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ROGER BIELAWSKI

ABSTRACT. We give a formula for the Betti numbers of 3-Sasakian manifolds or orb-
ifolds which can be obtained as 3-Sasakian quotients of a sphere by a torus.

A (4m+3)-dimensional manifold is 3-Sasakian if it possesses a Riemannian metric
with three orthonormal Killing fields defining a local SU(2)-action and satisfying a
curvature condition. A complete 3-Sasakian manifold S is compact and its metric is
Einstein with scalar curvature 2(2m+1)(2m+3). Moreover the local action extends
to a global action of SO(3) or Sp(1) and the quotient of S is a quaternionic Kéahler
orbifold.

A large family of compact non-homogeneous 3-Sasakian manifolds was found by
Boyer, Galicki and Mann in [BGM2]. They are obtained by the 3-Sasakian reduction
procedure, analogous to the symplectic or hyperkihler quotient construction, from
the standard (4m+ 3)-sphere. Recently, in [BGMR], Boyer, Galicki, Mann and Rees
have calculated the second Betti number of a 7-dimensional 3-Sasakian quotient of
the (4¢q + 7)-sphere by a torus, as being equal to g. Using the ideas from [BD], we
shall give a formula for the Betti numbers of 3-Sasakian quotients of spheres by tori,
valid in arbitrary dimension.

Theorem 1. Let S be a 3-Sasakian orbifold of dimension 4n — 1 which can be ob-
tained as a 3-Sasakian quotient of the standard (4n+4q—1)-sphere by a q-dimensional
torus N < Sp(n+q). Then the Betti numbers of S depend only on n and q and are
given by the following formula

bak = dim H**(S,Q) = (q-i-;c:— 1)

fork<n-1.

Remarks. 1. Galicki and Salamon [GS] have shown that the odd Betti numbers
bak41 of any (4n — 1)-dimensional 3-Sasakian manifold vanish for 0 < k < n — 1.
Our proof reproduces this result for orbifolds satisfying the assumptions of Theorem
1. The Poincaré duality gives now the remaining Betti numbers by, p > 2n, of S.
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2. The quotient of S by any 1-PS of SO(3) is a contact Fano orbifold Z. Theorem
1 in conjunction with Theorem 2.4 in [BG] gives the Betti numbers of Z.

3. For any n > 2, there is a bound on g {g < 2" — n — 1) in order for S to be
smooth (see Remark 2.3).

4.The formula of Theorem 1 gives also the Betti numbers of “generic” toric hy-
perkihler orbifolds; see section 3.

Let us discuss some consequences of Theorem 1.
A compact 3-Sasakian manifold is regular if its quotient by the SO(3) or Sp(1) action
is a (quaternionic Kédhler) manifold. At present the only known regular 3-Sasakian
manifolds of dimension greater than 3 are homogeneous and in 1~ 1 correspondence
with simple Lie algebras [BGM2].

Galicki and Salamon [GS] have shown that the Betti numbers of a regular 3-
Sasakian manifold of dimension 4n — 1 must satisfy the following relation:

n—1

(*) > " k(n = k)(n — 2k)bzg = 0.

k=1
Theorem 1 shows that this relation is intimately related to S being regular:

Proposition 2. Let S be a 3-Sasakian manifold satisfying the assumptions of The-
orem 1 with n > 3. Then the Betti numbers of S satisfy the relation (*) if and only

if g =1, i.e. S has Betti numbers of the homogeneous 3-Sasakian manifold of type
A,

Remark. There are smooth quotients with ¢ > 1 - see Theorem 4.1 in [BD] (given
as Theorem 2.2 below) or Theorem 2.14 in [BGMR].

Corollary 3. Let S be a 3-Sasakian manifold satisfying the assumptions of Theorem
! withn > 1. Then S s regular if and only if S is homogeneous.

1. HYPERKAHLER AND 3-SASAKIAN STRUCTURES

A 4n-dimensional manifold is hyperkahler if it possesses a Riemannian metric g

which is Kahler with respect to three complex structures Jy, Jo, J3 satisfying the
quaternionic relations JyJy = —JpJ; = J3 etc. Such a manifold is automatically
Ricci flat.
Instead of giving the intrinsic definition of a 3-Sasakian manifold, which can be
found in [B4,BGM1-2,GS], we simply recall that a Riemannian manifold (S, g) is 3-
Sasakian if and only if the Riemannian cone C(S) = (R* xS, dr®+r2g) is hyperkéhler
[Ba,BGM2]. The three Killing vector fields on S, defining the local Sp(1) action,
are then given by & = J,'% (we identify S with S x {1} C C(8S)).
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To date the most powerful technique for constructing both hyperkahler and

3-Sasakian manifolds is the symplectic quotient construction, adapted to the hy-
perkahler setting by Hitchin, Karlhede, Lindstrém and Rogek [HKLR], and to the
3-Sasakian setting by Boyer, Galicki and Mann [BGM2).
In the hyperkédhler case we start with a hyperkihler manifold M with an isomet-
ric and triholomorphic action of a Lie group G. Each complex structure J; gives
a Kahler form w; and, in many cases, a moment map u; : M — g*. We recall
that an equivariant map p from M to the dual of the Lie algebra of G is called a
moment map if it satisfies (du(v), p) = w(X,,v), where v € TM, p € g and X, is
the corresponding Hamiltonian vector field. If G is compact and acts freely on the
common zero set of these moment maps, then the quotient by G of this zero set is
a hyperkahler manifold.

If we start with a 3-Sasakian manifold S, whose structure is preserved by G, we
can do the reduction for the hyperkihler manifold C(S). The moment maps on C(.5)
are defined only up to addition of elements in the center of g* and for a particular
choice of of these elements we can obtain an induced R*-action on the hyperkéhler
quotient M of C(S) by G. This means that M is is a Riemannian cone over a
3-Sasakian manifold.

More intrinsically, we can [BGM2] define the moment maps directly on S by the
formula (p;(m), p) = 3m:(X,), where 7; is the 1-form dual to the Killing vector field

€.
2. 3-SASAKIAN AND HYPERKAHLER QUOTIENTS BY TORI

We shall now quickly review the hyperkahler and 3-Sasakian quotients by tori
(see [BD] for more information). We consider the diagonal maximal torus T% of
the standard representation of Sp(d) on H. The three moment maps w1, f2, i3
corresponding to the complex structures of H¢ can be written as

(2.1a) p1(z,w) = (|24 — |we|?) ex + c1,

18
2 &=

[y

d
(2.1b) (2 + V=Tps)(z,w) = D> _(2xwi)ex + c2 + V-1,

k=1
where ¢y, ¢p, c3 are arbitrary constant vectors in RY.
A rational subtorus N of T¢ is determined by a collection of nonzero integer
vectors {uy,...,uq} (which we shall always take to be primitive) generating R™.
For then we obtain exact sequences of vector spaces

(2.2) 0 yn — 3 RE P 3 RP — 0,
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»

(2.3) 0 — s R* 2, ge y n* —— 0,

where the map 3 sends e; to u;. There is a corresponding exact sequence of groups
(2.4) I N-sT¢ST > 1.

The moment maps for the action of N are

d
1
(2.5a) 1z, w) = 5; (lz|? = |wl?) ok + 1
d
(2.5b) (2 + V—-1pus)(z,w) = Z(zkwk)ak +e+v-les.
k=1
The constants ¢; are of the form
(250) Z’\kaky (J = 1)213)

where A € R.
For our purposes it is enough to consider the case when A2 = A} = 0 for k =
.,d. We then write A, = AL, k = 1,...,d, and we denote the hyperkihler
quotient x~1(0)/N by M(u, ) or sometimes just M.
In [BD] necessary and sufficient conditions for M (u, A) to be a manifold or an orbifold
were given. We shall only need the ones for an orbifold:

Theorem 2.1 [BD]. Suppose we are given primitive integer vectors uy,... ,Ud
generating R™ and real scalars Ay,...,Aq such that the hyperplanes H, = {y €
R™; (y,ux) = Ax}, K =1,...,d, are distinct. Then the hyperkdihler quotient M (u, A)
is an orbifold if and only if every n + 1 hyperplanes among the Hy have empty

intersection. O

If the condition of this theorem is satisfied we refer to M = M(u, ) as a toric
hyperkahler orbifold.

If we set all A\x equal to 0, then the hyperkahler quotient or M (u,0) is the Rie-
mannian cone over a (usually singular) 3-Sasakian space S. Equivalently S is the
3-Sasakian quotient of the unit sphere in H% by the torus N. We have (see also
[BGMR]))
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Theorem 2.2 [BD)]. Let u = (ui,...,uq) € 24 be a primitive collection of vectors
generating R™ and let N denote the corresponding torus defined by (2.4). Then the
3-Sasakian quotient S of the unit (4d — 1)-sphere by N is manifold if and only if the
following two conditions hold:

(i) every subset of u with n elements is linearly independent;
(ii) every subset of u with n — 1 elements is a part of a Z-basis of Z™.

Condition (1) is necessary and sufficient for S to be an orbifold. O

Remark 2.8. For n = 2, the vectors uy, ... ,u4 satisfy both conditions if each of them
has relatively prime coordinates and each pair of vectors uy, is linearly independent.
On the other hand, if n > 3 and the vectors uq, ... ,uq satisfy both conditions, then
d < 2™. T am grateful to Krzysztof Galicki for informing me that Charles Boyer has
found such a bound for n = 3 and to Gerd Mersmann for the following argument.
Suppose there are 2¢ such vectors. Then either a vector u; has all coordinates equal
to zero mod 2 or two vectors u;, u; are equal mod 2. In either case we obtain a
subset ({w;} or {u;,u;}) which cannot be a part of a Z-basis.

Finally we shall need some facts from [BD] about the topology of a toric hy-
perkihler orbifold M = M(u, ). The hyperplanes Hj of Theorem 2.1 divide R?
into a finite family of closed convex polyhedra, some unbounded. We consider the
polytopal complex C consisting of all bounded faces of these polyhedra. The support
|C| of C is the union of all polyhedra in C. If ¢ = (¢1,¢d2,¢3) : M - R* x R* x R"
is the induced moment map for the action of 7™ = T¢/N on M, then it is shown in
[BD] that the compact variety

(26) X = ¢—1(|C|:O’O)

is a deformation retract of M. The variety X is a union of toric varieties cor-
responding to maximal elements of C and intersecting along toric subvarieties (in
other words X is the support of the complex of toric varieties corresponding to the
polytopal complex C).

3. PROOF OF THEOREM 1

Let d = n + q. The idea is to consider a toric hyperkahler orbifold M = M (u, A)
where the vectors uy,. .., uq are the ones defining the torus N and to show that the
infinity of M is homeomorphic to S. Observe that the condition of Theorem 2.1 is
satisfied for generic choice of scalars Ay if the vectors uy satisfy the condition (i) of
Theorem 2.2. We shall show that M U S is a certain quotient of the closed unit ball
B in H4.
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Let s be a diffeomorphism between [0,1] and [0, +oo] with s'(0) = 1, and let

f(r) = s(r)/r.

We define a “moment map” v : B — n* by the formula

1
(3.1) v(q) = W#(f(llall)e)

where p is given by (2.5). We observe that

1
(3.2) | v(g) = plq) + 72lan°

where ¢ is given by (2.5¢). In particular, restricted to the unit sphere, v is just the
3-Sasakian moment map. We denote by £ the 0-set of v and by £° the intersection
of £ with the open unit ball B C B.

We observe that ¥ is T%invariant and that £° is T¢-equivariantly homeomorphic to
the 0-set of p. Therefore the quotient X.°/N is T™-equivariantly homeomorphic to
M = M(u, A) and the compact Hausdorff space £/N can be identified with M U S.
Moreover, it follows from the proof of Theorem 6.5 in [BD] that the deformation
h:M x[0,1] = M, h(m,1) = m, h(M,0) = X, where X is given by (2.6), extends
to S (it is important here that every n among the vectors u are independent, and,
therefore, each of the unbounded n-dimensional polytopes in the complement of
the hyperplanes Hy of Theorem 2.1 has an (n — 1)-dimensional face at infinity).
Therefore M = /N is homotopy equivalent to X.

We have the long exact sequence of rational cohomology

.= HY(M) = H*¥(M) - H*(S) = HY (M) — ...

Since M is an orbifold, and so a rational homology manifold, we can apply Poincaré
duality to M and obtain H¥(M) ~ Hy, (M) ~ Hy, ((X). If k < 2n, then
Hyn_x(X) =0 and so H*(S) ~ H*(M) ~ H*(X) for k < 2n — 1.

We shall now calculate the rational cohomology groups of X. In [BD] it was
shown that if the complex C satisfies certain technical assumption, then the usual
combinatorial formula for the Betti numbers of a toric variety (cf. [Fu]) holds for
X (and so for M). We shall show now that this formula holds without any further
assumptions for our toric hyperkahler orbifolds M = M (u, A).

Theorem 3.1. Let M = M (u, ) be a toric hyperkdhler orbifold with the vectors ug
satisfying the assumption (i) of Theorem 2.2. Then HI(M,Q) =0 if j is odd and

(3.3) bax = dim H™*(M,Q) =) (-1)"* (;) d;,

i=k
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where d; denotes the number of i-dimensional elements of the complex C.

Proof. We observe first that both sides of (3.3) depend only on vectors uy. Indeed,
Theorem 6.1 in [BD] shows that it is so for the Betti numbers. On the other hand,
since every n among of the vectors uj are independent, the hyperplanes Hy are in
general position and the number d; depends only on d and n.

We proceed now by induction on n. Suppose that the formula (3.3) holds for
k < n (n may be 1). In dimension n we proceed by induction on the number d of
hyperplanes Hy. The formula holds for n hyperplanes. Suppose that the formula
holds for ¢ < d — 1 hyperplanes in R™ and let us consider a toric hyperkahler
orbifold M (u, ) corresponding to hyperplanes Hy,...,Hy. By the remark above
we can move the hyperplane Hy until all of |C| lies to one side of Hy, say |C| C
{z; (z,uq) > Aq}. The intersections of Hy with the Hy, & < d, determine a simple
arrangement of hyperplanes in Hy =~ R*~! which gives a toric hyperkihler orbifold
Y of quaternionic dimension n — 1. Let us denote its polytopal complex by £. On
the other hand the hyperplanes H,,..., Hy_1 also determine a toric hyperkahler
orbifold W with a polytopal complex F. By inductive assumptions, (3.3) holds both
for Y and for W. We observe that, as the hyperplanes Hy are in general position
and d > n + 1, every maximal element of C has dimension n, and therefore every
t-dimensional element of £ is a face of an (¢ + 1)-dimensional element of C. This
implies, that if ex (resp. fi) denotes the number of k-dimensional faces of £ (resp.
F), then dy = fo +ep and di = fi + ex + ex—1 for k> 0.

Let us now consider the neigbourhoods of |€| and |F| in |C| defined by U; =
ICIN{z € R*;{(z,uq) < Ag+ 2¢} and Uz = |[C| N {z € R*; (z,uq) > Mg +¢}. Then
U1 NU; is homeomorphic to |€] % (0, €). We consider the deformation retract X of M
given by (2.6). We have X = V; UV, where V; = ¢7'(U1) and V; = ¢71(U2). Now,
by the argument used in the proof of Theorem 6.5 in [BD], V; can be deformed onto
the corresponding deformation retract of ¥ and so V is homotopy equivalent to Y.
Similarily V5 is homotopy equivalent to W. Moreover ¥V} NV, is homotopy equivalent
to an S'-bundle P over Y (the S! corresponds to the 1-PS of T™ determined by the
vector u4). We now use Mayer-Vietoris and Gysin sequences which, since the odd
Betti numbers of Y and W vanish, split off at each even level as

0 — H*~Y(P) » H*(M) » H*(Y) & H**(W) —» H™(P) » H**' (M) — 0,

0 = H*"Y(P) = H¥*=2(Y) = H*(Y) - H*(P) = 0.

The Gysin sequence implies that H2*(Y) — H?(P) is surjective and so the odd
cohomology of M vanishes. Moreover the even Betti numbers satisfy the relation
bgk(M) = bzk(W) + bzk(Y) + bgk_1(P) - bzk(P) and bgk(Y) = bzk_z(Y) + bop (P) —
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box—1(P). From these we deduce that bor(M) = bop(W) + box—2(Y) for £ > 0 and
bo(M) = bo(W). We now write down the left-hand side of (3.3) using these equalities
and the corresponding formulas (3.3) for W and Y and we rewrite the right-hand side

of (3.3) using the formula dy = fr+ex+ex—~1 (e—1 = 0). Then the equality between
the two sides reduces to the following equality ( k i 1 ) = — (;) + (z _Z 1 ) which
is easily checked. [

Remark 3.2. We expect that the proof given here will carry to general toric hy-
perkahler orbifolds, proving Theorem 6.7 of [BD] in full generality. All there re-
mains to be shown is that C is either contained in a single hyperplane or that every
maximal element of C has dimension n.

In order to finish the proof of Theorem 1 we have to calculate the number d;
of i-dimensional elements of the complex C and to apply the formula (3.3). As
noticed above, since every n among of the vectors ug are independent, the number
d; depends only on d and n. We use the formula 18.1.3 in [Gr] giving the number
fi{d, n) of i-dimensional faces of the simple (i.e. no more than n of the hyperplanes
have a nonempty intersection) arrangement A of d hyperplanes in RP™:

fild,n) = (nii)g(d_n;1+i)'

The number of i-dimensional faces of the complex C is the number of ¢-dimensional
faces in the arrangement A which do not meet the infinity in RP™. In other words

di = fi(d,n) — fir(dn—1) = ( d ) (d‘”.‘l“).

n-—-1 ?

This yields
n
Cpr2k _ Cqyi=k [ 0 g+n){g+i-1
(3.4) dim H (S,Q)—;( 1) (k)(n_z)( : )
1=
for Kk < n — 1. We now use the simple identity

BIEORCIIGN

to rewrite the formula (3.4) as

(35)  dimH%*(S,Q) = (‘HZ— 1) Zn:(_l)i—k (itvz) (q;l-j; 1) |

i=k
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[{e]

It remains to show that the summed expression is equal to 1 for k

I VAN

n — 1. Let us denote this expression by G(g,n,k) and let F(q,n,k,1)

(—=1)-* (it? (q ;l-j; 1 ) , so that G(gq,n, k) = S r_; F(g,n, k,17).
We observe that F(g,n,k,i) = F(g—1,n+1,k+1,i+1) and therefore G{g,n, k)
G{g—1,n+1,k+1). It follows that G(g,n,k) = G(1,n+q—1,k+g—1). However
for ¢ = 1 the right-hand side of (3.5) must be 1 for & < n — 1, since the left-
hand side is 1 for the homogeneous 3-Sasakian manifold of type A,, [GS]. Therefore
G(g,n, k) = G(l,n+q—1,k+qg—1) =1 for all ¢ and k¥ < n — 1. This proves
Theorem 1.

4. CONSEQUENCES

We shall now prove Proposition 2 and Corollary 3. The formula (x) is invariant
under the symmetry k +— n — k and we can write it as

[(n—1)/2]
> k(n = k)(n — 2k)(bak — ban-r)) = 0.
k=1

To prove Proposition 2 it is enough to show that, for ¢ > 1, box — ban_g) < 0 for
all 1 < k < [(n—-1)/2). By Theorem 1 this is equivalent to -(2%2—:%%1)—! > g%!——l)—!
for 1 < k < [(n—1)/2]. We can write both expressions as products of ¢ — 1 terms
such that each term on the left is greater than the respective term on the right.
Proposition 2 follows. For Corollary 3 we observe that Proposition 2 implies that if
n > 3, then ¢ = 1, and so § is the 3-Sasakian quotient of a sphere by a circle. These
were analyzed in detail by Boyer, Galicki and Mann in [BGM2] and the result follows
in this case from their work. For n = 2 it is well-known that the only compact 4-
dimensional self-dual Einstein manifolds are $* and CP? [Hi]. This proves Corollary

3 in this case.
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