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INEQUALITIES OF WILLMORE TYPE FOR SUBMANIFOLDS

1) INTRODUCTION

The well~known Willmore conjecture [11] asserts for all

immersed tori T2 in R3 the following inequality:

(1) [ #%aa 227

T2

Here H denotes the mean curvature. Equality is attained
in (1) for stereographic projections of the Clifford torus
in S3 . So far (1) has been established only for special
types of immersed tori, e.g. tubes around closed space curves
[8,12], tori of revolution [5], tori with a special intrinsic
conformal structure [6]. It is however easy to prove for any

compact surface M® in R® the following inequality [11]:

(2) [ B da z24n .

It has been noticed [3,6,10] that it is often useful to

replace _{HzciA by the modified functional C , which for
2 3

immersions f : M —> R is defined as
_ 1 2_ _ 1 p 12
(3) Clf) = 5= IZ(H K)aA = &= fz(k1 k)@ .

M M



Here k1 and k2 are the principal curvatures of £ . The
functional C was studied already in the 1920's by Blésghke
and Thomsen [2,9], who called it the "conformal area". Because
nowadays this term is used in a different manner [6], we call

C the "total conformal curvature®” or the "Willmore functional".
Because of the Gauss-Bonnet theorem the study of C is
equivalent to the study of j'szA , and the inequality (2)

can also be written as
(4) C{f) 2 81 P

where 61 is the first xz—Betti number of M2 .

In this paper we will define C(f) for all immersions
£ : M —> BT  where M® is an arbitrary compact manifold.
We will prove a generalization of (4) and state conjectures

similar to {1).

2) THE FUNCTIONAL C(f)

Let M" be a compact smooth manifold, £ : M® —> B®™ an
-immersion, N{f) +the unit normal bundle of £ . To every
EEINp(f) there corresponds a shape operator

AE s T M —s TpM& ., whose eigenvalues k1(E),...,kn(€)

p
are called the principal curvatures at § . Let G(AE)



denote the dispersion of the principal curvatures in the

sense of probability theory:

2_ 1 2
(5) oA, )" = L o(k; kj) .

3 n- i<j
Then the total conformal curvature C(f) of the immersion

f 1is defined as

(6) Clf) = —1— [ g(a

%
vol(Sm) N(f) &

dag .

Here df denotes the natural volume element on N(f) . The

functional C(f) has the following remarkable properties:

(1) n=2 = C(f) = 5% Iz(IHIZ—K)dA
M

(ii) C(f) 20 , C(f) =0« f is totally umbillic

(iii) If i : R® —> RP , P2 m denotes the canonical

inclusion, then C(ief) = C(f) .

(iv) ~ If o : RmtJ{w} —_ lej{w} is conformal, then

C(pof) = C(f) .

The conformal invariance (iv) of C(f) is proved in [1].

The verification of (i), (ii) and (iii) is left to the reader.



3) AN ESTIMATE IN TERMS OF THE BETTI NUMBERS

In this section we prove the following generalisation of

inequality (4):

THEOREM 1: Let M" be compact, F a field, Byr---sB, the
Betti numbers of M" with respect to F ,
£ MY —> BT an immersion., Then
n-1

(7) C(f)z £ a.B '
k=1 k"k

X )n/2~k

PROQO¥: Let as above N(f) denote the normal bundle of £

and define

N. = {E€N(f)| A, has exactly k negative eigenvalues}.

k £

A standard argument from total absolute curvature theory [4]

yields

(8) [ ldet A_ | dE2 B, vol(s™ ') .
N 3 k

k

On the other hand we have

1 n
(9) C(f) =——— & fol(a

n
_ yPar .
vol (s™ 1) k=0 N
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By (5), (8) and (9) the theorem now follows from the lemma

below.

LEMMA: Let k1""'kn be real numbers, r # 0,n such that

(10) Kyoeorsk <0 Kpyqree-rk 20 .
Then
2
1 21/
(11) — 1 (k,~k.) 2 a_|k,...k | .
{nZ i<y + 1 r' n

PROOF: Since both sides of (11) are positively homogeneous

of degree n we can restrict attention to the cylinder

(12) Z = {(kg,..00k ) €™ | 5 (k-k)? = b} .
i<j J
The constant b will be specified later on. The subset Zr
of 2 defined by the sign conditicns (10) is bounded, and the
function g : 2. —> R

r

(13) glkyreenrk) = |ky.. .k

n n!

vanishes on the boundary of Z, and is smooth in the interior
of z,. . Therefore g assumes its maximal value at some point

Q
(x1,...,xn)€ Z,. . There is a Lagrangian multiplier A such



that for 1£1i$n we have

(14) Xy - B = A RyeooXy gy
where
1 B
(15) H = 5 E X, .
i=1

By (14) for all 4,3 we have

(16) X% - Hx, = x° - Hx

Thus all x satisfy the same gquadratic equation

i

2 -
(17) Xy - Hxi + p =0,
From (17) we conclude
(18) X, = ... = X_ =3 X<0

By (17) and Vietas theorem

(19) X +

®e
]
m

On the other hand (15) means

(20) px + gx = H ,

vee X
n

=: x>0
n .



where we have set p = r/n , gq = 1-p . Subtracting (20)

from (19) we obtain

{21) gqx + p§ =0 .
We now chose the free constant b such that X = -1 . Then
(21) vields
x = B
q
~ 3
22 x - =1+E=...
(22) X g 3
1 2]n/2 n/2-pn
T (x,-x.) } = (E) P %, eeex_ |,
;7 i< i q 177 ""n

Since }k1...kn! was maximal at (x,,...,% ) the assertion

of the lemma follows from (22}).

4) WILIMORE PROBLEMS

Theorem 1 in the last section gives some information about

the first of the following two types of "Willmore problems”:

n

a) Given a compact smooth manifold M , determine (or

estimate at least)

n

c(M?) := inf{C(f)|f : M -

—> R an immersion} .



b) For nz 2 determine (or estimate)

C(n) := inf{c(M")|M® not homeomorphic to 8"} .

In this section we study problem b). Surprisingly there is

a complete answer for n = 2 :

THEOREM 2: Cc(2) = CmP?) = 2 .

i}

Theorem 2 is an immediate consequence of (4) and Theorem 4
in [6]. For n23 we have the following estimate:

THEOREM 3: C(n) 2 2 (n-1) 171/2 )

PROOF: Let M" be compact, not homeomorphic to st '

f:Mn

—> B™ an immersion. Then by the Morse inequalities
for any height function h = fLof (Q:Rm -~-> R linear), which

is a Morse function one of the following is true:

(1) h has at least two critical points of index
1 or n—-1 .
(ii) h has at least one critical point of index r ,

where 1<r<n-1 .

(i1ii) h has only two critical points (one minimum

and one maximum).

(iv) h or -h has two minima, cone critical point of

index 1, one maximum and no other critical points.



Case (iii) cannot occur, because M® would then be homeo-
morphic to st . Similarly (iv) is impossible, because here
the critical point of index one can be "cancelled" against
one of the minima [7], that means there is another Morse
function g : M —> R having only two critical points.

Again M" would be homeomorphic to s™ .,

By the argument in the proof of theorem 1 this implies

fldet A_|daE + [ | det A_|dE

N £ N £
1 n—-1

(23) n-2

+2 B fldet a ldg 2 2 vol(s™) .

=2
k Nk

It is easy to check that for 2gfr <n-2 we have

1-n/2

{(24) ar23a = 3{n-1) .

1

The theorem now follows from (9), (11), (23) and (24).

We would like to state here the following conjecture, that
might be regarded as a higher dimensional version of the
original Willmore conjecture (the latter can be stated as

c(r?) = m)

n-1)

CONJECTURE: PFor nz23 we have C(n) = tf:(S1 x 8 and



- 10 -

_1
- — vol(sn | _.
{25) C{n) -\/1ﬂ1 vol(57) 49 =: c, -

The next theorem shows that at least Ci{n) and c, do not

differ too much:

-

THEOREM 4: 0.64 ¢, SC(n) s “n

PROOF: Let S™ '(R)cR® be a round sphere of radius R, S1ir)::R2 a

circle, £ : STx Sn"1 — ‘p+2 = Rz)tnn an embedding with

£’ xs™") = s'(r) xs™ ' (R) . Then for a suitable choice of

the ratio r/R we obtain C(f) = Ch - This proves C(f) S C, -

In Theorem 3 we established a lower bound

(26) e, = 2(m-1) /2
for C{n) . Thus it suffices to show qns 1/0.64 , where we

have defined q, = cn/en . Explicitly

(2.2.4...(2m-2)(2m—2) BRI T .
1¢3¢3¢+.{2m~3) (2m-1) 2
qQ, = |
(2-2-4-~(gm) 2zm)  \Y? /Zmi? if n = 2m+l
\ Te3e3ess (2m~-1) (Zm+ 1) L

The first two terms of the sequence q, are



- 11 -

(27) q3ﬁs1.540 R q4w1.530 ’
and using Wallis' product we find

N /1
(28) %ﬁﬂ a, \/ e ~1.520 .

Since q3,q4:s1/0.64 the proof will be finished once we have
shown that the two subsequences (qu) and (q2m+1) are

monotonically decreasing, which means

- 1
(29) \V/nn 1(n+1)n+2 - 942 <1
(n_1)n—1(n+2)n+2 qn

for all n . Taking the logarithm of both sides we see that

(29) is equivalent to

{n~1) log n + {(n+2) log {(n+1)
{30)
$ (n-1) log (n-1) + (n+2) log (n+2) .

(30) is a consequence of the obvious inequalities

log n - log (n-1) < 1/{n-1)
log (n+2) - log (n+1) > 1/(n+2) .
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