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Introduction

In polyhedral geometry and in particular for the problem of calculating volumes of non-
euclidean polytopes, orthoschemes are the most basic objects.

Let X denote the n-dimensional sphere S™ or the n-dimensional hyperbolic space H". An
orthoscheme in X is a simplex bounded by hyperplanes Hy,... Hp such that H; L H; for
|: — 7] > 1. Hence, a planar orthoscheme is a right-angled triangle, whose area formula can

be expressed by the well-known defect formula.

Ludwig Schiafli generalized this formula to spherical orthoschemes of even dimension;
Schlafli’s reduction formula represents the volume of an even dimensional spherical or-
thoscheme in terms of the volumes of certain lower dimensional ones (see [S]). This for-
mula can be easily extended to the hyperbolic case by analytic continuation (see [H]), p.134
f‘f.). In this paper, we consider a more general class of hyperbolic polytopes, the so-called
(complete) orthoschemes of degree d, 0 < d < 2, (see [IH] and [K2]). These polytopes
arise e.g. as a particular class of fundamental polytopes in the classification problem for
hyperbolic Coxeter groups. Our aim is to show that a generalized reduction formula holds
for even dimensional complete orthoschemes; we shall see that this reduction law simplifies

with increasing degree (of truncation) d.

For the following, it is most convenient to describe a polytope by means of its scheme. The
scheme of a polytope P C X is a weighted graph (characterizing P C X up to congruence)
in which the nodes correspond to the bounding hyperplanes of P. Two nodes are joined
by an edge if the corresponding hyperplanes are not orthogonal; the weight on an edge
equals either the cosine of the dihedral angle between the corresponding hyperplanes, or,
for diverging hyperplanes in H™, the hyperbolic cosine of their distance. A pair of non-
adjacent nodes is characterized by the weight zero. To every scheme £ = (ny...n,) with
nodes ny,...,n,, corresponds a symmetric matrix (a;;) of order m wherein a;; =1 and,
for ¢ # j, ai; equals the negative of the weight between n;,n;. A scheme is called elliptic
resp. hyperbolic if its matrix is positive definite resp. of index of inertia —1. For more
details, see Chapter 1 of this article.

Hence, a spherical orthoscheme R of dimension n is represented by a linear elliptic scheme

¥ of order n+1. Denote by f,(¥) or f, Schléfli’s normalized volume function for R given
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by

n—1 n
Fa(Z) = fu = caVoln(R) with cn= — 2 r("“

= = 1 . 1
Vol (8") ~ 7=F 2 ) o 1)
If the scheme L consists of two disjoint components oy,09 of orders ny +1,n2+12>1,

then fn(z) = fn;(al) ’ fnz(az) .

With these preliminaries, Schléfli’s reduction formula for spherical orthoschemes can be

stated as follows:

LA R A
on(E) = Z —(;:-i_)l- (2;') Z f2n—(2k+1)(0) ) Z f—l =1 ) (2)

k=0
where ¢ runs through all subschemes of I of order 2(n — k) all of whose components have
even order.
For example, we obtain

f(012) = f(01) + f(12) -1
£(01234) = £(0123) + F(01)£(34) + £(1234) — { F(O1) + F(12) + £(23) + f(34)} +2

Now, let Ry, 0 < d <2, denote a (complete) orthoscheme of degree d in H", i.e., Ry is a
d-times truncated orthoscheme bounded by hyperplanes Hy,...,Hyp4q such that H; L H;
for j #i—1,¢,1 4+ 1 (for d = 2, indices are taken modulo n + 3). They are described
by a linear hyperbolic scheme of order n +1 or n + 2 for d = 0 or d = 1, or, by a cyclic
hyperbolic scheme of order n + 3 for d = 2.

Modifying Schlafli’s function for complete orthoschemes Rqy C H™ with graph ¥, by
Fo(Za) :=1"c Vol (Rg)  with Fpe=1 , i#=-1 |, (3)
we show that the following reduction formula holds for d =0,1,2:

n_ 1Yk
Fya(Xa) = (k _*1_)1 (2:) > faneeen (@), D frii=1 (4)

where o runs through all elliptic subschemes of 4 of order 2(n—k) all of whose components

are of even order.

Since the Schlafli function takes only rational values on the set of spherical Coxeter or-
thoschemes (all dihedral angles are of the form % , P € N, p 2> 2), the volume of a complete
hyperbolic Coxeter orthoscheme of dimension 2n is a rational multiple of #™. The com-
plete Coxeter orthoschemes were classified by Im Hof in 1983 (see [IH]). He showed that
they exist only for dimensions < 9; in even dimensions > 4, there are only finitely many

examples, whose volumes are determined explicitly in an appendix.

Acknowledgements. The author would like to express her gratitude to Proff. J. Bohm and
H. Debrunner for helpful suggestions and remarks.
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1. Complete orthoschemes

1.1 Let X" denote either the n-dimensional euclidean space E?, the n-sphere S or the
n-dimensional hyperbolic space H®. Let S™ be embedded in E®*1, and use for H" the
model in the Lorentz space E'® of signature (1,n), i.e.: If E»™ denotes the real vector

space R"*! equipped with the bilinear form of signature (1,n)

(Iay) =—zoYo +tTitn+... +ZnlYn ,

Vz = (zo,...,2n) € R""' | Vy=(yo,...,ya) € R** |

then H™ can be interpreted as
H"={z€ B"" | (z,z)=-1 , z¢>0}

Or, in the projective model, H" is the interior of real projective space P" with respect to
the quadric @, = {[z] € P* | (z,z) =0} =: 0H™

1.2 Let P C H" denote a convex polytope bounded by finitely many hyperplanes H;, i €
I, which are characterized by unit normal vectors e; € E»'™ directed inwards with respect

to P, say, i.e. (for basic notations and properties, see [V1], §1):

Hi=e¢f:={ze H" | {z,e;) =0} with (e;,e;)=1
We always assume that P is acute-angled (i.e., all dihedral angles # 7 are of measure
strictly less than 7) and of finite volume. Then, every face ' C P of dimension k, 1 <
k < n-—1, is contained in exactly n—k of the bounding hyperplanes of P (see [A2], Lemma
1, p.762), and F is itself an acute-angled polytope of finite volume (see [A2], Lemma 2,
p.762).

The Gram matrix G(P) := ((ei,e;) )i,jer of the vectors ¢;, ¢t € I, associated to P is an
indecomposable matrix of signature (1,n) with entries (e;,e;} = 1 and (e;,e;) £ 0 for

1 # 7, having the following geometrical meanings (see [V1], §1):

0, if H; LH; |,
\_ ) —cosayj, if H;, H; intersect on P under the angle o;; = Z(H;, H;)
(eivei) =19 _1, if H;, H; are parallel |

~cosh l;;, if H;, H; admit a common perpendicular of length /;;

On the other hand, if G = (¢i;) is an indecomposable symmetric m x m matrix of rank
n+1 with g;; =1 and g¢;; €0, for ¢ # 7, then G can be realized as Gram matrix G(P) of
an acute-angled polytope P C X" of finite volume in the following way (see [V1], §2):
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1. If G is positive definite (G is elliptic), then m = n + 1, and G is the Gram matrix of

a simplex in S™ uniquely defined up to a motion.

2. If G is positive semidefinite (G is parabolic), then m = n + 2, and G is the Gram
matrix of a simplex in E®*! uniquely defined up to a similarity.

3. If G is of signature (1,n) (G is hyperbolic), then G is the Gram matrix of a convex
polytope with m facets (faces of codimension m) in H" uniquely defined up to a

motion.

In terms of the Gram matrix G(P), the combinatorial structure of an acute-angled polytope
P C H™ can be described as follows (see [V1], §3):
If P is compact, then the positive definite principal submatrices Gy := (gij)i jes of G(P),

J C I with 1 £|J| £ n, are in one-to-one-correspondence with the non-empty faces

Pl =Pn(() H;) ,
jeJ

and P7 has codimension |J| (see [V1], Theorem 3.1). In particular, a vertex p € P is
characterized by a positive definite principal submatrix of G(P) of order n describing the
spherical vertex polytope P, (intersection of P with the surface of a sufficiently small ball
around p) of dimension n — 1 associated to p.

If P is not compact, but of finite volume, then a point ¢ € @H" is an infinite vertex of
P if and only if for J, := {i € I | H; 3 q} the principal submatrix G, = (gij)i,jes, is
parabolic of rank n — 1 (or equivalently, the vertex polytope P, is a euclidean polytope of
dimension n — 1) (see [V1], Theorem 3.2).

1.3 In practice, however, the language of schemes is much more convenient for the geomet-
rical description of certain classes of polytopes (see [V2], §3). A scheme X is a weighted
graph (see [V2], §2) whose nodes n;,n; are joined by an edge with positive weight o;;
or not; the last fact will be indicated by o;; = 0. A subscheme of T is a subgraph of &
with each pair of nodes connected by the same weighted edge as in £. The number |Z|
of nodes is called the order of £. To every scheme ¥ of order m corresponds a symmetric
matrix A(Z) = (a;;) of order m with a;; = 1 on the diagonal and non-positive entries
a;; = —0;; < 0,15 5, off it. ¥ is called connected if and only if A(%) is indecomposable.
Rank, determinant and character of definiteness of £ are defined to be the corresponding
ones of A(X). Furthermore, ¥ is said to be either elliptic, or parabolic, or hyperbolic if
either all its components are elliptic, or - apart from elliptic components - there is at least

one parabolic component, or exactly one component is hyperbolic.
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Now, the scheme Z(P) of an acute-angled polytope P C X" is the scheme whose matrix
A(Z) coincides with the Gram matrix G(P), i.e., whose nodes # correspond to the bounding
hyperplanes H; = ei- (or equivalently to their normal vectors e; ) of P and whose weights
equal —{e;,ej)xn, 1,7 € I. The scheme of a face F' C P is denoted by ¥(F') and is called
the face scheme of F in P; L(F) is not a subscheme of £(P), since, in general, it does not
inherit the weights of X(P).

Two acute-angled polytopes Py, P, C H" are said to be of the same schematic type if
their schemes X(P)), L(P;) are of the same graphical type (i.e., their underlying graphs
as one-dimensional simplicial complexes are simplicial homeomorphic) and if corresponding
weights o}; of Z(P;) and o?; of I(P;) satisfy: '

ij J

> >
ol =14=>a,-2j{=1

<

It follows that polytopes of the same schematic type are of the same combinatorial type
(see 1.2 and [A1]).

For the schemes of Coxeter polytopes Pc C X" (all dihedral angles are of the form
%,p € N,p > 2) we adopt the usual conventions and - for convenience - use them
sometimes even in the non-Coxeter case: If two nodes are related by the weight cos %,
then they are joined by a (p — 2)-fold line for p = 3,4 and by a single line marked p (or
o= %) for p > 5. If two bounding hyperplanes of Pc C X", X" # 5" | are parallel, then
the corresponding nodes are joined by a line marked oo; if they are divergent (occuring at
most in the hyperbolic case), then their nodes are joined by a dotted line and the weight
< —1 is dropped.

The elliptic and parabolic Coxeter schemes were classified by Coxeter in 1934 (see [C]).

Hyperbolic Coxeter schemes, however, are only partially classified (see e.g. [V1], Chapter
II).

1.4 The simplest examples of schemes are the linear and cyclic ones. One class of acute-
angled hyperbolic polytopes with linear and cyclic schemes is the following (see [IH] and
[K2]): An n-dimensional complete orthoscheme of degree d, 0 < d < 2, or, for short, an
n-orthoscheme of degree d is a convex polytope in H" , n > 2, denoted by R4 such that
its scheme E(Ry) is connected and linear of length n+ d+ 1 for d = 0,1 or cyclic of order
n+ 3 for d = 2.

Hence, orthoschemes of degree din H™ are bounded by n+d+1 hyperplanes Hy, ..., Hptq
such that

H;1LH; for j#:i-1,4,1+41, (5)
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where, for d = 2, indices are taken modulo n + 3.

Geometrically, orthoschemes of degree d can be described as follows:

For degree d = 0, they coincide with the class of (ordinary) orthoschemes introduced by
Schléfli (see [S], [BH]): An orthoscheme in X™ (n > 1) is an n-simplex bounded by n +1
hyperplanes Hy,. .., Hy, such that H; L H; for |¢—j| > 1. This is equivalent to say that it
has vertices P,,. .., P, numbered in such a way that span(FP,...,P;) Lspan(F;,...,P,)
for 1 €1 € n—1. The initial and final vertices Py, P,, of the orthogonal edge-path
P;Piyy,t = 0,...,n — 1, are called principal vertices, since they are distinguished in
several ways. E.g. in H" at most the principal vertices may be points at infinity (see
[BH]}, Satz 15, p.188).

Using the projective model for H™ (see 1.1), we can derive orthoschemes of degree d = 1
or d = 2 from an ordinary one by allowing one or both of its principal vertices (and with
them possibly further vertices) to lie outside the quadric @1, and then by cutting off the
ideal vertices by means of the polar hyperplanes, say H,4) resp. H, 42, corresponding to
P, resp. P, (inasmuch as they lie outside @1,»). Hence, orthoschemes of degree d = 0,1,2
are d-times truncated (or ”polarily completed”) orthoschemes bounded by hyperplanes
Hy,...,Hp4q with the property (5).

Complete orthoschemes Ry C H™,0 < d € 2, have at most n + 3 non-right dihedral
angles (or essential angles) ay,...,0m, m < n + 3, and all of them are acute, i.e., a; <
7 for 1 = 1,...,m (see [BH], §4.8, Hilfssatz 2, and the definition). Furthermore, by
construction, complete orthoschemes are of finite volume (see [V1}, Theorem 4.1). Hence,
a face of Ry is also an acute-angled polytope of finite volume (see 1.2); in fact, it is itself
a complete orthoscheme (see [K2], 1.3). If £, is the scheme of R4, we denote by L4(!)
the face scheme of the apex R4(l) = RgN H;—y N H; in Ry associated to the essential
angle oy = £L(Hj—1,H;),1 <1 <m, of Rg. E4(l) is not a subscheme of £,;. However,
the scheme of a vertex polytope of R4 is a subscheme of $4 of order n (see 1.2) and
is therefore a (n — 1)-orthoscheme with essential angles of the same measure as certain
essential angles of R4. Since the vertex polytope of a face FF C Ry, 2 <dimF <n -1,
associated to a vertex p € F is the (non-empty) intersection of F' with the vertex polytope
of Ry associated to p, we conclude by iteration that every subscheme of order %k of the
scheme E(F'), 2 < k < |E(F)| -1, is the face scheme of order k of a subscheme of ¥4, and
vice versa. In particular, the set of subschemes of order k of ¥4(I) (2 <k <n+d—-2)is
identical with the set of face schemes of order % of subschemes of ¥4 describing the apex

of the dihedral angle of measure a; in Ry.
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2. The volume function of Schlafti

2.1 For n > 1, let ¥ denote the elliptic scheme of order n + 1 > 1 of a spherical n-

orthoscheme R. Then, the normalized volume function

n—1 n
(D) = fo 1= caVoln(R) with cp = — 2 r(““

= =1

Vol(5) ~ -\ 732 ) =10
is called the function of Schlafli (see Introduction, (1), and [S], Nr.23, p.238). The function
fn i1s proportional to Vol,(R) such that f, = 1 for the orthoscheme with all dihedral angles

equal to Z. The function of Schléfli satisfies the following factorization property (see [S],
Nr.23, p.238, or [BH], Hilfssatz 1, p.213):

LEMMA.

Let ¥ denote a linear elliptic scheme of order n + 1 consisting of disjoint components
01,...,00 of orders n; +1,...,n.+1 > 1. Then

fa(8) = fri(0) - far(or) - (M)

For spherical Coxeter orthoschemes (see 1.3), Schlafli determined explicitly all possible
values of f,, (see [S], Nr.30, p.268 ff). Using the standard notations for schemes of spherical
Coxeter orthoschemes (see [V1], §5, Table 1), his results read as:

fl(Ga’):g P22 (8)
1
fs(F4)=ﬁ ; fs(H4)=$ ; (9)
n+1
fn(An+1)=(—i—2)! L n>0 (10)
fn(Bn-i—l):(n+1)! , n>0 . (11)

By means of the trigonometric principle, or equivalently, by interpreting hyperbolic n-space
H™ as upper half of the pseudosphere of radius ¢ = /=1 in R"t? (see [BH], p.20-21 or
p.210), it is obvious how to generalize the notion of Schléfli’s function to orthoschemes
Ry C H™ of degree d, 0 < d <2, and with graph 2, (see also [BH], p.212):

The function

Fn(S4) 1= i"caVoln(Rg) with 2=-1 , Fp:=1 , (12)
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where the constant c,, is defined as in (6), is called the Schlifli function of the complete

orthoscheme Ry.

Hence, for even dimensions,

fa4zdy=(—n"(%)n.fi(m»~1)-vam4Ra , n>1

p=l
i1s a real-valued function.

2.2 Let R, be the set of compact complete orthoschemes in H™ of combinatorial type &
(see [A1], §1). Since every element of R, is a polytope with dihedral angles not exceed-
ing 7, its congruence class is uniquely determined by its dihedral angles (see [A1], §3,
Uniqueness Theorem). Hence, Schléfli’s volume function F,, = F,|R, restricted on R,
may be regarded as a function of the dihedral angles. The differential of F}, depending on
the dihedral angles can be represented by Schlafli’s formula in the following way (see [K2],
§2, and 1.4):

THEOREM. (Schlafli’s differential formula)

Let F,,, n > 2, be the Schlafli function on the set R, of compact complete orthoschemes
in H" of combinatorial type k with essential angles o,,..., Q) and with scheme .
Denote by F,_p(k) the Schlafli function of the apex of codimension 2 associated to the
essential angle oy of measure fi(k):= fi(ar), 1 <k <m(k). Then

m(x)

dF,(Z) = Y Faoa(k)dfi(k) . (13)
k=1

This formula was established by Schléfli for spherical simplexes, and separately for the
more basic orthoschemes. Much later, H. Kneser gave a second, very elegant proof (see
[Kn]) for both, the spherical and the hyperbolic case. As Schléfli already pointed out (see
[S], Nr. 25, p.246 ff, Nr.32, p.272 ff, and [V1], Corollary, p.48), the differential formula for
orthoschemes can be extended to arbitrary acute-angled polytopes. For Re R, , this can
be seen analogously by subdivision into orthoschemes and application of Schlafli’s formula
for each of the dissecting orthoschemes. Then, collecting all differential expressions in
dVoln(ﬁ) suitably, one obtains the generalized Schlafli formula for complete hyperbolic
orthoschemes in terms of the dihedral angles.

Moreover, the Theorem remains true for the Schlafli function on the set of acute-angled

polytopes of fixed schematic type (see 1.3) in H" , n > 2, which are non-compact but of
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finite volume (for n = 3, we have to cut off a horospherical neighborhood around each
vertex at infinity before evaluating Schlafli’s function on the apex edges). By dissection,
it suffices again to consider asymptotic orthoschemes, and among them only those of
dimension n > 3. Since an orthoscheme in H™ has at most the two principal vertices
at infinity (see 1.4), there are only d-asymptotic orthoschemes, 0 < d < 2, and their
congruence classes are described by n essential angles ay,...,an (n — d of them form
a system of independent parameters). Furthermore, each d-asymptotic orthoscheme may
be interpreted as limiting polytope of a sequence of compact orthoschemes. Hence, by
analyticity of the volume function, Schléfli’s differential formula (13) holds for a family of
d-asymptotic orthoschemes in H". We formulate this result only partially in the following

sense:

COROLLARY.

Let F,,n > 4, be the Schldfli function on the set complete orthoschemes of schematic
type ¢ and of finite volume in H™ with essential angles o, ..., () and with scheme .
Denote by F,_o(k) the Schlafli function of the apex of codimension 2 associated to the
essential angle ay of measure fi(k):= fi(ax),1 <k <m(s). Then

m(<)

dF,(Z) = Y Fama(K)df(k) (14)
k=1

3. The reduction formula

3.1 Generalizing Schléfli’s method for spherical orthoschemes, we prove the following re-
duction formula for even dimensional hyperbolic orthoschemes of degree d, 0 < d <2, in
terms of the modified Schlafli function (for complete orthoschemes of dimension four, this
is already proved in [K1], §4, by a different method):

THEOREM. (Reduction formula)

Denote by R4 C H*" ,0<d<2,n > 1, a 2n-dimensional orthoscheme of degree d with
scheme 4. Then

n Nk
0= 3 T8 (4) T @+ D=1 ()
k=0 4

where o runs through all elliptic subschemes of order 2(n—k) of B4 all of whose components

are of even order.
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Proof: For 0 < d £ 2 and n 2 1, let Ry be a compact orthoscheme of degree d and

dimension 2n. Proving the formula (15) we proceed by induction on the dimension.

For n = 1, we have by definition (see (8) and (12)) that F3(X4) = —2 Voly(Rs) and
fHi(a) = fi(o) = %a, if o is of weight cosa. By varying the degree d of Ry, we obtain
the following cases (see 1.4):
0. For d = 0, Ry = Rp(ay,az) is a right-angled triangle with essential angles 0 <
ay,az < 4 and with area Volp(Ry) = § — (a1 + a2). On the other hand, its scheme

Lo is given by (using the notation of 1.3)

« o
1 o 2

Thus, the formula (15) reads:

F(Z0) = filay) + fi(az)—~1
which is the above area formula for a 2-orthoscheme in terms of the Schlafii functions.

1. For d = 1, Ry = Ry(«) is a Lambert quadrilateral (quadrilateral with three right
angles and one acute angle @, 0 < @ < 5 ) of area Voly(R;) = 7 — a. Since its
scheme ¥ is of the form (see 1.3)

o

Qesve s Q—m——0 =0 ,

the formula (15) evaluates as F3(Z;) = fi{a) — 1.

2. For d =2, R; is a totally right-angled pentagon of constant area Vola(R;) = 7. The
scheme ¥ of I, is given by a cycle (sce 1.3)

Obviously, £ contains no elliptic subscheme of order > 1. Hence, the formula (15)

yields F3(Z2) = —1 as required.

Now, assume that the assertion holds for complete orthoschemes of even dimension <

2n. To show that the volume of a 2n-dimensional orthoscheme Ry of degree d,0 <
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d < 2, satiesfies the formula (15), we interprete the essential angles ay,...,ay of Ry as
independent variables (keeping all notations as before) and differentiate (15) with respect
to the measure fi(I) := fi(ar), 1 £ 1 £ m. Schlafli's differential formula for hyperbolic
complete orthoschemes (see 2.2, Corollary) has the following effect on the left hand side
of (15):

0
(2 Fono(l) 16
6f1(l) 2 ( d) 2 2() ( )
where, by respecting the dependence among a1, ..., @n , F2n—2(l) denotes the normalized

volume of the apex Ra(l) corresponding to the angle a; of measure f;(I) (see 1.4). Since
Ry(1) is itself a complete orthoscheme of dimension 2(n —1) (see 1.4), we have by induction
for the Schlafli function of its scheme L 4(!):

ProaBa) = S (-1 ak S fancamtaren ('), where ag i= — (%) o

k=0 o'(1) k+1

and where ¢'(l) runs through all elliptic subschemes of order 2(n — 1 — k) of L4(!) all of
whose components are of even order. The differentiation of the right hand side of (15) with
respect to f;(!) leads together with Schléfli’s differential formula for spherical orthoschemes
to

af (l) Z( 1)k ag Z f2n (2L+1)(o) 2(_1)’..‘% Z f2n—2—(2k+1)(0'”(1)) , (18)

o' (1)

where o' (l) corresponds to the apex of the angle a; in the orthoscheme with scheme o in
the summation (15). Hence, each ¢ (1) is an elliptic scheme of even order |o|—2. Moreover,
all components oy,...,0., 7 > 1, of ¢"(l) are of even order: In fact, the differentiation
of fan—(2x+1)(¢) with respect to f(!) affects only one, say o,, of the components of o
all of them being of even order; its associated spherical orthoscheme R, has therefore no
essential angle equal to J, and the same holds for each of its faces of codimension 2 (see
[BH], §4.2, Satz 3, and §4.3, Satz 1). Hence, the apex orthoscheme of R, associated to
the angle «; is described by a connected elliptic scheme of even order |o,| — 2.

Now, every subscheme o'(l) of order k&, 0 < k € 2n — 2, in the summation (17) occurs as
a subscheme ¢"(I) of order k in the summation (18), and vice versa (see 1.4). Hence, by -

induction hypothesis, we proved (15) up to the value of

e GRS
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It remains to show that this constant of integration, written in the form (—1)"a, (see

(15)), is given by e o
(e =S (1) o)

n+1\n
We check (19) first for the case d = 0 considering the following scheme of order 2n + 1

1 X _¢ X _¢
, £ 2 2 '
Tonle,e’) 1 o o o ver —o0—0 , &€ >0

with

3 —€

Zi(e) 0 o i —oi g , k=1,...,2n-1 ,

among the subschemes of order ¥ + 1. The determinant of these schemes satisfy the
following recursion formulas (see {S], Nr. 27, p.257):

detZe,(e,e') = detTan—_1(e) — cos? €'detTyn—a(€) (20)
detZi(e) = detTy_1(e) —sin® edetTy_p(e), k= 2,...,2n — 1, detTg :=1. (21)
From (21) we derive that (see [S], Nr. 28, p.265)
1 (141 —4sin’¢) — (1 - /1 —4sin’e)"
2* V1 —~4sin’e ’

i.e., detXi(e) > 0, and by (21), detZi(e) < detZi-1(e) for € < £ and k > 1. Further-

more, we can represent

detZi(e) =

k>1

H

detEk(e)

ke k=1,...,2n—1
detTio(e) Lo 2n

Ll

as a finite continued fraction with k& partial quotients (see [S], Nr.27, p.258) using the

classical notation of Pringsheim:

detZi(e) -1 sin? -1 sine| sin? g
detZr_(e) ) sin®e \ 11 |14
o sin’ e k times
1-sin’e

Hence, by (20), we can choose ¢’ in terms of € € (0, ¥) in such a way that detZ,,(e,e') <0,
det¥on_1(e,€’) > 0, and that €'(e) — 0 for ¢ — 0; e.g., let &' € (0, %) with

2 sin® g| sin¢| sin?¢|
1 1 2

™
0<ec = !
3 € G

2n — 5times
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Thus, £4n(e,&") describes a compact hyperbolic 2n-orthoscheme R3,(€) (see 1.2) which,
for € — 0, converges to a degenerate orthoscheme R, with angles 0,7,...,7 and with
scheme

00
Y ¢ o

o o] o} e Q 0

Since detX, = 0, the n+1 normal vectors in EV'™ associated to the bounding hyperplanes
of R are linear dependent. Therefore, we have in the limit a decrease of dimension, i.e.,
Volan(R.) = 0. Geometrically, this can be seen by observing that, for ¢ — 0, the vertex
orthoscheme of R;,(€), described by E2,-1(¢), converges to a totally rectangular spherical
orthoscheme with edge lenghts 7 (see [BH], Folgerung, p.82); this implies that Ry, (¢) has
a triangular face of area A(e) = T — (h(e) + €') > 0, where h is a continuous positive
function with h(¢) — 3 for € — 0. Hence, we have A(e) — 0 for ¢ — 0 implying
that at least two vertices of the limiting polytope coincide. Hence, (15) yields:

— k
0= F(R Z 1) (2k) Zfzn—(2k+l)(‘7)+( D*an ,

where ¢ runs through all elliptic subschemes of £, of order 2(n—k) all of whose components

are of even order. This condition implies the following identity (for a tricky proof, see [S],

p.255-256, and 2.1):
n—1
_ (=1)* 72K\ m+k n
0_k= Frr k) Lar J T e

z (-—1)" 2k n+k —0
k=0k+1 k 2k )

For d > 0, we remark first that there are orthoschemes Ry C H" ,n > 3, of degree d
of different schematic type; although the graphical type and the order of the associated

Since (see [S], p.256)

we deduce (19).

schemes ¥ are constant, the weights or, more precisely, the number of subschemes of
one character of definiteness may differ. Geometrically, this means that orthoschemes of
degree d of different schematic type are bounded by the same number of hyperplanes, but
in view of their mutual position in H", the number of (finite or infinite) vertices may
differ. However, the sets of orthoschemes of degree d of different schematic type are not
disjoint. Indeed, their intersections consist of the asymptotic complete orthoschemes (i.e.,
the respective polytopes of transition are described by schemes with parabolic subschemes
of rank n — 1 (see 1.4)).
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Secondly, we observe that a doubly asymptotic orthoscheme of degree 0 (both principal
vertices are points at infinity) can be interpreted as asymptotic limiting case of an or-
thoscheme of degree d (the polar hyperplanes associated to the principal vertices touch the
absolute quadric and truncate therefore without effect). Hence, by comparison in the ap-

propriate asymptotic limiting cases, one immediately sees that the constant of integration
(=1)" 2n
n+1l\n

3.2 The Reduction formula (15) can now be applied to all complete Coxeter orthoschemes

always equals

Q.E.D.

(for dimensions 2n > 4, sce Appendix). We want to give one example in detail: Consider
the following cyclic scheme X of order 9 describing a 6-dimensional non-compact Coxeter

orthoscheme R of degree 2:

Determining the volume Volg(R) according to (15), we have to pick out all different elliptic
subschemes o of ¥ of even order 6 —2k, & = 0,1,2, together with their multiplicities u(o),
and evaluate fg_(2x41) on o (see 2.1, Lemma and (8)-(11)):
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k (o) o fo—(2k+1)(0)

0 1 o o o o o—o0 ﬁ
1

1 o o o o o——o0 18

1

1 o—o0 © o o o 5

1

1 1 00— 0=—-0—0 73
1

2 0 0 o) o 51

1 0—o0 0—0 %

1

5 o—o0 © o 3

— _ 1

4 0=——0 0=——0 i

2 3 o—o z
4 o o .;.

Hence, according to (15), we obtain:

3 . (—1)* (2%
Fs(Z) = (—1)" cg Volg(R) = kZO P (k) Z fo—(2k+1)
=Zf5—Zf3+2'Zf1—5'Zf—1
7 77

=§(§_ﬂ+2'4_5

1
72

) 120
Since 6= —3, we get:
1 73

~ 0.0036

Volo(R) = —— - Fs(%) = gere

15
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Appendix

The complete Coxeter orthoschemes Ry ¢ of degree d,0 < d < 2, were classified by Im
Hof in 1983 (see [IH]). They exist only up to dimension 9; in each dimension > 4, there
are finitely many examples. We now list the graphs ¥; and volumes Voly, (R4 c) of all
complete Coxeter orthoschemes of degree d and of even dimension 2n > 4:

2n d T4 Volzn(Ra,c)
5 .2
4 0 o ) o o 0 Toeo0 = 0.0009
o 60— 00> o 177* ~ 0.0078
= 217600 — “°
1'!'2
o=——0 o o o 361 = 0.0114
5
o 5 0 o o o 51,34’5:] ~ 0.0238
o0 6 2
4 1 o o o o o o % ~ (0.0183
00— o0—o=—0=——o 2 =~ 0.0343
5 41x?
o o o 0 o o 5365 = 0.0375
0+« e0—0 o——o 5 o 41,";;;; ~ (0.0388
o0 6 52
o o 0 o o o} 61 = 0.0571
o0 6 2
o 0 o o o o 585 2 0.0343
0o—=_o o ) o ) -11'3;- ~ (.0685
022 4 9 o o o 6 ) GJT"; ~ (0.6689
8 8
0——0——0=—=0-—0——0 Ilnt ~ 0.0628
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2n Y, Volz,(Ra,c)
4 a o o 0,
\ / = ~0.0914
o\o/so
‘ I~ 0.0914
~F
7 I ~0.1371

Faiiiac

2 .
= ~0.0823

2 ~0.1097
Irl ~0.1279
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2n Ed Volzn(Rd,c)
4 e
4
‘\\ /" I ~0.1371
NS
A /’ = ~0.1645
s
:/ X T ~0.1828
) =0
o\o/s,o
4 m 2 0.1097
A s =0

x ~0.1371

n? ~
=~ 0.02056
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2n Zy V012n(Rd.C)
4 0-—-—0
/N
i /5 . ~0.0914
o\/o
OV\mO
°// \\o ;’— ~ (.2056
N
5\ /.6 —6 ~ (0.2285
\O/
6 o= o o ) ) 0o——0 o) -ﬁjﬁ ~ (0.0039
02 o——0o o o o ) ) Ef'{:To ~ 0.0004
6 ,° [-]

437200 200 = 0.0007

7S

19
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2n Ed VOI‘ZH(Rd,C)
6 ©, 0% ©
O/ \0
Tl'a
| \ 2897 0.4653
\. /7
~o—"
}"\'3.,\
V4 N\ 5
\ /7 87640 ~ 0.0036
N’
°/o—ca\
Tr3
N
N
s 2N,
0/ \O
! ! s8erl  ~ 0,0013
\0\ /D
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