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INEQUALITIES OF WILLMORE TYPE FOR SUBMANIFOLDS 

1) INTRODUCTION 

The well-known Willmore conjecture [11) asserts for all 

immersed tori T2 in R3 the following inequality: 

( 1 ) 

Here H denotes the mean curvature. Equality is attained 

in (1) for stereographic projections of the Clifford torus 

in s3 • So far (1) has been established only for special 

types of immersed tori, e.g. tubes around closed space curves 

[8,12J, tori of revolution [5], tori with a special intrinsic 

conformal structure [6J. It is however easy to prove for any 

compact surface M2 in a3 the following inequality [11]: 

(2) 

It has been noticed [3,6,10] that it is often useful to 

replace J H2 d A by the modified functional C, which for 

immersions 2 3 
f : M -> R is defined as 

(3) C(f) 



Here k, and k2 are the principal curvatures'of f. The 

functional C was studied already in the 1920's by Blaschke 

and Thomsen [2,9], who called it the "conformal area". Because 

nowadays this term is used in a different manner [6], we call 

C the "total conformal curvature" or the "Willmore functional". 

Because of the Gauss-Bonnet theorem the study of C is 

equivalent to the study of J H2dA , and the inequality (2) 

can also be written as 

(4) 

where 6
1 

is the first Z2-Bett1 number of M2 

In this paper we will define C(f) for all immersions 

n m 
f: M ->R where Mn is an arbitrary compact manifold. 

We will prove a generalization of (4) and state conjectures 

similar to (1). 

2) THE FUNCTIONAL C (f) 

Let Mn be a compact smooth manifold, f: M
n -> Rm an 

immersion, N(f) the unit normal bundle of f. To every 

there corresponds a shape operator 

--> T Mn , whose eigenvalues 
p , 

are called the principal curvatures at 

k1 (t) , •• • , kn (t) 

t . Let C1(At ) 
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denote the dispersion of the principal curvatures in the 

sense of probability theory: 

(5) 2 1 2 
a(A~) = ~ & (k.-k.) 

~ n i<j ~ J 

Then the total conformal curvature C(f) of the immersion 

f is defined as 

(6) C (f) = 

Here d~ denotes the natural volume element on N(f) • The 

functional C(f) has the following remarkable properties: 

(i) n = 2 "'* C(f) = 211f f2 (IHI
2

-K)dA 
M 

(ii) C (f) ~ 0 I C (f) = 0 <==> f is totally umbillic 

(iii) If i: Rm -> RP , P ~ m denotes the canonical 

inclusion, then C(iof) = C(f) • 

(iv) If tp: Rm U too} -> Rm U {oo} is conformal, then 

C (tpo f) = C (f) • 

The conformal invariance (iv) of C(f) is proved in [1]. 

The verification of (i), (ii) and (iii) is left to the reader. 
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3) AN ESTIMATE IN TERMS OF THE BETTI NUMBERS 

In this section we prove the following generalisation of 

inequality (4): 

THEOREM 1: Let M
n be compact, P a field, B

1
, ••• ,Bn the 

Betti numbers of .,fl with respect to P , 

f : Mn --> am an immersion. Then 

(7) 

where 0.= (-1L)n/2-k 
a k n-k 

PROOF: Let as above N(f) denote the normal bundle of f 

and define 

Nk = {tEN(f) I At has exactly k negative eigenvalues}. 

A standard argument from total absolute curvature theory [4] 

yields 

(8) 

On the other hand we have 

(9) 
1 n 

C (f) = -----:::- 1: f a (A )ndt 
vol (Sm-1) k=O N t 

k 
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By (5), (8) and (9) the theorem now follows from the lemma 

below. 

o 

LEMMA: Let k 1 , ••• ,kn be real numbers, r 1 G,n such that 

(10) 

Then 

( 11) a I k1 ••• k I r n 

PROOF: Since both sides of (11) are positively homogeneous 

of degree n we can restrict attention to the cylinder 

(12) 
2 I 1.: (k.-k.) = b} • 

i<j ~ J 

The constant b will be specified later on. The subset Zr 

of Z defined by the sign conditions (10) is bounded, and the 

function g: Zr --> R 

(13 ) 

vanishes on the boundary of Zr and is smooth in the interior 

of Zr' Therefore g assumes its maximal value at some point 
o 

(x1 ' ••• ,Xn ) € Zr • There is a Lagrangian multiplier A such 
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that for 1 ~ 1 S n we have 

(14) 

where 

(15 ) 

x - H i 

1 n 
H=- E xl." 

n 1=1 

By (14) for all i,j we have 

(16 ) 

, 

Thus all satisfy the same quadratic equation 

(17 ) 

From (17) we conclude 

( 18) x 1 = = xr =: x < 0 , xr+ 1 = = xn =: x> 0 

By (17) and Vietas theorem 

(19 ) 
.... 

x + x = H 

On the other hand (15) means 

(20) 
.-w 

px + qx = H I 
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where we have set p = r/n, q = 1-p • Subtracting (20) 

from (19) we obtain 

(21) "" qx + px = 0 

We now chose the free constant b such that x = -1 • Then 

(21) yields 

(22) 

x = .E q 

'" x - x 

Since Ik1 .•• knl was maximal at (x1 , ••• ,xn ) the assertion 

of the lemma follows from (22). 

4) WILLMORE PROBLEMS 

Theorem 1 in the last section gives some information about 

the first of the following two types of "Willmore problems": 

a) Given a compact smooth manifold l-1n , determine (or 

estimate at least) 

C(Mn ) .- inf{C(f) If 0 Mn _> Rm an immersion} .- 0 

o 
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b) For n i:: 2 determine (or estimate) 

C(n) := inf{C(~) I~ not homeomorphic to Sn} • 

In this section we study problem b). Surprisingly there is 

a complete answer for n: 2 : 

THEOREM 2: 
2 C(2) : C(RP ) = 2 

Theorem 2 is an immediate consequence of (4) and Theorem 4 

in [6]. For n:i: 3 we have the following estimate: 

THEOREM 3: C(n) :i:2(n_1)1-n/2 

be compact, not homeomorphic to PROOF: Let Mn 

f : M
n -> Rm an immersion. Then by the Morse inequalities 

for any height function h = 10f (l:Rm --> R linear), which 

is a Morse function one of the following is true: 

(i) h ha~ at least two critical points of index 

1 or n-l . 

(ii) h has at least'one critical point of index r , 

where 1<r<n-1 • 

(iii) h has only two critical points (one minimum 

and one maximum). 

(iv) h or -h has two minima, one critical point of 

index 1, one maximum and no other critical points. 



- 9 -

Case (iii) cannot occur, because Mn would then be homeo­

morphic to sn. Similarly (iv) is impossible, because here 

the critical point of index one can be "cancelled" against 

one of the minima [7], that means there is another Morse 

function n 9 : M --> R having only two critical points. 

Again Mn would be homeomorphic to Sn. 

By the argument in the proof of theorem 1 this implies 

(23 ) 
n-2 m 

+ 2 E fldet A~ld~ ~ 2 voltS ) • 
k=2 Nk 

It is easy to check that for 2;$ r ;$ n-2 we have 

(24 ) a
r 
~ 3 a

1 
= 3 (n-1) 1-n/2 

The theorem now follows from (9), (11), (23) and (24). 

o 

We would like to state here the following conjecture, that 

might be regarded as a higher dimensional version of the 

original Willmore conjecture (the latter can be stated as 

C (T2) = 'IT) : 

CONJECTURE: For n ~ 3 we have C (n) = C (5 1 
x Sn-l) and 
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(25) C{n) =~-1* vol(Sn-l) .4n =: c 
nn vol (Sn) n 

The next theorem shows that at least C(n) and do not 

differ too much: 

THEOREM 4: O~64 c ~ C (n) ~ c 
n n 

PROOF: Let sn-l (R)c:Rn be a round sphere of radius R, S 1 (r) c:a2 
a 

circle, f: S 1 x sn-l _> .n+2 = .2 x an an embedding with 

f (S 1 x Sn-l) = S 1 (r) x Sn-1 (R) • Then for a suitable choice of 

the ratio r/R we obtain C(f) = c n • This proves C (f) $ c 
n 

In Theorem 3 we established a lower bound 

(26 ) := 2(n-l) l-n/2 

for C(n) • Thus it suffices to show 

have defined qn = cn/en • Explicitly 

(2 • 2 • 4. • • (2m- 2) (2m- 2 ) ) -1/ 2 

1 • 3 • 3· • • (2m- 3) (2m-l) 

qn = 
2 • 2 • 4· • • (2m ~ 2m~ ( )V2 
1·3· 3· •• (2m-11 (2m+i) 

The first two terms of the sequence 

q ~ 1/0.64 , where we 
n 

I2m=1' if n = 2m 
2 

ffm+1' if n = 2m+l 
1\' 

are 
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(27) 1 

and using Wallis l product we find 

(28) 

Since q3 ,q4 ~ 1/0.64 the proof will be finished once we have 

shown that the two subsequences (q2m) and (q ) are 2m+1 

monotonically decreasing, which means 

(29) 
nn-1 (n+ 1) n+2 

(n_1)n-1 (n+2)n+2 
= 

for all n. Taking the logarithm of both sides we see that 

(29) is equivalent to 

(n-1) log n + (n+2) log (n+1) 
(30 ) 

~ (n-1) log (n-1) + (n+2) log (n+2) 

(30) is a consequence of the obvious inequalities 

log n - log (n-1) < 1/(n-1) 

log (n+2) - log (n+1) > 1/(n+2) 

o 
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