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Introduction

In polyhedral geometry and in particular for the problem of calculating volumes of non­

euclidean polytopes, orthoschemes are the most basic objects.

Let X denote the n-dimensional sphere sn 01' the n-dimensional hyperbolic space Hn. An

orthoscheme in X is a simplex bounded by hyperplanes Ho, ... Hn such that Hi.l Hj for

li - j I > 1. Hence, a planar orthoscheme is a right-angled triangle, whose axea formula cau

be expressed by the well-known defect formula.

Ludwig ScWäRi generalized this formula to spherical orthoschemes of even dimension;

Schläfli's reduction formula represents the volume of an even dimensional spherical 01'­

thoscheme in terms of the volumes of certain lower dimensional ones (see [S]). This for­

mula cau be easily extended to the hyperbolic case by analytic continuation (see [H], p.134

ff). In this paper, we consider a more general dass of hyperbolic polytopes, the so-called

(complete) orthoschemes of degree d, 0 ~ d ~ 2, (see [nIJ and [K2]). These polytopes

arise e.g. as a particular dass of fundamental polytopes in the dassification problem for

hyperbolic Coxeter groups. Dur aim is to show that a generalized reduction formula holds

for even dimensional complete orthoschemes; we shall see that this reduction law simplifies

with increasing degree (of truncation) d.

For the following, it is most convenient to describe a polytope by means of its scheme. The

scheme of a polytope P C X is a weighted graph (characterizing P C X up to congruence)

in which the nodes correspond to the bounding hyperplanes of P. Two nodes are 'joined

by an edge if the corresponding hyperplanes axe not orthogonal; the weight on an edge

equals either the eosine of the dihedral angle between the corresponding hyperplanes, 01',

for diverging hyperplanes in Hn, the hyperbolic eosine of their distance. A pair of 000­

adjacent nodes is characterized by the weight zero. To every scheme ~ = (nI" . n m ) with

nodes nI,.'" n m corresponds a symmetrie matrix (aij) of order m wherein aii = 1 and,

for i =j:. j, aij equals the negative of the weight between ni) nj. A scheme is called elliptic

resp. hyperbolic if its matrix is positive definite resp. of index of inertia -1. For more

details, see Chapter 1 of this article.

Hence, a spherical orthoscheme R of dimension n is represented by a linear elliptic scheme

~ of order n+ 1. Denote by In(~) 01' In Schläfli's normalized volume function for R given
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/n(E) = /n := CnVoln(R) wlth Cn = Voln(sn) = 1l"~ r -2- /0 := 1. (1)

H the scheme E consists of two disjoint components 0"1,0"2 of orders nl + 1, n2 + 1 2: 1,

then / nC~) = / n1 ( 0"1) . / n2 ( 0"2) •

With these preliminaries, Schläßi's reduction fonnula for spherical orthoschemes can be

stated as follows:

n (-l)k (2k)
12n(E) = {; k + 1 k ~ 12n-(2k+l)(u) L 1-1 := 1 (2)

where 0" runs through all subschemes of E of order 2(n - k) all of whose components have

even order.

For example, we obtain

/(012) = /(01) + /(12) - 1

/(01234) = /(0123) + /(01)/(34) + /(1234) - {/(01) + /(12) + /(23) + /(34) } + 2 .

Now, let R d , 0 :s; d :s; 2, denote a (complete) orthoscheme of degree d in Hn, i.e., R d is a

d- times truncated orthoscheme bounded by hyperplanes Ho, . .. , H n+ d such that H i 1.. H j

for j =1= i-I, i, i + 1 (for d = 2, indices are taken modulo n + 3). They are described

by a linear hyperbolic scheme of order n + 1 or n + 2 for d = 0 or d = 1, or, by a cyclic

hyperbolic scheme of order n + 3 for d = 2.

Modifying Schläfli's fWlction for complete orthoschemes Rd C Hn with graph E d by

Fn(E d ) := inenVoln(Rd) with Po := 1 i 2 = -1 (3)

we show that the following reduction formula holds for d = 0,1,2:

n (-l)k (2k)
F2n (Ed) = ~ k + 1 k ~ 12n-(2k+l) (u) L 1-1 := 1 (4)

where 0" runs through all elliptic subschemes of Ed of order 2(n- k) all of whose components

are of even order.

Since the ScWäfli function takes only rational values on the set of spherical Coxeter or­

thoschemes (all dihedral angles are of the form ~ , p E N ,p 2: 2), the volume of a complete

hyperbolic Coxeter orthoscheme of dimension 2n is a rational multiple of ?in. The com­

plete Coxeter orthoschemes were classified by Im Hof in 1983 (see [IHD. He showed that

they exist only for dimensions :s; 9; in even dimensions 2: 4, there are only finitely many

examples, whose volumes are determined explicitly in an appendix.

AcknowledgementJ. The author would like to express her gratitude to Profi". J. Böhm and

H. Debrunner for helpful suggestions and remarks.
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1.1 Let X n denote either the n-dimensional euelidean space En, the n-sphere sn or the

n-dimensional hyperbolie spaee Hn. Let sn be embedded in En+l, and use for Rn the

model in the Lorentz spaee E1,n of signature (1, n), i.e.: H E1,n denotes the real veetor

space Rn+1 equipped with the bilinear fonn of signature (1, n)

(x, y) = -xoYo + XIYl + ... + xnYn

\Ix = (xo, . .. ,xn ) E Rn+1

then nn can be interpreted as

H n = {x E E1,n I (x, x) = -1 Xo > O}

Or, in the projective model, Hn is the interior of real projective spaee pn with respeet to

the quadric Ql,n = { {xl E pn I (x, x) = O} =: aHn.

1.2 Let P C Hn denote a convex polytope botmded by finitely many hyperplanes H i , i E

I, which are eharacterized by unit nonnal veetors ei E E1,n directed inwards with respeet

to P, say, i.e. (for basic notations and properties, see [VI], §1):

We always assume that P is acute-angled (i.e., all dihedral angles =j:. ~ are of measure

strietly less than j) and of finite volume. Then, every face F c P of dimension k, 1 ~

k ~ n -1 , is eontained in exactly n - k of the bounding hyperplanes of P (see [A2], Lemma

1, p.762), and F is itself an acute-angled polytope of finite volume (see [A2], Lemma 2,

p.762).

The Gram matrix G(P) := ( (ei, ej) )i,jEI of the veetors ei, i EI, assoeiated to P is an

indecomposable matrix of signature (1, n) with entries (ei, ei) = 1 and (ei, ej) ~ 0 for

i =j:. j , having the following geometrieal meanings (see [VI], §1):

{

0,

(
. .) _ - eos a ij ,

el,e} - -1,
- eosh 1··I} ,

if Hil.Hj ,
if Hi, Hj interseet on P under the angle aij = L(Hi, B j )
if H i , H j are parallel ,
if Hi, H j admit a common perpendicular of length lij

On the other hand, if G = (gij) is an indeeomposable symmetrie m x m matrix of rank

n +1 with gii = 1 and gij S; 0, for i =j:. j, then G can be realized as Gram matrix G(P) of

an acute-angled polytope P C X n of finite volume in the following way (see [VI], §2):
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1. H G is positive definite (G is elliptic), then m = n + 1, and G is the Gram matrix of

a simplex in sn uniquely defined up to a motion.

2. H G is positive semidefinite (G is parabolic), then m = n + 2, and G is the Gram

matrix of a simplex in En+l uniquely defined up to a similarity.

3. H G is of signature (1, n) (G is hyperbolic) , then G is the Gram matrix of a convex

polytope with m faeets (faces of codimension m) in Hn uniquely defined up to a

motion.

In tenns of the Gram matrix G(P), the combinatorial structure of an acute-angled polytope

P c Hn can be described as follows (see [VI], §3):

H P is compact, then the positive definite principal submatrices GJ := (gi; )i,jEJ of G(P),

J c I with 1 ~ IJI ~ n, are in one-to-one-correspondence with the non-empty faces

pJ := P n ( nH j )

jEJ

and pJ has codimension IJI (see [VI], Theorem 3.1). In particular, avertex pEP is

charaeterized by a positive definite principal submatrix of G{P) of order n describing the

spherical vertex polytope Pp (intersection of P with the smface of a sufficiently small ball

around p) of dimension n - 1 associated to p.

H P is not eompaet, but of finite volume, then a point q E aHn is an infinite vertex of

P if and only if for Jq := {i E I I H i 3 q} the prineipal submatrix G J,. = {9ij )i,jEJ,. is

parabolic of rank n - 1 (or equivalently, the vertex polytope Pq is a euclidean polytope of

dimension n - 1) (see [VI], Theorem 3.2).

1.3 In practiee, however, the language of schemes is much more convenient for the geomet­

rieal description of certain classes of polytopes (see [V2], §3). A scheme ~ is a weighted

graph (see [V2], §2) \vhose nodes ni, nj are joined by an edge with positive weight O'ij

or not; the last fact will be indicated by O'ij = O. A subscheme of ~ is a subgraph of ~

with each pair of nodes connected by the same weighted edge as in~. The number lEI
of nodes is called the order of E. To every scheme E of order m corresponds asymmetrie

matrix A(E) = (aij) of order m with aii = 1 on the diagonal and non-positive entries

aij = -(Tij ~ 0, i f:. j , off it. E is called connected if and only if A(E) is indecomposable.

Rank, determinant and character of definiteness of E are defined to be the corresponding

ones of A(~). Furthermore, ~ is said to be either elliptic, or parabolic, or hy~erbolic if

either all its components are elliptic, or - apart from elliptic components - there is at least

one parabolic component, or exactly one component is hyperbolic.
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Now, the scheme E(P) of an acute-anglecl polytope P c X n is the scheme whose matrix

A(E) coincides with the Gram matrix G(P), Le., whose nodes i correspond to the bounding

hyperplanes Hi = er (or equivalently to their nonnal vectors ei ) of P and whose weights

equal -(ei, ej)x n , i,j EI. The scheme of a face F C P is denoted by E(F) and is called

the face Jcheme of F in P; E(F) is not a subscheme of E(P), since, in general, it does not

inherit the weights of E(P).

Two acute-angled polytapes PI, P2 C H n are said to be 0/ the Jame ~chematic type if

their schemes E(PI ), E(P2 ) are of the same graphical type (Le., their underlying graphs

as one-dimensional simplicial complexes are simplicial homeomorphic) and if corresponding

weights a!j of E(PI) and a?j of E(P2 ) satisfy:

1 1

It follows that polytopes of the same schematic type are of the same combinatorial type

(see 1.2 and [Al]).
For the schemes of Coxeter polytopes Pe C x n (all dihedral angles are of the form

~ ,p E N, p ~ 2) we adopt the usual conventions 'lnd - for convenience - use them

sometimes even in the non-Coxeter case: H two nodes are related by the weight cos ~ ,

then they are joined by a (p - 2)-fold Ene for p = 3,4 and by a single line marked p (or

a = *) for p ~ 5. Ir two bounding hyperplanes of Pe C x n , x n =f sn , are parallel, then

the corresponding nodes are joined by a Ene rnarked 00; if they are divergent (occuring at

most in the hyperbolic case), then their nodes are joined by a dotted Hne and the weight

~ -1 is dropped.

The elliptic and parabolic Coxeter schemes were classified by Coxeter in 1934 (see [C]).

Hyperbolic Coxeter schemes, however, are only partially classified (see e.g. [VI], Chapter

11).

1.4 The sinlplest examples of schemes are the linear and cyclic ones. One class of acute­

angled hyperbolic polytopes with linear and cyclic schemes is the following (see [IH] and

[K2]): An n-dimenJional complete ortho~cheme of degree d, 0 ::; d ~ 2, or, for short, an

n-orthoJcheme 0/ degree d is a convex polytope in Hn , n ~ 2, denoted by Rd such that

its scheme E(Rd ) is connected and linear of length n +d +1 for d = 0,1 or cyclic of order

n + 3 for d = 2.

Hence, orthoschemes of degree d in Hn are bounded by n +d +1 hyperplanes Ho, ... , H n+d

such that

Hi 1.. Hj for j =f i - 1, i, i + 1, (5)
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where, for d = 2, indices are taken modulo n + 3.

Geometrically, orthoschemes of degree d can be described as follows:

For degree d = 0, they coincide with the dass of (ordinary) orthoschemes introduced by

Schläfii (see [S]' [BH]): An orthoscheme in X n (n 2:: 1) is an n-simplex bounded by n + 1

hyperplanes Ho, , Hn such that H i .1 H j for li - j I > 1. This is equivalent to say that it

has vertices Po, , Pn numbered in such a way that span (Po, ... , Pi) .1 span (Pi, ... , Pn)

for 1 ~ i ~ n - 1. The initial and final vertices Po, Pn of the orthogonal edge-path

PiPi+1 ,i = 0, ... , n - 1, are called principal vertices, since they are distinguished in

several ways. E.g. in H n , at most the principal vertices may be points at infinity (see

[BH], Satz 15, p.188).

Using the projective model for Hn (see 1.1), we can derive orthoschemes of degree d = 1

or d = 2 from an ordinary one by allowing one or both of its principal vertices (and with

them possibly further vertices) to lie outside the quadric Ql,n, and then by cutting off the

ideal vertices by means of the polar hyperplanes, say H n+1 resp. Hn+2, corresponding to

Pn resp. Po (inasmuch as they lie outside Q1,n). Heoce, orthoschemes of degree d = 0,1,2

are d-times truncated (or "polarily completed") orthoschemes bounded by hyperplanes

Ho, ... ,Hn+d ,vith the property (5).
Complete orthoschemes Rd C Hn, 0 ~ d ~ 2, have at most n + 3 non-right dihedral

angles (or e-,sential angles) 0'1, ... ,O'm , m ~ n + 3, aod all of them are aeute, i.e., Q'i <
~ for i = 1, ... , m (see [BH], §4.8, Hilfssatz 2, and the definition). Furthennore, by

construction, complete orthoschemes are of finite volume (see (VI], Theorem 4.1). Hence,

a face of Rd is also an acute-angled polytope of finite volume (see 1.2); in fact, it is itself

a complete orthoscheme (see [K2], 1.3). H ~d is the scheme of Rd, we denote by 1Jd(I)
the face scheme of the apex Rd( 1) = Rd n H ,- 1 n B, in Rd associated to the essential

angle cq = L(Ht - 1 ) HI), 1 ~ 1 ~ m l of Rd. ~d(l) is not a subscheme of ~d. However,

the scheme of a vertex polytope of Rd is a subscheme of Ed of order n (see 1.2) and

is therefore a (n - 1)-orthoscheme with essential angles of the same measure as certain

essential angles of Rd • Since the vertex polytope of a face F C Rd , 2 ~dimF ~ n - 1,

associated to a vertex p E F is the (non-empty) intersection of F with the vertex polytope

of Rd associated to p, we conclude by iteration that every subscheme of order k of the

scheme ~(F), 2 ~ k ~ IE(F)j-1 , is the face scheme of order k of a subscheme of ~d, and

vice versa. In particular, the set of subschemes of order k of Ed(l) (2 ~ k ~ n +d - 2) is

identical with the set of face schemes of order k of subschemes of ~d describing the apex

of the dihedral angle of measure D:I in Rd.
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2.1 For n 2:: 1, let ~ denote the elliptic scheme of order n + 1 > 1 of a spherical n·

orthoseheme R. Then, the normalized vollillle funetion

10 := 1 ,(6)

is ealled the funetion of Schläfli (see Introduetion, (1), and [5], Nr.23, p.238). The funetion

In is proportional to Voln(R) such that In = 1 for the orthoscheme with all dihedral angles

equal to 'I, The funetion of Sehläfli satisfies the following factorization property (see [S],
Nr.23, p.238, or [BH], Hilfssatz 1, p.213):

LEMMA.

Let ~ denote a linear elliptic scheme of order n + 1 consisting of disjoint components

0"1, . .. ,Ur oE orders n1 + 1, ... ,n r + 1 2:: 1. Then

(7)

For spherical Coxeter orthosehemes (see 1.3), Schläßi determined explicitly all possible

values of In (see [5], Nr.3D, p.268 ff). Using the standard notations for schemes of spherical

Coxeter orthoschemes (see (VI], §5, Table 1), his results read as:

11(G~) = ~ p2::2 , (8)
p
1 1

/3(F4 ) = - /3(H4 ) = 900 (9)
72

2n+1
In(An+1 ) = (n + 2)1 n2::0 (10)

1
In(Bn+1 ) = (n + I)! n2::0 (11)

By means of the trigonometrie prindple, or equivalently, by interpreting hyperbolie n-space

Hn as upper half of the pseudosphere of radius i = A in R n+1 (see [BH], p.20-21 or

p.210), it ia obvious how to generalize the notion of Schläfli's function to orthosehemes

R d C Hn of degree d, 0 ~ d ~ 2, and with graph ~d (see also [BH], p.212):

The function

Fo := 1 (12)
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where the cOllstant Cn is defined as in (6), is callecl the Schläfti function 0/ the complete

orthoscheme Rd.

Hence, for even dimensions,

is a real-valued function.

2.2 Let 'R.t\. be the set of compact complete orthoschemes in Hn of combinatorial type K,

(see [Al], §1). Since every element of n K is a polytope with diheclral angles not exceecl­

ing I' its congruence class is uniquely detennined by its dihedral angles (see [Al], §3,

Uniqueness Theorem). Hence, ScWäßi's volume function Fn = Fn Int\. restricted ,on n tt

may be regarded as a function of the dihedral angles. The differential of Fn depending on

the clihedral angles can be represented by SchläRi '8 formula in the following way (see [K2],
§2, and 1.4):

THEOREM. (Schläfli's differential formula)

Let Fn , n ~ 2 l be the Sch1äHi function on the set 'R. K of compact complete orthoschemes

in H n of combinatorial type K, with essential angles a1, ... , am(t\.) and with scheme E.
Denote by Fn - 2 (k) tbe ScbläBi function of tbe apex of codimension 2 associated to the

essential angle G:k of measure 11 (k) := 11 «(Xk) , 1 ~ k ~ m( K,). Then

mett)

dFn(E) = :E Fn- 2(k) dl1(k)
k=l

(13)

This formula was established by Schläfli for spherical simplexes, and separately for the

more basic orlhoschemes. Much later, H. !(neser gave a second, very elegant proof (see

[Kn]) for both, the spherical and the hyperbolic case. As ScWäfli already pointed out (see

[8], Nr. 25, p.246 ff, Nr.32, p.272 ff, and [VI], Corollary, pA8), the differential formula for

orthoschemes cau be extended to arbitrary acute-angled polytopes. For RE nK. , this can

be seen analogously by subdivision into orthoschemes and application of Schläfli's formula

for each of the dissecting orthoschemes. Then, collecting all differential expressions in

dVoln(R) suitably, one obtains the generalized SchläRi formula for complete hyperbolic

orthoschemes in terms of the dihedral angles.

Moreover, the Theorem remains true for the SchläRi function on the set of acute-angled

polytopes of fixed schematic type (see 1.3) in Hn , n 2:: 2, which are non-compact but of
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finite volume (for n = 3, we have to cut off a horospherical neighborhood around each

vertex at infinity before evaluating Schläfli '8 function on the apex edges). By dissection,

it suffices again to consider asymptotic orthoschemes, and among them only those of

dimension n ~ 3. Since an orthoscheme in Hn has at most the two principal vertices

at infinity (see 1.4), there are only d-asymptotic orthoschemes, 0 :::; d :::; 2, and their

congruence classes are described by n essential angles O'I, ••. , O'n (n - d of them fonn

a system of independent parameters). Furthennore, each d-asymptotic orthoscheme may

be interpreted as limiting polytope of a sequence of compact orthoschemes. Hence, by

analyticity of the volume function, ScWäfli's differential fonnula (13) holds for a family of

d-asymptotic orthoschemes in H n . We formulate this result only partially in the following

sense:

COROLLARY.

Let Fn , n ~ 4, be the Scb1äili function on tbe set complete orthoscbemes of schematic

type ~ and of finite volume in Hn with essential angles Cf1, ... ,O'm(o;) and with scbeme Eo;.

Denote by Fn - 2 ( k) the Schlä:Bi function oE tbe apex of coclimension 2 associated to the

essential angle Cfk oE Ineasure fl (k) := 11 (C'tk) , 1 :::; k :::; m(~). Then

m(o;)

dFn(Ec;) = L Fn- 2 (k) d/1(k)
k=1

3. The reduction formula

(14)

3.1 Generalizing Schläfli's method for spherical orthoschemes, we prove the following re­

duction formula for even dimensional hyperbolic orthoschenles of clegree d, 0 ::; d ::; 2, in

terms of the modified Schläfli function (for complete orthoschemes of dimension four, this

is already proved in [K1], §4, by a different method):

THEOREM. (Reduction fonnula)

Denote by Rd C H 2n , 0 ~ d ~ 2, n 2: 1, a 2n-diInensional orthoscheme oE degree d with

scheme Ed. Then

L I-I:= 1 (15)

where 0' runs through a11 elliptic subschemes oforder2(n-k) oEEd a11 oEwhose components

are oE even order.
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Pro0/: For 0 < d < 2 and n ;::: 1, let Rd be a C0I11pact orthoscheme of degree d and

dimension 2n. Proving the formula (15) we proceed by induction on the dimension.

For n = 1, we have by definition (see (8) and (12» that F2 (Ed) = -~ Voh(Rd) and

11 ( Ci) := f 1( Cf) = ~ Ci, if Cf is of weight cos Ci. By varying the degree d of Rd, we 0 btain

the following cases (see 1.4):

O. For d = 0, Ra = Ro(Ci1 , Ci2) is a right-angled triangle with essential angles 0 ::;

Ci1, Ci2 < ~ and \vith area Voh(Ro) = ~ - (Ci1 + 0'2). On the other hand, its scheme

Eo is given by (using the notation of 1.3)

III ll2
0--0--0

Thus, the fonnula (15) reads:

which is the above area formula for a 2-orthoscheme in terms of the Schläfli functions.

1. For d = 1, R1 = R 1(ll) is a Lambert quadrilateral (quadrilateral with three right

angles and one acute angle 0:, 0 :s; a < ~) of area Voh(R1 ) = ~ - ll. Since its

scheme EI is of the form (see 1.3)

Ci
o· "'0--0' "'0

the fonnula (15) evaluates as F2 (E 1 ) = 11 (0:) - 1 .

2. For d = 2, R2 is a totally right-angled pentagon of constant area Voh(Rz) = ~. The

schenlc :8z of R2 is given by a cyclc (sec 1.3)

......0,
" "-...... "-

0...... ....0

\ J
\ J
\ J
\ J
0----0

Obviously, E2 contains no elliptic subscheme of order> 1. Hence, the formula (15)

yields F2 (Ez) = -1 as required.

No\v, asswne that the assertion holds for conlplctc orthoschcrncs of cvcn diIl1cnsion <
2n. To show that the volW11e of a 2n-dilnensional orthoschcme R d of degree d 1 0 <
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d ~ 2, satiesfies the formula (15), we illterprete the essential angles ll'I, ..• , a m of Rd as

independent variables (keeping all notations as before) and differentiate (15) with respect

to the measure 11 (1) := I1 (a: I), 1 ~ 1 ~ m. Schläfli 's differential fonnula for hyperbolic

complete orthoschemes (see 2.2, Corollary) has the following effect on the left hand side

of (15):

(16)

where, by respecting the dependence among ll'1, ... , a m , F2n - 2 (1) denotes the normalized

volume of the apex Rd(1) corresponding to the angle ll'l of measure 11(1) (see 1.4). Since

Rd( 1) is itself a complete orthoscheme of dimension 2(n -1) (see 1.4), we have by induction

for the Schläfli function of its scheme ~d(I):

(17)

and where 0"(1) runs through all elliptic subschemes of order 2(n - 1 - k) of ~d(1) allof

whose components are of even order. The differentiation of the right hand side of (15) with

respect to I1 (1) leads together with Schläfli '8 differential fonnula for spherical orthoschemes

to

where 0'''(1) corresponds to the apex of the angle (Yl in the orthoscheme with scheme 0' in

the summation (15). Hence, each 0'''(1) is an elliptic scheme of even order [0'1-2. Moreover,

all components 0'1, ... ,0'r , r ~ 1 , of 17"(1) are of even order: In fact, the differentiation

of 12n-(2k+l)(0') with respect to 11(1) affects only one, say O'v, of the components of 0'
all of them being of evell order; its associated spherical orthoscheme R v has therefore no

essential angle equal to i, and the same holds for each of its faces of codimension 2 (see

[BH], §4.2, Satz 3, and §4.3, Satz 1). Hence, the apex orthoscheme of Rv associated to

the angle ll'l is described by a connected elliptic scheme of even order 10'v [ - 2.

Now, every subscheme 17'(1) of order k, 0 ~ k ~ 2n - 2, in the summation (17) occurs as

a subscheme 0'''(1) of order k in the summation (18), and vice versa (see 1.4). Hence, by

induction hypothesis, we proved (15) up to the value of

(_l)n (211) .""' 1-1
n+1 n LJ
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It remains to show that this constant of integration, written in the form (_1)n an (see

(15)), is given by

(-1)" an = (_1)n (2n) (19)
n+ 1 n

We check (19) first for the case d = 0 considering the following scheme of order 2n + 1

with

~Zn{e, e')
e' ~ - e ~ - e

0--0 0- ••• -0 0 e,e' > 0 ,

11''2 -e
0------0-

1r'2 -e
-0 0 k = 1, ... , 2n-l

k = 1, ... ,2n-1

among the subschemes of order k + 1. The determinant of these schemes satisfy the

following recursion fOflnulas (see [8], Nr. 27, p.257):

det~2n{e,e') = detEzn-1{e) - cosz e'detEzn-z(e) (20)

detEk{e) = detEk- 1(e) - sinz edetEk-Z(e) , k = 2, ... ,2n - 1, detEo := 1. (21)

From (21) we derive that (see [8], Nr. 28, p.265)

1 (1 + VI - 4sin2e)k - (1 - )1- 4sinz e)k
detEk(e) = k k ~ 1

2 VI - 4 sin2
€

l.c., detEk(e) > 0, and by (21), detEk(e) < detEk-1(e) for e < ~ and k ~ 1. Further­

more, we can represent

detEk{e)

detEk-l (e)

as a fini te continued fraction wi th k partial quotients (see [8], Nr.27, p.258) using the

classical notation of Pl"ingshehn:

detEk(e) = 1 s_in_2_e~__ = 1 _ sin
2

el _ ... _ sin2 cl
detEk-l (e) sin2

E 11 11
1 - '...,. j

sin
2

€ k times
. - 1- sin2 E

Hence, by (20), we can choose e' in terms of e E (0, ~) in such a way that detE2n (e, c') < 0,

detE2n- 1 (e,c') >O,andthat e'(e)--+O for e~Oje.g.,let c'E(O,~) with

COSZ e' = 1 _ sin
2EI _ ... _ sin

2 el _sin
2 EI

11 11 12
, I....

2n - 2 times

1r

0< e < '6
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Thus, }j2n(e, e f
) describes a compact hyperbolic 2n-orthoscheme R2n ( e) (see 1.2) which,

for e -+ 0, converges to adegenerate orthoscheme Re with angles O,~, ... , ~ and with

scheme
00

0--0 0 0 o 0

Since det}je = 0, the n +1 normal vectors in El,n associated to the bounding hyperplanes

of Re are linear dependent. Therefore, we have in the limit a decrease of dimension, i.e.,

Vohn(Re ) = O. Geometrically, this can be seen by observing that, for e -+ 0, the vertex

orthoscheme of R2n (e), described by E2n- 1 (e), converges to a totally rectangular spherical

orthoscheme with edge lenghts ~ (see [BH], Folgerung, p.82); this implies that R2n (e) has

a triangular face of area ~(e) = ~ - (h(c) + cf) > 0, where h is a continuous positive

function with h(e) -+ ~ for e -t O. Hence, we have ~(e) -+ 0 for e -t 0 implying

that at least two vertices of the limiting polytope coincide. Hence, (15) yields:

where er runs through all elliptic subschemes of }je of order 2(n - k) all of whose components

are of even order. This condition implies the following identity (for a tricky proof, see [S]'

p.255-256, and 2.1):

o=~ (_l)k (2k) (n + k) (_l)n a
LJ k + 1 k 2k + n
k=O -

Since (see [S], p.256)

~ (_l)k (2k) (n + k) = 0
LJ k + 1 k 2k
k=O

we deduce (19).

For d > 0, we remark first that there are orthoschemes Rd C H n
, n ~ 3, of degree d

of different schematic type; although the graphical type and the order of the associated

schemes Ed are constant, the weights 01', more precisely, the number of subschemes of

one character of definiteness may differ. Geometrically, this means that orthoschemes of

degree d of different schematic type are bounded by the same number of hyperplanes, but

in view of their mutual position in Hn, the nwnber of (finite 01' infinite) vertices may

differ. However, the sets of orthoschemes of degree d of different schematic type are not

disjoint. Indeed, their intersections consist of the asymptotic complete orthoschemes (i.e.,

the respective polytopes of transition are described by schemes with parabolic subschemes

of rank n - 1 (see 1.4)).
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Secondly, we observe that a doubly asymptotic orthoschen1e of degree 0 (both principal

vertices are points at infinity) can be interpreted as asymptotic limiting case of an or­

thoscheme of degree d (the polar hyperplanes associated to the principal vertices touch the

absolute quadric and truncate therefore without effect). Hence, by comparison in the ap­

propriate asymptotic limiting cases, one immediately sees that the constant of integration

ahvays equals
(_l)n (2n)
n+ 1 n

Q.E.D.

3.2 The Reduction fonnula (15) can no'v be applied to all complete Coxeter orthoschemes

(for dinlellsions 211 ~ 4, see Appendix). "vVe want to give one cxample in detail: Considcr

the following cyclic scheIne :E of order 9 describing a 6-dinlcnsional non-compact Coxeter

orthoscheme R of degree 2:

Detennining the volume VoI6 (R) according to (15), wc have to pick out all different elliptic

subschemes a of :E of even order 6 - 2k, k = 0, 1, 2, together wi th their multiplici ties j..l ( a),

and evaluate f6-(2k+I) on a (see 2.1, Lelnma and (8)-(11)):
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k p.(a) a la-(2k+l)(a)

0 1 0=0 0-0=0-0
1

144

1 0=0 0-0-0=0 1
48

1 0-0 0=0 0=0
1
'6

1 1 0-0=0-0 1
72

2 0-0-0=0 1
24

1 0-0 0-0 4
{)

5 0-0 0=0
1
:3

4 0=0 0=0 !
4

2 3 0-0 2
:3

4 0=0
1
2

Hence, according to (15), we obtain:

3 ( l)k (2k)
F6 (E) = (_1)3 ca Vo16 (R) = L k- 1 k L 16-(2k+1)

k=O +
=L 15 - L 13 + 2· L 11 - 5· L 1-1

7 77
=---+2·4-5

36 24
1

72

120
Since C6 = -3 ,we get:

1r

1 7r
3

Vo16(R) = -- .Fa(E) = -- ~ 0.0036
C6 8'640

15
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Appendix

Ruth Kellerhals

The complete Coxeter orthoschemes Rd,C of degree d, 0 ~ d ~ 2, were classified by Im

Hof in 1983 (see [IHD. They exist only up to dimension 9; in each dimension ~ 4, there

are finitely many examples. We now list the graphs ~d and volumes Vohn(Rd,C) of all

complete Coxeter orthoschemes of degree d and of even dimension 2n 2: 4:

2n d ~d Vohn(Rd,C)

4 0
5 ,..4

0--0--0--0--0 'iQi8öö ~ 0.0009

5 17Tl'4
0=0--0--0--0 21'600 :::::: 0.0078

Tl'4
0=0--0=0--0 864 :::::: 0.0114

5 5 13,..4
0--0--0--0--0 5'400 :::::: 0.0238

4
00 6

5~40 :::::: 0.01831 0--0--0--0--0--0

00
2~48 ~ 0.03430--0--0--0=0=0

5
:018~~ ~ 0.0375o .... 0--0--0--0--0

5
173~~ :::::: 0.0388o . '··0--0=0--0--0

00 6 5,..4
0--0--0=0--0--0 864 :::::: 0.0571

00 6
2~48 ~ 0.03430--0=0--0--0-- 0

00
1~: ~ 0.06850--0=0-0=0=0

00 5 6 61 Tl'4
0--0--0--0--0--0 900 ~ 0.6689

8 8
:,\~~ :::::: 0.06280--0--0=0--0--0
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271 d ~d Vohn(Rd,c)

4 2 CD
0-0'i ~\

o '0

1~: ~ 0.0914\ I
o~Aoo 6

CD
0-0, ~, ,, ,

\ I 1~28 ~ 0.0914

,~o
o~

00
0-0'l ",,~

0

~~ ~ 0.1371
0

~o~f

~o- --_·o~

,, ~

~

,, ,
0 I 71'"<1

~
i2ö ~ 0.0823

"o~o

17

,0----- 0 ,, ,
I ~

l
,' "0

5 I
o~
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2n d Ed Vohn(Rd,C)

4 2 CD
0-0

Y "\
rr 2

\ i 72 ~ 0.1371

0"", AO
o 6

CD7-0

,

s, > rr 2
GO ~ 0.1645

o............... A o
o 6

CD
0-0

Y '" rr 20 0

6\ I 54 ~ 0.1828

o.............. ~o
o 6

2

~O ~ 0.1097

rr 2

72 ~ 0.1371



On ScWäfii '5 reduction formula

2n d ~d Vohn{Rd,c)

4 2
7°----0~

0
f. 1~: ~ 0.09146\

o.............~o

y,-,

11 \\ ~: ~ 0.2056
o~ /:0--0

IX!

/-~
~;; ~ 0.2285

o 0

6\ /6
'0/

6 1
00

8~~:~O ~ 0.00390--0--0--0--0--0=0--0

00 1t
3

0--0=0--0--0--0=0--0 BtJ'-100 ~ 0.0004

6 2 tO
0-0" ~r 0\

1r
3

°\0 I 431200 ~ 0.0007

~o""""""o

tO

,I',I'IO-O~

li 0\ 71t 3

129'600 ~ 0.00170 0

\ /
o~o"""""'o

tO

/0-0"
o 0

11 l 1t"3

17'280 ~ 0.00180
\ ./

.............o~o

19
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2n d ~d Vol2n ( Rd,c)

6 2 co
"o-o~

r \ 389rr
3

rv 0 4653

\ I 25i'2'9ö - .

o-......o~o

10 0 CI)

o~ -"""0

! '\
-rr

3 G
\ /i Bi6'4O ~ 0.003
o~ 0

~o_o/

#o-o~

g~ ~,
3/~:O :::: 0.0096

\ /
o':::::::::::op'°

10

8 2 #o-o~
o?' ~o

/ \
0 0

\\ 11 56911"4 rv 0 0013
0 0 43'545'600 - ." /0-""0__°
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