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§·o. Introduction

Let x : be an immersion of an orientable

n-dimensional connected manifold ~ into the .(n+1)-dimensional

Euclidean space E
n

+
1 . Then it is well-known that the mean

'curvature of x is constant if and only if x is a critical

point of the n-area for all compactly supported volume-preserving
. _n n+1

variations. We say that an immersion x : M -.:-> lR with

non~zero constant mean curvature is stable if the second
~ .

variations.:··ot·-flTe'·-u.....:area· for- all such"' variations as above are-

non-negative.

When M is compact, Barbosa and 'do' Carmo [2] proved that

if the rnean curvature of n n+1x:M -->lR is non-zero constant

and xis- 'stable, then x (Mn) is a round. sphere Sn c: lRn +1 •

On the other hand, they' conject~red that there· are no complete

stable immersions· x : M~ ---> m3 with non-zero constant mean

curvature. When M2 is non-compact, M2 is hyperbolic or

parabolic with respect to·the natural complex structure'given by

x . Under some additiona~ condition about rnetric for the case

2that· M is parabolic, we prove the above conjecture.

Theorem 1. Let M be a non-compact orientable 2-dimensional

connected manifold. Then there is no complete stable immersion

3x : M --->lR with non-zero constant mean curvature which

satisfies the follewing (i) er (ii).

(i) M is hyperbelic.

(ii) M is parabolic, and for the universal covering
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~ h' ds 2 -- ,2 1dz1 2~ ---> M , t e metr~c A of CI: induced by

x 0 TI satisfies the following inequality except some compact

set.

(0-1 ) A(Z)
. -1

~ cOlzl ,

where Co is a positive constant and z is'the canonical

coordinate in ~ .

This theorem is proved in section 2 as a corollary of a more

general result Theorem 2.

It should be remarked that in the case of zero mean curvature,

do Carmo and'Peng [4] proved tha-t the plane is the only nstable n

complete minimal surface in m? . üf course, in.their theorem

"stablen' means the usual stability of minimal surfaces, that is,

the secondvariation of the area is non-negative for all compactly

supported variations that need not be volume-preserving.

If we would employ the generalization of the usual stability

of minimal surfaces as the definition of the stability of non-zero

constant mean curvature surfaces, ·the statement of the above

conjecture has already been proved by Mori [6]. However, we feel

that our definition is more natural because even the sphere is not

stable in the other definition of stability.



§ 1. Barbasa and da Carma's farmulation of stability'

'In this section, we recall Barbosa and do Carmo's formulation

of stability of non-zero constant mean curvature hypersurfaces ..

In [2] we. can find all definitions and formulas in this section

with their proofs.

Let x : ~ ---> ~n+1 be an immersion of an orientable

n-dimensional differentiable manifold ~ into mn+1 , and let

D c ~ be a relatively compact domain with smooth boundary an.
Then the n-area of D with respect to the induced rnetric by x

(which we denote by AD(X» and the volume of D in x (which

we denote by VD(x» are defined as foliows.

= f dM·
D·

= n~ 1 f < x, N >. dM' ,
D

where' dM is the volume: element of. ~ with respect to the

induced metric by x, N is the unit normal vector field along

x , and

Let

< , > is the inner product in ~n+1 .

D --> ]Rn+1 , t E (-s,s) (s>O) , X o = x , be a

variation of xl D . We say that the variation x t
is volume-

preserving if VD(xt ) = VD(x) for all t , and that xt fixes

the boundary if Xti aD = xl aD for all t .

Formul~ 1. The mean curvature of x is constant if and

only if for any relatively cornpact doma-in D' with smooth
- . n+1

boundary and for any· volume-preserving variation x
t

: D --> E

that fixes the boundary,
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= 0
t=Q

Definition 1. Let x : ~ .---> mn
+

1 be an immersion with

non-zero constant mean curvature.- Then we say that x is stable

if and only if for any such D and x t as in Formula 1,

t=Q

~ 0 .

Formula 2. Let X : ~ __"_> ]Rn + 1 be an immersion with non-

zero constant mean curvature. Then xis. stable, if and only

if for any such D as in Formula 1 and for any function f

belonging to the function space

( 1-1 ) FD = {f:~-> lR I support

and f~f dM = o} I

f cD, f
=

is piecewise-smooth,

the integral I(f) defined below is non-negative.

where ßMf is the Laplacian of f in the induced metric and

11 BII2 is the square- of the norm of the second fundamental form

B ,cf x •

Here we should remark about the sign of ßM . Let p be a

point in ~, and let 1 n(u , ... ,u) be coordinates in a



neighbourhood of p in ~. Denote the induced metric in Mn
n i j

by g = L g .. du du , and set
i,j=1. ~J

G = det (g .. )
~J

Then

and (gij) = ( )-1
gij
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§ 2. The main theorem and its proof

From now on M is assumed to be a non-compact orientable

2-dimensional connected manifold. First we prove the following

Theorem 2 which is more general than Theorem 1.

Theorem 2. Let M be the same as in Theorem 1. Then there

is no complete stable immersion x: M --->E~ with non-zero

constant mean curvature which satisfies the fbllowing (i) or

(ii) •

(i) M "is hyperbolic.

1T

(ii) M is parabolic, and for the universal covering

a= ---> M , the' metric ds
2 = A

2
]dz1 2 of a: induced by

X" 0 1T satisfies th~ inequality

(2-1)

for all P1 and P2 ('P2 ~ P1 >. PO) , where c and 'PO are

positive constants.

Lemma 1. Let 1T: M ---> M be the universal covering of M.

Tf x 0 TI is not stable, then x is not stable also.

Proof .. Let Q be a relatively compact domain of M* (= M or M

with smooth boundary. Consider X and x 0 1T as- critical points

for the area functional with respect to compactly supported

volume-preserving variations that fix the boundary. Then the

corresponding Hessian form is
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I ( f) = - I (LlM* f + 11 B 11
2
f) f dM* ,

n '

f E F*n = {f E H6·(Q) ; I f dM* =
n

Q} ,

where we denote the second fundamental form of x 0 TI also by

B .

Consider the following eigenvalue problem associated with

the quadratic form I(f) •

(2-2)
J (ßM*f+ 11 B 11

2
f) dM*

LlM* f + 1I B 11
2

f -, n ,+ Af = 0" f,·E Fn ·
I dM*

Q

Denote the eigenvalues of (2-2) by

Then it follows that

(2-) = inf I(f)
fEF*-{Q} I Ifl 2

dM*
Q n

(c.f. Berger-Gauduchon-Mazet [3, p. 186]). Set

index (n) = # {A. (rl)
]

A.(n) < O'}
]

Aj(Q) = O} •

Let c t : n ---> Q , t ~ 0 , be a smooth family of diffeo­

morphisms of n into n such that
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(a) Co = identity ,

(c) lim Volume (ct(Q)) = 0 .
t~CQ

. Denote ct(Q) by Qt. Then fram the Morse index· theorem

with constraints proved by Frid and Thayer [5],

(2-4) index (n) = I nullity (nt)' .•
t>O

Assume that x. 0 TI' : M__>::IR3 is not stable .. Then there

exists a relatively compact domain G c M with smooth baundary

such that index (G) >. 0 . Set D = n(G) • Since TI' is locally

diffeomorphic, by enlarging G if necessary, we can find a

point Po E aG , a neighbourhood U of. Po in M, and a

neighbourhood V of Tr(PO) in M such that

(ii) Tr- 1 (VnD) n G = U n G

(iii) Trlu U ---> V is a diffeomorphism.

Let {Gt } be a smooth and strictly decreasing family af
t ~ 0

domains Gt c M such that

Go = G and



By (2-4), there.exist some

satisfy

s > 0
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and which

in 'G
s . Set D = .1T .( Gs) and define.a function. f on M bys

f(q) = I t(p) . Since f is analytic in G (c.f'~ Morrey-1 sp€1T (q)
[7 , p. 166 Theorem 5.7.1]),

for some P, € Gs n U . Therefore

f(1T(p,» = ,~ f(p) = f(p,) :1= 0 ,

. -1
pE 1T ( 7T (p, ) )

by virtue of above (ii) and (iii) '. Moreover, f E Fj) and we can
s

show that I(f) S 0 by the essentially same .way as Barbosa and

,da Carmo. [1, pp. 521-526]. Therefare, by (2-3),

Hence,. by using (2-4), there exists a relatively compact domain

D' ~ Ds of M such that

index D' > 0 ,

which implies that x is not stable.

Q.E.D.
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Proof of Theorem 2. By virtue of Lemma 1, it is sufficient"

to prove our theorem only for the case that M i5 simply-connected.

Let x : M ---> E 3 be a complete stable immersion with

non-zero constant mean curvature': Denote by K the GauBian

curvature of x . Consider M with the natural complex structure

given by x . We assume that x satisfies (i) or (ii), and shall

derive a contradiction. Let z. be,the canonical coordinate in .~ :

Then- the induced metric ds 2 in M is given by

Let ß denote the Laplacian, V the gradient, and. dA the area

element in the. flat metric.

At first we assume (i), that is, M is assumed to be con-

formally equivalent to B = {z E ~ ; lzl < 1} . Let p be a

point in M, and let Br(p), be the geodesie disks with p as

their center and r as their radii which exhaust M.· For any

positive constant 8 , we define a piecewise-smooth function

f ~: M -->:IR as follows ..r, u

1 , q E Br(p) ,

2-dist(q,p)/r , q E B2r+8 (P)-Br (p) ,
(2-5) f r, 0' (q) =

{dist(q,p)-(2r+28)}/r , q E B2r+ 28 (p)-B2r+ 8 (P) ,

0 , q E M-B 2r+ 2o (P) ,

where dist(q,p) is the geodesie distance between P and q E M .

Now we claim the following statement which will be proved in

section 3 in order to avoid confusion.
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Claim 1. Far any r > 0 , there exists a unique ö = ö(r) > 0

such that

Therefore, ~-'f E F ( ) • Hence, by virtue of the
r , ö B2r +2 <5 .p

stability of x and Formula 2,

I(A-'f s) ~ 0 •r, u

Therefore,

(2-7)

where· V'M is .the gradien..t in the inducedmetric. In fact, if we

set q, -1 and f f. by using the well-known formula= A = ,
r, <5

K = _~-2~ log A and tl)e Stokes' theorem, we can achieve the-

follawing calculat~on.

The left hand side of (2-6)

= fJIV'M(<Pfl 1
2

- (4H
2

-2KI<p
2

f2}dM

< fM{IV'M(<Pfl 1
2

+ 2K<p2f2}dM

= fM{<P2IVMfI2 - 3f21V'M<P12 - 2<P f (V'M<P,VMf l}dM

~ 2f (~2!V fl 2 - f2 lv ~12)dM
M M M

It follows fram (2-7) that
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-2
< r J dA

B

-2= 7T r

By letting r -->. +'00 , we knowthat I
-1

\/MA I == 0 on M, that'

is, A == constant, which contradicts' the completeness of the metric

ds 2 = A2 1d z l 2 in B . (A similar inequality to (2-7) and a similar

method to the above limitting process are found also in do Carmo

and Peng [4] and Mori [6]).

Next, we asswne the condition (ii). Set 1JJ = Ai 11 B 11
2

.-

Then there exists same qonstant ß > 0 such that the inequality

(2-8)

follows for all campactly supported piecewise-smooth functions

f : CI: -->:IR that .satisfy I ( 1JJf3) 2: 9 , which is proved by

Mori [6].

Let n > 1 be a constant. For any r > 1 and 0 > 0 , we

(p,S). i5 the polar coordinates in

a: -> :IR

a: •

as follows.

p , we writeSince f r, ö

f r r Ö (z) = f r , 0 (p) , where

If 0 < 0 ;;;; r ,

define a piecewise-smooth function f r,o

is defined to be depending only on

-- ~ .~._~ ---~-~ ~- - .

(2-9)

1 ,

2 - 12
r

,
r~p ~2r+o ,

o , P~3r+ö ,
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and if 0 ~ r ,

o ,

(Z-10)
1 ,

. P~.:·

Z - ~ ,

. - -kf -n n} k( 3r ) 1. 0 (,p - 3r ) -1 p

l

a~ P~r ,

r~ P~3r I

3r~ p~3r+<5 ,

P~.3r+o .,

where k > a depends only on r. Now we claim

1
Claim 2. There exists same constant aa' a < aa < 2 ' such

that the following statement holds. Consider (2-9) and (2-10)

2 -3substituted k = 3 - aar Then, for sufficiently large r,

there exists a unique 0 = o(r) > 0 such that

(2-11) f \lJ f 3dM = 0 ,
M r,o

which will be proved in section 3.

From the stability af x I inequality (2-8) is satisfied for

f = f r,o in Claim 2 . Let us calculate the right hand side of

(2-8) for f = f r,o . If 0 < <5 < r , then

-6 2r+o 3r+o
~ 27Tr f P dP-+Z7T{4n+k}6{2r)-6kJ p6k-5 dP

r 2r+8

+00
< 87Tr-4 + 21T(4n + k) 6 (Zr) :-6k f p6k-5 dP

. 2r

= 8'1Tr-4 + 2n (4n + k) 6 (2r) -4 (4-6k)-1
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And if
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-4 2 6 -1 -1
< 81Tr + 1T (4n + 3) (48ao) r, •

<5 f; r , then

6 3r -6 -6k 3r+8 fc1M' { } kJ,)6f 1 9fr 0 I dA = 21Tf r p ~.:p+ 271' (3r) f \d' 8-n (p-3r)n-1 p 'p dp
CI:' r , 3r p

~. - ._--- '.~'.
.;.: -6 '3r ' 6 -6k: 3r+ 6 6k-S
~ 2iTr f p dp+ 271'(4n + k) (3r) J p dp

r 3r

+CXI
< 8TIr- 4 + 2;r(4n +k)6(3r)-6k f p6k-SdP '

3r

= 8TIr- 4 + 2n (4n + k) 6 (3r) -4 (4 - 6k)-1

(2-13) -4 2 6 -1 -1< 8'1Tr +1T(4n+ 3) (243aO) r .

Both of (2-12) and (2-13) go to zero as r goes· to infinity. On

the other hand, as for the left hand side of (2-8),

(2-14) f 14J
3

f 6 dA > f 14J
3

dA > f (A
2

11 B 11
2

) 3dA •
~ r,o O~lzl~r o~lzl~1

The most right term of (2-14) is' a positive constant independent

of r , which contradicts the inequality (2-8).

Q.E.D.

Proof of Theorem 1. If an immersion x : M ---> m3 satisfies

(0-1), then x satisfies (2-1). In fact, if we choose a sufficiently

large Po so that the exceptional compact set in Theorem 1 (li) is
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contained in {z E Cl: 1I z 1 :> po} then for p 2 f: P1 > P 0

. " .

P2(" 2rr 4 4 2 \1/4
I \ I cOP - " • 2 H d" e) d P

P" 0.1

Q.E.D.
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§ 3.. Proof of Claim 1 and, 2

Proof of Claim 1. Fix r > 0 , and set

J (0) = J ~-1f dM·
M-B (p) r,o

Zr

and-1
f ,J A· f 1: dM "> 0
r,o BZr(p) r,u

J (0) < 0 for any 0 > 0 • If we can show the following ("3-1),·

From the definition of

(3-2), and (3-3), then we know that Claim 1 is valid.

( 3-1 )

(-3-2)

I"fa J (0) = 0 .
8-++0·

1im J (8) = -00 .
0-++ 00

(3-3) J(o) is strictly decreasing with respect to 0 > 0 •

(3-1) is trivial. Let us prove (3-2). Let a > 0 be a fixed

positive constant. Then for any 8 which is greater than ar,

-J(ö) > a J A-'dM
B2r+28-ar(p)-BZr+ar(p)

(3-4) = a f A- 1dM

B2r+28-ar(P)
- a

---> + 00 , as Ö ---> + 00 •

In fact, the first term of (3-4) goes to + 00 as 8 goes to
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+ 00 by virtue of the completeness of the metric 222
ds = I. Idz I ,

and the second term of (3-4) is a finite constant which is

independent of o. At last, let us prove (3-3). To do this,

it is sufficient to show J(o) - J(O+E) >0 for 0 > E > 0 •

Denote the geodesie distance between p and q by d (q)' .

J ( 0) -J ( 0+ E )

= J 1.-1 • 2{d-(2r+olldM
r .

B2r+0+E(P)-B2r+o(P)

+ J A-1.~ dM
B2r+20(P)-B2r+0+E(P) r

+ J I. -1 • ...:..(,;;;.2;;;;.r_+,;;;.2..;..0+_2;;;;.E.;;..:....)-_d~ dM
r

B2r+20+2E(P)-B2r+20(P)

> 0 .

Q.E.D.

Proof of Claim 2. Let us fix r > max {1 , Po / 3} • fr,o(p) is

continuous with respect to 0 > 0 , fr,o(p) > 0 for 0 ~ p < 2r ,

and fr,o (p) < 0 for 2r < p < 3r + 0 •. Therefore, if we set

L1 (0) = J ~f 3dM
{p~2r} r,o

and = f ~f 3dM ,
{p~2r} r,o

then L1 (0) > 0 and L2 (0) < 0 for any 0 > 0 . Moreover, L1 (0)

is independent of 0 from the definition of f ~ . Hence we setr, u
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On the other hand, L2 (0) 1s strict1y decreasingwith respect

to 0 . In fact, for any positive constant 00 ' fr,o(P) is

non-increasin'g everywher.e and 15 strictly· decreasing at least

in {Pi 3r < P < 3r + cO} with respect to 0 (0) CO) • There-

fore, if there exists same 0 = ö(r) which sat~sfies (2-11)',

it 1s unique.

At first suppose that .L1· + L2 (r) < 0 S1nceL2 ('0) 1s

continuous with respect ta 0, 1im L2 (0) = 0 ,. and L, > 0 ,
0-++0

there-' exis.ts. seme 0 (r -->. 0 >. 0') such that L
1

+ L
2

(0) = 0

(i.e. (2-11» is.satisfied.

Next, we assume that

(3-5)

Let us find same 0 z: r which sat1sfies' the equality L 1 + L 2 (0) = O.

Set

(3-6 )

. Par seme fixed b , 0 < b < 1/2 , we define subsets

+o f :IR = {p E JR; P > O} a 5 fall ows .

E. (j = 1,2,3)
]

E, = f P E m+ 4' ( p) ~ P-4-4b} ,
1

(3-7) ~- E = {p E :IR+ p.-4-4b
~ 4' (P) ~ p-4+4b }

. 2 ,

E 3 = {p E:IR+ . p -4+4b
~ <PIPI} .,
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Since 11 B 11
2 = 2H2

+ (2H2
-2K) ~ 2H2

3

<p(p) 1/4
2'IT 1/4

(2H2 ) 114«1Tda)
-4' 21T

~ ( 2H2f A4de \ ~ f A de
\ a· j. a

(H 2 / (4'IT 3 ) )
1/4 21T

= f A da
0

Therefore, by virtue of the completeness of M,

+00 1/4
f. tP (p)- dp,.-

2 3 1/4 2'IT( R \
= (H / (41T » lim f l fAdp )d8'.··

R-++oo a \ 1

= +00 •

Hence,

("3 -8 )
1 b 1/4 . 3-3b, 00 1/4f p - dp+f tp(p) dp+f te(p) p . dp~f ~(p)dp=+oo

[ l ,.00) nE1 [ 1 ,00) nE
2

[ 1 ,co) ()E3 l'

Since the first term of the left hand side of (3-8) is finite,

Now we separate our situation into two cases as folIows.

'Case I.

Case II.

3-3bf <p(p)p dp = +co 1

[ 1 ,00) nE 3
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At first, we consider Case I~ Let a be a constant such.

that 0 <. a ~. b . Assume that

If

( j-11 )

then

1"1--
3r ~ p ~ 3r + 0 n,

( 3-,1 2) Z;;. 1 [because of (3-10)]

Therefore, for 2k = - a ,
3

3 -3k 3r+c . -n' n 3 3k+1 .
- L 2 ( c) >- f wf c dM=(3r ) I f.P ( p) { 1. - Ö ( p- 3r ) } p d P

{3r~p~3r+o} r, 3r

. 3
3-3b -n n b-a

~{p)p [{1-o (p-3r)}p J dp

~ (3r) -3k I 1 .
1-­

[3r,3r+c n]nE
3

3-3bc.p(p)p dp [because of (3-12)]

--> +00 ,

as 0 ---> +00 by·virtue of the assumption of Case I. Hence, there

exist·s seme 0 = 0 (r) ~ r such that
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-3If, we take any constant< <a O ' 0< < a.O < b ,then 0 < aar < a O
1 -3

<'b< 2 for r >.1 ". By setting a = aOr , we see' that Claim 2

1s valid for Case I.

Next, we consider Ca·se II. For any r > 1 and ö > 0 ,

2r
= I tP(p)p dp

o

.... _:=-.J-:...._

From. the assumption of Case II and b < ~ , (3:-13) is a finite

constant, which we denote by ~. That is,

(3-14)

for any r > 1 •

For any ö > 0 , define fr,o(p) as the right hand side of

(2-10). Then, for any fixed positive constant 00 I ?r,ö(P) is

non-increasing everywhere and strictly decreasing in

{Pi 3r < p <3r + 00} with respect to 8, 0 > 00 . Therefore

= f ~t 3dM
{p~2r} r,o
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is strictly dec.reasing with respect to 0·> 0 • Mareover,

and

(3-5)

Therefore, if we find same 01 = 01 (r) > 0 such that

( 3-15)

then 01 > r , and ·there exists a unique 0 = 0 (r) (0
1

> 0 ~ r)

such that the equality

halds, which praves Claim 2.

Set k = ~ - a (0 < a < b) • For e > 0 , assume that

_1
o ~ {1-(3r)-e} e

Then if 3r S p S 3r + 01-e/n ,

(3-16) -n n e{1-o (p-3r}}p ~ 1 •

Ther.efore ,.
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3r+o 3 .
l"oJ . ?! 3 -2+3a -n n 3-3a

-L2(o»-f ~~ 0 dM=(3r) f ~(p){1-ö (p-3r)} p dp
{3r~p~3r+o} r, 3r

1-E/n
-2+3a 3r+o ~ n 3 3-3a

> (3r) f cp (p) {.1-o (p-3r) .} p dp
3r

~(3r)-2+3a

1-E/n

(
3r+o 1/4 )4f cp(p) dp

.' 3r. .

~3r+o1-e:/n -1' 3
( -n n -1+a \
\ f . {1-o (p-3r)} p dp)

3r

~(3r)-2+3a .
3r+ö i-EIn 3 '(f p-1+a+SdP)
3r

[becausa of (3-16)]

( 3-1 7)

4
'( 3r + 61-e:/n)log' .

3r

where the last inequality follows from the assumption (2-1).

'Now we claim

Claim 3. There exists some constant a O' 0 < ~O < 1/2 , such

that th~ following statement holds. For sufficiently large r, there

exist some s =, s(r) > 0 and rS = rS(r) ~ {1_(3r)-s}-1/e: such that

(3-18)

4

(
3r + 01-e:In)

log .
-3' 3r

c 4 (aor-3+s)3(3r)-2+3aor · -------_-3----a-r--""':3-+-e:"-l:;"3 ~ Ci •

{(3r+o1-s /n)aor +S _ (3r) 0 }

.If Claim 3 is valid, then, fram (3~17) and (3-18), we have
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Therefore, by using (3-14), it follows that

which is just the required inequality (3-15). Therefore, remaining

thing is only to prove Claim 3.

Set

( 3-19) R = 3r, m x = 8 1- s / n .

Then the left. hand side of ('~18) becomes

4 3
R

-2+3m-38
eIn·

4
. (1 R+X)

\ og Ir""

whieh we denote by f(x) . Then

Set

, 3
4 3R-2+lm-3E(1 R+X) In

em og- [{()}f' (x) = R . 4 l- l - 3m log R+x1
(R+x) 1-m{ (R+x) rn_Ifl}4 R+x R J •

then

g(y) = 4(1-y-m) - 3m log y I y > 1 ,

g' (y)
-rn-1 m= my (4-3y ) .
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Therefore, g(y) is strictly increasing' in 1 < y ~ (4/3)1/m

and'strictly decreasing in y > (4/3) 11m • Moreover,

lim 9 (y)
y .....1+0

o and lim 9 (y) :: _·co
y .....+co

Hence there exists a unique YO > 1. such that g(yO) = 0 • Since.

g ( (4 13) 3 Im) = 4 {1- (3 14) 3} - 9 log (4 13) = - 0.276 < 0 ,

Cl-21 ) ( 1)1/m (1)3/m
3 < YO < 3 ·

From (3-20) and the property of 9 mentioned above, we knowthat

fex) is strictly increasing in 0 < x < (Yo-1)R , and strictly

decreasing in x > (YO-1)R . Moreover, since g(yO) = 0 ,

Therefore,

log YO
-m= 4(1-y O )/(3rn) •

(,)-22) max f (x) :: f ( (y0-1 ) R)
x>o

(4\4 4 -1 -2-3e -3m -m
= \:3) c m R y 0 (- 1-y0 )

From (~-21) and (3-22),

(3-23 ) 35 4 -1 -2-3€
f ( (YO -1 ) R) > 12 c m R •

2

Choose so that o < € ~ 1/3 • Then R- 2 - 3E
~ R- 3 • Therefore,

by (3-19) and (3-23),

(3-24) 9 4 -3 -1-)f(3r(yo-1}) > -r2 c (aar +E) r .
2
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Hence, if there exists- some aO(O < a O <~) which is independent

o f rand E: = e: (r) (0 < e: ~ l' / 3 ) such tha t

(3 -25) + e:

holds, then (~-18) follows for Ö :' {3r(y _l)}n/(n-e:) . Let a
O

be
. 0

a positive constant which satisfies theinequality

a o < min H'
and set

(3-26) 9c 4 -3e: = r132 0.

Then, for sufficiently, large r, E: ~ 1/3 and (·3-25) is satisfied.

Moreover, it follows that

(3-27)

as we shall prove it below.
4 13,

Set' c 1 = 9c / (2 0.) • Then, from (3 -26) ,

-3
E: = c

1
r

(3-27) is equivalent to

(3-28 )

n -3
. -' -3· c 1r-3 n-c r- :~"

{
-c r }{ } 1 .1-(3r) 1 3r{yo-1) ~ 1 •
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From (3 - 21 ) ,
3

r

(3-29) -' 1 •

For sufficiently large r, the right hand side of (3-29) is

-3greater than 1 and nl(n-c 1r ) > 1 '. Therefore,.

.the le·ft hand side of (3-28)

-3. 3 . -3

{
-c 1r }r '{(4 ) r / (a0 +cl) } 1c 1r

> 1- (3r) L3r \ 3 - 1 J

Therefore, for the purpose of proving (3-28), it is sufficient

to prove the inequality

-3 3 3

{
c1 r }r {(4)r / (aO+c 1) }C 1

(3r) - 1 \3 - 1 ?= 1

Let us prove

(3-31)
c r-3 3

1 im {( 3r ) 1 _1}r = +!XI •
r~+oo

(3-31) is equivalent to

(3-32)

-3

1 im r 310g{ (3r) C 1r - 1LI = + 00 •

r~+oo

Here, the left hand side of (3-32) is equal to
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3
{(3\C l

Y 1
lim

log \y) - 1 .
3

y~+O Y

We see that

3c y-

(3'--33 ) lim lOg{(~) 1 -1} 0 and lim 3 = 0= Y
y....+O y~+O

In fact,

lim
y....+O

t~erefore

= lim c 1y3 (log 3 - log y) = 0 , .
y ....+O

3c
1

y

(3 - 34 ) 1 im (\~ \) = 1 •
y ....+O Y

By virtue· of (3-33)·, it follows that

the left hand side of (~-32)

3c
1

y

d logI(1\ - 1}.
= lim dY ) \y) _

d 3
y ....+O dy Y

= lim
y ....+O a'1 y3

3I(~\ - 1}
l.\y}

1 - 3 log y)

= + 00 [because of (3~34)] ,

which proves (3-32) and assures (3-31). Moreover, for sufficiently

f r
3

/ (a +c) }c 1
largei"r , 1. (4/3) 0 1 - 1 ;: 1 . Therefore (3-30) holds for
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sufficiently large r, which completes the proof of Claim 3 •
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