimorphism X -+ SPk.(k[X]G) in the category of 

k-faisceaQKwhile on the other hand the image faisceau is equal to 

X/G. 

There is in [DG], III, §2 also a discussion of the case 

where X is not affine or where G does not act fixed point free. 

5.7 (Flatness of Quotients) Let G and H be a group == 
scheme such that H is a subgroup scheme of G. Let us quote from 

[OG], III I §3, 2.5 and 2.6 the following result: 

(1) If H is flat and if - G/H is a scheme, then the canonical map 

n G + G/H is faithfull~ flat and affine. 
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If U C G/H is an open and affine subschema and if we are in 

the situation of (1), then ... -1 (U) c. G is an affine subscheme 

of G and k[1I'-1(U)] is faithfully flat over k[U]. If G is 

flat, then k[1I'-1(U)] is flat over k, hence also k[ul is 

flat over k. So we get: 

(2) If G and H are flat anf if G/H is a scheme, then G/H 

is flat. 

~ Proposition: ~ G be a flat group scheme over k 

~ H a flat subgroup scheme in k. If G/H is an affine 

scheme, then H is exact in G. 

Proof: Set R = k[G/H] = k[G]H. -The isomorphism GXH +-

GXG/HG in 5.5(1} is compatible with the action of H by right 

multiplication on the second factors, hence the isomorphism 

k[G] e Rk[Gl .::;. keG]. k[H] is compatible with the repr~sentation 

of H via P
r 

on the second factors (and the trivial represen

tation on the first factors). 

Let M be an H-module. Then we can tensor the last 

isomorphism with M (over k) to get an isomorphism of H-modules 

(1) Me k[G] 9k[H] ~ k[G]@» R(M9k[G]). 

As H operates trivially on the first factor keG], we qet for 

the Hochschild complex 

We know by 5.7(1) that k[G] is faithfully flat over a, hence 
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(2) yields 

Now (I), (3) and 4.7.a imply 

for all n > O. 

Again the faithful flatness of k[G] over R together with 4.10 

yields Rnind~M = 0 for all n > 0, hence our claim. 

Remarks: 1) This proposition follows also from the inter-

n G· pretation of the R indHM as sheaf cohomology groups, cf. 5.13. 

2) For linear algebraic groups over an algebraically closed field 

the converse of the· proposition is proved in [Cline/Parshall/ 

Scott 3], 4.3. 

5.9 Corollar~: Let G be a flat 2rouP scheme over k and 

H a finite sub2roup scheme. Then H is exact in G. 

This 1s clear from 5.6(3). 

5.10 (Associated Sheaves) Let us assume from now on that G 

1s a flat group scheme over k and that H is a flat subgroup 

scheme of G such that G/H is a scheme. Let us denote the 

canonical map G ~ G/H by ~. 

It was mentioned in 1.11 that there corresponds to each 

scheme X a topological space Ixi with a sheaf of rings. 

Furthermore the open subsets of lxl correspond bijectively to 

the open sub functors of x. We can therefore describe a sheaf on 

Ixl as a contravariant functor from {open subfunctors of Xl 
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(with inclusions as ~) to some other category having the 

usual sheaf property for open coverings of open subfunctora 

(defined in 1.7(4». For example, the structural sheaf ~x 

associates to each open subfunctor Y the ring e1x(Y):

Mor(y,~l) = k[Y]. 

We want to apply this to X - GiS and to assooiate to eaoh 

H-module M a sheaf ~(M) = Z'G/H(M) on G/H. We set for each 

open subfunctor U C. G/H: 

(1) ;t:(M) (U) = {f E Mor(.-1u,Ma )lf(9h) = h-1f(g) for all 

h E H(A),g E (.-lU) (A} and all A}. 

If ~-lU is affine, then we have a representation of H on 

k[~-lU] by right translation. Tensoring this with the given 

action we get obviously 

for .-lu affine, 

especially 

(3) :t. (M) (G/H) = ind;M. 

If U,U' are open subfunctors of GiS with u C Of then we have 

an obvious restriction map .:t'(M) (U') .... ;t:(M) (U). So -;t:(M) is 

at least a presheaf. 

We can express the definition of ;L(M) as foll~s. Consider 

the morphisms a: ~-l(U)XH ..... -l(U), (g,h)r+ gh and 0 1
: 

M xH .... M , (m,h)~ h- 1m. Then f e MorC.-1CU),M
ft

) is in 
a a .. 

~(M)(U) if and only if foa m a'o(fxi~}. So we have an exact 

sequence 
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Because of 5.3(7} the functors U~ MO~{~-l(U),Ma) and Ur+ 

Mor(.-l(u),Ma ) are sheaves, hence so is ;e(M). It is called the 

Associated sheaf to M on G/R. It is obviously a sheaf of 

~G/H-modules. If·~: M + M' is a homomorphism of H-modules, then 

ft-+ tp 0 f . a 

is obviously a homomorphism of ~/H-modules. so:t: is a functor 

from {H-modules} to {~/H-modUleS}. 

5.11 = a) The functor ;L is exact. 

b) For each H-module M the e7G/H-module ;t (M) . is g:uasi-coherent. 

c)!! M is an H-module which is finitely generated over k, then -
~(M) is a coherent ~G/H-module. 

Proof: a) It is enough to show that Mr+:t (M) (U) is exact 

for any open and affine Uc. G/H. For such U also -1 U' = 11' U 

is affine and k[U'] is faithfully flat over k[U} by 5.7(1). 

It is therefore enough to show that 

is exact, cf. 5.10(2). The isomorphism in 5.5(1) induces an 

isomorphism U' xH + U' x U' 
U 

compatible with the right action of 

H on the second factor, hence so is the corresponding 

isomorphism k[U']\9 k[U}k[U' J J& k[U'] ® k[H]. As (k[H]® M)H .::. M 

(cf. 3.7(6», the functor above can be identified with M~ M®k[U']. 
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This is exact, as we assume G to be flat. 

b) For each scheme X and each k-module M the sheaf u~ Mor(U,Ma ) 

is quasi-coherent. (If X is affine, then it is the quasi-

coherent sheaf associated to the k[X]-module k[X]®M, cf. 

-1 
~neda's lemma, 1.3). The sheaves U~ Mor(. (U),Ma ) and 

-1 
u~ Mor(. U)xH,Ma ) in 5.10(4) are direct ~mages of such sheaves, 

hence quasi-coherent (cf. [Hal, II, 5.8), hence so is the kernel 

;('(M), cf. [Ha], II, 5.7. 

c) We have to show that ~(M)(U) is finitely generated over 

k[U) for each U C:G/H open and affine. As k[.-lU] is faith-

fully flat over k[U) 

k[1l· -lU]@k[U] ~(M) (U) 

by 5.7(1) it is enough to shOW that 

finitely generated over -1 
k[w U], e.g. 

by [ 3 ], ch. I, §3, prop. 11. This module is isomorphic to 

k[lI'- l U]@M as seen in the proof of a), hence finitely generated 

by assumption. 

5.12 (ExamEles) Let us mention a free trivial cases. The 

trivial H-module k yields ~(k)(U) = Mor{'Ir-l(u),~1)H ; 

Mor(lI'-l(u)/H, AI) .= Mor(U, AI), hence 

Consider on the other hand the H-module k[H] under p 1 

or, more generally, any M~ k[H] for any k-module M regarded as 

a trivial H-module. For any UC G/H open and affine we can 

identify Mor (. -IU, (M <9k [H]) J'= Mor ( ('Ir -10 ) xH ,Ma) and the 

H-invariance condition translates into f(g,h') = f(9h,h- 1h'} for 

all g,h,h'. The map (g,h)~ (gh,h) is an automorphism of 
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(w-1U)XH and transfers the condition into f(g,hh l ) = f(gth'). 
y -1 

In this way ~ (M)(U) is identified with Mor(~ U,Ma ) = 
~G/l(M)(w-lU) = (~*~G/l(M»(U). This.implies 

(2) ;e(MGtk[H]}':::' ~*.:;eG/l (M). 

This is a special case of the following result. Let H' ~ H 

be a flat subgroup scheme such that also G/HI is a scheme. There 

is a canonical morphism Wi: G/H' ~ G/R. Then we get an isomorphism 

of functors 

(3) 

On the level of global functions this is just the transitivity of 

induction 3.5{2}. Theproof may be left to the reader. 

We have for all H-~odules M and all 
t 

nEtJ isomorphisms of k-modules 

Proof: We can interprete 5.10(3) as an isomorphism of functors 

where f is the forgetful functor from {G-modules} to {k-modules}. 

In order to apply 4.1(2),(3) we have to know that ~ maps 

injective H-modules to acyclic sheaves. By 3.9.c it is enough to 

consider H-modules of the form M~ k[H] for a trivial H-module M. 

Because of 5.12(2) we have to look at all Hn(G/HI~*~/l(M». 
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But as G and ~ are affine we get e.g. from [Hal, III, 

exerc. 4.1 and thm. 3.5 that 

for all n > O. 

5.14 Of course 5.13 gives another approach to proposition 5.B. 

Let us mention two corollaries which follow from well known 

results on sheaf cohomology (cf. (Ha], III, 2.7 and 5.2(a»: 

(1) SUEPose that G/H 

n > dim G/H. 

is noetherian. , Then for all 

(2) SUEPose that k is noetherian and that M is finitely 

generated over k. If G/H is a Erojective scheme/then each 

Hn(G/HI~(M» ~ Rnind~M is a finitely generated k-module. 

One can use 5.13 also to get new approaches to earlier results. 

For example 5.12(3) yields at first isomorphisms of derived 

functors (Rin~)O~G/HI ~ ~G/HO(Riind~')1 cf. [Andersen 2], 

1.2, and then we get 4.5.c from the Leray spectral sequence 

Hj(G/H,Ri~~?)==>Hi+j(G/HI,?). 

5.15 (Associated Sheaves and Bundles) The associated sheaves = 

:t:(M) can also be described using the associated bundle 

as in 5.5. Set 

the set of all morphisms 

of all sections of over 

for each open U C. G/H equ~l to 

u. (Here 

i.e. 

is the w
M 

from 
a 

5.5.) We claim that we have for each such U a canonical biject1cn 
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(1) 

Any f E ;(M) CU) is f: 
-1 

+ M , hence defines a map 'If U a , a 
f 1 : -1 H with 'lfMof1 E 'If-lU map 'II' U + Gx M = 'If by mapping any g a 

at first to (g,f(g» EGxM and then to its canonical image in a 
H 

Gx Ma' This map fl is obvious constant on H-cosets, hence 

factors through 'If- I U/H which we can identify with U via '11'. 

-1 
(Note that ~ U is an open subfunctor of G, hence a scheme, 

-1 sense 
hence a faisceau so that 'II' U/H makes land is equal to U.) 

The factorisation f: U + GxHMa satisfies 'lfM~fo'if = 'If, hence 

'll'Mof = idu' i.e. f E fCU,GxHMa). 

Consider on the other hand H 
5 E r (U, Gx M ). a Take the isomorphism 

H 
a: GXG/H(Gx Mal + GXMa from 5.5(3). Combining the map g~ (g,s(g» 

from 'II'-IU to GXG/H(GxHMal with a and then the second 

projection GxM + M a a 

now be checked that 

-1 
we get a morphism sl: 'If U + Ma' It can 

sl E ~(M) (U) and that the maps s~ 51 

and f~ f are inverse to each other. See [Cline/Parshall/Scott 9], 

1.3 for more details. (In down to earth terms sl(g) is for any 

g E 'II'-IU(A) the unique element in M@ A such that s ('lfeg) ) is 

the class of (g,s1(g». 

5.16 (Pull-backs) Let ~: G1 + G be a homomorphism of k-group = 
schemes and let H' be a subgroup scheme of G' with ~(H I)C H. 

Suppose that G'/H' is a scheme. 

The universal property of G'/H' yields a morphism 

-~: GI/H' + G/H with 'll'O~ = ~o'll" where n: G + G/H and 'lfl: 

G' + G'/H I are the canonical maps. We can now form for each 
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H-module M the inverse image sheaf iii· .GG/H (M) • On the other hand 

we can consider M via (PIH' as an H'-module and form :z:: G '/8 t (M) . 

We claim that these sheaves of C?G I /H' -modules are isomorphic : 

One can show that the inverse image of the sheaf u~ r(U,GxHMa ) 

is the sheaf· UI~ r(U',G'/H'XG/HCGxHMa». One can check that 

there is an isomorphism G,xH'M ~ G'/H'x /H(GxHM) of the form a G a 

(g',m)H'1-+ (g'H',(ql(g'),m)H). (Details may be left to the reader.) 

From this we get (I) using 5.15. 
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6. Factor Groups 

If G is a k-group faisceau and N a normal subgroup faisceau 

of G, then G/N is again a k-group faisceau and has the 

universal property of a factor group. This and related things are 

described in 6.1/2 following [DGJ. 

In this chapter we discuss the relation between the represen-

tation theories of G,N and G/N under the assumption that they 

all are flat group schemes. The results are usually generalizations 

of known theorems in the case of abstract group theory like e.g. 

the Lyndon-Hochschild-Serre spectral sequence in 6.6 or the 

Clifford theory in 6.14/15. 

More or less all necessary references have been given before. 

Let me add that 6.11 generalizes 3.1 in (Andersen/Jantzen]. 

6.1 (Factor Groups) Let G be a k-group faisceau and N a 

normal subgroup faisceau of G. Obviously A~ G(A)/N(A) is a 

k-group functor. Then so is the associated faisceau G/N. This 

follows (on one hand) from the universal property (cf. [DG], 

III, §3, 1.2) and is (on the other hand) clear from the construc

tion in 5.4/5: For any g,g' E (G/N) (A) there is an fppf-A-a1gebra 

B with g,g' both in the kernel of G(B)/N(B) ~G(B<8AB)/N(B®AB). 

As th h hi 1 gg l and g-1 belong ese maps are group omomorp sms a so 

to the kernel. This yields easily the group structure on each 

(G/N) (A). Furthermore it is simple to see that all maps (G/N) (A) 

+ (G/N) (A') and G(A) + (G/N) (A) are group homomorphisms. 

Hence G/N is a k-group faisceau and the canonical map ~: G + G/N 
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is a group homomorphism. We call GIN the factor group of G 

by N. 

Note that GIN has the universal property of a factor group: 

If ~: G -+ G' is a homomorphism of k-group faisceaux with 

N C ker ( ~) , then there is a unique group homomorphism ~: GIN -+ G' 

with ~OT =~. (As ~ is constant on the N-cosets, the universal 

-property of GIN as a quotient faisceau gives the existence of ~ 

as a morphism. It is immediate from the construction that ~ is 

a group homomorphism. This follows also from the uniqueness of 

;p.) 

For any homomorphism ~: G -+ G' of k-group faisceaux the 

kernel ker(~) is a normal subgroup faisceau of G. We can 

identify G/ker(~) with the image faisceau im(~ which is a 

subgroup faisceau of G' • This is really a special case of an 

orbit faisceau as we can make any 9 E G(A) operate on G' (A) as 

multiplication with ~(g). 

6.2 (Product Subgroups) Let G be a k-group faisceau and 

let H,N be subgroup faisceaux of G such that H normalizes 

N. We can then form the semi-direct product H \I( N and have a 

natural homomorphism HkN -+ G, (h,n)...- hn with kernel isomorphic 

to the intersection H () N (cf. 2.6). Both H)(' N and H () N 

are k-group faisceaux. We denote the image faisceaux of the 

homomorphism H II< N -+ G by HN and call it the product of H and. 

N. It is a subgroup faisceau of G with 

(1) (HJI<N)/(H () N) .:::. HN. 
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The definitions imply for any k-algebra A 

(2) (HN) (A) = {g E G(A)I there are an fppf-A-algebra Band 

h E H(B), n E N(B) with g = hn in G(B)}. 

Obviously N is a normal subgroup faisceau of HN. The canonical 

homomorphism HN + (HN)/N has kernel Nt hence its restriction to 

H has kernel H n N. We get thus an embedding H/{H n N) + 

(HN)/N which has to be an isomorphism: For all g,h,n as in (2) 

the element h(H(B) n N(B» defines an element in (H/H n N»(A) 

which is mapped to gN(A). Therefore all (HN) (A)/N(A) are in 

the image, hence all ((HN)/N) (A) in the image faisceau. So we 

get the isomorphism theorem 

(3) H/(H n N) + (HN)/N. 

Suppose now that N is normal in G and let w: G + GIN be 

the canonical map. Let us denote by n{H) the image faisceau of 

Then 

(4) 

Indeed, if 9 E ~-l(n(H» (A) then there is B (fppf over A) 

with w(g) E w(H(B», hence h E HCB) with gh-1 E Ker(n) (B) = 
N(B) and 9 E (HN) (A) by (2). The other inclusion is even more 

obvious. 

If H:> N, then obviously HN = H and -1 
H = n (,dH». So 

we have for normal N the usual bijection between {subgroup 

falsceauxof G containing N} and {subgroup faisceaux of GIN}. 
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Furthermore one can then show (for H.:::. N) that H is normal in G 

if and only if H/N is normal in GIN and that one has a 

canonical isomorphism -(G/N)/(H/N) + G/H of faisceau which is a 

group isomorphism, if H is normal, cf. [DG], III, §3, 3.7. 

~ (GIN-mOdules) Let us assume from now on until the end of 

this chapter that G is a flat group scheme over k and that N 

is a normal and flat subgroup scheme of G. 

Via the canonical map v: G + GIN any GIN-module M is in a 

natural way also a G-module. We denote this G-module by w*M in 

case a special notation is useful, otherwise we simply write M. 

Obviously v* is a functor from {GIN-modules} to {G-modules} 

which is exact and faithful, i.e. we have for all GIN-modules M/M': 

-(Any g E (GIN) (A) has a representative g E G{B) with B fppf 

over A. If <p E HomGhr *M, v*M' ) , then IP e idB commutes with g, 

-hence <p~ idA with g as Me A is mapped injectively into 

MGtB.) 

The image of * consists of all G-modules V on which N v 

operates trivially. For such V the k-group functor At- G(A)/N(A) 

operates naturally on Va and this operation can be extended 

uniquely to the associated faisceau GIN as V a is itself a 

faisceau. This follows from the universal property of GIN and 

also from its explicit description in 5.4/5. 

The full subcategory of all ~modules on which N operates 
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trivially is obviously an abelian category. So we see that the 

category of all GIN-modules is an abelian category even without 

knowing whether GIN is a flat group scheme (what we needed in 

2.9) or not. 

6.4 For any G-module V the subspace vN is a G-submodule 

of V be 3.2 on which N operates trivially. We therefore can 

regard VN as a GIN-module and V~ vN as a left exact functor 

from {G-modules} to {GIN-modules}. 

Lenuna: The functor Vf-+ vN !£2!!! {G-modules} to {GIN-modules} 

is right adjoint to * Tr . It maps injective G-modules to injective 

GIN-modules. The cate90ry of GIN-modules contains enou9h injective 

objects. 

Proof: We have for any GIN-module M and any G-module V 

by 6.3(1) where the first isomorphism is induced by the inclusion 

~ c:: V. This shows. that Vt-+ VN is right adjoint to the exact 

functor * 11' , hence also that injective objects are mapped to 

injective objects. Any embedding of Tr*M into an injective G-module 

o induces an embedding of M into the injective GIN-module QN. 

Therefore {GIN-modules} contains enough injective objects. 

Remark: We can ~eneralize the above as follows. Let E be 

a G-module which is finitely generated and projective over k. 

Then M'-; 11'* (M)8> E is an exact functor from {GIN-modules} to 

* N J;-modules}. The functor V ..... HO~(E/V) 1:1. (E Q)V), cf. 2.10(6} I 
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is right adjoint to it. It is therefore left exact and maps 

injective G-modules to injective GIN-modules. Indeed, one has for 

any G-module V and any GIN-module M 

using 4.4 for the last step. Notice that we can regard this also 

as an isomorphism of functors 

6.5 (Factor Groups as Affine Schemes) Let us quote from [DGJ, 

III, §3, 5.6 the following result: 

(I) If k is a field and if G,N are algebraic k-groups, then 

GIN is an algebraic k-group. 

Notice that in our convention an algebraic k-group is assumed 

to be affine. 

Another case where we know GIN to be affine is when N is 

a finite group scheme (by 5.6(3}). 

Let us recall from 5. 7 (2) and 5.8.: 

(2) If GIN is an affine scheme, then it is flat and N is 

exact in G. 

Of course in this case we do not need 6.3/4 to see that 
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{GIN-modules} is an abelian category and has en~~gh injective 

objects. The functor V.- ~ maps M(9 k [Gl for any k-module M 

to M9k[G]N ::. M@k[G/N] if k is a field. Therefore we can use 

also 3.9.c to shoYl that it maps injectiv~ l3-modult.~s to injective 

G/N4modules (in that case). 

6.6 Proposition: Suppose N is exact in G. ~ E be a 

G-module which is finitely generated and projective over k. 

Then the derived fUnctors of V~ HO~(E,V) ~ {G-modules} to 

{GIN-modules} can be identified with There are 

for each GIN-module M and each G-module V spectral sequences 

(1) 

and 

(2) En,m n m n+m = ExtG/N (M,H {N, V»':=:> ExtG (M, V) 2 

and 

(3) En,m 
2 = Hn(G/N,Hm(N,V»~Hn+m(G,V}. 

Proof: As N is exact in G the functor G resN maps 

injective G-modules to modules acyclic for the fixed point functor 

?N. (Use 3.9.c and 4.10.) The composition of ?N from 

{N-modules} to{k-modules}with 

sition of res GIN with ?N 
1 

G resN is isomorphic to the compo-

from {G-modules} to {GIN-modules}. 

Therefore 4.1(2),(3} implies that all Vr+ gn(N,V)' can be regarded 

as the derived functors of ~ vN from {G-modules} to {GIN-modules}. 

The same is true for v ...... Hn (N IE <9 V) ~ Ext: (E I V) t cf. 4.4, 
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As HO~(E,?) maps injective G-modules to injective G/N

modules we can apply 4.1(1} to 6.4(1) and get the spectral sequence 

in (1). Taking E = k we get (2), and setting M = k yields 

(3). 

Remark: The spectral sequence in (3) is known as the Lyndon

Hochschild-Serre spectral sequence. 

6.7 In the special case E = k the proposition 6.6 implies 

that each Hn(N,V) for any G-module V has a natural structure 

as a GIN-module. This can be constructed using the Hochschild 

complex. We make G act on each en (N, V) .::r. V .. (g)nk [N 1 via 

the given representation on V and via the conjugation action 

on each factor k[N]. Then each an is a homomorphism of G-modules 

as AV and AN are so. This makes each Hn(N,V) into a 

G-module. 

n One can now check that all connecting maps H (N,V") + 

n+1 H (N,V') for any exact sequence 0 + Vi + V + V" + 0 of G-modules 

are homomorphisms of G-modules. (See [Sullivan 3], 4.1 for the 

case of a field.) The universal property of derived functors 

(via 6-functors) shows then that the G-modules Hn(N,V) constructed 

in this way yield the derived functors of V~ ~ from {G-modules} 

to {G-modules}. This functor can be written as the composition of 

V~ ~ from {G-modules} to {GIN-modules} with the natural inclusion 

of {GIN-modules} into {G-modules}. The last functor being exact 
n implies that GIN-structure on H (N,V) given by the proposition 
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must lead to the same G-structure as the construction using the 

Hochschild complex. 

Notice that this implies in the case G = N that the action 

of G on the Hn(G,V) constructed with the conjugation action on 

the Hochschild complex is trivial. 

~ Corollary: Suppose that N is diagonalizable. Then we 

have for all G-modules V and E with E finitely generated and 

Erojective over k, for all GIN-modules M and all n E rJ 

isomorphisms 

and .......... 

and 

Proof: All this follows immediately from 6.6 and 4.3 as each 

E~ is a projective k-module and as N is exact in G (cf. 4.6). 

Remark: If we apply (3) to the G-module * n M, then we get 

~ Corollary: Suppose that GIN is a diasonalizable sroup 

scheme. Then we have for all G-modules V and E and for all 

GIN-modules M witb E,M Erojective over k and rkk(E) < ~ 

jsomorphisms for all n EN : 
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(2) 

and -
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n ExtG(M,V) 

Proof: As GIN is affine, hence N exact in G, we can 

apply 6.6. The formulas follow now immediately from 4.3. 

Remark: Suppose GIN ~ Diag(A) for some abelian group h. 

We have by 2.11(3) decompositions 

(for all nE N). The map cpl-+ cp( 1) is for any GIN-module M' 

an isomorphism HomG/N(kA,M') + Ml, cf. 2.11(4). We can there

fore identify the direct summands in (4) ,(1) and 4.4 as follows: 

(5) 

fie use the convention Ee A = E 6J k). etc.) In the special case 

E = k we get (for all A E h and n EN) 

6.10 Proposition: Let H be a flat subgrouE scheme of G 

with N c. H. SUPEose that both GIN and H/N are affine. Then 

one has for each H/N-module M and each n EtJ an isomorphism 

of G-modules 
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(1) 

Proof: Let ~: G + GIN and ~I: H + BIN be the canonical 

maps. Our claim ought to be formulated as an isomorphism of 

functors: 

(1' ) ( RnindHG)~~,*; * Rni d G/N 
1f 0 n H/N" 

Let us consider at first the case n = I, i.e. get an 

isomorphism 

The right hand side is a subs~t of Mor(G/N,Ma ) which we may 

identify with MOr(G,Ma)N because of the universal property of 

GIN. (Remember that Ma is a faisceau.) Any f E Mor(G,Ma ) 

will belong to ind~~:(M) if and only if f(gn} = f(g) and 

f(gh) = h-1f(g) for all g E G(A), h E H(A), n E N(A) and all A. 

As N(A) C H (A) operates trivially on M ~A we can drop the 

first part of the condition. The second one alone describes just 

in~{M) so that we get (2). As above we ought to have formulated 

this as an isomorphism of functors 

(2' ) G 
'indHo~' - i dG/N 

- ~ 0 n H/N. 

This formula implies (1) using 4.1(2), (3) as soon as we can 

show that w'* maps injective H/N-modules to H-modules acyclic 
G for indH• By 3.9.c it is enough to look at H/N-modules of the 

form Q8k[H/N] ; ind~/N(Q) for injective k-modules Q. Applying 

(2) to (H,N) instead of (G,Hl we can identify 1f'*(ind~/NQ) 
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with in~(Q) where we regard Q as a trivial N-module. 

By our assumption N is exact in H and G. The spectral 

sequence 4.5.c yields therefore 

(3) for all n > O. 

This certainly implies the required acyclicity of ind:(O) 

above, hence (1). 

Remark: We use often only the following part of the proposition: 

Let M be an H-module. If N operates trivially on M, then 

it operates trivially also on in~M and even on all 

6.11 The isomorphism in 6.10(2) can be regarded as a 
of a 

special case/more general statement which we are going to prove 

now. 

Proposition: ~ H be a flat subgrouE scheme of G. 

Suppose both G/N and H/(H n N) are affine schemes. 

a) The functors El' E2 from {H-modules} to {G/N-modules} with 

{G/N-modules} with 

and 

are isomorphic. 
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b) For each H-module M there are spectral sequen~ 

Proof: a) Let n: G + GIN and ~I: H + H/(HON) be the 

canonical maps. Obviously This yields 

an isomorphism of the adjoint functors, i.e. of ~l and ~2. 

b) Both and are compositions of two left-exact functors. 

It is enough to show that the first one maps injective objects 

to acyclic objects with respect to the second one. Then we can 

apply 4.4 (1) • 

The fUnctor G indH maps injective H-modules to injective 

G-modules (3.9). This gives the claim for ~l· Notice that we 

have to apply 6.6 in order to regard the Hn(N,?) as derived 

functors on the category of G-modules. 

In the second case we have to apply 6.4 to (H/HON) instead 

of (G,N). 

Remark: Notice that a) implies RnF Z RnF for all n, 
=1 ==2 

so the two spectral sequences (1) and (2) have the same abutment. 

6.12 Proposition: ~ H be a flat subgroup scheme of G 

such that HN is an affine scheme. 'l'hen there are isomorphisms 
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(1) 

and 

(2) 

HN i dHN .: resN 0 n H 

HN i dHN .: resH 0 n N 
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Proof: Let H' be the kernel of the obvious homomorphism 

HCI<N -+ G which can be identified with H n N viah ......... (h,h- I ), 

cf. 2.6. We have an isomorphism (H~N)/H'': HN, so HN is by 

our assumption and by 6.S(2) flat. 

Let M be an H-module and HI an N-module. Because of 

HI n N = 1 = HI n H (in Ht><N) we get from 6.11.a isomorphisms 

Now 3.8(2),(3) yield 

Here any h E H(A) and n E N(A) operate via P (h). n c 

resp. p!, (n)8 1 on k[N]9 M where 

action. If. h E H(A) n N(A), then 

Pc is the conjugation 

(h,h- 1 ) E H I (A) . acts 

therefore as p (h)&t h. 
r 

as in the definition of 

So N 

N 
indHnN • 

and H n N act on k[N]C8I M 

This yields (1). 

Similarly, any h E H(A) will operate on k[H]8M' as in 

the definition of ind:nN(H' ). Some (n,n-1 ) E HI (A) with 
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n E N(A) 0 H(A) will not operate in that way, but the set of 

fixed pOints will be the same. (Regarding f E k[HJ$M' as 

morphism H + M, then (n,n-1 )f(h) = (h-ln-1h)f(hoh-ln-lh).) 
a 

From this we get (2). 

Remark: Suppose that also H/(H 0 N) is affine. Then 

H resHON maps injective H-modules to modules acyclic for . dN 
l.n HON as 

for all n > 0 and all k-modules Q. We therefore get from (1) 

and 4.1(2),(3) isomorphisms of derived functors (for each n E N) 

( 3 ) HN Rni d HN .::; Rn . d N H resN .. n H J.n HON ~esHON • 

In (2) the higher derived functors are 0 (for H/CHON) .::; 

(HN)/N affine). 

6.13 Keep the notations of 6.12. The inclusion of H into 
= 

HN induces by 6.2(3) an isomorphism H/(HON) ~ (HN)/N. Similarly 

one can show that the inclusion of N into HN induces an 

isomorphism of faisceaux N/{HON) ~ {HN)/H. (One can regard 

(HN)/H as an orbit faisceau of N, cf. 5.5(2).) 

Suppose now that these quotient faisceau are schemes. Then 

any N-module M' resp. any H-module M defines a sheaf 

.:z(HN)/N(MI) resp. ~(HN)/H(M) as in chapter.5. The isomorphisms 
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above identify it with ~H/(HnN)(res:n~l) resp. ~N/CHnN) 
H (resHnNM). This is a consequence of 5.16(1). Using 5.13 one 

gets another approach to 6.12(3) and the symmetric statement 

with Hand N interchanged. 

This can be generalized as follows: Let H,H' be flat 

subgroup schemes such that the multiplication map m: HxH' + G 

has image faisceau equal to G. Then one gets an isomorphism of 

faisceaux H/(HnH') + G/H'. If these quotient faisceaUKare 

Sheaves, then one gets as above 

(1) G Rn . dG resR- l.n H' 

A (slightly) more general result is proved in [Cline/ 

Parshall/Scott 9], 4.1. 

6.14 Any g E G(k) operates through conjugation on each 
= 

N(A). We can define for each N-module V another N-module gv, 

the module twisted by g, by taking the same k-module but by 

making any n E N(A) act as 
-1 g ng acts on V. Then obviously 

g(g'V) ~ (gg '. ) V for any g,g' E G{k). Furthermore nV .::. V 

for all nEN(k): The action of n on V gives the isomorphism. 

More generally, if V is an N-submodule of a G-module M, then 

gV is another N-submodule of M which is isomorphic to gv. 

Suppose from now on that k is a field. Any N-module V 

is simple (resp. semi-simple) if and only if gv is so. This 

implies: 

(1) If M is a G-module, then socNM is G(k)-stable. 
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Let L,M be G-modules with dim(L) <~. Then Hom(L,M) ~ 

L* ® M is also a G-module and HO~(L,M) ~ (L*~M)N is a 

G-submodule, cf. 6.3/4. The map <P ®XH- !p (x~ from Hom(L,M) S L 

to M is easily seen to be a homomorphism of G-modules. There-

fore 2.14(3) implies 

(2) If L is simple as an N-module with EndN(L) ~ k, then we --
have an isomorphism HO~(LIM)0L ~ (SOCNM}L of G-modules. 

6.15 We call G(k) dense in G if there is no closed = 
subfunctor X C G with X(k):;:) G(k} and X F G, cf. the 

definition of closuresin 1.4. If k is an algebraically closed 

field and G is a reduced algebraic k-group, then G(k) is 

dense in G (by Hilbert's Nullstellensatz). The same is true 

for G reduced connected and algebraic over any infinite perfect 

field ([BO], 18.3). For reductive G one may even drop the 

assumption "perfect". 

Proposition: Suppose that k is a field and that G(k) 

is dense in G. Let M be a G-module. 

a) The N-socle SOCNM is a G-submodule of M. 

b) If" M is a semi-simple G-module," then M is also semi-simple 

for N. 

Proof: As G{k} is dense any subspace of M is by 2.12(5} 

a G-submodule if and only if it is G(k)-stable. Hence (a) 

follows from 6.14(1}. If M F 0, then socNM F 0 by 2.14(2). 

Therefore (b) follows from (a). 
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flat 
6.16 Let ~: G ~ G' be a homomorphism of/group schemes. 

Each G'-module M is in a natural way also a G-module. This 

yields an exact functor * ~ fran {G I -modules} to {G-modules}. 

In two special cases we have constructed a left adjoint functor 

When ~ is an inclusion, then 

induces an isomorphism G/ker cp ~ Gi, 

G' 
cp* = indG ' and when cp 

then cp = ?ker(cp). 

* 
In 

general ~ is a composition of maps of this type ([DG], III, 

§3, 3.2) so we get such a left adjoint in general. See [Donkin 1], 

section 3 or [Cline/Parshall/Scott 6], 1.2 for a unified treat-

menta 
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7. Al2ebras of Distributions 

OVer a field of characteristic 0 the representation theory 

of a connected algebraic group G is very well reflected by the 

representation theory of its Lie algebra ~. Any representation 

of G gives rise to a representation of ~. Then the notions 

of "submodule", "fixed point" or "module representation" give the 

same result whether applied to G-modules or to ~-modules. 

This is no longer true in characteristic p F O. Still any 

G-module yields a g-module in a natural way, but now there may be 

~-submodules which are no G-submodules, or g-homomorphisms which 

are no G-homomorphisms, etc. 

It is however still possible to save some of the advantages 

of the linearization process (of going from G to g) by looking 

not only at 2 but at the algebra Dist(G) of all distributions 

on G with support at the origin. {See 7.1 and 7.7 for the 

definition. } 

In characteristic 0 it will not contain more information, 

as then Dist(G} is isomorphic to the universal enveloping algebra 

of g. This is no longer true in characteristic p F 0 and 

there Dist(G) will do everything that g does not do (7.14 -

7.17) • 

In this chapter we give at first the definitions of distributions 

with support in a rational point on an affine scheme, prove 

elementary properties and then go over to distributions on group 
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schemes with support in the origin. 

The definitions and results are more or less contained in 

[DG], [T] and [YJ. In [T] and [YJ there are many more results 

on distributions on schemes over a field than I could include 

here. In some cases it was necessary to extend their results 

from fields to rings. There [Haboush 3] was very useful. 

7.1 (Distributions with support in a pOint) Let X be an 

affine scheme over k and x E X(k). Set Ix = {f E k[X]lf(x) = OJ. 

Then k[X] = kl $ Ix ~ k $ I . x 

A distribution on X with su~port in x of order < n 

is a linear map ~: k[X] ~ k with P(I~+l) = O. These distributions 

form a k-module which we denote by Distn(X,x). We have 

(1) (k[X]/In +1 )* ~ Dist (X,x) c k[X~ x n 

Obviously DistO(X,x) ~ k* ~ k and for any n 

(2) Distn(X,x) ~ k e Dist~(X,X) 

where 

(3 ) Dist~(X,X) = {p E Dist (X,x) Ip(l) = O} 
n 

For each p E Dist (X,x) we call pel) its constant term and 
n 

elements in Dist~(X,X) are called distributions without 

constant term. The k-module Dist~(X,x) ~ (Ix/I~)* is called 

the tangent space at x in x and denoted by 

II, §4, 3.3 for another description.) 

T X. 
x 

(ef. [DG], 
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The union of all Distn{X,x) in k[X]* is denoted by 

Dist(X,x} and its elements are called distributions on X with 

support in x: 

(4 ) Dist(X,x) = {}.1 E k[x]*13n EN: ll(I~+l) = O} = U Distn(X,x). 
n>O 

This is obviously a k-module. Similarly Dist+(X,x) = U Dist~(X/X) 
n>O 

is a k-module. 

For each f E k[X] and }.1 E k(X]* we define fll E k[X]* 

through (f}.1)(f l ) =.ll(ff1 ) for all f1 E k[X]. In this way k[X]* 

is a k[X]-module. As each is an ideal in k[X]; obviously 

each Distn(X,x) and hence also Dist(X,x) is a k[X]-submodule 

of k[X]*. 

We have restricted ourselves above to the case of affine 

schemes. There is however a definition available for all schemes. 

One defines distributions in general as special deviations([DG), 

II, §4, 5.2), shows that all these deviations form a k-module([DG], 

II, §4, 5.4}, and uses [DG], II, §4, 5.7 in order to prove that one 

gets in the affine case the same definition as above. 

In the case of a ground field, however, we can easily give 

another description which works for all schemes. Suppose that k 

is a field. Then we can associate to x E X(k) the local ring 

e? and its maximal ideal m. In the affine case these are X,x -x 
localizations Q)x,x = k[X]x and ~x = (Ix)x' Furthermore the 

natural map 

(f) Am) n+l 
X,x'-x 

k[ X] + (!) X, x 

for all n. 

induces then isomorphisms 

So we can in general define 

k[X]/In+l :::. 
X 

Distn(X,x) 
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as (~ I (m ) n+ 1 ) * . 
X,x -x Similarly we get + Dist(X,x), Dist (X,x), 

+ Distn(X,x). 

7.2 (Elementary Properties) Let ~: X ~ Y be a morphism of 

affine schemes over k and let 

Then ( *)-1 
~ Ix = I~(x) for all 

* ~ : k[Y] ~ k[X] 

x E X (k) , hence 

be its comorphism. 

* n+l 
~ (I~(x» 

and induces a linear map k[Yl!In+1 
~(x) 

~ k[X]/In+1 • The x 

transposed maps for all n yield a linear map 

(1) (d~)x: Dist(X,x) + Dist(Y,~(x» 

with 

+ for + the c: Distn(Y'~(x» all n. We get on TxX = Dist1(X,x) 

usual tangent map and call (d~)x in general the tangent map 

of ~ in x. One checks easily d(1/Io~) = (dljl) ~(x)o d~x for 
x 

any morphism 1/1: y + Z into another affine scheme. 

Let X be an affine scheme over k and x E X(k). Suppose 

I is an ideal in k[X] with x E V(I){k), i.e. with leI, x 

cf. 1.4 for the notation. We can then apply the construction 

above to the inclusion of V(I) into x. We have k[V(I)] = 

k[x]/I, the ideal of x is I II, x its n-th power is 

This implies that the inclusion yields isomorphisms 

(2) Distn(V(I) ,x) .::. {lJ EDistn(X,X) h.dI) = O} 

and 

(3) Dist(V(I) ,x) .::. {lJ E Dist(X,x) 1 .. 1(1) = O}, 
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+ Dist • We shall usually identify both 

sides in (2) and (3). If I' is another ideal with x e V(I')(k), 

then 1.4(5) implies 

(4) Dist{V{I)nV(I'),x);::: Dist(V(I),x)ODist(V(It),x) 

+ + similarly for Distn, Dist , Distn " If x E D(f)(k) for some 

f E k[xJ, then the canonical map k[X] ~ k[xl f induces an 

isomorphism of each k[X]/I~+1' onto the corresponding object for 

D(f). Therefore the inclusion of D(f) into X induces an 

isomorphism 

(5) Dist(D(f),x) ~ Dist(X,x), 

similarly for Distn , etc. 

The constructions and results above have generalizations to 

the case where the schemes are not affine. This is particularly 

obvious when k is a field and when we can work with ~,x. 

One can also generalize (5) to Dist(Y,x) : Dist(X,x) for any 

open subschema Y of X with x e Y(k). 

~ (Distributions on t\n) Let us consider as an example 

at first X;::: Al =: SPkk[T] and x;::: 0, hence Ix = (T). The 

k-module k[Xl/In+1 is free and has the residue classes of x 
012 n 

1 - T , T - T IT , ••• ,T as a basis. Define 

k[ A 1]* through Ym(~) = 0 

Then obviously Dist ( A 1,0) 

for n'/:m und 

is a free k-roodule with basis 

( Y m) mE t\I and each Distn ( A 1 ,0) is a free k-module with basis 

(y ) If k is a field of characteristic 0, then obviously m O<m<n" 
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This can be easily generalized to t\m = SPkk[T1, ••• ,Tm] 

Nm for all m. For each multi-index a = (a(1),a(2), ••• ,a(m» E 

set = Ta (1)Ta (2) Ta(m) 
1 2 ••• m and denote by the linear' 

map with Ya(~) = 0 for all and 

One checks easily that is free over k 

as a basis and that 

Dist (I\m ,0) 

Dist
n 

(Am ,0) is free over k with all 

Ya . with lal < n as a basis. (For a as above set lal = 
m 
t a(i).) If k is a field of characteristic 0, then 

i=l 

1 3 a(l) a a(2) 
ya(f) = -...;;;..-.- «-) (-) 

HaCi)! aTl 3T2 

a a(m) 
(aT) f) (0) • 

m 

If k is a field, then any Dist(X,x) will only depend on 

the m -adic completion of e?x . So for a simple pOint x all -x ,x 
Distn(X,x) and Dist(X,x) will fook like Distn(l\m,O) and 

Dist(}\m,O) where m = dimxX, cf. [DG], I, §4, 4.2. 

7.4 (Infinitesimal Flatness) Let X be an affine scheme = 
over k 

if each 

and x E X(k). We call 

k[X]/In+1 with n EN x 

X infinitesimally flat in x 

is a finitely prese~ted and flat 

(or, equivalently, projective) k-module. (In [Haboush 3] this 

property is called "infinitesimally smooth". As obviously over a 

field any algebraic scheme (cf. 1.6) has this property, I think 

that name to be not appropriate.) 

If X is infinitesimally flat in x, then also each 

I n /1
m 

with n < m is finitely generated and projective and x x 
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each is a direct k-summand of k[XJ. 

Let k' be a k-algebra. Any x E X{k) defines a pOint in 

X(k') = Xk,(k') with ideal I x <8lk ' C k[X]0k' .::. k'[xk,l. 

Then k' [X ]/ (I e k' )n+1 .::: Ck[X]/In+1 )0 k I. Now ring extension 
k' x x 

commutes with taking the dual module as long as the module is 

finitely generated and projective. So we get: 

(1) If X is infinitesimally flat in x, then Xk , is 

infinitesimally flat in x for each k-algebra k'. ·There are 

natural isomorphisms Distn(X,x)~k''::: Distn(Xk"x) and 

Dist(X,x)~kf .::: Dist(~"x). 

Of course, we use here the letter x also for the image of x 

in ~,(k') = X (k' ) • 

Consider two affine schemes X,X' and points x E X(k} and 

x' E Xl (k). Then the ideal of (x,x') in klXxxl] .::. k[X] ®k[X' ) 

is I(x,x') = Ix$k[X'] + k[X]® Ix'. If X an'd X· are 
n+l 

infinitesimally flat in x resp. x', then I(x,x
'

) can be 
n+l 

identified with E I j ~ I n+1- j and then with x Xl 
j=O 

~ (k[X]6b In;-l-j + I j +1
(8) k[X' ]) • Now some elementary considerations 

j=O x x 

yield: 

(2) If X and X, are infinitesimally flat in x ~~ Xl, 

~ XxX' is infinitesimallx flat in (x,x'). There is an 

isomorphism Dist(X,x) ~Dist(Xt,x') ~ Dist(XxX',(x,x') mapping 

n 
E 

m=O 
Dist (X,x) ® Dist (X' ,x' ) m n-m for 
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each n EN. 

We can apply (2) to X, = X. Consider the diagonal 

morphism oX: X + XxX, xr+ (x,x). Let us regard the tangent map 

AX' : Dist(X,x) + Dist(X,x)~ Dist(X,x). ,x It 

makes Dist(X,x) into a coalgebra, i.e. satisfies 2.3(1) as 

(idxox)~ox = (oxxid)cox' This coalgebra is cocommutative, i.e. 

SOA' = A' X,X X-/-x 

is a counit, i.e. satisfies 2.3(2). If ~: X + Y is a morphism, 

then {d~)x is a homomorphism of coalgebras, as (~x~)oox = 
OyO~. So we have seen: 

(3) If X is infinitesimallx flat in x, then Dist(X,x) has 

a natural structure as a cocommutative coalgebra with a counit. 

Tangent maps are homomorphisms for these structures. 

7.5 An affine scheme X is called noetherian, if k[X] = 
is a noetherian ring, and it is called integral, if k[X] is an 

integral domain. 

Proposition: Let X be an affine scheme over k ~ 

x E X(k). Let 1,1' ideals in k[X] with x E V(I)(x) n V(II) (x). 

If V(I} is integral, noetherian and infinitesimallx flat in x, 

then: 

V(I) C V (I ')«) Dist (V(I) ,x) C. Dist (V(I' ) ,x) • 

Proof: If V(I) c:::: V(I'), then I I C I by 1. 4 (3), hence' 

Dist(V(I),x)~ Dist(V(I'),x) by 7.2(3). 
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Suppose now Dist(V(I) ,x) C Dist(V(I') ,x). We want to show 

(1) I I c:: I + I n+1 
x 

for all n E tJ. If not, then (I'+In+1+I)/(In+1+I) F 0 for x x 
some n. Now Ix/I is the ideal of x in k[V(I)] = k[X]/I 

and its (n+l)-st power is So k[X]/(In+1+I) x 
For any 

is a 

finitely generated and projective module. 

a E (II+In+1+I)/{In+1+I) a F 0 there is x x' some \.l E (k[X]/(In+1+I)}* x 
= Oistn(V(I),X) with \.l(a) F 0, hence }leI'} ¥ 0 and \.l ~ 

Dist(V(If},x). So we get a contradiction and have established (1). 

We can now apply Krull's intersection theorem to k[V(I}] ~ 

k[ xliI and get I = n (I+In+1)~ II, 
n>O x 

hence V(I)CV{I'). 

Remark: This generalizes obviously to the case where I is 

no longer integral, but where II contains all associated prime 

ideals of I. 

7.6 ProEosition: SUEEose that k is a field. Let ~: X + y 

be a morEhism of algebraic schemes over k and let x E X(k). 

!! ~ is flat in x, ~ (d~)x: Dist(X,x) + Dist(Y,~(x» 

is surjective. 

Proof: Set A = (!J Y,<p(x) and 13 =@X. ,x The flatness of 

<p in x amounts to the following: Using the comorphism (we may 

assume X,Y to be affine) we may regard A as a subalgebra of 13 

such that 13 is a faithfully flat A-module. This faithful flatness 

implies for all n EN, of. [ 3 J , 

ch. It §3, prop_ 9. As we assume our schemes to be algebraic 
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the rings A,B are noetherian and each n+1 
A/!!!q,(x) is finite 

dimensional. So Krull's intersection theorem yields 

Bmn+1 n ( r+l n+l = ~x + B!!!tp(x»' -q>(x) r>O 

hence 

mn+1 = n «mr +1 + Bmn+1 ) n A), -cp (x) r>O -x -cp(x) 

and dim(A/~~!» 
mn+1 = A n (mr +1 
-tp (x) ·-x 

< ~ implies that there is some r 

n smn+1
) We can therefore embed -cp (x) • 

with 

AI n+l =. 
!!!cp(x) 

(A+Bmn+1 +mr +1 )/{Bmn+1 +mr+l) into B/(Bmn+1 +mr +1). As k is 
-cp(x) ~x -cp(x) -x -cp(x) -x 

a field, any p E Distn(Y,tp(x» = (A/~~!»· has an extension to 

B/(Bmn+1 +mr+l) which gives some v' E (B/m_r
x+1 >. =. Distr(X,x). -tp(x) -x 

Then obviously (dcp)xv' = v. Therefore (dtp)x is surjective. 

Remark: Note that we do not claim that each Distn(X,x) is 

mapped onto Distn(Y,cp(x». Indeed, it is well known that e.g. 
+ + the "classical" tangent map TxX = Dist1 (X,x) .... Dist1 (Y,tp(x» == 

Tcp(x)Y will not be surjective in general. 

7.7 (Distributions on a GrouE Scheme) Let G be a group 

scheme over k. In this case we set 

Dist(G) = Dist(G,l). 

We can make Dist(G) into an associative algebra over k • 

For any • 11,V E k[G] we can define a product as 
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We have obviously * )lV E keG] and the bilinearity of ()l,v)J-+ 

pV. Furthermore 2.3(1) implies that this multiplication is 

associative and 2.3(2) that £G is a neutral element. So k£G]* 

has a'structure as an associative algebra over k with one. 

It will in general be not commutative. 

Now Dist(G) is a subalgebra of k(Gl* with 

This follows easily from the formula 

cf. 2.4 (1) • (We have written here instead of its 

image in k[G]Qk[G].) More precisely, 2.4(1) implies 

for all f E I1 and n EN. We get therefore 

(3) If p E Distn(G,) v E Distm(G), ~ [)l,v] = jlV-Vjl E 

Distn+m_1 (G) • 

So D1st(G) has a structure as filtered associative algebra 

over k such that the associated graded algebra is commutative. 

We call D1st(G) the algebra of distributions on G, dropping the 

addendum "with support in the origin". (Some people call Dist(G') 

the hyeeralgebra of G.) 
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Because of 6(1) = 1~1 the subspace Dist+(G) is a two-

sided ideal in Dist(G). Therefore (3) implies [Dist:CG), 

+ + Distm(G)] <: Distn+m_1(G). This shows especially that Dist~(G} 

is a Lie algebra which we denote by Lie(G) and call the 

Lie algebra of G. Note that Lie{G) = T
1

G as a k-module, cf. 

7.1. It can be shown that we have constructed the usual structure 

as a Lie algebra on T1G. 

~ (Examples) Let us look at first at the additive group 

[ J AI. G = Ga " As a scheme we may identify Ga = SPkk T with 

Therefore we have described Dist(Ga ) as a k-module already in 7.3. 

Let as before Yn be the element with Yn{Tn ) = 1 and Yn(~) = 0 

for m F n. We have 6(T} = 1C9T + TOiJl, hence 6{Tn ) = 
n 
t {n\Ti®Tn- i • This implies easily 

i=O il 

hence 

(2 ) 

So Dist(G C) a, can be identified with the polynomial ring 

C [y 1]' and Dist(Ga , Z. ) with the ~-lattice spanned by all 

In general Dist(G) = Dist(G 7' )cg,Zk. a a,~ 

Let us consider now the multiplicative group Gm = 
-1 

SPkk[T,T J. Then II is generated by T-l. The residue classes 

of 1, (T-1), (T-l)2, ••• ,(T_l)n form a basis of k[Gm]/I~+l. 

There is a unique on E Dist(Gm) with 6n(I~+1} = 0 = 6n «T-l)i) 
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for o ~ i < n and 15 «T-l) n) n = 1. From this and the binomial 

development of Tn = {(T-l)+1 )n one gets o (Tn) = (~) for all r 

n eZ and r E N. If k is a Q -algebra, then obviously 

Allor with r EN form a basis of Dist(Gm), all or 

with r < n one of Distn(Gm). We get A{T-I) = (T-l)~ (T-l) + 

(T-l ) 9 1 + 1 @ (T-1 ) from A (T) = T ~ T , hence 

(3) (r+s-i) 1 
(r-i)l(s-i)!il °r+s-i 

We get as a special case alar = (r+l)or+l+ror' hence (ol-r)or == 

(r+1)or+1 and inductively 

IOrl) • If k is a Q-algebra, then or == \ Therefore Dist(Gm,C } 

... C [0 l] and Dist!Gm, z> is the Z -lattice in Dist(Gm,L) 

generated by all (;). In general Dist(Gm) == Dist(Gm, Z) ®z. k. 

7.9 (Elementary Properties) If a: G -+ G' is a homomor

phism of group schemes over . k I then 

(1) da = (da)l: Dist(G) -+ Dist(G') 

is a homomorphism of algebras. This follows easily from the 

definition of the multiplication. On Lie(G) = Dist1(G) we get 

the usual tangent map Lie(G) -+ Lie(G') which is a homomorphism 

of Lie algebras. 
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If H,H' are closed subgroup schemes of a group scheme G, 

then the inclusions of Dist(H) and Dist(H') into Dist(G}, 

cf. 7.2(3),· are homomorphisms of algebras, and 7.2(4) ~mplies 

(2) Dist(HnH') = Dist(H) n Dist(H'), 

similarly Lie(HnH ' ) = Lie(H} n Lie(H'). {The same statement for 

linear algebraic groups is known to be false in general. There 

the intersection as varieties is considered/not as schemes as we 

do here.} 

We call G infinitesimally flat if it is so at 1. Now 7.4(2) 

implies easily 

(3) If G1 ,G2 are infinitesimally flat group schemes, then 

G1xG2 is infinitesimally flat and there is an isomorphism of 

algebras over k 

In the case of a semi-direct product there is still an 

isomorphism of k-modules. 

If we take G1 = G
2 

= G and consider the multiplication map 

mG: GxG + G, then we see easily: 

(4) !! G is an infinitesimalll flat group scheme over k, 

then d(mG): Dist(G)~Dist(G) + Dist(G) is given by d(mG)(~ ~ v) 

= ~v for all ~/V E Dist(G). 

For G as in (4) and any k-algebra k' the isomorphism 
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-Lie(G)~k' + Lie{Gk ,) resp. Dist(G)~k' ~ Dist(Gk ,), cf. 

7.4(1), are isomorphisms of Lie algebras resp. of associative 

algebras. Furthermore the comultiplication AG = AG,l: 

Dist(G) + Dist(G)~Dist{G) can be checked to be a homomorphism 

of algebras over k. 

The map iG= G + G with 

(cf. 2.3) 

-1 gt--r g has as a tangent map 

One checks easily that 0G is an anti-automorphism of 

Dist(G), i.e. satisfies 0GI(~V} = 0' (V)O'(~) for all ~,v. If G G 

G is infinitesimally flat, then 0G is a coinverse for the 

coalgebra structure, i.e. 2.3(3) is satisfied by' (AG,OG'€G) 

instead of (A,o,€). 

~ (Distributions and the Enveloping Al~~) To each 

Lie algebra g over k one can associate its universal enveloping 

algebra U{~). One may consult [ 4 J, ch. I, §2, or [ 6 ], ch. 2 

for the definition and the elementary properties of this object. 

It has a natural filtration Uo Cg) = kl c. U1 (g) = kl (I) S. c... 

U2(g)~ ••• where Un(~) is spanned over k by all products 

x 1x 2 ••• x r with r < n and all xi E ~. 

Let G be a group scheme over k. As Lie(G} = Dist~(G) 
is a Lie subalgebra of Dist(G) the universal property of 

U(Lie(G» yields a homomorphism y: U(Lie(G» + Dist(G) of 

algebras which induces the identity on Lie{G). It maps 
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Un(Lie(G» to Distn{G) because of 7.7(2). 

It is not very difficult to prove (cf. [DG1, II, §6, nO 1): 

(1) If k is a field of characteristic 0 ~ G an algebraic 

k-groue, then y is an lsomorphism U(Lie(G» .... Dist(G) and 

maps each Un(Lie G) bijectively to Distn(G). 

Using this one can then show that algebraic k-groups are 

smooth and reduced over fields of characteristic 0, cf. [OG], 

II, §6, 1. 1. 

If k is a field of characteristic p F 0, then the situation 

is completely different. In this case for each p E Lie(G) = 
Dist1(G) also its p-th power in Dist(G) belongs to Lie(G). This 

is more easily seen by identifying Dist(G) with the algebra of 

left or right invariant derivations of keG] as in 7.18 below. 

Let us denote this p-th power in Lie(G) C Dist(G) by x[p] 

in order to distinguish it from the p-th power xP in U(Lie G». 

The pair (Lie(G), x ...... x[p]) is an example of what is called a 

p-Lie algebra. (One can find the general definition in [OG], 

II, §7, nO 3.) For any p-Lie algebra (~,xr+ x[pl) set u[p](~) 

equal to the quotient of U(~) by the two-sided ideal generated 

by all xP - x[p] with x E~. This algebra is called the 

restricted enveloping algebra of g. We can still regard i as 

a subspace of u[p](~). If x1" •• ,xm is a basis of i, then 

all x~(1)x;{2) ••• x:(m) with 0 ~ aCt) < p for all i form a 

basis of u[pJ(~), cf. [DG], II, §7, 3.6. So dim U[P](i) • 

pdim(~) • 
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By the definition of x[p] for x E Lie(G) it is clear 

that y has to factor through U[P](Lie(G». One can show: 

(2) If k is a field with char(k) = p ~ 0 and G an -
algebraic k-grouEr then y induces an injective homomorehism 

U[pl{Lie(G» + Dist(G). 

o For this and for more details one may consult [DG], II, §7, n 2-4. 

7.11 (G-modules and Dist{G)-modules) Let G be a group 

scheme over k. Then any G-module M carries a natural structure 

as a Dist(G}-module: One sets for each p E Dist(G) and m E M: 

i.e. the operation of p on M is given by 

It is obvious that (p,m)~ pm is bilinear and it is easy to see 

that ~(vm) = (pv)m and £~ = m for all m E M and p,V E Dist(G) 

using 2.8(2),(3) and 7.7(1). 

Obviously 2.8(4) implies for all G-modules M,M': 

(3) HomG (M,M' ) C HomDist (G) (M,M ' ) • 

Applying this to inclusions we get 

(4) Any G-submodule of a G-module M is also a Dist(G)-submodul~ 

of M. 

Of course on a factor module the structure as a Dist(G)-module 
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coming from the G-structure is equal to the structure as a factor 

module for Dist(G). 

The Dist(G)-structure on a direct sum of G-modules is the one 

as a direct sum of Dist(G)-modules. 

We get from 2.10(2): 

(5) If m E MG, then ~m = p(l)m for all p E Dist(G). 

More generally, 2.10(2') implies for each A E X(G)C k[G] 

(6) If m E MA, then pm = p(A)m for all p E Dist(G). 

For any G-module M and any A E X(G) we can construct the 

G-module M «9 kA which we usually denote by M Cit) A. We can 

identify with M as a k-module. If 

then ~M~A(m) = E mi~Afi' This implies (cf. 7.1 for the 
i 

k[G]-module structure on Dist(G»: 

(7) An~ p E Dist(G) operates on M~ A as AP operates on M. 

If G is infinitesimally flat, then any p E Dist(G) 

operates on a tensor product of two G-modules through 

~G(p) E Dist(G) e Dist(G). 

Let M be a G-module which is finitely generated and 

projective over k. Then M* is a G-module in a canonical way, 

cf. 2.7(4). The operation of Dist(G) on M* is then given by 

for all p E Dist(G),~ E M* and m E M. 
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If G is flat, then 2.13(2) implies that each m E M is 

contained in a Dist(G)-submodule of M finitely generated over 

k. In this sense M is a locall~ finite Dist(G)-module. 

(The Case G = G ) a Let us use the basis 

of Dist(Ga ) as in 7.3 and 7.8. As 
i 

basis (T )i~O we can write uniquely 

(y n) nEt\t 

k[G ] = k[T] is free with a 
i 

AM(m} = E m.~T for 

and Ga-module M and 

ynm = mn for all n, 

i~O J. 

m E M with almost mi = O. 

i.e. AM(m) = L (y m)0 Tn. 
n>O n 

Then obviously 

So the 

structure as a Dist(Ga)-module determines the comodule map 

uniquely, hence also the structure as a Ga-module. This implies 

for G = Ga that there is equality in 7.11(3) and that the 

converse holds in 7.11(4),(5). 

In general not all locally finite Dist(Ga)-modules arise 

from Ga-modules. If e.g. k is a field of characteristic 0, 

then one can define for each b E k a structure as G -module on a 

k where each Yr operates as multiplication with br/(r!). 

For b ~ 0 this module does not come from a Ga-module. If k 

is a field of characteristic p ~ 0, then we can make k2 into a 

D1st(Ga )-module letting each Yi operate as (g~) if i is of 

the form pr with r EN, r > 0 as 1 if i = 0, and as 0 

otherwise. This structure does not come from G • a 

~ (The Case G = Gm> Let us use the basis (or)r>o 

of Dist{Gm) as in 7.8. If M is a G-module and m E M, then 
i AM(m) = t roi 9T wi th uniquely determined roi E 101, almost all 

iEl 
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zero. Then 

for all n EN. 

Remember that M = $ Mi where Mi = {m'ENIAM(m') = m'STi } 
iE 

and that mi E Mi in the situation above, cf. 2.11. 

For a 1 ,a2 , ••• ,ar E:l pairwise different there is 

and f(l)c.Z. 

There are integers with of. [St 1}, 

p. 16. Denote then by f the element 

If we apply this construction to {al, ••• ,ar } = {i E~lmi F OJ, 

then we get ii E Oist(Gm) with tim = mi' 

This shows for any Oist(G)-submodule N of M that N = 
$(NOMi ), hence that N is also a G-submodule, i.e.~the converse 

of 7.11(4). Also the converse of 7.11(5), (6) is true, i.e. for 

all j EL: 

for all n E J.J }. 

Indeed, consider any m as on the right hand side. Take the mi 

as above. Then (~)mi = (~)mi for all n E ~. For i F j 

we take f ~s above with f(i) = 1 and f(j) = 0 and get 

mi = fmi = O. Hence m·E ~ • 

Note that (2) implies that the Oist(G )-structure determines . m 
the Gm-structure, especially that we have equality in 7 .• 11(3) 

for G = Gm• 
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In general not every locally finite Dist(Gml-module arises 

from a Gm-module. If k is a field of characteristic 0 and if 

a E k, then we make k into a Dist(Gm}-module letting any Qi 

operate as (~). For a I:: Z this structure does not come from 

Gm• If k is a field of characteristic p ~ 0 one can make a 

similar construction with any p-adic integer a. 

~ Lemma: ~ G be an infinitesimally flat, noetherian 

and integral group scheme over k. If M ~ G-module which is 

projective over k, then for all A E X(G} ~ 

for all ~ E Dist(G)} --
Proof: Observe at first that there is for each x E MBk [G] 

wi th x t. M@ I~+l 

embeddings of M 

some 1.I E Distn (G) with (idM@~)x F o. 

k[G]/In+1 into free modules.) 

(Use 

and 
1 

Now if llm == llO.)m for all II E Dist(G), then (idMSlJ) 

( AM (m) -m 48) A) == 0 for all p, hence AM(m>-m$t.. E Me I n+1 for 
1 

all n by the argument above, hence AM{m) -me A E n (M9In+1) = 
n>O 1 

MQ'I( n I~+l). ( Use a split embedding of M into a free module 
n>O 

for the last equality.) Now Krull's intersection theorem shows that 

the last term is 0 I hence AM (m) = m tfiJ A and m E M}.. 

~ Lemma: ~ G be an infinitesimally flat, noetherian 

and integral group scheme over k. Let M be a G-module and M' - -
~ k-submodule of M such that MIM' is Erojective over k. 

Then M' ~ G-submodule of M if and only if it is a Dist(G)

submodule. 
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Proof: As M/M' is projective, the k-submodule M' is a 

direct summand of M and we can identify M'. k[G] with the kernel 

of M$ k [G] -+ (M/M') e k [G ] • We have to show: I f HI is a 

Dist(G)-submodule, then AM(M')CMI~k[GJ, i.e. the image N of 

6M(M I ) in (MIMI) ~k[G] is zero. Now Dist(G)M' CM' is equivalent 

to (idM $ll.) 6M(M ' )C M' for all l! E Dist (G), hence implies 

(idM/Mt~~)N = O. As in the last proof this yields 

NC () (M/M')c9I n+1 = (M/M') S () I n+1 = 0, 
n>O 1 n>O 1 

hence the lemma. 

7.16 Lemma: Let G be an infinitesimally flat, noetherian 

and integral group scheme over k. Then one has for all G-modules 

M,M' which are projective over k, if M is finitely generated 

over k 

HomG{M,M') = HO~ist(G) (M,M'). 

Proof: Under our assumption we can identify Hom(M,M') ~ 

M* aMI, this is a G-module and projective as a k-module. As 

HomG(M,M ' } .or. (M*eM,)G we can apply 7.14 and have to show only 

that any II E Dist(G) operates on any • E H0IDoist(G) (M,M') as 

multiplication with ll(1). But if 6G(~) = Ellie lll' then 
i 

for all ~ E Bom(M,M'), hence 

for 1/1 E HomDist (G) (M) • As Ell t 0' (l! ) = IJ (1 h:G we get the claim. 
i i Gi 
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Remark: If M is a direct limit of G-modules to which we 

can apply 7.16, then 7.16 holds also for M. Hence the local 

finiteness of M implies, t~at we can take any M in 7.16 as long 

as k is a field. Similarly we can take for M any torsion free 

k-module, if k is a Dedekind ring and G flat, as in that case 

finitely generated torsion free modules are projective. 

7.17 (The Case of a Ground Field) An affine scheme X over 

k is called irreducible, if 10 is a prime ideal in k[X]. This 

is equivalent to the irreducibility of Spec(k[X]l with respect 

to the Zariski topology, cf. [HaJ, II, 3.0.1. It is integral if 

and only if it is irreducible and reduced, cf. [Ha], II, 3.1. 

If k is a field of characteri~Tic 0, then any algebraic 

k-group is smooth, hence reduced. So in this case the notions 

"irreducible" and "integral" coincide. 

Suppose now that k is a perfect field of characteristic p. 

If G is an irreducible algebraic k-group, then there is by [DG1, 

III, §3, 6.4 an isomorphism G ~ XXY of affine schemes with Y 

integral and where k[X] is a finite dimensional local k-algebra. 

The only maximal ideal of k[X] is nilpotent. This shows that 
n+l we have n II = 0 in k[Gl. It was for this property that we 

n>O 

needed G to be integral in the last proofs. So we see: 

(1) Suppose that k is a perfect field. Then the results of 

7.14 - 7.16 hold for any irreducible algebraic k-~rouE. 

We can use the same argument with respect to 7.5. 
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(2) Suppose that k is a perfect field. ~ G be an algebraic 

k-group and H,H' closed subgroups of G. If H is irreducible, 

then 

H CHI ~<=::::::» Dist CH) c:. Dist (H' ) • 

7.18 (Distributions as OifferentialQperators) Let G be a 

group scheme over k. Any operation of G on an affine scheme X 

leads (cf. 2.7) to a representation of G on k[X], hence makes 

k[X] into a Dist{G)-module. When dealing with a right operation 

a: XxG + X (resp. a left operation 6: GxX + X), then the operation 

of 1.I E Dist(G) on k[X] is given by (resp. 

There is a general notion of differential operators on a scheme, 

cf. [DG], II, §4, 5.3. In the case of an affine scheme X they 

can be described as follows ([DG], II, §4, 5.7): Each f E k[X] 

defines ad(f):End(k[X]) + End(k[X]) through (ad(f)~)(fl) = 

f~(fl)-~(ff1)' i.e. ad(f)~ is the commutator of the left 

multiplication by f and of ~. Then a differenti~l operator on 

X of order < n is some D E End(k[XJ) with ad(fo)ad(f1 ) .. · 

ad(fn)D = 0 for all fo, ••• ,fn E k[X]. A differential operator 

on X is then defined as a differential operator of order < n 

for some n E~. The differential operators form a subalgebra 

of End(k[X]) • 

. For G operating on X as above, any p E Oistn(G) operates 

on k[X] as a differential operator of order < n as an elementary 

argument shows, cf. COG], II, §4, 6.3. 
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When dealing with the operation of G on ,itself by left resp. 

right translation, then we get an operation of any ~ E Dist(G) as 

a differential operator on G which commutes with the operation of 

G by multiplication from the other side. This construction turns 

out to yield an isomorphism of Dist(G) onto the algebra of all 

differential operators on G which are right resp. left invariant 

(i.e. which commute with the action of G by riqht resp. left 

translation), cf. [DG], II, §4, 6.5. 

The conjugation action of G on itself yields a representation 

of G on k[G] which stabilizes II' hence also all I~+l. 

We get thus G-structures on all k[G]/I~+l, hence also on all 

Distn(G) = (k[G]/I~+l)*, provided G is infinitesimally flat. 

If so, then we get also a representation of G on the direct 

limit Dist(G). The representation of G on Lie(G) = Dist~(G) 
constructed thus i-s the adjoint representation of G. We use the 

notation Ad for the representation of G on Dist(G} and all 

Distn(G), Dist~(G) and the notation ad for the corresponding 

operations of Dist(G) on itself or its submodules. 

Suppose that G is infinitesimally flat. An elementary 

calculation shows that the adjoint representation on Dist(G) and 

the action of Dist{G) on any G-module M are -related by the 

formula 

for any <p E Dist(G)~ A.oL. Dist(GA) ,m E M8A, g E G(A} and any A. 
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Let us write down explicitly how any ~ E Dlst(G) operates 

on k[G] and Dist(G) under the conjugation resp. adjoint 

action (for ·G lnfini tesimally flat). Suppose AG (~) = i~i C8J ~I . 

Then the conjugation action of ~ is because of 2.8(7) given by 

As A' 00' = (0'.6 0' )0 A' the adjoint action is given by (using G G G~ G G 

7.11(8) and 7.7(1» 

7.19 For any family. (Xj ) jEJ of subfunctors of a group scheme 

G there is a smallest closed subgroup scheme H of .. G containing 

all (Take the intersection of all closed subgroup schemes 

containing all Xjo) We call H the closed subgroup of G 

generated by all X •• 
J 

Proposition: Suppose that k is an algebraically closed field. 

Let G be an algebraic k-group and let (Hj)jEJ be a family of 

integral closed subgroups of G. ~ H be the closed subgroup of 

G generated by all (Hj)jEJ' Then H is integral and Dist(B) 

is the subalgebra of Dist(G) generated by all Dist(B j ). 

Proof: The reduced subgroup of G defined by H(k) contains 

all H. , 
J 

hence H is reduced. We can assume (by [DG] , II, §5, 

4.6 or [Bo] , 2.2) that (H j ) j EJ = {H 1 ,H 2 ,···,Hr } and that the 
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multiplication map a: H1xH2x .•• xHr + H is surjective on points 

over k. This implies that H is irreducible, hence integral. 

Furthermore, the theorem of generic flatness ([DG], I, §3, 3.7) 

provides us with a pOint over k where a is flat, hence da 

by 7.6 surjective on the distributions with support in that pOint. 

As da in (l,I, ••• ,I) is multiplication, the same argument as 

in [BO]! 7.5 yields 

(I) Dist(H) = (Ad(h1)Dist(Hl »(Ad(h2) Dist H?» ••• (Ad(h )Dist(H }) _ r r 

for suitable hl, ••• ,hr E H(k). 

Let R be the subalgebra of Dist(G) generated by all 

Dist (Hi) • As HiCH for all i, also - RC Dist (H) • Because of 

(1) we have to show that R is stable under Ad{h) for all 

h E H (k) , or by the surjectivitiy of a(k) that k is an H.-
~ 

submodule of Dist(G) for each i. By 7.15 it is enough to show 

stability under each Dist(Hi ) for the adjoint action. This is 

now clear from 7.18(2) as AG(Dist(Hi » <: Dist(Hi)~ Dist(Hi ) and 

aG(Dist(Hi » = Dist(Hi ) for all i. -Indeed A' resp. a' G G 

restrict to A' 
Hi 

and a' on Dist(H.). 
Hi ~ 

Remarks: 1) There is another proof in [y] , 10.10. The 

proof above follows the one in [Bo], 7.6 that Lie(H) is generated 

as a Lie algebra by all Lie(Hi ) provided char(k) = O. 

2) Drop the assumption that k is algebraically closed. Let K be 

an algebraic closure of k. If each (Hj)K is still integral, 

then the claim of the proposition is still satisfied: We get from 

(Bo], 2.2 that HK is the closed subgroup generated by all (Hj'K O 
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With R as in the proof we get R@K == Dist{HK) ::;;: Dist(H)eK, 

hence R = Dist(H) using 7.4(1). 

Now (Hj)K is integral if and only if it is reduced, cf. 

[DG1, II, §5, 1.1. This will certainly be satisfied, if k is 

perfect, cf. [BO], AG 2.2. 

7.20 The algebras of distributions have recently been used = 
[1~J by M. Takeuchi (in [ ]) to give a proof of the uniqueness theorem 

(and the isogeny theorem) for red~ctive groups without using 

rank-2-computations. Let us sketch a minor modification of his 

argument (using standard notions about reductive groups). 

Suppose that k is an algebraically closed field. Let us 

work in the category or linear algebraic groups over k. Let 

G
1

,G2 be reductive algebraic groups over k with maximal tori 

TI ,T2 and suppose there is an isomorphism ~: T1 + T2 inducing 

an isomorphism of the root data in the sense of [Sp], 9.1.6. 

Suppose both root systems are identified and let S be a set of 

For each a E S let Gl == ZG «ker a)O) 
,a 1 

and simple roots. 

let be the root subgroups corresponding to a. 

Define similarly G2 ' U2 ,U2 • ,a ,a ,-a 

The complete description of the semi-simple rank-I-case gives 

isomorphisms for all a E S with 

and 1/1 (U l a> = U2 I ~ (Ul ):= U2 ' cf. [Hu], 32.3. a, ,a a ,-a ,-a 

Set T:= {(t1 ,1/ICt
l

» Itl E TIl and- Ga = {(gl"a(gl}) 191 E GI,a} 

for all a E S and define similarly 
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Let G be the group generated by all G = G a I, a in 

As all G a are closed and irreducible subgroups also G is 

closed and irreducible. We want to show that the projections 

for i = 1,2 induce isomorphisms 

is obviously enough.) Let us restrict to i = 1. 

G .:;. G .• 
~ 

(That 

Now PI is surjective as is generated by all with 

a E S. As Lie(GI } = E E Ad(g) Lie(G1 ) also dPl: Lie(G) + 
gEG

I 
aES ,a 

Lie(G1 ) is surjective. Therefore it suffices to show ker(PI ) n G 

= 1. Obviously ker(pl) n T = 1. If we can show that T is a 

maximal torus in G, then any normal subgroup ';·.1 of G inter-

sects T non-trivially, hence ker(P
1

) n G = 1. Now TCG is 

certainly contained in some maximal torus T' of G, which then 

must be contained in ZG
1

xG
2

(T) = T1XT2· (Note that no root of 

G1xG2 vanishes on T.) It is therefore enough to show Dist(G) n 

Dist(T1xT2 ) = Dist(T) as then Dist(T) = Dist(T'), hence T = T' 

by 7.5. 

The multiplication induces an isomorphism of U1 x T1xU1-, a. I a 

onto an open neighbourhood of 1 in G1 • Therefore Dist(GI } = ,a ,a 

Dist(U
l 

_ )Dist(T1)Dist(U
l 

). , a ,a Similar results hold in G2 and G. 

Therefore Dist(G) is the subalgebra generated by Dist(T) and 

all Dist(U) and Dist(U ) with a E S. If a,a E S, a F a, a -a 

then U and U commute, hence l,a 1,-13 

do so. The same holds for U 2,a 

Using this and the formula for 

and 

Dist{G ) 
a 

(1) Dist(G) = Dist(G)-Dist(T)Dist(G)+ 

Dist(U
l 

) 
,a 

for 

one gets 

and Dist(U1,_S) 

Ua and U-a" 



162 

where Dist(G)+ resp. Dist(G) is the subalgebra generated by 

all Dist(U} resp. Dist(U ) with a E S. a -a 

Using the big cell in G1xG2 one gets similarly an isomorphism 

induced by the multiplication 

(2) 

where Dist(G) CDist{G1xG2) and 

of course Dist(T) c Dist(T1 XT2).' 

DistCG)+ c Dist(G1XG2)+ and 

Comparing (1) and (2) one gets 

Dist(T) = Dist(G) n Dist{T1XT2 ) as claimed. 

The isogeny theorem can be proved similarly. One simply 

starts with '" and .1, which are isogenies. 'l'a 

We shall look at Dist(G) for G reductive in more detail 

in part II. 
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8. Representations of Finite Algebraic GrouEs 

Let us suppose throughout this chapter that k is a field. 

A k-group scheme G is called a finite algebraic group if 

dim k[G] < -. We have met already some examples (p(n),Ga,r)' 

One can associate to each finite abstract group a finite algebraic 

group in a natural way (8.S.a). The examples which are most 

important for us will be introduced in chapter 9 (the Frobenius 

kernels) • 

We look in this chapter at some special features of the 

representation theory of such finite G. Let me mention right away 

that one can find in (Voigt] many more results which we do not 

look at here. 

One of these special features is that injective G-modules are 

also projective as in the representation theory of abstract finite 

groups. Whereas in that case (abstract finite groups) the injective 

hull of a simple module is also its projective cover this is no 

longer true in our situation (in general). Here the simple head 

and the simple socle of an injective indecomposable module differ 

by a character of G which we call the modular function of G 

(8.l3). 

Another special feature is seen when dealin.g with a closed 

subgroup H of G. We do not only have the right adjoint 

to the restriction functor resi but also a left adjoint 

. ~G l.na.H 

. dG 
COl.n H 

(the coinduction). Both functors are exact and they are related 

by dualizing (8.14-8.16). In fact one can get one from the other 

by at first tensor1ng with a character depending on the modular 
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functions of H and G (8.17). 

One main ingredient in the proofs of these results is the 

fact that keG] and k[G]* are isomorphic as G-modules (8.7 and 

8.12). This is a special case of a more general theorem of 

Larson and Sweedler (cf. [ 11 ]). As a source for the other non-

trivial results let me mention [ 9 ] and ell. 

When working not over a field but over an arbitrary 

commutative ring (say R) then one should define a finite algebraic 

group over R as an R-group scheme G such that R[G] is 

finitely generated and Erojective as an R-module. It is elementary 

how to generalize 8.1 - 8.6 to this more general situation. For 

an extension of 8.12 and 8.17 to this situation one may consult 

[131 I cf. also [ 9 ] • 

8.1 (Finite Algebraic Groups) A k-group scheme G is called 

finite (hence: a finite algebraic k-group), if dim keG] < m. It 

is called infinitesimal, if it is finite and if the ideal 

{f E k[G]lf(l) = O} is nilpotent. 

I .. 
1 

If k' is an extension field of k, then obviously G is 

finite Crespo infinitesimal), if and only if ~. is so. 

The closed subgroups Ga,r of the additive group (introduced 

at the end of 2.2) are infinitesimal groups. They are examples of 

Frobenius kernels, the (for us) most ~portant class of infinitesimal 

groups, which will be introduced in chapter 9. 

The groups l1n) for each n E N are finite (cf. 2.2). If 
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char(k} = p # 0 and if n is a power of p, 

infini tesimal. 

then 

~ Lemma: ~ G be an algebraic k-group. 

Jl{n) is 

a) G is finite, if and only if G(K) is finite for each extension 

K of k. 

b) G is infinitesimal, if and only if G(K) = 1 for each extension 

K of k. 

Proof: a) If dim k[G] <~, then each element in k[G] is 

algebraic over k, hence has ,only a finite number of possible 

images in any K (under an element of GeK) = Homk_a1g {k[Gl,K». 

As any g E G(K) is given by its values on the basis of keG] 

there are only finitely many possibilities for g. 

Consider on the other hand an algebraic c1osu,re K of k 

and suppose that G(K) is finite. We can replace G by G
K

, 

hence suppose k = K. We can write k[G] in the form k[T1 ,··· ,Tn]/I' 

for sane ideal I. Any prime ideal containing I has to be a 

maximal 'ideal. The same is true for any associated prime ideal 

I. This implies easily dim k[G] = dim k[T1, ••• ,TnJ/I < ~. 

b) If II is nilpotent, then it has to be annihilated by any 

homomorphism of k-algebras k[G] +K into a field extension. 

As keG]' = kl • II there is only one such homomorphism, hence 

G(IO = 1. 

of 

Suppose on the other hand G(K) = 1 for an algebraic closure 

K of k. We may assume k = K and can identify k[G]/...o with all 

functions from G(K) to K. This implies 11 = {O, hence that 

II is nilpotent. 
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8.3 (Duality of Finite Dimensional Bopf Algebras) For any 

finite dimensional vector space V (over k) the canonical map 

V -+- (v*)* i i hi s an somorp sm. Mapping any linear map . ~: VI -+- V2 

between two finite dimensional vector spaces to its transposed map 

* V* * ~ (* *) ~: 2 -+- VI is therefore a bijection Bom(v1 ,v2 ) -+- Hom V2 ,V1 • 

Let R' be a fini te dimensional vector space over k. We get 

from above isomorphisms - * Hom(k,R) -+- Hom(R ,k) and - * End(R) -+- End(R ) 

and - * * * Hom(R@R,R) -+- Hom(R IR ® R ) using the isomorphism 

(R0"R)*. So multiplication on R (i.e. bilinear maps RxR -+- R or, 

equivalently, linear maps m: R@R -+- R) correspond bijectively to 

Iti Ii i * (i 1 m*·. R* -+- R*.oo.R*). comu p ca tons on R • e • inear maps "CW 

Similarly comultiplications A: R -+- RaR on R correspond 

b ·· t' 1 t Iti Ii ti A *.. R*.o.. R* -+- R* on R* • ~Jec ~ve Y o·mu P ca ons u ~ Further-

more m is associative (resp. A is coassociative, i.e. satisfies 

2.3(l}), if and only if * m is coassociative (resp. is 

associative). An element a E R is a 1 for the multiplication m, 

if and only if the map is a counit for * m 

(i.e. satisfies 2.3(2) with the appropriate modifications in the 

notation). Similarly £ E R* is a counit for A, if and only if 

it is a 1 for A*. 

If we have on R both a multiplication m and a comultiplicatio 

A, then A is a homomorphism of algebras (with respect to m), 

if and only if m* is a homomorphism of algebras (with respect to 

A*). If so, then some a E End(R) is an antipode for A and m 

(i.e. satisfies 2.3(3) and a(ab) = a{b)a(a) for all a,b E R), 

if and only if 0* is an antipode for m* and A*. This shows: 
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If R is a Hopf algebra, then so is * R in a natural way. For 

two such finite dimensional Hopf algebras R1 ,R2 a linear map 

,: Rl ~.R2 is a homomorphism of Hopf algebras if and only if 

is a homomorphism of Hopf algebras. Thus we get 

(1) The functor * * R~ R , ~~ ~ is a self-duality on the categorx 

of all finite dimensional Hopf algebras. 

This anti-equivalence has obviously the property that R is 

commutative, if and only if R* is cocommutative (cf. 2.2). 

~ (Finite Algebraic Groups and Hopf Algebras) We have by 

2.3 an anti-equivalence of categories {group schemes over k} ~ 

{commutative Hopf algebras over k}. Combining this with 8.3(1) 

we get an equivalence of categories: 

(1) {finite algebraic k-groups} + {finite dimensional coco~ut~ive 

Hopf algebras over k}. 

Each finite algebraic k-group G is mapped to * k[G] • We 

denote this Hopf algebra by M(G) and call it the algebra of all 

measures on G. We usually denote its comultiplication by AG ' 
its antipode by a' * and its counit by e: ' • ll+ll{l)· G = aG G' 

We have an obvious embedding G{k} = HO~_alg{k[G],k) 

Hom(k(G],k) = M(G): To each g E G(k) there corresponds the 

(Dirac) measure of 0g: f~ f{g). An element II E M(G) = k[Gl* 

is a homomorphism of algebras if and only if AG(}.!) = ll~}'!' The 

multiplication on G(k) is just the multiplication in M(G). More 

generally, one can identify 
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G(A) = HO~_alg(k[G] ,A) c::: Hom(k[G] ,A) ;: 

;: k[G]* ® A = M(G)8 A 

for any k-algebra A with 

In chapter 7 we have associated to each group scheme G the 

algebra Dist(G), cf. 7.1 and 7.7. If G is finite, then 

obviously Dist(G) is a subalgebra of M(G) and G is infinitesimal 

if and only if M(G) = Dist(G). One checks easily that 

(2) Lie(G) = Dist~(G) = {~ E M(G) 1Ab(p) = 1I (8) 1+119 l-\}. 

8.5 (Examples) a} If r is an abstract finite group, then 

its group algebra kr is a cocommutative Hopf algebra in a natural 

way_ Considered as a vector space kr has a basis which we can 

identify with r. These basis elements multiply as in r and we 

define the comultiplication via y t-+ Y <2> y, the counit via 

yl-+ 1 and the antipode via -1 
yt-+ Y for each y E r • Hence 

there is a finite algebraic k-group G with M(G) ~ kr. For any 

k-algebra A the group G{A) can be identified with the set of all 

aYEAr~kr0A with y 
E a (y 8) y) = t a a • (y ® y t) 

yEr y Y,Y'Er Y Y 

and L a = 1. If A is an integral domain (or, more generally, 
YEr Y 

has no idempotents ~ 0,1), then G(A) ~ ~ This construction can 

obviously be carried out over any ring, not only over a field. 

b) Suppose that char k = p F 0 and let ~ be a finite dimensional 



169 

p~Lie algebra, cf. 7.10. Then its restricted en~eloping algebra 

u[p] (g) is a cocommutative Hopf algebra. Any x E ~ is mapped 

to xel+18x under the comultiplication, to 0 under the counit, 

and to -x under the antipode. 

group 'G with M(G) ~ u[p](g). 

So there is a finite algebraic 

from 8.4(2). The embedding of 

One gets obviously 

u[p] (Lie G) into 

~c Lie(G) 

Dist (G) C M{G) == 

u[Pl(g) has therefore to be an isomorphism. We get Lie(G) = ~ 

and MeG) = Dist(G) so that G is infinitesimal. See [DG], II, 

§7, 3.9 - 3.12 for more details. 

8.6 (Modules for G ~ M(G». Let R be a finite 

dimensional Hopf algebra. If M is an R-module, then M is an 

R*-comodule in a natural way: Define the comodule map M -+ M ® R* 

~ 'Hom(R,M) by mapping m to ar+ am. If M is an R-comodule, 

then M is an R*-module in a natural way: Define the action of 

any ~ E R* as (idM 0 ~)o AM' if AM is the comodule map 

M .... MeR. For two such comodules M1 ,M2 a linear map ljl: Ml -+ M2 

is a homomorphism of R-comodules if and only if ··i t is a homomorphism 

of R*-modules. In this way we get an equivalence of categories 

(1) {R-comodules}; {R*-modules}. 

Let G be a finite algebraic k-group. Then the categories of 

G-ffiOdules and k[G]-comodules are equivalent by 2.8. Combining 

this with (1) we get an equivalence of categories 

(2) {G-modules}-+ {M(G)-modules}. 

Here to any G-module M there corresponds the M(G)-module M with 
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II E M(G) operating as (idM as ll)o AM. We recover the action of 

G(k) via the embedding G(k) C M(G)x and, more generally, the 

action of any G(A) via the embedding G(A) C(M(G)®A)x and the 

operation of M(G}8 A on MaA. 

It is clear that we get on Dist(G)<= M(G) the same operation 

as in 7.11. Furthermore all the statements in 7.11 qeneralize to 

M(G). The claims in 7.14 - 7.17 hold obviously for any finite 

algebraic group G with Dist(G) replaced by M(G). 

The representations of G on k[G] via Pl and Pr lead 

to two (contragredient) representations of G on M(G), hence to 

two structures of an M(G)-module on M(G). Using the generalization 

of 7.11(8} one checks that any II E M(G} operates on MeG} as 

left multiplication by II when we deal with P
t

, and as right 

multiplication with 0G(ll) when we deal with 

For G corresponding to a finite abstract group r as in 

8.S.a the theory of G-modules is the same as that of kr-modu1es, 

hence equal to the representation theory of rover k. 

For G corresponding to a p-Lie algebra as in 8.S.b the 

theory of G-modules is the same as that of U[p] (g)-modules, 

hence equal to the representation theory of g considered as a 

p-Lie algebra. 

8. 7 Le.t from now on un til the end of this chapter G be a 

finite algebraic k-group. 

When we regard k[G] resp. MeG} as a G-module it will be 
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with respect to P t or Pr resp. the contragredient representation 

which we call also the left or right regular representation of G. 

In case we want to distinguish in our notations between or 

Pr we add an index "t" or IIr" to the modules, i.e. write e.g. 

k[G]t and M(G)t' 

Lemma: ~ G-modules M(G) ~ k[G] are isomorEhic. We 

have dim M(G)G = 1. 

Proof: By the tensor identity we have M(G) Q9 k[G] = k[G]r 

* where r = dim k[G]. On the other hand M(G) ® k[G] = keG] 0 keG] 

is self-dual as a G-module, hence also isomorphic to {k[G]*)r. 

The Krull-Schmidt theorem about unique decomposition into (finite 

dimensional) indecomposable modules implies that k[G] = k[G]* 

has to hold as k[G]r = (k[G]*}r for some r > o. The last 

equality follows now from 2.10(5). 

8.8 (Invariant Measures) We call an element in M(G)~ 

(resp. MeG);> a left (resp. right) invariant measure on G. 

(In [11] such elements are called "integrals II , in [Haboush 3] 

"norm forms If. ) 

The description of the left and right regular representations 

of M(G) on itself in 8.6 implies 

for all ~ E M(G)} 

and 

(2) G 
M(G)r = {~O E M(G)lpO" = pCl) 0 for all p E M(G)} 
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as 0G(p)(l) = pel) for all p E M(G). Furthermore we have 

as 0G intertwines the left and the right regular representations 

(or, using (1), (2), as it is an antiautomorphism of M(G) 

considered as an algebra). 

Obviously M(G)~ is stable qnder right multiplication by 

elements of MeG), hence a M(G)- and G-submodule of M(G) with 

~espect to the right regular representation. (This can also be 

G seen directly.) As dim M(G), = 1 the representation of G on 

M(G)~ is given by some 0G E X(G) C k[GJ. So for all 9 E G(A) 

and any A 

(4) 

and, equivalently, for all p E M(G) 

(5 ) 

(Dbserve that for all 

for all G 
Po E M(G)! I 

X E X(G).) This character 

is called the modular function of G. We call G unimodular if 

0G = 1. (In the examples in 8.9 each G will be unimodular. We 

shall meet a case where 0G F 1 later on in part II.) 

We could have defined 0G also via M{G); as (3) implies 

for all p E M(G) 

(6) for all 
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or, equivalently, for all g E G(A) and all A 

(7 ) for all 

8.9 (Examples) If G corresponds to an abstract finite 

gro~p r as in 8.5.a, then 

(1) 

Consider as another example G == G a,r with rEN,r>o 

r 
q = p • assuming char(k) = p # O. Set As G air is a subgroup 

we can identify M{G ) a,r == Dist{G ) with a,r of Ga = SPkk(T], 

the subalgebra of Dist(Ga ) spanned by all with ~(Ta+i) == 0 

for all i::.. o. 

7.8 we get 

Using the basis 

a-i 
M(G ) = ~ ky • 

a,r n==O n 

As YO(l) == 1 and Yn(l) == 0 

Yn Yq- 1 := (q~~;l) Yn+q - 1 == 0 for 

for n > 0, 

o < n ::. q-l 

of Dist(G) a 

as 

we see that 

as in 

is an invariant measure on G a,r Using dim M(G)G == 1 

some additional computations we get 

(2) k'y q-l for G == G a,r 

and 

or 

Assume again char k == P # 0, let r EN, r > 0 and set 

r q == p • Let us consider G = ~(q) and determine M{G}G. As ~ (q) 

is an infinitesimal and closed subgroup of Gm we can identify 

Let us use 

the notations of 7.8. Then M(~(q» consists of all v E Dist(Gm) 
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with v(Ti (Tq-l»: 0 for all i E~. Obviously 

for all i E~. The standard formula for binomial coefficients 

mod p (cf. e.g. [Haboush 3], 5.1) shows ~n(Ti{Tq-l»:::: 0 for all 

i E 2: if 0 < n < q. As dim M(P(q» :::: dim k[p(q}] :::: q, 

we get 

We claim 

(3) M(G); = M(G}~ = k for G = P (q) • 

q-1 
Set i 

°0 is the 1 in MeG) and 6
0 

(1) = 1 Po = L (-1) 6
1

, As 
1=0 

and °n (1 ) = 0 for n > 0, we have to show ~ P :::: 0 n 0 
for all n 

with o < n < q. We have by 7.S{3): 

q-l min(i,n) 1 (n+l- j \ (n\ 
:::: 1: • 1: (-1) i-)' } jl 0n+i-j 

i=O )=0 

If n+l-j > q-l, then In+l: j ) = 0 and we can delete the corres-
1-) 

pondlng summand. Substitutlng s ~ i-j we get 

a-l 1 min (i ,q-l-n) [n+) ( ) 
= 1: (-1) 1: \ SS i~S 0n+s 

1::::0 s=max(O,1-n) 

= q-~ -n ( n;s (-1) i In) (n+s) 6 = O. 
s=o i=s \i-s s n+s 
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~ (Projective and Injective Modules) We call a projective 

object in the category of all G-modules simply a projective G-module. 

They correspond under the equivalence of categories to the 

projective M(G)-modules. This shows that each G-module is a homo

morphic image of a projective G-module, hence that projective 

resolutions exist in the category of G-modules. (This is not true 

for arbitrary group schemes.) 

The representation theory of finite dimensional algebras shows 

that the indecomposable projective G-modules are (up to isomorphism) 

the indecomposable direct summands of M(G). For each simple 

G-module E there is a unique (up to isomorphism) projective 

G-module Q with O/rad(O) ~ E. It is called the projective cover 

of E. One gets in this way a bijection between the isomorphism 

classes of simple G-modules and of indecomposable projective 

G-modules. 

Now the isomorphism M{G) ~ k[G] from 8.7 ~ogether with 3.10 

shows that a finite dimensional G-module is projective if and only 

if it is injective. The indecomposable injective indecomposable 

G-modules are exactly the indecomposable projective G-modules. 

There is a bijection E~ E' on the set of isomorphism classes of 

simple G-modules such that the injective hull QE of E (cf. 3.16) 

is the projective cover of Et, i.e. 

We intend to describe this bijection and have to be more 

precise about the isomorphism M(G) ~ keG] at first. 
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8.11 (M(G) as a Module over keG]). There 1s a natural 

structure as a k[GJ-module on M(G): For any f E keG] and 

p E M(G) we define fp through 

(1) for all fl E keG]. 

The following properties follow from straightforward computations 

which may be left to the reader. 

(4) 

then -
If J.l 1 ,J.l 2 E M{G) 

for all f E keG], 

for all f E keG], v E M(G}, 

r 
and f E k [G] ~ l1G ( f) = E f i ~ f i ' 

i=l 

f(P 1J.l2) = E(fiJ.l1 } (fiJ.l 2 )· 
i 

We have l1G(x) = X@ X and x(l) = 1 for all X E X(G}Ck[G]. 

Therefore (2) and (4) imply: 

(5) If X E KeG) I ~ }.It-+- xp is an algebra ~lism of M(G). 

Its inverse is -1 
J.la--+ X J.I. 

We claim furthermore for any f E k[G], J.I E M(G) and 9 E G(A) 

(for all A): 

and 

(We really ought to write p ... (9) (fJ.l (0 1) etc.) Indeed we have 
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pl.(g) (fll) -1 -1 = (fll)OP I. (g ) = II o(f?)o P R, (g ) 

-1 = pcpt{g )o{pR,(g)f?) = (Pt(g)p)~(pR,(g)f?) 

The proof of (7) is similar. 

8.12 If M is a G-module, then we denote by Nt the {GxG}-==== 
module which is equal to M as a vector space and where the first 

factor G operates as on M and the second factor operates 

trivially. Similarly Mr is defined. For A E X(G) we shall 

usually write 1.
1 and ).r instead of (k ) lI. and r We A (k,,) • 

regard k[G] and M(G) as a (GxG)-modules with the first factor 

operating via P1 and the second one via Pro 

Proposition: Let - Then is an 

isomorphism of k[G]-modules and of (GxG)-modules: 

Proof: It is obvious from the definitions and from 8.11(6), 

(7) that the map considered is a homomorphism of k[G]- and of 

(GxG)-modules. We have to prove only its bijectivity. As both 

sides .have the same dimension it is enough to prove its injectivity. 

Consider the endomorphism y of M(G) @ k[G] which is the 

composite of the map idM(G) «9 AG= M(G) ® k[G] ~ MeG) ® k[G]® 

k[G] with the map M(G)€> k[G] e k[G] ~ M(G)~ k[G], pe f 1 ® f2 

...... flll dP f 2 • We can identify M{G)(9 k[G] with Mor(G,M(G)a) 

associating to each 11 (8) f the map g ...... f (g) p. Then y (p ® f) is 
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easily checked to be the map g~ (Pr(g)f)p. 

with 

g. 

Let us fix now f E k[G] and consider F E Mor(G,M(G)a) 

F(g) = (pt(g)f)po = pt(g)(fpO) for all 9 E G(A) and all 
r r -1 

I fAG ( f) = 1: f i • f 1 ' then P t (g) f = t f i (g ) f i ' hence 
1=1 1=1 

r 
corresponds to 1: (flllo)e a G(f1 ) E M(G} 8 k[G]. Its image under 

1=1 
r 

y is therefore the morphism g~ ( E (pr(g}aG(fi}}fl)~o' Now 
1=1 

r 
1:1 (Pr(g)oG{f!»fl maps any g' to 

-1 -1 -1 f(g g' gl) = f(g ). Th1s implies 

r 
E fi«9'g)-1)fl(g') = 

1=1 

y(F) = PoS aG(f). If 

fllO = 0, then F = 0, hence llO eaG(f) = O. As Po 1= 0, this 

implies f = O. So the map considered is injective. 

F 

Remarks: 1) If we take then f~ fpo is an 

isomorphism of k[G]- and (GxG)-modules 

2) The affine and finite scheme G is also a projective scheme 

of dimension O. It has therefore a dualizing sheaf, cf. [Ha], 

p. 241. This is easily seen to be the coherent sheaf with global 

sections equal to M(G) = k[Gf: We have for each finite 

dimensional k[G]-module M a non-degenerate pairing HO~[GfMlk[G~ 

* xM + k[G] + k mapping at first (~,m) to ~(m) and then ~ 

to ll(1). (Use HO~[G](M,k[G]*) A HO~[G](k[G],M ) • M* with 

the obvious structure as a k[G]-module on M*.) 

In [Kempf 5J, 5.1 the proposition is proved using the inter-
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pretation of M(G) as the dualizing sheaf. 

~ Proposition: Let E be a simple G-module and Q a 

projective cover of E. Then 

Proof: Choose a complete set el, .•• ,er of primitive, 

orthogonal idempotents in M{G), hence a decomposition 

r 
M(G) = m M{G}e. 

i=l 1. 

into indecomposable (projective and injective) modules. There 

are simple G-modules Ei and E' i (1 ~ i ~ r) with M(G)ei / 

rad M(G)ei 
.:: E and soc M(G}ei 

.:: E! for all i • We have to i 1. 

show E' i = Ei <8> °G for all i. 

For any G-module M the map <pt-+ <p(e.) is an isomorphism 
1-

HomG(M(G)ei,M) .:;. eiM. If M is simple, then M .:: E. 
1-

if and 

only if eiM F o. Any p E M(G) operates on M* through 

pcp = cpOO G { p} and on Mf&X for X E X(G) as Xll operates on 

M. Therefore (for M simple) 

(1) M.:: Ei ~ eiM F 0 ~ 0G(ei)M* F 0 

~ * -1 ~ (xoG{ei)l(M ~X ) F O. 

Because of B.11(5) also xoG(el), ••• txob(er) is a 

complete orthogonal set of primitive idempotents in M(G}. We 

qet from (1) 
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(2) * -1 Ei(l>X .:: M(G}xoG(ei)/rad M(G)XGG(ei ) 

for all i. 

Choose Po as in 8.12 and let ,: M{G) -+ keG] be inverse 

to the map f ....... flb from 8.12. The (GxG)-homomorphism property 

of 8.12 implies for all p,p' E M(G) 

1/1 ( pp I) = 1/1 ( p ! ( Jl) pI} = PI, (Jl ) 1/1 (pI) 

Therefore each 1/I(M(G)ei ) = Pr(oGoG(ei»,(M(G» is orthogonal 

to each M(G}oGoG(ej) with j F i. As , is an isomorphism for 

PR, we get for all i 

hence 

(3) 

Now (2) and (3) imply 

E' .:: (E*(&cS-1 )* - E IS 
1 i G - i <it G· 

Remark: If 0G = 1 (l.e. if G is unimodular), then the 

projective cover and the injective hull of every simple G-module 

coincide. If we apply the propOSition to the trivial G-module k, 

then we get that also the converse holds. 

One can show for unimodular G that M(G) is a symmetric 

algebra in the sense of [5], ch. IX, cf. [Humphreys 9). In 
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general M{G) is only a Frobenius algebra. 

8.14 (Coinduced Modules) Any closed subgroup H of G is 

itself a finite algebraic k-group. We can identify M(H) with 

the subalgebra {ll E M(G)!ll(I(H» = O} where I(H)C keG] 

is the ideal of H, cf. the corresponding result for Dist(H) 

in 7.2(3). 

The equivalence of categories 8.6(2) enables us to define a 

functor cOin~ from {H-modules} to {G-modules} through 

(1) 

for any H-module M. We call this functor the coinduction from 

H to G. (When comparing this to what is done for Lie algebras 

e.g. in [6], ch. 5 one has to observe that there the terms 

induction and coinduction have just the opposite meanings. Also 

in [Voigt] our cOind~M is called an induced module.) 

(2) 

We have obviously: 

The functor . d G 
co~n H is' right exact. 

For any H-module the map i M: M + cOind~M with iM(m} = l®m 

is a homomorphism of H-modules. The universal property of the 

tensor product implies for each G-module V that we get an 

isomorphism 

(3) 

Hence: 

(4) The functor cOind~ is left adjoint to 
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Furthermore: 

(5) The functor cOin~ maps projective H-modules to projective 

G-modules. 

8.15 Lemma: Let H be a closed subgroup of G and M a 

finite dimensional H-module. Then there is an isomorphism of 

G-modules 

Proof: For all finite dimensional G-modules V1 'V2 
the 

bijection Hom(vl ,v2 ) .:::. * * Hom(V
2

, V
l

) mapping each q> to its 

transposed * a bijection HomG(v1 ,v2 ) * * q> induces .:::. HomG (V 2' VI) • 

we get 
Using this and 8.14(3)/for each finite dimensional G-module 

V canonical isomorphisms 

~ * - * + HO~(M,V ) + HO~(V,M ) 

mapping any to * (iM) 0,. This generalizes to all V by 

taking direct limits. 

property of· in~(M*) 

G * Therefore (coindHM) has the universal 

as in 3.5, hence is isomorphic to 

~ (Exactness of Induction) Let H be a closed subgroup 

of G. As H is a finite algebraic k-group the quotient G/H 

is affine by 5.6(3), hence 5.8 implies: 

(1) 
G 

indH is exact. 
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We get now from 4.12: 

(2) k[G] is an injective H-module. 

Hence: 

(3) M(G) is a projective left and risht M(H)-module, 

and: 

(4) cOind~ is exact. 

Of course (4) follows also directly from (1) and 8.15. One can 

improve (3) and show that M(G) is a free module over M{H}, 

cf. [ 9 ], 2.4. We do not have to go into this. 

If M' is a projective and finite dimensional right M(H)

module, then we have for each H-module M an isomorphism 

(5) !wI' SM(H)M .:;. HomM(H) (HomM(H) (M' ,M{H) ,M} 

mapping each ml&m with mt E M' and m E M to the map 

~~ ~(m')m. Here we form HomM(H)(M',M(H» via the operation of 

M(H) on itself by right multiplication and we consider it as 

an M(H)-module via the left multiplication on M{H}. In order to 

prove bijectivity in (5) one restricts to the case M' = M(H)n 

for some n where both sides are isomorphic to ~. 

Because of (3) we can apply this to MeG) considered as an 

M(H)-module under right multiplication. The map in (5) is now 

easily checked to be an isomorphism of G-modules 

(6) cOind~M':;' HO~(HO~(M(G),M(H»,M) 
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where the operation of G on the right hand side is derived from 

the left regular representation on MeG). 

8.17 Proposition: ~ H be a closed subgroup of G. !h!!! 

we have for each H-module M an isomorphism: 

Proof: We have isomorphisms of (GxH)-modules 

HO~(M(G),M(H}) ~ (M(G)*eM(H»H 

= (k[G]0M(H»H.:: (k[G]8 k[H]<R> 6 )H 
H 

This is regarded as an H-module via the right regular representation 

on k[G] and via 0H and as a G-module via the left regular 

representation on k[G]. 

We get now from 8.16(6) isomorphisms of G-modules 

cOind~M .::. HO~ (k[G]& oR' M) 

.::. (M(G) <iD o;lca M)H 

~ (k[G] ~ (oG) I
H

o;l<S>M)H 

G -1 = ind}i (M Q»( 0 G)IHt5H ). 

8.18 Corollary: Let H be a closed subgroup of 

a finite dimensiollal H-module. Then: 

G and M -
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Proof: This follows from 8.17 and 8.15. 

Remark: One can interprete this as Serre duality for the sheaf 

cohomology of ~/H(M), cf. 5.10. 

8.19 Proposition: Let Gl be a k-group scheme operating on 

G through group automorphisms. Then G' operates naturally on 

is a G'-submodule of M(G) and 

given bX some X E X(G'). If 

f~ fpo is an isomorphism 

G is a closed normal subgroup 

of G' and if we take the action of G' bX conjugation on G, 

then 

Proof: We can form the semi-direct product G)<I G' and make 

it operate on G such that G acts through left multiplication 

and G' as given. This yields representations of G,)4G l on k[G] 

and M(G) = k[G]* which yield the operations considered in 

proposition when restricted to G' and which yield the left 

regular representations when restricted to G. Hence M{G)~ are 

the fixed pOints of the normal subgroup G of G }qG', hence a 

G'-submodule by 3.2. 

It is now obvious that G' operates through some X E X(G') 

on M(G); and that £1-+ f lIO is an isomorphism k[Glex .:;. M(G) of 

G'-modules. Suppose finally that G is a normal subgroup of G' 

and that we consider the conjugation action of G' on G. Then 
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each g E G(A) C G' (A) acts through the composition of p t (9) 

and Pr (g) on M(G) ® A, hence through Pr (g) on \.1
0 

Ql 1. There

fore the definitions show x(g) = 0G(g). 

~ Proposition: Let G' be a k-group scheme containin2 

G as a closed normal sub2roup. Let H' be a closed subgrouE of 

G and set H = H' n G. Let M be an H'-module. Then there is a 

natural structure as an HIG-module on G 
coindHM extendin2 the 

structure as a G-module. For each H'G-module V there is a 

canonical isomorphism 

If X EX(G') 

G' resp. H' 

resp. X· E X(H') 

operates on M{G)~ 

is the character through which 

H 
resE. M(B) t' then we have an 

isomorEhism of B'G-modules 

(2) G - HIG -1 
cOinc1HM .... indH I {M <B> (X I H' ) X ' ) • 

If dim M <~, then we have an isomorEhism of BIG-modules 

(3) H'G * - B'G * -1 (indB , M) .... indH, (M' &(XIH')X' ). 

Proof: Let us work with the description of cOind~M as in 

8.16(6). We make HI .operate on M(G) and M(B) via the 

conjugation action on G and H. We get thus a representation 

of H I on Hom(M(G) ,M(H) ) which extends to H't< H if we let 

H operate through the two right regular representations. By 3.2 

the subspace HO~(M(G),M(H» is an H'-module. Together with the 

given action of H' on M this makes Hom(Ho~(M(G),M(H),M) 

into an H'-module. This operation of H' can be extended to 
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B I po< B with Hoper a ting via p .t on M {H } and through the 

restriction of the H'-action on M. Again HOmn(HOmn(M(G),M(H»,M) 

is an H'-submodule. We can extend the operation of HI to 

B'~G letting G act through P
t 

on M(G), i.e. inducing the 

action of G on 

For any h E H(A) for some· A the element (h,h-1 ) E (H'I>(G) (A) 

acts trivially. (This follows easily from the definitions.) There

fore we get a representation of (H'~G)/H = H'G, cf. 6.2(1), on 

cOind:M extending the given one of G. 

Using this structure, the isomorphism in 8.14(3) is easily 

checked to be an isomorphism of H'-modules (provided V is an 

H'-module). It therefore has to induce an isomorphism of the H'-

fixed points. This implies (1). 

We get (2) by examining the proof of 8.17. After replacing 

0G by X and 0H by x' all isomorphisms there are also 

compatible with the H'-action, hence with the structure as H'G-

module. Similarly 8.15 generalizes from G to H'G and together 

with (2) yields (3) as in 8.18. 

Remark: We denote cOind~M when considered as an HIG-module 
BIG HIG 

by coindH, M. Obviously coindR, is a functor from {n'-modules} 

to {BIG-modules} and 8.14(2)-(4), 8.16(4), generalize to this. 

Note that we have by construction an isomorphism of functors 

R'G . HIG 
resG 0 co~ndH I .:: . dG H' 

co~n H oresH 

which is dual to 6.12. 
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9. Representations of Frobenius Kernels 

Throughout this chapter let p be a prime number. We shall 

always assume that k is a perfect field with char(k) = p. 

Let G be an algebraic k-group. If k = F , then the map 
p 

fr+ fP on k[G] is an endomorphism of k-algebras and defines a 

morphism FG: G ~ G which is a group endomorphism. The kernels 
r Gr = ker(FG) are called the Frobenius kernels of G. They are 

infinitesimal algebraic k-groups. One can generalize this to all 

k by replacing F~ as al?ove by some group homomorphism G -to G(r) 

into a suitable k-group G(r). 

We give in this chapter at first the definitions and elementary 

properties (9.1 - 9.7). We then compute their modular functions 

in the case of reduced groups (9.8 combined with 8.19). 

The representation theory of the first Frobenius kernel G1 
of G is equivalent to that of Lie(G) as a p-Lie algebra. There-

i fore each cohomology group H (G1,M) is equal to the corresponding 

"restricted Lie algebra cohomology group" in the sense of 

[Hochschild 3]. In that paper these groups are compared to the 

ordinary Lie-algebra cohomology groups (cf. 9.16), especially in 

low degrees. 

One of his main results can now be interpreted as a "six 

term exact sequence" arising from a spectral sequence (9.18/19). 

This spectral sequence was found for p ~ 2,3 and G reductive 

in [Friedlander/Parshall 1 ]. (But compare also the remark at the 

end of section 3 in [Hochschild 3].) Their results were somewhat 
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generalized in [Andersen/Jantzen]. The present version of 

proposition 9.18 is the same as in my lectures in Shanghai and 

was proved also by Friedlander and Parshall. 

9.1 (The Frobenius Morphism on an Affine Variety) Before 

defining Frobenius morphism in general we want to motivate the 

definitions by an example. Let us assume in this section k to 

be algebraically closed. 

Let X be an affine variety over k (as in 1.1). We can 

embed X as a Zariski closed subset into some kn. The map 

F: k n 
+ kn, (a1 ,a2 , ••• ,an )r+ (ai,a~, ••. ,a~) is a bijective 

morphism of varieties. It is also a closed map. (Using that 

fP E im(F*) for all f E k[T1, ••. ,TnJ one shows 

L * * -1 If (K[T1, ••• ,Tn]F (F) I = I for each ideal I k[T1, •.• ,Tn ].) 

Therefore each Fr (X) with r E N is a closed subset of k n 

and Fr induces a bijective morphism X + Fr(X). We want to 

show that the pair (Fr(X),Fr : X + Fr(X» has an intrinsic 

meaning, i.e. is independent (up to isomorphism) of the embedding 

of X into kn. 

Define for each f E k[X] a map ~r(f): Fr{X) + k 

~ (f) (x') = f(F-r(x,»p for all x' E Fr(X). Obviously r 

through 

an injective ring homomorphism from k[X] 

functions from pr(X) to k and satisfies 

is 

to the algebra of all 
r 

~r(af) = aP ~r(f) 

for all a E k and f E k[X]. If f is the i-th coordinate 

function on k n reatricted to X, then ~r(f) is the i-th 

coordinate function restrjcted to Fr(X). Therefore induces a 
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bijection from k[X] to k[Fr(X)]. 

with 

Denote by k(X]<-r) 

k[X] but where each 

the k-algebra which coincides as a ring 
(p-r) 

a E k operates as a does on 

k[X]. Then we can regard ~r as ,an isomorphism of k-algebras 

k[X](-r} ~ k[Fr(X)]. This shows that pr(X) as a variety has an 

intrinsic meaning. If we identify k[pr(X)] with k(X](-r) via 

~r' then the comorphism of Fr is the map k[X](-r) + k[X], 

f •. fpr Fr 
~ for all f, hence also has a description independent 

of the embedding of X into kn. 

9.2 (The Frobenius Morphism on a Scheme) From now on let 

k be again an arbitrary perfect field of characteristic p. 

For each k-algebra A and each m E Z we define A(m) 

the k-algebra which coincides with 

b
pm 

b E k operates as does on 

A as a ring.but where each 

A. Trivially A(O) = A. One 

has obviously isomorphisms 

for all m,n E Z 

and (for all k-algebras A,A') 

(2) Hom. (A(-m) A') '::'Hom. (AA,(m» 
x-alg 'x-alg' for all m E ~. 

as 

(This is the identity map.) For each k-algebra A, each m E~ 

and r E N the map 

(3) Y • A(m) + A(m+r) 
r· , 

is a homomorphism of k-algebras. 
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We define now for any k-functor X and any r E ~ a 

new k-functor x(r) through 

for all k-algebras A. 

Furthermore we define a morphism F~: X ~ x(r) through 

for all A. We call F~ the r-th Frobenius morphism on X. 

Obviously X ~ x(r) is a faithful functor from {k-functors} to 

itself. 

One gets from (1) for all r,sE ~ and all X 

(6) and 

If we consider an affine scheme X = SPkR for some k-algebra R, 

then (2) implies for all r E~ 

has as comorphism (-r) R ~ 

r 
R, fr+ fP • Furthermore F~ 

construction of X(r) and F~ generalizes the situation 

considered in 9.1. 

So the 

We can interprete the definition (4) as saying that x(r) 

arises from X through base change from k to k Cr ) which then 

is identified with k as a ring. We can therefore apply the 

general remarks about base change in 1.10. So the functor X ~ x(r) 

maps subfunctors to subfunctors, commutes with taking inter-
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sections and inverse images of sub functors and with taking direct 

and fibre products. It maps local functors to local functors, 

schemes to schemes, and faisceaux to faisceaux (cf. 5.3(8». If 

X is an affine scheme and I an ideal in k[X], then V(I)(r) -

V(I<-r» and DeI)(r) = D(I(-r}) where I(-r)C k(xJ(-r) is 

just I with the new operation of k. 

If k = Fp ' then obviously X(r) = X for all r and any 

k-functor X. If 

of X with F;(f) 

X is affine and if FX 

= fP for all f E k[X], 

is the endomorphism 

then obviously F~ = 
r (FX) • More generally, if k is again arbitrary, but if X 

has an Fp-structure (i.e. there is some F p-functor X' with 

X = (X')k)' then we can identify x(r) with X. In the affine 
pr 

and the map f ® at-i" f & a case one has k[X] = 

(for all f E ~ (X'] and a E k) induces an isomorphism 
p 

k[X(r)] = k[X](-r) ; k[X]. (This map is called for r = 1 the 

arithmetic Frobenius endomorphism of k[X].) Taking this 

identification F~ is the endomorphism of X with comorphism 
r. 

f ~ at-+- fP (8a (for all f, a as above.) This map is called for 

r = 1 the geometric Frobenius endomorphism of k[xl. 

Remark: It is clear that (4) makes sense not only for our 

perfect field k but also for any ~p-algebra as only r E ~ 

appears in that formula. We can also take the interpretation via 

base change in that situation. It may be left to the reader to 

find out later on how much generalizes to this case. 

9.3 (Fibres of the Frobenius Morphism) Let X be an affine 
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scheme over k. consider a pOint x E X(k) and let us denote its 

ideal by Ix = {f E k[x]lf(x) = oJ. Then the ideal of F~{X) E X(r} (k) 

in k[X(r)] = k[X](-r} is I!-r) (i.e. Ix with the new scalar 

operation) as f(Frex» = f{x)P for all f. This implies (for x 
all r EN) 

r 
V (1: k [ X J fP ). 

fEI x 
So the (F~)-l(F~(X» 

of x. 

form an ascending chain of closed subschemes 

Suppose now that X is algebraic. Then is a finitely 
m 

generated ideal, say 1: .k[X]fo. 
i=1 ~ 

Then 

(F~)-l(F~(X}) 
m r 

= V ( i: k [ X ] fIi> ) 
i=l ~ 

f 11 Th °d 1 d fO ° (Frx)-l(Fxr(X)} or a r. e ~ ea e ~n~ng is contained in 

pr 
Ix and contains This implies (cf. 7.1, 7.2(2» 

(2) Dist(X,x) = r -1 r 
U Dist«FX) (FX(X»'x). 

r>O 

We can choose the fi such that the fi+I; (1 ~ i ~ m) form 

a basis of If x is a simple point of X then m = 
dimxx and the f i (l ~ i ~ m) are algebraically independent. 

Therefore the residue classes of all f~(1}f~(2) ••. f~(m) with all 

neil < pr form a basis of k[(F~)-l(F~(X»]. This shows 

(3) If x is a Simple point of X, then dim k[{F~)-l(F~{X)J = 

prm where m = dimxX. 
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Let us add that (1) generalizes to 

(4) 
r 

== V( L k[X]fP ) 
fEI 

for all ideals I in k[X] (and any affine X) whereas 

(5) 

(Use that and 1. 5 ( 5) I (10) • ) 

9.4 (Frobenius Kernels) = Let G be a k-group functor. 

obviously each G(r) is also a k-group functor and r 
FG: G + 

Then 

G Cr ) 

is a homomorphism of k-group functors. Its kernel r Gr == ker(FG) 

is a normal subgroup functor of G which we call the r-th 

Frobenius kernel of G. The factorization in 9.2(6) implies that 

we get an ascending chain 

of normal subgroup functors of G. 

If H is a subgroup functor of G, then H(r) is a subgroup 

functor of and is the restriction of 

implies 

especially for all r ,r e EN 

{GGr

r
• (3) (Gr)r' == "t for r·.::.. r, 

for r' > r. 

to H. This 
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If k = F p or if G is defined over F 
p' then we can 

identify each G(r) with G and interprete Fr 
G as the r-th 

powe~ of some Frobenius endomorphism FG! G + G (which is F~ 

after the identification G ~ G(l». This is true e.g. for 

G = G a and G = G • m In these cases in the 

notations of 2.2. Therefore G = ~ for all r and the 
m,r Cpr) 

G from 2.2 are the Frobenius kernels of Ga' (So our new a,r 

notation is compatible with the old one.) 

9.5 = Let G 

G(r} 

be a k-group scheme. The image faisceau (cf. 5.5) 

is isomorphic to GIG r (by 6.1 

Par each subgroup scheme H of G we can identify 

(1) 

by 9.4(2) and with GrH, cf. 6.2(4). 

The factorization yields 

for all rl > r. 

ProE9sition: If G is a reduced alsebraic k-sroup, the~ each 

Fr induces isomorphisms GIG ~ G(r} and G IG ~ (G(r» 
G - r r' r r'-r 

for all rl > r. 

Proof: By [DG), II, §5, 5.l.b the embedding of pr (G) ;;:. GIG 
G r 

into G(r) is a closed immersion. Therefore GIG is identified 
r 

with the closed subgroup of G(r) 

camorphism . (F~)*: k[G]<-r) + k[G] 

defined by the kernel of the 

f f
pr 

which maps each to 
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i.e. we get 

r 
(3) F~(G) = V({f E k[G]!fP = O}~-r\. 

If G is reduced, i.e. if keG] does not contain nilpotent 

elements F 0., then obviously F (G) = G(r) . 
r 

As we have shown F~ 

subfaisceau Y of G(r) 

to be an epimorphism of faisceaux,each 

is equal to the image faisceau F~«F~)-1y) 

Therefomthe last claim follows from (1) and (2). 

Remark: If G is defined over F, we can express the p 

results as G/G
r 

; G and G /G ~ G r' r r'-r' 

9.6 {Dist(G} and the Dist(G
r

}) Let G be an algebraic 

k-group scheme and 11 the ideal in keG] defining i. Keep 

this assumption and convention until the end of this chapter. 

Obviously G is the closed subscheme of G defined by 
r r 

t k[G]fP Therefore k[GrJ is finite dimensional and the 
fEll 

ideal of 1 in k[Gr ] is nilpotent. Hence (cf. 8.1): 

(1) ~ Gr is an infinitesimal k-~roup. 

The Dist(Gr } form because of 9.4(1) an ascending chain of sub

algebras of G and one has by 9.3(2): 

(2) Dist{G) = U Dist(G). 
r>O r 

Therefore 7.14 - 7.17 imply, if G is irreducible: 

(3) If M is a G-module, then 

(4) If M,MI ~ G-modules, then n HODlG (M,MI). 
r>O r 
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(5) ~ M be a G-module and N a subspace of M. 

~ N ~ G-submodule if and only if it is a Gr-Submodule 

for all r EN. 
G G G 

In (3) and (4) we have descending chains M 1.::::> M 2 :::> M 3 ::::::> ••• 

and BomG {M,M')::::::> Bom
G 

(M,M')::::> BomG (M,M')::::> ••• If dim M < co 

123 

resp. if dim H c9 H' < co, then these chains have to stabilize. 

So we get (still for G irreducible): 

(6) If M is a G-module with dim M < co, then there is an nE N ~ 
G 

H
G = M r f 11 or a r > n. 

(7) If M,M' are G-medules with dim(M ® M') < co, then there is 

an n E N with HomG(M,M') == BemG (M,M') for all r > n. 
r 

9.7 (Lie (G) ~ G
1

) Choose f I' .•• ,fro Ell such that 

fi + 12 form a basis of 2 Then m == dim Lie(G) and 
1 Il/I l • 

the fi generate 11 as an ideal. One has obviously dim 

prm for all r, and equality holds, if 1 is a simple point 

G (cf. 9.3(3». So we get (e.g. by [DG 1, II, §5, 2.1/3 ) 

(1) If G i d d th di k[G J -_ pr dim{G) s re uce I en m r 

We have obviously for all r E N (and any G) 

(2) Lie(Gr ) == Lie G. 

The subalgebra U(P](Lie(G» == U[P](Lle(G » 
1 

Dist(G), cf. 7.10(2), has dimension 

dim k[G1l < pm. This implies 

m p , 

of 

whereas 

for all 

-

the 

k[Grl < -
of 
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This shows that G1 is the infinitesimal k-group corresponding to 

the p-Lie algebra Lie(G) as in 8.S.b and that the representation 

theory of G
1 

is equivalent to that of Lie(G) as a p-Lie algebra 

(cf. 8.6). 

9.8 Proposition: Let G 

r EN. Then G operates on 

be a reduced algebraic k-group and 
G 

Dist(Gr)tr through the character 

r 
gt-+ det(Ad{g»P -1 

where Ad denotes the adjoint representation of G on Lie(G). 

Proof: Recall from 8.19 that the conjugation action of G 

on G leads to representations of G on k[Grl and M(Gr ) = r G 
Dist(G ) and that M(Gr}t

r is a one dimensional submodule on 
r 

which G has to operate through some character X E X(G). 

Set q = pr 
2 and choose fl,···,fm E II such that the 

2 
fi+I l form a basis of 2 

I l /I 1• Let fi be the image of fi in 

k [Gr ]. As G is reduced, hence 1 a simple pOint, the monomials 

-fa (1)-fa (2) -fa(m) 
1 2 ••• m with 0 ~ a(i) < q for all i form a basis 

of the polynomial ring k[T1, ••• ,Tm]. It is there-

fore a graded ring in a natural way. Any endomorphism <P of the 
m 

vector space L kfi induces an endomorphism of the graded 
i=1 m -q-l algebra k[G l. As F = n fi is the only basis element of r 1=1 
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degree m(q-l) it has to be mapped under ~ into a multiple 

c(~)F of itself. Obviously ~r+ c(~) has to be multiplicative. 

This implies c(~) = det(~)q-l for all ~ as this is obviously 

true for ~ in upper or lower triangular form (with respect to 

the f i ), hence for all 

easily to any k-algebra A 

by multiplicativity. 

and any endomorphism of 

This extends 
m 
1: kf.@ A 

i=1 l-

as c(~) is obviously a polynomial in the matrix coefficients 

of ~. 

This can be applied especially to the operation of any 

g E G{A) for any k-algebra A on k[Gr]~ A derived from the 

c~njUgation action on Gr " Then the action of g on 

1: kfi e A .:::. (II/I~) $ A .:::. Lie (G) * ~ A is dual to the adjoint 
i=l 

action on Lie(G}~ A, hence has determinant equal to det(Ad(g»-1. 

So this implies 

gF = det(Ad(g»-(q-1)F. 

Consider now ~O 

then ~O(k[Gr]F) = 0 

Gr 
E Dist{Gr}t ' ~o 

as k[GrlF = kF, 

# O. If ~O(F) = 0, 

hence (k[Gr]po' (F) = 0 

by the definition of the k[Gr]-module structure on Dist(Gr ) 

in 8.11, hence Dist(Gr)(F) = 0 by 8.12. This is a contradiction, 

so we must have ~O(F) # o. Then 

q-l 
r det(Ad(g» ~O(F) 

implies x(g) = det(Ad(g»q-l as ~o(F) is a unit in A. 
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Remark: The same proof works for any algebraic k-group G 

and for r = 1 because of 9.7(3}. So we can take any p-Lie 

algebra g over k and consider the infinitesimal k-group G 

corresponding to G as in 8.S.b. Then G = G1 and Dist(G) = 
u[p](~). Then the proposition ~plies that the modular function 

6G is given by 6
G

(g) = det(Ad(g»p-l. The representation of ~ 

on Dist{G); is then given by the differential, i.e. by 

(p-l)tr(ad(?» = -tr(ad(?». As the operation of ~ determines 

that of G in this case, we see that G is unimodular if and 

only if tr(ad(x» = 0 for all x E~. This is a theorem of 

Larson and Sweedler, cf. the discussion in [Humphreys 9]. 

9.9 (Frobenius Twists of Representations) 

Let M be a G-module. We can define for each r E N a new 

G-module which we denote by M(r) and call the r-th Frobenius 

twist of M. We set M(r) as a group equal to M and make it 

into a vector space over k by letting each a E k operate on 
( -r 

M r) as aP does on M. (This convention is certainly awkward 

as 9.2 suggests that we should call it M(-r). Still in the 

context of representations the present notation is more useful, 

and we shall always be careful whether we deal with k-algebras or 

G-modules. ) 

For each k-algebra A there is a semi-linear map YA: M®A+ 

M(r) <Sl> A with yA(m& a} = m® 
pr 

for all m E M, a E A. If a 

(mi)iEI is a basis of M, then the basis (mi SS l)iEI of the 

A-module M is mapped to a basis of the A-module M(r) C8? A. 
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Therefore for each <p E EndA (M 8> A) there is a unique 

<p' E End (M(r) €> A) 
A 

with The map End
A 

(M@A) -+ 

End
A 

(M(r) <8> A), <p~ <P' is semi-linear, compatible with the 

composition of maps, and functorial in A. The given representation 

of G von M yields for each A a homomorphism 

G(A) -+ End
A 

(M®A) x -+ End
A 

(M{r)® A} x 

which is functorial in A, hence a G-module structure. This is 

the twisted module we wanted to define. If (mi)iEI is a basis 

of M as above and if g E G(A) has the matrix {aij)i,jeI 

with respect to (mi f8> l)iEI' then g has the matrix 

r 
<ail)f,jEI with respect to the corresponding basis of M(r)~A. 

(This is one reason for the notation M(r) instead of M(-r).) 

then A (r) (m) = 
M 

Suppose now that M has a fixed ~-structure, i.e. an 

Fp -subspace H' C M with M' 2» f:'" k = M. We get then a 
p 

Frobenius endomorphism FM on M and on each M ® A .::. M' ®f= A 
P 

through FM(m aD a) = m <1b aP • Then each pr 
M is an isomorphism 

of A-modules M®A-+ M(r)(g) A. Suppose that G is defined 

over F 
p 

and denote the corresponding Probenius endomorphism 

by FG: G -+ G. If the representation of G on M is defined over 

Fp (i.e. if FG(g)FM(m) = FM(gm) for all m E M, g E G(A» , 

then we can define a new representation of G on M by composing 

the given G -+ GL(M) with F~: G -+ G. Then F~r): M -+ M(r) is 
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an isomorphism of G-.modules if we take the new structure on M 

just defined and on M(r) as above. (This follows from an 

elementary computation.) 

Note that our definitions are compatible with 4.27. 

9.10 (The Associated Graded Group) The powers of II 

define a filtration of k[G] and we can form the associated graded 

algebra gr k[G] = e I~/I~+l. There is obviously a surjection 
n>O 

from the symmetric algebra onto gr k[G] compatible 

with the grading. 

The fiormulas 2.4(1),(2) show that and induce also 

a comultiplication and an antipode on gr k[G] making (together 

with the obvious augmentation) gr keG] into a (commutative and 

cocommutative) Hop£ algebra. So there is a k-group scheme greG) 

with gr k[G] ~ k[gr(G)] (the associated graded 2roup). 

We can interprete S(Il/Ii> as k[«Il/Ii)*)a] = k[(Lie G)a]· 

Then the surjection S(II/Ii> + gr keG] = k[gr(G)] is compatible 

with the Hopf algebra structure (again because of 2.4(1),(2». 

Thus: 

(1) greG) is canonically isomorphiC to a closed subqroue scheme 

..Q.£ Lie ( G) a . 

The same arguments as in 9.7(1) imply 

(2) If 

and 

G is reduced, then greG) :. Lie(G) a 
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(3) If G is reduced, then gr(G) = (Lie(G) ) r a r for all r EN. 

~ (A Filtration of the Hochschild Complex) The filtration 

of k[G] as in 9.10 leads also to a filtration of the Hochschild 

complex C'CG,M} for each G-module M. We set for all i,n E ~ , 

where we sum over all i-tuples (a(l), ••. ,a(i» E ~i with 

t a (j)? n. Because of 2.4 (1) I (2) and as t.M (m) -m ~ 1 E M & II 
j 

for all m E M the definition of the coboundary operators in 

4.14 shows 

(2) i'i i+1 
a C (G/M) (n) C C (G,N) (n) 

for all i and n. 

Each quotient i i+1 
C (G,M) (n)/C (G,M) (n+l) can be identified 

with the direct sum of all 

... 
n 

over all i-tuples (a(l), .•• ,a(i» with b a(i) = n. We can on 
i==1 

the other hand regard M as a trivial gr(G)-module and form 

C·(gr(G),M). The grading on k(gr(G}] leads in a natural way 

(cf. 4.20) to a grading on each 

homogeneous part of degree n by 

i C (gr(G),M). We denote the 

ci(gr{G),M)n0 Then 

(3) i i+1 i 
C (G,M) (n)/C (G,M) (n+l) = C (gr(G),M)n 

for all i,n. These identifications are easily checked to be 
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compatible with the boundary operators so that the associated 

graded complex of C'(G,M) is isomorphic to the graded complex 

C'(gr(G),M) = C·(gr(G),k)~ M. 

The general theory about filtered complexes (consult e.g. 
t 

[7] , I.4) shows that there is a spectral sequence with E1-terms 

Ei,j i+j If G is irreducible, then n I n+1 = H (gr G,k) . ~ M. 1 J 1 
i n>O 

hence n C (G,M)(n) = 0 for all i. Therefore in this case 
n>O 

= 0, 

the spectral sequence converges to the cohomology of the original 

complex. 

9.12 Proposition: Suppose G is irreducible. Then there 

is for each G-module M a spectral s~~nce with 

(1) Ei' j = Hi +j (gr (G) ,k) i @ M =#> Hi +j (G,M) • 

This is what we proved in the last section. Let us add that 

the spectral sequence is compatible. with the cup-product in case 

M = k resp. with the H·CG,k)-module structure on H'(G,M) in 

the general case. 

If some other qroup H operates on G through group auto

morphisms, then it operates on C'(G,k) preserving the filtration. 

Then we get a natural action of H on each term of the spectral 

sequence such that all differentials are homomorphisms of H-modules. 

Also the filtration on the abutment is compatible with the action 

of H. This generalizes to an arb~trary G-module M if we have 

also an operation of H on M compatible with the operation of 

G (i.e. defining a representation of G)C H) • 
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~ Proposition: Let G be reduced and irreducible. 

Set !J.:: Lie(G). 

a) There is for each G-module M a spectral converging to 

H·(G,M) with the following E1-terms: 

If P F 2, then -

where we sum over all finite s~uences 

(b(n) )n>l in N ~ 

i+j :: 

If p:: 2, then 

l: (2a(n)+b(n» 
n>l 

and 

(a{n) )n'::'l and 

i :::: n n-l 
l: (a(n)p +b(n)p ). 

n>l 

... 

where we sum over all finite seguences (a(n})n>l in N ~ 

i+j:::: l: 
n~l 

a(n) and i = I: 
n!:.l 

n-l a(n)p • 

b) !!!E. r E Nand M ~ Gr -module. I f we take above only 

r-tuples (a(n»l<n<r and ~or p F 2)(b(n»1~n~r then we get 

~ Ei,j-terms i~; spectral sequence converging to a" (Gr,M). 

Proof: This follows from 9.12 and 4.27 using 9.10(2},(3). 

Remark: Again these spectral sequences are compatible with 



206 

the operation of some group H on G or Gr through automorphisms 

if H operates also on M in a compatible way (e.g- always for 

the trivial module M = k). This follows from the fact that H 

then operates on greG) = Sa or gr(Gr ) = (~a)r through a 

representation on ~ so that the isomorphisms in 4.27 are 

compatible with the action of H. (This applies especially to 

the operation of G on G through conjugation.) 
r 

denotes a twist of the operation of H as in 9.9. 

The (r) 

9.14 The spectral sequence in 9.13.b is especially easy for 
= 

r = 1. 

Lemma: If P = 2, then we can compute H'(G1,M) for any 

G1-module M as the cohomology of a complex 

* 2 * 3 * O+M+M&~ -+M®S~ -+M®S~ -+ ••• 

where ~ = Lie(G). 

Proof: We have by 9.13 that M~ si~ = Ei,O whereas 
1 

Ei,j = 0 for j F 0 or i < O. So the only non-zero differentials 

in the spectral sequence are di'O: Ei 'O -+ Ei+1,0. They provide 

i 0 the maps in the complex and its cohomology groups E2' are 

equal to its abutment. 

Remark: Note that we do not have to assume G to be reduced 

and irreducible when dealing with, G1 (here and below.) The 

assumption of irreducibility is needed to make the spectral 

sequence in 9.12 converge to the G-homology. As each Gr is 
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irreducible we do not need the irreducibility of G in 9.13.b. 

The assumption of reducedness was needed to get 9.10(3). But we 

have gr(G1) = (Lie(G)a)l for and G by 9.7(3). 

~ Lemma: Let M ~ G1-module and set ~ = Lie(G). 

If p ~ 2, then there is a spectral sequence with 

Proof: We have in 9.13.b as E1-terms Ea (p-1)+b,-(p-2)a = 
1 

M t8> (Sas.*) (1) ~ Ab-ag* for all b .!.a~O and all other Ei,j 
1 

are O. So Ei,j = 0 for (p-2).J' j, hence di,j = 0 for r·t 1 1 r 
mod (p-2) as dr has bidegre (r,l-r). We can therefore re-index 

the spectral sequence by calling now the old E(p-l)i+j,-(p-2)i 
(p-2}r+1 • 

This gives then as above. 

~ (Lie Algebra Cohomologx> In order to compute the 

E1-terms of the spectral sequence from 9.15 it will be necessary 

to deal with (ordinary) Lie algebra cohomology (cf. e.g. [4], 

ch. I, §3, exerc. 12). 

If S. is a finite dimensional Lie algebra over any field 

and if M is a s.-module, then the Lie algebra cohomology 

H· (g I M) of M can be computed using complex M ® A~* where we 

* * take the standard grading of As.. The map do: M -r M ® ~ 

r * maps any m E M to the unique element ,E m). <8> <p)' E M.l8t S. 
r )=1 

with xm = E <pj{x)mj for all x E g. (It is something like a 
j=l 

comodule map.) In general one has for any m E M and ~ E Ai~* 
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(1) 

with as above and where is the boundary 

operator in the case of 

uniquely determined by 

transposed of 2 
A ~ + 51., 

property 

(2) 
I 

di+j(lPr\l/I) 
I = di (IP)A ljI 

for all IP E Ai~* and 

9.17 Lemma: Let = 

the trivial module. This in turn is 

d~: g* + l51* .::. (A 29:> * which is the 

v-yH- - [x,y1 and by the derivation 

+ ( -1) i IPA d~ (,,) 

ljI E Ajg*. 

M be a Gl.-module and set g = Lie(G). 

SUEEose p F 2. Then one has in 9.15 

for all j E l\} . 

Proof: We have maps 

to M ~ Aj +1g* for all j EN. SO we have to show that the 

complex is the same as the one computing the Lie 

algebra cohomology. 

The compatibility of the spectral sequence with the cup-product 

in the case k = M and with corresponding module structures in 

general implies that the d~,i hqve derivation properties 

analogous to 9.16(1),(2). It is therefore enough to prove that 

d~'O: M + M & g* and dg, 1: 5,* + A2g* in the case M == k are 

the same maps as in 9.16. 

In the original notation of 9.13 our present was 
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called Ei,O 
1 

i i 
and arose as a subquotient of C (G1 ,M) (i)/C (G1,M) (i+1)' 

Any e E EO,i 

° 
i has a representative e E C (G1 ,M) (i) with 

i i+1 a ~ E C (G1,M) (i+l) and 

the subquotient EO,i+l of 
° 

In the case i = ° we have aD: M + M ® k [G1 ], mr+ AM(m) -
s 

m<S 1. We can write AM(m) = m 181 1 + E mi Ilb fi 
i=l 

= {f E k[Gl]\f(l) = O}. We have CO(GlIM)(n) = M 

for all n E N I hence EO,1 = MC> 

° s 

where 

1 c (G1 ,M)(2)' Therefore E m.<iil f. where 

2 
f i +I 1 • The operation of any 

s 
xm == I fi(x)mi • 

i=1 

9.16. 

This shows that 

i=l ~ ~ 

is given by 

is the same map as in 

Take now M = k d id dO,l I * I /12 an cons er ° . t maps ~ = 1 1 = 
1 1 c (G1 ,k}(1)/C (G1,k)(2) 

2 into a subquotient of C (Gl ,k)(2)/ 

2 For f C (Gl,k) (3) . any E II we can write AG{f) = 1 ® f + 

s 
f0 1 + E fi ® fi with fi,fi E II' cf. 2.4(1) • Then 

i=1 

a1f 
s 

f+I~ E I /1 2 = EO,! = E fi ® fi· So f = is mapped to 
i=l 110 

s 2 
the class of - E f ® fit in the subquotient H (gr G1 ,k)2 of 

i=1 i 

222 
C (G1 ,k)(2)/C (G1 ,k) (3) == C (gr G1 ,k)2" By the definition of 

the cup product this is the sum of the products of - 2 f. == f.+I 1 ~ ~ 

and £1 = fl+I 2 
i i 1 

It belongs to the subalgebra 
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H
1

(gr Gl,k) ~ ~* which is identified with 
s 
E fiArr. As the Lie algebra structure on 

i=l 

* A~ • 

2 * + (II/II) = Dist1 (G) is defined through [x,y] == (x(8l y - Y0\ x)oA G 

we see that is transposed to XAyt-+- [x,y] as claimed. 

Remark: Notice that this computation gives also the boundary 

maps in the complex of lemma 9.14. 

9.18 (Ordinary and Restricted Cohomology) If M,M' are G -' 
1 

modules, then we can interprete each ExtGi (M',M) resp. 
. 1 

Ext~(M.,M) as set of equivalence classes of exact sequences 

of homomorphisms of G1-modules (resp. ~-modules). So we have a 

natural map Ext~ (M',M) ~ Exti(M',M). Taking M' = k we get a 
iIi S. 

natural map H (G1 ,M) ~ H (s.,M). Let us describe this explicitly 

for i = 1. 

Each l-cocycle ~: g + M defines an extension of g-modules 

o + M + M(~) + k ~ 0 where M(~) = M e k as vector space with 

XES. operating through x(m,a) = (xm+a~(x),O) for all a E k 

and m E M. One checks easily that this is an extension of G1-

modules if and only if ~(x[p]) = xp-l~(x) for all XES.. This 

equation is certainly satisfied, if ~ is a coboundary, i.e. 

of the form x~ xm for some m E M. So we get an embedding 

1 1 H (G1,M) ~H (~,M). More precisely the image is exactly the 

kernel of the map associating to the class of ~ as above (in 
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H1(~,M» the map xr+ ~(x[p]) - xp-1~(x) from ~ to M. This 

map is semilinear, i.e. it is additive and satisfies ~(ax) = 
aP~(x) for all a E k and x E~. Let Homs(~/M) be the space 

of all such maps. We have so far constructed an exact sequence 

1 1 s o .... H (G1,M) .... H (~,M) .... Hom (~IM). 

We can be more precise. An elementary computation using the 

cocycle property ~«(x,y]) = x~(y)-y~(x) for all x,y E ~ shows 

~(x[p]}-xP-1~(X) E ~ for all x E~. So we can replace 

Homs(~IM) by Homs(~,~). We can now go on and associate to 

any • E HOms{~,Mg) a p-Lie algebra ~(~) which is an extension 

o -+ M -+ .9:(~) -+ ~ .... 0 

of p-Lie algebras, where we regard M as a commutative p-Lie 

algebra with m[p] = 0 for all m E M. We take ~(~) = M $ ~ 

with Lie bracket [(m,x),(m',x')] = (xm'-x'm,[x,x']) and p-th 

power (m,x)[p] = (xP-1m+~x[P]),x[pJ) for all m,m' E M and 

x,x· E~. (It may be left to the reader to check that this is 

indeed a p-th power map on the semi-direct product.) 

Now ~(,) and ~(O) are equivalent extensions if and only 

if there is an isomorphism .9:(0) -+ ~(~) of p-Lie algebras of the 

form (m,x)~ .... (m+~{x),x) for some ~ E Hom(g,M). Such a map is 

a homomorphism of Lie algebras, if and only if ~ is a l-cocycle, 

and it is compatible with the p-th power map, if and only if 

.(x) - ~(x[p])_Xp-l~(X) for all x E~. So ~(~),~(O) are 
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equivalent if and only if , is in the image of H1 (g,M) ~ 
s Hom (~,M). 

The set of all equivalence classes of all central extensions 

of p-Lie algebras (resp. of Lie algebras) 0 ~ M ~ h ~ ~ ~ 0 such 

that the adjoint operation of ~ = ~/M on M is the given 

operation ,is. a vector space in a natural way with ~(O) as zero. 
2 2 One can identify this group with H (GI,M) resp H (~,M) and 

one can show that the map 

HOms(~,~) ~ H2 (GI ,M). 

induces a linear map 

One can furthermore show that the image 

is exactly the kernel of the forgetful map 2 2 H (G1,M) ~ H (~,M). 

In this way we get an exact sequence 

s 1 Hom (g,H (~,M» 

where I want to refer to the original proof in [Hochschild 3] 

(cf. p. 575) for the last map and the exactness at the last two 

places to be looked at. We shall construct an exact sequence in 

9.19(1) which will contain the same terms as (1) and ought to be 

isomorphic to (1). In order to prove that all terms are the same 

in both sequences, we need (1) in a special case: 

(2) If M is an injective Gl-module, then the canonical map 

Hl(~IM} ~ Homs(~I~) is an isomorphism. 

~ Proposition: The spectral sequence in 9.15 has the 

following El-terms: 
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Proof: The derivation property of the differential 

implies d~,j (m ~ qJ Ii$) lJI) == dg,j-i(m ® cp) <Sit 1jI + (m ® qJ <S:l1) 

(1* di,i{lJI» for all m E M, qJ E Aj-i~* and 1jI E (5 i 2, ).(l) 
O,k 

where di,i O,k is the differential in the case 

is by 9.17 enough to show di,i == 
O,k ° for all 

derivation property shows that it is enough to 

We know from 9.15 that 

d 
r has bidegree (r,l-r) this shows 

implies 

Ei,j == 
2 

M == k. Therefore 

i. Again the 

show dIll == 
O,k O. 

j ;:. i ;:. O. As 

Ei,j for all 
co 

(i,j) E {(O,I),(O,2),(I,I)} and E~,I = Ei,l/im(d~,l), 

E~' 1 == ker(d~' 1) C E~' 1 and E~,2 = ker (d~,2) C. E~' 2. We see 

also that EO,1 = HI(G M) and that there is an exact sequence 
co l' 

it 

o + EI,l + H2 (G
l

,M) + EO,2 + O. Combining this with 9.17 we get 
co GO 

a six-term-exact-sequence 

(1) 0 + H1 (G,M) + H1 (g,M} + Ei,1 

2 2 1,2 
+ H (G1 ,M) + H (~,M) + El • 

q 
Take now an injective G1-module MI with M! = k, e.g. the 

injective hull of k or keG!] with the left or right regular 
1 s 2, 

Now 9.18(2) implies H (~,Ml) ~ Hom (~,Ml) ~ representation. 

~* (1) and that (because of the naturality of the maps) the 

inclusion of k 
1 I into MI induces a surjection H (~,k) + H (~,MI)' 

hence (by the naturality of (1» a surjection of EI,l for M == k 
1 
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to El,l for M = Ml , hence to 1 .: 
1 H (~,Ml) But 

for M = k is equal to ker(d~:~} c. 
*(1 ) g , so dimension 

considerations show dl,l 
O,k = o. 
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10. Reduction mod p 

Let G be a group scheme over Z. If V is a finite dimen-

sional G~-module, then we can find a G-module V~ with 

= V, cf. 10.3. We can then form the Gk-module Vk 
for any ring k. If P is a prime number and k:= l- p 

k = an algebraic closure of Fp )' then we say that we get 

from V through reduction mod p. 

(or 

In general there will be more than one module (even up to 

isomorphism) which we can get from V through reduction mod p, 

as we can choose different One can still show that they 

have the same composition factors. (One can express this in the 

form that the class of Vk in the Grothendieck 9roup of Gk is 

uniquely determined by V.l This independence was proved in 

[Serre] generalizing the corresponding statement for abstract 

finite groups due to Brauer. One can even generalize Brauer's 

lifting of idempotents. So every injective' indecomposable 9tmodule 

lifts to the p-adic completion of ~. Furthermore then Brauer1s 

reciprocity law holds in this situation. These results were 

proved in [Green 1], and we follow Green's approach here. 

We can rep lace Z above by any Dedekind ring Rand F 
p 

by any residue field of R. Then all the results will still hold 

and we do everything in this generality. (Therefore the term 

"mod p" occurs only in the title and the introduction of this 

chapter. ) 
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10.1 (Restriction of Scalars) Let k' be a k-algebra and 

G a k-group functor. We observed in 2.7(6) that any G-module M 

leads in a natural way to a '\., -module M <S> k I : For each k' -al9~bra 

A' the group ~I (A') = G(A') operates as given on M~~' = 
(M ~ k' ) * k I A' • 

There is a functor in the opposite direction: We can regard 

each Gk,-module V in a natural way as a G-module. For any k-algebra 

A the map at-... lc8) a is a homomorphism of k-algebras A + k'8 At 

hence induces a group homomorphism G(A) ... G(k'~ A) ~ Gk.(k·~ A) 

and thus an operation of G(A) on V ctb k' (k I 6> A) .::. V S A. These 

operations are compatible with homomorphisms of k-alqebras and 

lead therefore to a representation of G on V regarded as a 

k-module. 

In the case of a group scheme we get the comodule'map of V 

as a G-module (i.e. V -+ V S k[G]) from that as a Gk , -module 

(Le. V ... V ® k ,k I [<if J) using the identification V ~ k ,k' ['it,] = 

V9k,(k'tS';>~[GJ)'::' V(g)k[G]. 

If M is a G-module, then the map i M: M -+ M (8J k' I mH- me 1 

is a homomorphism of G-modules,if we regard the ~,-module M ~k' 

as a G-module as above. Indeed, the operation of any G(A) on 

M~ k'~ A comes from the operation of G(k'~ A) on this module 

and the homomorphism j A: a 1-+ 1 €> a from A to k' ® A. We can 

regard iM <8> idA: M$ A -+ M @ k r g)A also as idM ® jA and it 

is therefore compatible with the action. 

The universal property of the tensor product implies that 
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qIt-+ 'PoiK is a bijection HO~ I (M ® k I , V) -+ HO~ (M , V) for any 

k-module M and any kt-module' V. We claim that it yields a 

bijection 

(1) Hom~ I (M ® k I, V) .:;. HomG(M, V) 

when M is a G-module and V a ~,-module. As iM is a homomor

phism of G-modules we have already proved one direction. Suppose 

now that cpoiM is a homomorphism of G-modules and let us show 

that cp is a homomorphism of Gk,-modules. Consider any k'-algebra 

A' and the map cp ® idA': M ® k' S> k I A' -+ M I ® k' At. We have to 

show that it commutes with the action of Gk, (AI) = G(A'). We can 

identify M lb k' <9 kiA' = M4}I A' and then factorize the map into 

at first (cpoiM) <8l idA': M 81 A' -+ HI ~ AI and then the canonical 

map HI 9 A' -+ HI Qbk,A' • By assumption the first map is G{A')

equivariant where we get the action of G(A'} on MI ~ AI from 

that of ~,(k I ® A I) on M'18I k I (k' 8l A') = M' (B> A I via 

A' -+ kl® At, a4--+ 148> a. As k' @ A' -+ At I b® ar-+ ba is a homo

morphism of k'-algebras,the corresponding map M'CSlA' .:::. M'® k' (k'®A') 

-+ H' ~klAI is compatible with Gk, (k'~ A') -+ Gk,(A'), hence 

with the action of Gk,(A'). This is what we had to prove. 

10.2 (Lattices) Let R be a Dedekind ring and K its field 

of fractions. Let me remind you that a lattice in a finite dimen

sional vector space V over K is a finitely generated R-submodule 

H of V such that the canonical map M ~RK -+ V is an isomorphism. 

This map is always injective, so we can weaken the condition 

to "V is generated by Mover K", cf. [3], ch. VII, §4, nO 1, 
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rem. 1. As R is a Dedekind ring, any such lattice is a projective 

R-module and its rank is equal to dimxV. If M is a lattice in 

V and VI i"s a subspace of V, then M n VI is a lattice in V· 

and (M+V' ) lv' is one in v/v' . If M
1
CV1 

and M2 C V2 are 

lattices, then Ml c8>RM2 is one in VI e Kv2 • (For more details, 

consult [ 3 J, ch. VII, §4, nO l.) 

10.3 Lemma: Let R be a Dedekind ring and G a flat group 

scheme over R. Let K be the field of fractions of R ~ V 

a finite dimensional GK-module. Then there is a G-stable lattice 

in v. 

Proof: Let be a basis of V. By 2.13(3) there 

is a G-submodule M of V containing all Vi which is finitely 

generated over R. As M generates V over K, it is a lattice. 

10.4 Proposition: Let R be a complete discrete valuation 

ring with k as its residue field. Let G be a flat R-group 

scheme. Then there is for each idempotent e E EndG (k[Gk ]) an 
k 

e E EndG(k[G]) inducing e. 

Proof: Denote the maximal ideal in R by m. Let me remind 

you that by 4.18(2) the canonical map from EndG(R[G])~ Rk ~ 

is an isomorphism. 

We want to apply proposition 3.15 to the ring EndGR[G] and 

i its chain of ideals ~i = ~ EndGR[G]. If that is possible, we get 

the lemma as an obvious consequence~ So we have to prove that 

naturally 
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If M is a G-submodule of R[G] which is finitely generated 

over R, then it is a free R-module and we have an isomorphism 

HomG(M,R[G]) = M* by Frobenius reciprocity. As R is complete, 

we qet 

This implies (1), as R[G] is the direct limit of such M. 

~ CorollarI: Let R be as in 10.4. For each indecomposable 

and injective Gk-module Q there is a direct summand Q of R[G] 

~ Q = Q ('8)Rk • 

Proof: We may assume that Q is a direct sununand of k[ Gk ] • 

(Continue 3.16 and 3.101) Therefore we can find ~ E EndG (k[Gk ]) 
k 

idempotent with Q = ~(k[Gk]). Let ~ E EndG(R[G]) be idempotent 

inducing ~. Then .(R[G]) is a direct summand of R[G} and 

~ (Reciprocity) Let us assume from now on in this chapter 

that R is a Dedekind ring which is not a field. We denote its 

field of fractions by K. Let m be a maximal ideal of Rand 

suppose that k = R/!!_ 

Let G be a flat R-group ~cheme. If V is a finite dimen

sional ~-module/then we can find by 10.3 a G-stable lattice VR 

in V and then form the Gk -module Vk = VRtlIl Rk. We have obviously 
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The choice of a G-stable lattice is not unique and different 

choices will lead in general to non-isomorphic ~-modUles. We 

claim however that the composition factors of Vk are uniquely 

determined by V. 

Let 

hull of 

E be a simple Gk-module and let QE be an injective 

E, cf. 3.16/17. The multiplicity [Vk:E]~ of E as 

a composition factor of Vk is then equal to (cf. 3.17(3» 

(1) 

Let ~ be the ~-adic completion of "-R and denote by Kits 

field of fractions. We can identify k with the residue field 
/'\ 

of R. By 10.5 there 
~ 

is a direct summand QE of the Gk-module 

'" A R[G~] = R[G]~ with QE~Rk .:r. QEo Now 4.18{l) implies (as 

Vk .:r. (VR®R1)*'lf-) 

(2) 

On the other hand 

so already 2~10(7) implies 

(3) 

A comparison of ranks and dimensions implies the "Brauer reciprocity 

formula" 



221 

(4) 

~ Assume in addition that each simple Gk-module is 

absolutely simple . (hence satisfies EndG = k), that also each 
k 

simple GK-module is absolutely simple, and that each GK-module 

is semi-simple. ~his is e.q. satisfied for a split connected 

reductive group, if char (K) = 0, see part II.} Let us assume 
1\ 

in order to simplify that R = R. 

Consider a simple ~-module V and a'simple Gk-module E. 

Let us construct QE and Vk as in 10.6. The' 'semi-simplicity 

of QE~RK and the absolute simplicity of V implies that 

di~ HOm~(V,QEGORK) is equal to the multiplicity of 

composition factor of QE~RK. SO 10.6(4) yields 

V as a 

If we take an abstract finite group r and carry out the 

construction of 8.5.a over R, then we get Brauer's original 

theorem. 

10.8 Return to the more general situation of 10.61 We can =-
interprete the result as a statement about Grothendieck groups. 

Recall that one can associate to each abelian category a 

Grothendieck group. One starts with the free group generated by 
corresponding 

the objects of the category (let [M] denote the generator/to an 

object M) and divides out the subgroup generated by all [M]-[M'] 

- [Mit] for all short exact sequences 0 -+ M' -+ ··M -+ Mil -+ 0 in the 
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category. 

Let us denote by ~(G) the Grothendieck group of all those 

G-modules which are finitely generated over R. Define ~(GK) 

and ~(Gk) by analogy. Then ~(GK) and ~(~) are free abelian 

groups with the classes [E I
] resp. [E] of all simple Gx-modules 

E' resp. simple Gk-modules E as a basis. For any finite dimensional 

~-module M one has 

[M] = 

where E runs through a system of representatives of isomorphism 

classes of simple ~-modules. (Similarly for Gx.) In these cases 

(over a field) the Grothendieck groups have a natural ring 

structure induced by the tensor product, i. e. wi th [M eM I] = 

[M] [M' ]. 

We can now deduce from 10.6(4) that the class [Vk ] of Vk 

is uniquely determined by V and does not depend on the choice 

of V
R

• One gets in this way easily a homomorphism of rings 

~(GK) -to ~(Gk) with [V]t--+ [Vk ]. 

10.9 Let me mention some results about R(G) proved in == == 
[Serre]. The map M4-t- M~K induces a homomorphism ~(G) -to ~(<ix). 

Its kernel is equal to the subgroup of R(G) = generated by all 

[M] such that M is a (finitely generated) torsion module (and a 

G-module). Lemma 10.3 implies that the map is surjective, i.e. 

that we get an exact sequence of the form 
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(1) 0 + ~tor(G) + ~(G) + ~(~) + O. 

Consider the category of all G-modules which are finitely 

generated and projective over R and let R (G) =pr be its Grothen-

dieck group. The inclusion of categories induces a homomorphism 

to R(G) which turns out to be an isomorphism = 

The reduction mod m (i.e. M~ M~k = M/~) defines a 

homomorphism ~r(G) + ~(Gk)' by (2) also ~(G) + ~(Gk). One 

checks that ~tor(G) is mapped to 0 and gets ~(GK) + ~(Gk) 

by (1). This is the same map constructed using 10.6(4). 

If R is a principal ideal domain, then ~tor(G} = O. (If 

M is a G-stable lattice in a finite dimensional GK-module V, 

then [M/~] = 0 in ~(G) as M ~ roM. One can show that 

~tor(G) is generated by such [M/~] for all possible ~.) 
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