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§ 0. Introduction

Let x : M° ———>fmn+1 be an immersion of an orientable
ﬁ-dimensional connected manifold MF- intoc the (n+1)-dimensional
Euclidean space :m9+1 . Then it is well-known that the mean
-curvature of x 1is constant if and only if x 1is a critical
point of the n-area for all compactly supported voiume—preserving
variations. We say that an immersion . # : M0 f+—>]Rn+1 with

non-zero constant mean curvature is stable if the second

variationsiof the n-area for-all such variations as above are

non-negative.
When M 1is compact, Barbosa and do Carmo [2] proved that

. n n+1 .
if the mean curvature of x : M —> R is non-zero constant

and x is stable, then x(M7) is a round. sphere s™ c::IRm'1 .

On the other hand, they'conjectured that there are no complete
stable immersions x : Mg ———>:R3 with non-zero constant mean
curvature. When M? is non-compact, M?  is hyperbolic or
parabolic with respect to:the natural complex structure given by
X . Under some additicnal condition about metric for the case'

that - M2 is parabolic, we prove the above conjecture.

Theorem 1. Let M be a non-compact orientable 2-dimensional
connected manifold. Then there is no complete stable immersion
X + M ———>:R3 with non~zero constant mean curvature which
satisfies the following (i) or (ii).

(i) M 1is hyperbolic.

(ii) M 1is parabeolic, and for the universal covering



T : & —>M , the metric as? = A2|dz|2 of € induced by
x o n satisfies the following inequélity except some compact

set.
-1
(0-1) A(z) 2 c0|z| ,

where S is a positive constant and z is'the canonical

coordinate in C .

This theorem is proved in section 2 as a corollary of a more
general result Thecrem 2.

It should be remarked that in the case of zerd mean curvature,
" do Carmo and Peng [41 proved that the plane is the only "stable"
complete minimal surface in ZRB . Of course, in.their theorem
"stable" means the usual stability of minimal surfaces, that is,
the second variation of the area is non-negative for all compactly
supported variations that need not be volume-preserving.

| If wé would employ the generalization of the usual stability

of minimal surfaces as the definition of the stability of non=-zero
constant mean curvature surfaces, the statement of the above
conjecture has already been proved by Mori [61. However, we feel
that our definition is more natural because even the sphere is not

stable in the other definition of stability.



§ 1. Barbosa and do Carmo's formulation of stability

-in this section, we recall Barbosa and do Carmo's formulation
»of stability of non-zero constant mean'curvature hypersurfaces.
In [2] we can find all definitions and formulas in this section
with their proofs.

Let x : M ———>2m3+1 be an immersion of‘an oriehtable

1 , and let

n-dimensional differentiable manifold M .into R
DM bea relatively compact domain with smooth boundary 3D .
Then the n-area of D with respect to the induced metric by x
(which we denote by Ap(x)) and the volume of D in x (which
we denote by VD(x)) are defined as follows.

An(x) = [ dam, vy (x) = L [ < x,N > aM ,

D . n+l p

where dM is the volume element of M" with respect to the

induced metric by x , N 1is the unit normal vector field along

X , and < , > is the inner product in EP+1 .

Let x, : B—> R, t € (~e,e) (e>0) , Xqg = X , be a
variation of x|D . We say that the variation Xy is volume-
preserving if VD(xt) = VD(x) for all t , and that Xy fixes

the boundary if =x for all ¢t .

t|aD = x|,y

Formula 1. The mean curvature of x is constant if and

only if for any relatively compact domain D' with smooth

boundary and for any volume-preserving variation X, ¢ 5'———>ZRP+1

that fixes the boundary,



d Ap(xy) .
dt t=0‘
A Definition 1. Let x : Mn_———>:IR.n+1 be an immersion with

non-zero constant mean curvature. Then we say that x is stable

if and only if for any such D and X, as in Formula 1,A

dzAD(xt)
B 2 0 .
dt £=0

Formula 2. Let x : Mn-—-——->]Rn+1 be an immersion with non-
zero constant mean curvature. Then x 1is stable, if and only
if for any such D as in Formula 1 and for any function £

belonging to the function space

(1=-1) FD = {f:Mn———>]R | support £ < D, f is piecewise-smooth,

and IMnf‘dM = 0} ’

the integral I(f) defined below is non-negative.

I(f) = —jMn(AMf + I BIPEYE am ,

where AMf is the Laplaéian of £ in the induced metric and

||B|F is the square of the norm of the second fundamental form

B of x .

Here we should remark about the sign of AM . Let p be a

1

point in M , and let (u ,...,un) be coordinates in a



neighbourhood of p in M" . Denote the induced metric in M"

n L
by g = y gijdulduj , and set
i,3=1)

G = det(gij) and (gij) = (g, .)



§ 2. The main theorem and its proof

From now on M 1is assumed to be a non-compact orientable
2-dimensional connected manifold. First we prove the following

Theorem 2 which is more general than Theorem 1.

Theorem 2. Let M be-the same as in Theorem 1. Then there
is no complete stable immersion x : M —-—>:m3 with non-zero
constant mean curvature which satisfies the following (i) or
(ii) . '

(i) M is hyperbolic.

(ii) M ’is parabolic, and for the universal covering
T : € —> M , the metric as? = )\2|dz|2 of € induced by

x o T satisfies the inequality

- p 2m 1/4 p
(2-1) ‘fpz(fo A4||B|Pde> dp 2 ¢ log 33
1 1

for all b1 and Py (pz 2 op >-D0) r where ¢ and ‘pg are

positive constants.

Lemma 1. Let 7 : M —> M be the universal covering of M .

If x o m 1is not stable, then x 1is not stable also.

Proof. Let § be a relatively compact domain of M* (= M or M)
with smooth boundary. Consider x and x o m as critical points
for the area functional with respect to compactly supported
volume-preserving variations that fix the boundary. Then the

corresponding Hessian form is



I(£)

1}

~f (8.f + || BIFE)E amr
9] .

£ e€F*={f€H(Q) ; [ £aux = 0} ,
!) _ 0 Q

where we denote the second fundamental form of x e 7 also by

B -

Consider the following eigenvalue problem associated with

the quadratic form I(f) .

[ (8yxE+| B|PE) aux |
(2-2) Ay + || B[fe - 2 +Af =0, £€FL .
‘ [ am*
Q

Denote the eigenvalues of (2-2) by
A1(Q) s A, (@) 5 A3(Q) S vie —> + @,
Then it follows that
(2-3)  A,(@) = inf ——Eii%--
£€F2-{0} [ |£["dmM*
Q

(c.f. Berger-Gauduchon-Mazet [3, p. 186]). Set

index (Q) # {Aj(Q) ; Aj(Q) < 0},

nullity (Q)

# {Aj(ﬁ) ; lj(ﬂ) 0} .

Let Cy ot R —> 0 , t 2 0, be a smooth family of diffeo- .

morphisms of  dinto Q such that



(@) ¢y = identity .,

(b) ct(ﬂ) g cS(Q) for t >s ,

(c) lim Volume (ct(Q)) =0

tow

- Denote ct(Q) by Qt . Then from the Morse index theorem

with constraints proved by Frid and Thayer (5],

(2-4) index (Q) = J] nullity (Q.) .
t>0 ‘
Assume that x o m : M ———>:R3 is not stable. Then there

exists a relatively compact domain G < M with émooth boundary
such that index (G) > 0 . Set D = ©w(G) . Since 1®m is locally
diffeomorphic, by enlarging G if necessary, we can find a -
point Py € 3G , a neighbourhood U of Py in M , and a

neighbourhocod V of w(pol in . M such that

(i) :TT(Po) € 3D ,

(ii) Y vop) ng=uUna,

(iii) lﬂIU : U —> V 1is a diffeomorphism.
Let {Gt}t 0 be a smooth and strictly decreasing family of
>
domains G, < M such that



By (2-4), there exist some s > 0 and ¥ e Fa‘ - {0} which
. s |
satisfy
2~. ~
, [g_(agE+1l BIE) o
2 s
Aﬁ? + || B|"f - — = 0.
J’G aM
S
in G, . Sset D_ = m(Gy) and define.a function £ on M by
flgq) = 2 -1 T(p) . Since ¥ is analytic in IGS (c.f. Morrey
peEm  (q) ' ’

(7, p. 166 Theorem 5.7.1]),
f(p1) # 0
for some Py € Gs N U . Therefore

£(m(py)) = ) E(p) = T(p) + 0,
pén—T(w(p1))_

by virtue of above (ii) and (iii). Moreover, £ € FS and we can
' s
show that I(f) £ 0 by the essentially same way as Barbosa and

-do Carmo [1, pp. 521-526]. Therefore, by (2-3),
(DS) 0.

Hence, by using (2-4), there exists a relatively compact domain

D' o Ds of M such that
index D' > 0 ,

which implies that x 1is not stable.
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Proof of Theorem 2. By virtue of Lemma 1, it is sﬁfficient*]

to prove our theorem only for the case that M is simply-connected.
Let x : M ———>IR3 be a complete stable immersion with |
non-zero constant mean éurvatufe? Denote by K the GauBian
curvature of x .'Coﬁsider_ M with thé natﬁral complex structure
given by x . We assume that x satisfies (i) or (ii), and shall
derive a contradiction.‘Let' z  be. the canonical'coordinaﬁe in ¢ :
2

Then the induced metric ds in M is given by

as? = k2|d2|2 y A >0 .

Let A denote the Laplacian, V the gradient, and dA the area
element in the. flat metric.

At first we assume (i), that is, M is assumed to be con-
formally equivalent to B = {z € € ; [z] < 1} . Let p be a
point in M , and let Br(p) be the geodesic disks with p as
their center and r as their radii which exhaust M . For aﬁy
positive constant ¢ , we define a piecewise~smooth function

f t M —> R as follows.

r,§

1 qEBr(p)r

2-dist{g,p)/r , q € B2r+6(p)-Br(p) ’

{2-5) fr,ﬁ(q)

i
“«

{dist(g,p)-(2r+28)}/r , q € Byreas (P)Bor s ()

L 0. q € M-B

2r+26 P -

where dist(g,p) 1is the geodesic distance between p and gq € M .
Now we claim the following statement which will be proved in

section 3 in order to avoid confusion.
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Claim 1. For any r > 0 , there exists a unique § = 6§(r) > 0

such that

: -1
Therefore, A £
r,s B2r+26

stability of x and Formula 2,

€EF (p) - Hence, by virtue of the

(2-6) . ' I(A £

Therefore,

21927 %am < [ A3 e |2

. A '
M Mr,§

M dM 7

(2=-7) [ £_
M r,§

where VM is the gradient in the induced metric. In fact, if we

set ¢ = A-1 and £ = fr 5 ' by using the well-known formula
-2 )

K=-A "A log A and ﬁbe Stokes' theorem, we can achieve the
following calculation.

The left hand side of (2-6)

/ {IVM(¢f)|2 - (4H2—2K)¢2f2}dM
M

A

{ {|VM(¢f)|2 . 2K¢2f2}dM
M

2 2 2 2
IM{¢ |va| - 3f |vM¢| - 2¢f(vM¢,va)}dM

N

sz(¢2[va|2 - 2yl Pan .

It follows from (2-7) that



By letting «r > + o , we know that |v A-1| = 0 bon M , that’

M

is, A = constant, which contradicts the completeness of the metric

d52

= )\2|d2|2 in B . (A similar inequality to (2-7) and a similar
method to the above limitting process are found also in do Carmo
and Peng [4] and Mori [61]).

Next, we assume the condition (ii). Set y = A21|B|F .

Then there exists some constant B8 > 0 such that the inequality
(2-8)  J v£Paa < gf |ve|Paa
- C C

follows for all compactly supported piecewise-smooth functions
£ :C —>R that satisfy I(yf>) 2z 0 , which is proved by
Mori [6]. |

Let n>1 be a constanﬁ. For any r > 1 and ¢ > 0 , we
define a piecewise-smooth function fr’6 : C —> R as follows.

Since fr 5 is defined to be depending only on p , we write
14

£f_ . (z) = £ (p) , where (p,8) is the polar coordinates in C
r,d r,$

If 0<68 s,

,

1, : Ospsr ,

2-£2 '

29) . (o - | r rsps2r+§ ,
r,s g(2r+5)‘k{r‘n(p-zr-a)n-11 K, 2r+§sps3r+s

IP

0 , P23r+s ,

[4
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and if § 2 r ,

1 . | 0gpsr ,
- T rsPs3r ,
f (p) = - _ .
L0 (3r) k{s n(_p—3r)n—1}pk ,  3rsps3r+s ,
o, P23r+d -,

r . Now we claim

where k > 0 depends only on

Claim 2. There exists some constant ag 0 < ag < % r such
that the following statement holds. Consider (2-9) and (2-10)
=2 - ar3 | Then, for sufficiently large r ,

substituted k = 3 0

there exists a unigque ¢ = §(r) > 0 such that

[veE Sam=o0,

(2-11)
M r,§

which will be proved in section 3.
From the stability of x , inequality (2-8) is satisfied for
f = fr s in Claim 2. Let us calculate the right hand side of
4

(2-8) for £ = £ .If 0 <68 <x , then
r,6

6

2r+d 6 3r+é
6., _ -6 $ -k dl'-n__n_}k)
jlve glfanszny dQ+2'ﬁ{r(2r+cS) }fzm(m{r (p-2r-8)"=1}p ] o dp

3r+d
2r+¢

2r+§

an-sj
r

o dp~r2w(4n-+k)6(2r)-

(1728

+o0
6k--5do

< 8 4+ 21(an+x) % (20) T8RS
‘ 2r

1

1]

gnr~ 4 + 20 (4n + %) % (2r) "4 (4-6k)
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-1_~-1

(2-12) < 8ﬂr_4-bn(4n-+§)6(48a0) r .

And if § 2 r , then

3 3r+$ 8
[ |ve, |°a=2nf = dp+ 21 (3r) 5] (@[{ (0=3r)"- }k] ) 6 dp
T r r ,

_¢ 3r 6k 3T+ gy s
< 2mr 6] pdp+ 2ﬂ(4n-+k)6(3r) 6 { p dp
r ' 3r
4 6 -6k 77 _6k-5
< 87r ~+2m(4n+k) (3r) [ P dp

3r

-1

grr~ % + 20(4n + ) 8 (3r) "4 (4 - 6%)

(2-13) < 81rr-4+1T(4n+2) (243a,) =11

Both of (2-12) and (2-13) go to zero as r goes to infinity. On

the other hand, as for the left hand side of (2-8),

(2-14) [ o3 SBaa > van > f 02 Bl
T d 0s|z|sr 0s|z|s1

The most right term of (2-14) is a positive constant independent

of r , which contradicts the inequality (2-8).

Proof of Theorem 1. If an immersion x : M ——->]R3 satisfies

(0-1), then x satisfies (2-1). In fact, if we choose a sufficiently

large Py SO that the exceptional compact set in Theorem 1 (ii) is



contained in {z € C 2 0y >0,
0., 21 1/4 . oo, 2w 4 , \1/4
;2(1 211 81fas) ap x 2(; cg o™t - 2m’as)  do
P 0 0
| 1/4 o,
_ 2 2
= ¢, (4mHT) log 5,

-15-

lz] s pd} s then for o,
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§ 3. Proof of Claim 1 and 2

Proof of Claim 1. Fik r > 0 , and set

J(8) = ATf
M—BZr(p)

f dM > 0 ana

From the definition of fr 5 { A £,

[4
: B2r(p)
J(8) <0 for any & > 0 . If we can show the following (3-1),

(3-2), and (3-3), then we know that Claim 1 is vélid.

(3-1)  Tim. J(8)

= 0
§->+0- -
(3=2) lim J(§) = -=
o+

(3=-3) J(8) is strictly decreasing with respect to 6§ > 0

(3-1) is trivial. Let us prove (3-2). Let o > 0 be a fixed

positive constant. Then for any & which is greater than oar ,

=1

=J(8) > a | A dM

B2r+26-ar(p)—82r+ar(p)

(3-4) = f A lam - o g A" am

BZr+26-ar(p) B2r+ar(p)

> + @ , as § —m> + o ,

In fact, the first term of (3-4) goes to +o as & goes to



-17-

+o by virtue of the completeness of the metric as? = J\2|dzl2 ,
and the second term of (3-4) is a finite constant which is
indepehdent of &§ . At last, let us prove (3-3). To do this,
it is sufficient to show J(8) - J(S+e) > 0 for 6§ > ¢ > 0
Denote the geodesic distance between p and g by d4(g)
J(8) =T (6+€)
- - A1 248z (2red) ) gy
BZr+6+s(p)-B2r+6(p)
o+ A'1-%§ dm
Boyr+2s (P Borigae (P)
v f A—1-(2r+2§+2€)-d~dM
Byr+2s+2¢ (P)Borins (P)
>0 .
Q.E.D
Proof of Claim 2. Let us fix r > max{1,p0/3}. fr G(D) is
continuous with respect to 6§ > 0 , £ (p) >0 for 0 $p < 2r ,

r,é§
and fr 5(9) < 0 for 2r <09 < 3r + § . Therefore, if we set
r

3 3

L&) =/ yE dm ,

(os2ey TE8 dM and L,(8) = f pf
ps2r !

{pz2r} %9

then L,(8) >0 and L,(§) <0 for any & > 0 . Moreover, L, (8)

is independent of § from the definition of fr s - Hence we set

[4

= L1(6)
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On the other hand, L,(8) is strictly decreasing with respect
to § . In fact, for any positive constant 60 ’ fr,s(p) is
non—inbreasing everywhere and is strictly decreasing at least
in {p; 3r < p < 3r + SO} with respect to § (6‘> 66) . There-
fore, if there exists some § = §(r) which satisfies (2-11),
it is unique.

At first suppose that L, + Lz(r) < 0 . Since ‘szﬁ) is

continuous with respect to & , lim L,(8) =0, and L, >0,
§-+0 ‘

there exists.some 6 (r > 6§ > 0) such that L, + L,(8) =0
(1.e. (2-11)) is satisfied.
Next, we assume that

(3=5) L, + Lz(r) 20 .

1
Let us find some § 2 r which satisfies the equality L1 + LZ(G) = 0,
Set

2T
(3-6) o) = { 1 slfas .
0

‘For some fixed b , 0 < b < 1/2 , we define subsets Ej ( = 1,2,3)

of R" = {0 €R; 0. > 0} as follows.

E, = {DGIR+ ; ol S 9'4'41’} ,
(3-7) 7Bz T {fp erR" ;074 < (o) 3 p"““b} ,
E3 = {"‘“R+ ; oAb o m(o)}
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Since ||B|F = 28% + (28%-2K) 2 252 ,
. _ -3. _
2m 1/4 27 i 27
olp) /% 2 (ZHZI k4de>, 2 (2H2)1/4<f da) [ A ae
| 0 0 0

1/4 27
)) [ A ase.
-0

3

(2%/ (47

Therefore, by virtue of‘the completeness of M ,

v 1/4 2 3 /4 ep 2w
[_eler oz m/wr’) [ (S hanjap
T 1\ g
1/4 2r, R
- @%/(ard)) | iim J ([ A aplas-
= +o
Hence,
(3-8) J o' Pap+f olp) 4aprf (o) 0 Paezf olp) 1 Adpmre
[1,=) E, [1,%)NE, [1,%)NE, 1

Since the first term of the left hand side of (3-8) is finite,

(3-9) J o(p) "/ %ap + f 0(p) o 3Pap = e .
[1,°)NE, [1,w)nE3

Now we separate our situation into two cases as follows.

Case I. | w(p)p3-3bdp = +o

Case II. | o(p)p 3P

[1,=)NE,

dp < 4w
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At first, we consider Case I. Let a be a constant such

that 0 < a £ b . Assume that
(3-10) & 2 max{r, {1-(3z) P73}~

If

then

{1-6"" (p-3r) P3P 2

[\%

(1—5_1)(3r)b-a [because of (3-11)]

dp

(3-12) 2 1 [because of (3-10)] .
Therefore, for k = % -a,
- 3r+8 - 3
-L, (8)>=f vE_ SCam=(30) TR o(p) (1-6TR (p=3m) M} 3K
{3rgps3r+6} ’ 3r
-3k 3-3b -n, ._.n, b-a,>
2 (3r) { )1 w{p)p [{1-6 " (p=3x)"}p %1 dp
[3r,3r+$ n]nE3
z(3r)-3kj 1. w(p)p3_3bdp [because of (3-12)]
[3r,3r+6 n]nE3 '
> +o ,
as § —> +w by virtue of the assumption of Case I. Hence, there

exists some & = §(r) 2 r such that
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L1 + LZ(G) =0 .

If we take any constant“ac , 0 < ag < b , then 0 < aor_3 < a,

<b < % for r > 1. a,r ~ , we see that Claim 2

By setting a =

is valid for Case I.

Next, we consider Case II. For any r > 1 and & > 0

14

: - 2r
L.=f vE 53dM<j pdM = [ @l(p)p dp
{ps2r} 7 {ps2r} 0 -

1. _
- e - . . -3 . -

-1 te |
(3-13) <[ olorpdot [ p > Pag+ | @lole

_3—3bd
- R o _[41'00) nE3 . N

P .

From. the éssumption of Case II and b < + (3-13) is a finite

n -

constant, which we denote by o . That i

7

(3-14) L

for any r > 1

-

For any & > 0 , define ¥_ ((p) as the right hand side of

(2-10) . Then, for any fixed positive constant §, , ?r sle) is
non-increasing everywhere and strictly decreasing in
{b: 3r < p < 3r + 60} with respect to 6, § > 60 . Therefore

~ ' 3
L,(8) = vE dM
2 {p22r} r,§
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>

is strictly decreasing with respect to ¢
32(6) = L2‘6) for any  § 2 r ,

and

(3-5) Ly + Ly(x) 20 .

Therefore, if we find some 51 = 61(r) > 0

{3-15) L, + L2(61) <0 ,

then 61 > r , and there exists a unique

such that the equality
Ly ¥ L2(6) =0

holds, which proves Claim 2.

z . a (0 <ca <b) . For

Set k 3

1

§ 2 {1-(3r) %1 ¢ .
Then if 3r < p § 3r + g1-e/n ,

(3-16)  {1-8""(p=-32)R1p% 2 1 .

Therefore,

€

>

S

0

0

. Mcreover,

such that

§(xr) (61 > 4§

, assume that

r)



=23-

o _ 3r+§ ‘ 3 4
£, (8)>=f vE_ 63dM=(3r) 243377 (o) {16 P (=307 0y
{3rsps3r+s} T o 3r '
1-e/n o
_ 3r+8 3 .
>(3r) 2+3af ©(p) £1-6 " (p-3r)"} 03 33,
3r
3r+‘51-€/n 14 4
(I @(p) 'do)
200 R ——Ep
3+ : -1 _ 3
(I : (1= (=300 1+adp>
3r : ' _
1—sﬁ1 4
3
e ©(p) 1/4dp>
>(3r) 2t3@ | 23 — [because of (3-16)]
3r+é74€/n rvas \3 _
Jr 0 a Sdp/
3r
4
. 1-e/n
(log,3r-+gr )
4 -2+3a |

(3-17)  2ct(a+e) 3 (3r) ,
: {(3r+61-s/n>a+s _ (3r)a+eF

where the last inequality follows from the assumption (2-1).

"Now we claim

Claim 3. There exists some constant ags 0 < a, < 1/2 , such

that.the following statement holds. For sufficiently large r , there
-1/¢e

exist some ¢ = ¢{r) > 0 and & = §(r) z {1-(3r)-€} such that
4
( 3r+61-e/n)
log =
_3 r S
(3-18) c4(a0r-3+a)3(3r)—2+3a0r . 20 .

=33
: - -3 a.r “+e
{(3ess=/mpe™ e o a0 Y

If Claim 3 is wvalid, then, from (3-17) and (3-18), we have



=24~
Therefore, by using (3-14), it follows that
L, + L2(6) <0,
which is just the required inequality (3-15) . Therefore, remaining

thing is only to prove Claim 3.

Set

(3-19) R=3r, m= aor-3+€, and x = 51-€/n

Then the.left.hand side of (318) becomes

4
! R+x)
- - log —=
oAndpm2t3m=3e | _\ R )_

which we deﬁote by £(x} . Then

, ,
c:4m3R-2+3m-3e(10g R_l-;gz e o
(3-20) £' 0 =——m——s B [ali(R )] - am 109 BX]
: (R+x) ' (Rex) "R}

Set
gly) =4(1-y ™ -3mlogy, y>1,
then

gf(yf = my—m-1(4—3ym)
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Therefore, g(y) is strictly increasing in 1 < y < (4/3)1/m ’

1/m

and ‘strictly decreasing in y > (4/3) . Moreover,

lim g(y) =0 and 1lim g(y) =-w .
y=+1+0 y—>+oo

Hence there exists a unique Yo > 1. such that g(yo) = 0 . Since

g((4/3)3™ = 4{1-(3/4)3} - 9 log(4/3) = - 0.276 < 0 ,

)1/m < o g (

From (3-20) and the property of g mentioned above, we know that

Wik

(3-21) (

Lo

)3/111

f(x) 1is strictly increasing in 0 < x < (y0—1)R , and strictly

decreasing in x > (y0—1)R . Moreover, since g(yo) =0,
-m
log yg = 4(1-yy )/ (3m)
Therefore,

| _ (4\4 4 -1 _=2-3¢_ =3m -m
3-22 £ = £ -1)Rr) = {2 R 1=
(3 ) 2?3 (x) ((yo, ) R) \3/ cm Y5 (1-yy )

From (3-21) and (3-22),

5

(3-23)  E((ya-1)R) > = cip~1g™273¢
0 212
Choose ¢ so that 0 < e £ 1/3 . Then R-2-3€ 2 R-3 . Therefore,
by (3-19) and (3-23),
-3, . -1.-3

(3-24)  £(3r(yg=1)) > =5 ¢ (apr 2+e) 7,
' 2
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Hence; if there exists some aO(O <ag < %)' which is independent
of r and ¢ = e{r) (0 < ¢ £ 1/3) such that
4 -1_-3 -3

(3-25) —%7 ca r 2 agr + €
2 _

holds, then (3-18) follows for & = {3r(y0-1)}n/(n_€) . Let ag be

a positive constant which satisfies the inequality

and set

(3-26) e = ‘9c r

Then, for sufficiently large r , € £ 1/3 and (3~25) is satisfied.

Moreover, it follows that
(3-27)  {3r(y,~n M P78 5 e TE e,

as we shall prove it below.

set- ¢, = 9¢*/(2'34) . Then, from (3-26),

1

(3=27) is equivalent to
4 n -3
r

. T—=.c
-3 n—c,r 3" 1

_c1r 1
(3-28) {1—(3r) }{3r(y0-1)}

1\
Y
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From (3-21),

4\ ©
(3-29) Yo ~ 1 > (§> -1

For sufficiently large r , the right hand side of (3-29) is

greater than 1 and n/(n—c1r-3)»> 1 . Therefore, -

the left hand side of (3-28)

> {1—(3r)_c7r‘3}f3r{fﬂ)r3/(a°+c‘) -1}]C1r-3
. [71\3 ]
-3 3 -3

_ {(3r)c1r -1}{(%}1': /(ao+C1) _1}011'

Therefore, for the purpose of proving (3-28), it is sufficient

to prove the inequality |
_ c1r-3 r3

(3-30) {(3::) - 1} {

TN
Wi

. Let us prove

c1r—3 3
(3-31) lim {(3r) -1} = +o

=+

(3-31) is equivalent to

3 ‘:1"-3
(3-32) lim r log{(3r)

<40

|
-
—
1]
+
8

Here, the left hand side of (3-32) is equal to
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c,y
S ONED!
lim v/ .
y-=+0 ' y3

' We see that

c y~3 _
3\ - 3
(3-33) 1lim log{( ) —1} =0 and lim y~ =0 .
y—++0 , y-++0
In fact,
o] y3
/3\ " 3 | .
llm log\ J = lim c. Y {log 3 - log y) =0 ,
y-+0 y-+0
therefore
c1y3 _
(3-34) Llim{3) =1 .
y-+0

By virtue of (3-33), it follows that
the left hand side of (3-32)

y3
N -}
C im 1°gm/ “
y—>+0 ddy Y
c1y3
3\
c1(-/ (3 log 3 -1~ 3 log y)
= lim
3
N c
y+0 NI -1}
W\y/
= +w [because of (3-34)] ,

which proves (3-32) and assures (3-31). Moreover; for sufficiently

r3/(a0+c1) c1
_1}

large r , {(4/3) 2 1 . Therefore (3-30) holds for
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sufficiently large r , which completes the proof of Claim 3 .
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