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Abstract

This research program aims to build some new mathematical structures for the descrip-
tion of non-perturbative aspects of Quantum Field Theories whenever bare or running
coupling constants are strong enough. Under a combinatorial setting, we apply infinite
combinatorics to build a new topological Hopf algebra SΦ

graphon of Feynman graphons which
leads us to formulate a new Hopf algebraic renormalization theory for solutions of Dyson–
Schwinger equations in the context of the theory of graphons and the Riemann–Hilbert
problem. We then build a new parametric representation for infinite formal expansions
of Feynman diagrams in the context of Tutte polynomial, Kirchhoff–Symanzik polynomial
and other combinatorial tools. Furthermore, we formulate a multi-scale renormalization
group theory on the collection SΦ,g of all Dyson–Schwinger equations in a gauge filed
theory in terms of changing simultaneously the scales of momenta and bare coupling con-
stant. This machinery enables us to describe the non-perturbative behavior of a given
Dyson–Schwinger equation DSE(g) at strong coupling constant g in terms of a convergent
sequence of Dyson–Schwinger equations at weaker couplings with respect to the cut-distance
topology. In addition, this multi-scale renormalization machinery suggests a new way to
study the complexity of non-perturbative computations in the context of the Kolmogorov
complexity at the level of Feynman graphons where as the result, we will show that the
BPHZ renormalization of Feynman graphons can encode the Halting problem of partial
recursive maps on SΦ,g. Under a geometric-analytic setting, we build a spectral triple
model for the study of the geometry of Dyson–Schwinger equations. Then we explain a
mathematical framework for the construction of a noncommutative geometry model for
the description of the geometry of the renormalization Hopf algebra SΦ

graphon of Feynman
graphons. Thereafter, we work on the construction of a functional analysis theory for
the study of large Feynman diagrams where we can formulate the Haar integration the-
ory on SΦ,g as a modification of the classical Riemann–Lebesgue integration theory with
respect to the Borel σ-algebra on real numbers. As some applications of this integration
theory, at first, we obtain a new evolution method for the description of large Feynman
diagrams in the language of Johnson–Lapidus Dyson series. At second, we work on the
Banach algebra L1(SΦ,g, µHaar) where thanks to the Gelfand transform we can explain the
formulation of a generalized version of the Fourier transformation which is useful for the
evolution of large Feynman diagrams. Furthermore, we build the Gâteaux differential cal-
culus machinery on the Banach space SΦ,g with respect to the cut-norm to study smooth
functions on SΦ,g in the language of Taylor series of higher order Gâteaux differentiations
and homomorphism densities. Under a lattice theoretic setting, we apply combinatorial
Dyson–Schwinger equations, Feynman graphons and some topological treatments to ex-
plain the concept of quantum entanglement in Quantum Field Theory in the language of
substructures organized in a lattice of topological Hopf subalgebras. We lift this story onto
a categorical level to encode information flow among elementary particles on the basis of
the representation theory of Lie groups and mixed Tate motives. Furthermore, in another
direction, we explain the construction of a new topos model of presheaves to formulate
logical propositions about non-perturbative aspects. We investigate that the strength of
the couplings in gauge field theories can change the base category of the topos model of
the physical theory. As the result, we obtain a new class of countable Heyting algebras
which are capable to encode the evaluation of logical propositions about topological regions
of Feynman diagrams.
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PREFACE

The strength of Mathematics is its ability to create models

which are absolutely vital for producing physical parameters.

A mathematician is like a surrealist painter who can design

the purest portraits from known and unknown universes.

Recent discoveries in Science and Technology from the smallest to the
largest scales have approved clearly the importance of advanced research
activities in Basic Science which can bring a new package of fundamen-
tal knowledge for the analysis of complicated systems in natural phenom-
ena. To obtain a comprehensive description of those complexities requires
to build any possible interrelations among different fields in Mathematics
(as the purest mental production of human beings). The resulting connec-
tions can lead us to achieve some new theoretical methodologies which are
essential tools for scientists to build advanced practical models in dealing
with complexities of the nature. The designed models together with some
computational algorithms will lead scientists to solution procedures.

This research work has a multidisciplinary foundation in the context
of Mathematics, High Energy Theoretical Physics and Theoretical Com-
puter Science. It plans to discover some new knowledge about the most
unknown parts of Quantum Field Theories whenever the coupling constants
are strong enough on the basis of building advanced mathematical struc-
tures. The outstanding consequence of this research work is to provide a
new mathematical interpretation of the phenomenology of Quantum Field
Theory with strong coupling constants under discrete, analytic and logical
settings. If we study simultaneously these different but related settings, then
our mathematical outputs will be useful for the better understanding of the
behavior of physical systems in non-perturbative situations. We apply dia-
grams, graph limits, combinatorial polynomials and some topological tools
to address the discrete behavior of non-perturbative phenomenology, then
we apply Noncommutative Geometry and Functional Analysis to address
its analytic behavior and finally, we apply Category Theory and theory of
ordered algebraic structures to address its quantum logical behavior.

The Lagrangian approach to Quantum Field Theory, which is on the
basis of the Feynman path integral formalism, has made extraordinary the-
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oretical and experimental progress for the study of elementary particles and
their interactions at the highest level of energies and the smallest scales un-
der a perturbative setting. This approach encodes physical information of a
quantum system with infinite times degrees of freedom in terms of Green’s
functions as infinite formal expansions of ill-defined iterated integrals.

Quantum Electrodynamics (QED) concerns interactions among matter
(electron, positron) and light (photons). Quantum Flavourdynamics (QFD)
concerns weak interactions inside the nucleus of an atom which change the
flavour or type of quarks to describe β− decay and β+ decay under W,Z
bosons. Quantum Chromodynamics (QCD) concerns strong interactions of
quarks and gluons inside the nucleus of an atom to build composite hadrons
such as protons and neutrons. Standard Model, as the most successful ex-
perienced model, has provided a practical platform to collect quantum field
theories corresponding to electromagnetic, weak and strong interactions into
a united Quantum Field Theory model. The modified versions of the Stan-
dard Model in the context of Noncommutative Geometry have also provided
a new updated (theoretical) model which is (minimally) coupled to gravity
as the weakest fundamental force in the nature. The constructions of gauge
field theories in Theoretical and Experimental High Energy Physics, as up-
dated Quantum Field Theory models, are on the basis of the modified Stan-
dard Model of elementary particles which interprets electroweak and strong
interactions of elementary particles in the scale of distances down to the
order of 10−16 centimeters while neutrino masses have also been accounted.
In addition, under a more theoretical setting, String Theory as other class of
Quantum Field Theory models, which does not have ultraviolet divergencies,
has been introduced and developed where the classical one-loop Feynman
diagram should be replaced with its stringy counterpart which is a torus
and more general Feynman diagrams should be replaced with Riemann sur-
faces and world sheets. This mathematical theory is capable of describing
Quantum Gravity in Space-Time.

The first fundamental challenge in perturbative setting is the appear-
ance of so complicated nested (sub-)divergencies which live in each term of
Green’s functions. These ill-defined terms, known as Feynman integrals, can
be theoretically reduced to some finite values as the result of the renormal-
ization machinery and many loop techniques where some extra parameters
(i.e. counterterms) should be added to the original Lagrangian of the phys-
ical theory. The discovery of a comultiplication structure hidden inside of
the (Bogoliubov)–Zimmermann’s forest formula has led us to understand
the Bogoliubov–Parasiuk–Hepp–Zimmermann perturbative renormalizaton
in the language of the Connes–Kreimer Hopf algebra of Feynman diagrams
and the Riemann–Hilbert problem. Thanks to this setting, a geometric in-
terpretation of dimensional regularization on the basis of flat equi-singular
connections has been formulated by Connes and Marcolli. This study had
been lifted onto a universal categorical setting where we associated a cat-
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egory of Lie group representations to each renormalizable Quantum Field
Theory. Thanks to this Hopf algebraic approach to Quantum Field Theory,
nowadays we have a diverse spectrum of advanced mathematical techniques
and tools to deal with ill-defined iterated Feynman integrals in physical
theories to generate some computable values from infinities.

The second fundamental challenge in perturbative setting is dealing with
complicated infinities originated from Green’s functions which encode quan-
tum motions in physical theories with strong couplings. The lack of a rig-
orous mathematical methodology for the study of aspects beyond pertur-
bation boundary has made so many difficulties to understand completely
Quantum Field Theory. In physical theories with strong (running or bare)
couplings, it is already impossible to study the full behavior of quantum
systems under perturbation series and in this situation, we need to con-
cern non-perturbative methods such as numerical methods, Borel summa-
tion method, theory of instantons and lattice model. In addition, the self-
similar nature of Green’s functions makes an alternative way for us to study
non-perturbative aspects in the context of fixed point equations of Green’s
functions. The resulting equations, which are known as Dyson–Schwinger
equations, contain a collection of coupled integral equations depended on
the coupling constant. In couplings more than or equal to 1, these equa-
tions behave non-perturbatively. In QCD with higher energies, we can ex-
pect the asymptotic freedom behavior which enables us to make compu-
tations via some perturbative tools such as many loop techniques but in
QCD with relatively lower energies, the story is so complicated. Work on
the phenomenology of running couplings in QCD has been considered under
a physical setting to provide some computational methods in dealing with
non-perturbative parameters. Thanks to the applications of the Connes–
Kreimer renormalization Hopf algebra of Feynman diagrams to Quantum
Field Theory, we already have a combinatorial reformulation for Dyson–
Schwinger equations in the language of Hochschild cohomology theory. The
unique solution of each equation DSE determines a free commutative con-
nected graded Hopf subalgebra of the renormalization Hopf algebra. This
mathematical approach to Dyson–Schwinger equations has already provided
some new combinatorial and geometric tools for the computation of some
non-perturbative parameters where the foundations of a differential Galois
theory and a Tannakian formalism for the study of non-perturbative as-
pects of Quantum Field Theories have been designed and developed (by
the author) on the basis of the Connes–Marcolli universal category of flat
equi-singular vector bundles. Furthermore, thanks to these investigations,
some deep interrelationships between Dyson–Schwinger equations and some
abstract mathematical structures in theory of motives and theory of com-
putation have been found by the author.

This research work proposes some new applications of mathematical
tools originated from Combinatorics, Functional Analysis, Noncommuta-
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tive Geometry, Category Theory and Logic to deal with infinite graphs
generated by solutions of Dyson–Schwinger equations. These new math-
ematical settings can provide some new techniques for the computation of
non-perturbative parameters. In addition, they suggest a new methodology
for the description of the intrinsic foundations of Quantum Field Theory
such as quantum entanglement and quantum logic under a non-perturbative
setting. These investigations will help us to understand the indeterministic
nature of non-perturbative Quantum Field Theory.

Generally speaking, the achievements of this research work can im-
prove our knowledge about the phenomenology of non-perturbative Quan-
tum Field Theory under two different but related levels. The first level
focuses on the mathematical foundations of Dyson–Schwinger equations to
bring some new computational tools in dealing with non-perturbative pa-
rameters generated by large Feynman diagrams. At this level, we consider
each Dyson–Schwinger equation as an individual object in the vector space
SΦ,g =

⋃
SΦ(λg) of all Dyson–Schwinger equations derived from Green’s

functions of a given Quantum Field Theory Φ under different scales λg
of the bare coupling constant g where 0 < λ ≤ 1. We equip this infi-
nite dimensional vector space with a topological structure defined via the
graphon representation of Feynman diagrams. Under a combinatorial set-
ting, we discuss the structure of a new model for large Feynman diagrams
in the language of combinatorial polynomials and random graphs. Further-
more, we discuss the complexity of non-perturbative parameters generated
by Dyson–Schwinger equations in the context of theory of computation.
In this direction we try to show the importance of a new multi-scale non-
perturbative renormalization group for the description of the Kolmogorov
complexity in dealing with Dyson–Schwinger equations. Under a geometric
setting, we explain the dynamics of non-perturbative aspects in a physical
theory with respect to the mathematical structures originated from Dyson–
Schwinger equations. We build a noncommutative geometry model for each
Dyson–Schwinger equation which leads us to interpret quantum motions
in the context of theory of spectral triples and noncommutative differen-
tial forms. Under a functional analysis setting, we discuss the evolution
of fixed point equations of Green’s functions by defining a new generalized
version of the Fourier transformation on the Banach algebra L1(SΦ,g, µHaar)
defined on large Feynman graphs. The second level focuses on the mathe-
matical foundations of non-perturbative Quantum Field Theory where we
must deal with all possible Dyson–Schwinger equations and for this purpose
we explain the construction of a new Hopf algebra structure SΦ

graphon on the
topological space of graphons which contribute to representations of Feyn-
man diagrams and their finite or infinite formal expansions. The resulting
topological Hopf algebra is capable to encode large Feynman diagrams gen-
erated by solutions of Dyson–Schwinger equations in different rescalings of
the bare coupling constant g. Therefore we can embed the collection SΦ,g
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into SΦ
graphon. This Hopf algebra leads us to formulate a Hopf algebraic

renormalization theory for large Feynman diagrams which is the result of
an adaption of the Connes–Kreimer BPHZ renormalization program. We
then define a new multi-scale renormalization group on the collection SΦ,g

where this renormalization group enables us to study the behavior of Dyson–
Schwinger equations under changing the scales of running and bare coupling
constants. As an application, we will enable to study an equation DSE(g)
in strong coupling g in terms of analyzing its approximations with respect
to Dyson–Schwinger equations under weaker couplings. Under a calculus
setting, we explain the foundations of a differential calculus theory on SΦ,g

where thanks to graph function representation of Dyson–Schwinger equa-
tions and theory of Gâteaux derivative, a theory of differentiation and a
theory of integration on SΦ,g will be provided. Under a categorical set-
ting, we concern some foundations of Quantum Field Theory on the basis of
a non-perturbative context. On the one hand, we explain mathematically
the information flow among elementary (virtual) particles in QFT models
via a new class of topological Hopf algebras generated by Dyson–Schwinger
equations. This new perspective will lead us to explain quantum entan-
glement via a theory of lattices where we will show the importance of the
universal Connes–Marcolli category of flat equi-singular vector bundles for
the description of the geometry of quantum entanglement. Thanks to this
investigation, we will discover the motivic nature of quantum entanglement
in interacting gauge field theories with strong couplings. On the other hand,
we have also plan to explain the original basics of a quantum logic theory
for Quantum Field Theory where we will explain the construction of a topos
of presheaves on a new base category. This base category enables us to
encode topological regions of Feynman diagrams determined by objects in
SΦ,g. This new toposification method, which is depended upon the strength
of the coupling constant in QFT models, provides a new logical formalism
for the evaluation of logical propositions about Dyson–Schwinger equations.

Thanks to these two levels of observations, we expect to provide a new
insight into the complicated problems of non-perturbative situations where
the strength of the coupling constants do really change the mathematics and
the logics of quantum theory models.

9



Chapter 1

Introduction

• Physical backgrounds
• Mathematical backgrounds
• Recent progress and objectives
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1.1 Physical backgrounds

Modern Theoretical and Experimental High Energy Physics have been estab-
lished on the basis of Quantum Field Theory models under the Lagrangian
setting which is (minimally) coupled to gravity via the incorporation of
massive neutrinos. The foundations of Quantum Field Theory were initi-
ated in terms of the interpretation of the quantized version of Electrody-
namics in the language of the Feynman path integral formalism under a
perturbation setting. The appearance of gauge field theories which include
Quantum Electrodynamics (QED), Electroweak theory, Quantum Chromo-
dynamics (QCD), Quantum Gravity have developed rigorously our theo-
retical knowledge about the fundamental properties of elementary particles
before we could reach to appropriate empirical information. Thanks to these
backgrounds, mathematicians and theoretical physicists have already made
outstanding achievements for the description of interactions of elementary
particles under different settings in the context of advanced mathematical
models. For example, mathematical tools in Noncommutative Geometry, Al-
gebraic Geometry, Combinatorics and Category Theory have been applied
to formulate Standard Model and other extended theories which include su-
persymmetry, gravitational interactions or extended objects such as strings
and brane theory. We can also address tensor models as higher dimensional
generalizations of matrix models which aim to achieve a theory of random
geometries in dimensions higher than two. This class of theories helps us for
the construction of discrete approaches to quantizing gravity. [19, 20, 23,
30, 37, 44, 85, 86, 94, 99, 110, 120, 122, 129, 136, 137, 163, 169, 174]

The Lagrangian formalism enables us to understand Quantum Field The-
ory by working on Green’s functions as infinite formal expansions of Feyn-
man integrals or their corresponding diagrams where the amount of some
fundamental parameters such as the strength of the bare coupling constants
or the domain of momenta make the resulting series divergent or asymptotic
free. In perturbative physical theories we expect to have some convergent
series.

For example in φ4 model the partition function is given by

Z[B] :=

∫
Dφ e−L(φ)+

∫
Bφ (1.1)

such that

L(φ) =

∫
d4x

(1

2
(∇φ)2 +

1

2
r0φ

2 +
1

4!
u0φ

4
)
, (1.2)

and B is an external field. If we set

Z0 :=

∫
Dφ e−L0(φ)+

∫
Bφ, L0(φ) :=

∫
d4x

(1

2
(∇φ)2 +

1

2
r0φ

2
)
, (1.3)
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then we can develop Z as a series in u0 around Z0 to achieve

Z =

∫
Dφ

(
1−u0

4!

∫
x1

φ4(x1)+
1

2
(
u0

4!
)2

∫
x1,x2

φ4(x1)φ4(x2)+...
)
e−L0(φ)+

∫
Bφ.

(1.4)
This expansion can be represented in the language of Feynman diagrams
which leads us to a combinatorial formulation for Green’s functions. The
fluctuations generated by the φ4 term around the Gaussian integral Z0 are
large where they determine iterated integrals with the general form∫ Λ

ddq1...d
dqL

∏
i

(propagator(qi)) (1.5)

such that the ultra-violet regulator Λ provides a cut-off at the upper bound
type of integral. The dependency of these integrals to the parameter Λ makes
a rigorous challenge for the computation of universal quantities. Theory of
perturbative renormalization provides the machinery to reparametrize the
perturbative expansion in such a way that the sensitive dependence on Λ
has been eliminated. In this situation, the renormalization group enables
us to partially resum the perturbative expansions to achieve some universal
computational results. [23, 30, 129, 171]

In general speaking, it is possible to investigate the situations beyond
perturbation theory in terms of some expressions such as

P (g) = X0 +X1g +X2g
2 + ...+Xng

n + ... (1.6)

such that g is the coupling constant and each term Xi represents the class
of Feynman diagrams which contribute to the i-order of perturbative expan-
sion. It is obvious that physical theories with very small g could be encoded
by only some beginning finite number of terms from the above expansion
while physical theories with strong coupling g produce infinite number of
terms. These non-perturbative aspects have been concerned in Theoretical
Physics via Dyson–Schwinger equations as a quantized version of the Euler–
Lagrange equations of motion originated from the principal of the least ac-
tion. These equations, which can be determined by fixed point equations of
Green’s functions, have been studied under analytic and numerical methods
in Theoretical and Mathematical Physics such that we can address standard
techniques such as Borel summation, theory of instantons, lattice models,
etc in dealing with these equations to generate some estimations for non-
perturbative parameters. In physical theories with strong couplings such as
Hadron Physics, we should deal with hadrons such as protons and neutrons
as the composite particles build up from quarks and gluons (as elemen-
tary particles under strong interaction). In general, QCD, as a nonabelian
gauge theory with the symmetry group SU(3), has provided a modern un-
derstanding of the complicated nature of hadrons and nuclei where we study
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the strong interactions of quarks and gluons under confinement and chiral
symmetry breaking. The appearance of nuclear weak force enables us to de-
scribe any change quark’s flavor via W bosons. In fact, the weak force is not
only responsible for interactions between particles, but it also allows heavy
particles to decay by emitting or absorbing some of the force carriers. We can
describe QCD as a matrix-valued modification of electromagnetic theory in
terms of replacing photons by gluons and electrons by quarks while quantum
fluctuations of the fields could determine the force law. The quantization of
Chromodynamics involves the regularization and renormalization of ultra-
violet divergencies which generate a mass-scale where mass-dimensionless
quantities become dependent on a mass-scale. The current quark-masses
are the only evident scales in QCD. The main experimental confirmations of
QCD have been investigated at high energies and high momentum transfers
(or short distances) where the QCD coupling is small and correspondingly
the forces are weak. This situation, which is known as asymptotic freedom
property, enables us to detect the composite structure of hadrons by scatter-
ing high energy electrons. The most difficult challenge in this model can be
observed when perturbation theory fails to describe the short range static
potential obtained from quenched lattice simulations where the difference
between the non-perturbatively determined potential and perturbation the-
ory at short distance has been parameterized by a linear term. In addition,
there are also so many difficulties for the study of the asymptotic character of
QCD perturbative series beyond the two-loop level where the original effort
is to find a way to subtract perturbative contributions to a given physical
process in order to isolate non-perturbative terms. In the domain of rela-
tively low energies and momentum transfers such as Q2 ∼ 1− 5 GeV2 while
the proton’s mass is approximately 1 GeV, the QCD coupling constants
are larger where many loops perturbative calculations should be applied.
Because of nontrivial vacuum structure of QCD, in the domain of lower en-
ergies and momentum transfers (or large distances) such as Q2 ≤ 1 GeV2,
the QCD coupling constants are stronger than one where the analytic calcu-
lations do not useful but there are some methods such as the chiral effective
theory, lattice calculations, large N limits and Dyson–Schwinger equations
to provide some algorithmic computations. This situation, which is actually
the failure to directly observe coloured excitations in a detector, is the origin
of the concept of confinement as the fundamental fact that we do not see free
quarks or gluons in nature but rather we only see colourless. The analytic
description of confinement is one difficult challenge for the understanding of
continuum QCD. The phenomenology of confinement can be studied in the
context of Dyson–Schwinger equations. [7, 30, 38, 118, 119, 120, 137]

The situations beyond perturbation boundary deal with divergencies
originated from strong coupling constants such as infinite many loops Feyn-
man diagrams. What does this class of diagrams means and how can we
deal with these extremely complicated concepts? Applying advanced math-
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ematical structures is helpful for the better understanding of this class of
divergencies. It is obvious that having strong mathematical modelings is the
initial step to make fundamental progress in dealing with complicated behav-
ior of elementary particles inside nuclei. We can address the mathematical
foundations of the (modified) Standard Model as a good theoretical method-
ology which led scientists to obtain strong experimental investigations about
elementary particles. String Theory is another powerful mathematical plat-
form which aims to provide a unified theory for the study of elementary
particles with respect to all fundamental forces. The basic philosophy of
this research work is to build and develop the mathematical foundations
of QFT models with strong couplings where as the consequence, we expect
to provide some new mathematical tools for the better understanding of
physical parameters beyond perturbation theory. Our study suggests a new
interpretation from the phenomenology of strong couplings in the context
of combinatorial, geometric and categorical settings.

1.2 Mathematical backgrounds

The contributions of mathematical tools to Quantum Field Theories have
been extraordinary developed when the (Bogoliubov–)Zimmermann forest
formula was reinterpreted by Kreimer in the context of (co)algebraic com-
binatorial tools. This reinterpretation had been concerned by Connes and
Kreimer to build a new modern formulation for the Bogoliubov–Parasiuk–
Hepp–Zimmermann (BPHZ) perturbative renormalization in Quantum Field
Theory on the basis of the theory of Hopf algebras and the Riemann–Hilbert
problem. The Connes–Kreimer approach has become the main foundation
in many research efforts for the study of complicated Feynman integrals,
Green’s functions and renormalization group where it has led the Theo-
retical Physics’s community to achieve some new mathematical tools for
the description of physical parameters in (renormalizable) gauge field theo-
ries under algebraic, combinatorial and geometric settings. It is now possi-
ble to encapsulate the machinery of perturbative renormalization in terms
of a connected graded free commutative non-cocommutative (finite type)
Hopf algebraic structure HFG(Φ) on Feynman diagrams of a physical the-
ory Φ which has a Lie algebraic nature determined by the insertion opera-
tor. The compatibility of the fundamental identities such as Slavnov–Taylor
and Ward identities in QCD and QED with the renormalization coproduct
have been shown in the language of Hopf ideals. The phenomenology of
counterterms has been concerned underlying a geometric treatment to pro-
vide some alternative methods for the computation of these physical values
in the language of (singular) differential equations. In this setting, a new
class of equi-singular flat connections governs the behavior of counterterms
with respect to the β-function. This setting has been lifted onto a uni-
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versal Tannakian formalism where a renormalizable Quantum Field Theory
is studied via a category of geometric objects which can be recovered by
a category of finite dimensional representations of the affine group scheme
GΦ := Hom(HFG(Φ),−). [2, 3, 16, 18, 19, 20, 21, 24, 22, 26, 33, 34, 37, 65,
66, 87, 95, 96, 97, 98, 125, 155, 156, 168, 174]

Perhaps the most fundamental result in this direction would be the dis-
covery of a very deep interrelationship between Feynman integrals and the-
ory of motives in Algebraic Geometry where a motivic renormalization ma-
chinery has been formulated to deal with divergencies in the language of
Picard–Fuchs equations and other powerful tools.

Theory of motives in Algebraic Geometry aims to concern the existence
of a universal cohomology theory for algebraic varieties defined over a base
field k while taking values into an abelian tensor category. The construction
of a category of motives (mixed motives) related to general varieties is a
difficult task where the noncommutative version of motivic objects provides
the motivic cohomology applied in the construction of a universal cohomol-
ogy theory. The structure of mixed Tate motives as elements of the subring
Z[L] of the Grothendieck group K0(Vark) of k−varieties has been considered
where L := [A1] is the Grothendieck class of the affine line. The application
of motives enables us to develop a unified setting underlying different coho-
mology theories such as Betti, de Rham, l-adic, crystalline and etale. For
this purpose, the construction of an abelian tensor category that provides a
linearization of the category of algebraic varieties has been studied to provide
some fundamental requirements of standard conjectures of Grothendieck.

The importance of motives in Quantum Field Theory have been noted
in different settings. The Bloch–Esnault–Kreimer approach which informs
interesting applications of Hodge type structures in the calculation pro-
cesses of Feynman integrals underlying graph polynomials [11, 12, 97, 169].
The Aluffi–Marcolli approach which builds the motivic version of Feynman
rules characters where they have applied Kirchhoff–Symanzik polynomials
to produce a new version of algebro-geometric (dimensionally regularized)
Feynman rules characters. These abstract characters send classes in the
Grothendieck ring of conical immersed affine varieties to the classes in the
Grothendieck ring of varieties spanned by the classes [XΓ]. This formal-
ism, which is on the basis of the deletion–contraction operators and Tutte–
Grothendieck polynomial, enables us to relate Feynman diagrams with pe-
riods of algebraic varieties. This framework provides a motivic treatment in
the study of perturbative renormalization process at the level of the universal
motivic Feynman rules character [5, 6]. The Connes–Marcolli approach deals
with the geometric interpretation of counterterms on the basis of flat equi-
singular connections such that these geometric objects have been organized
in a categorical structure EΦ which is recovered by the neutral Tannakian
category of finite dimensional representations of the affine group scheme GΦ.
This category has been embedded (as a sub-category) inside of the universal
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category ECM of flat equi-singular vector bundles with the corresponding
universal affine group scheme U. Objects of this universal category, which
has Tannakian nature, address mixed Tate motives which contribute to di-
vergencies of renormalizable physical theories. In addition, ECM determines
the universal singular frame as the unique loop with values in U which pro-
vides the universal counterterm. The Lie algebra of the universal affine
group scheme leads us to formulate a particular shuffle type Hopf algebra.
[37, 116, 117]

A single Feynman diagram reports only a small piece of information
about a finite number of possible interactions among (virtual) elementary
particles where its on-shell part (i.e. incoming and outgoing particles) obeys
the mass-energy equation and conservation of momenta while its off-shell
part (i.e. virtual particles) obeys no special rules or measurements. The
iterated integral corresponding to a Feynman diagram might be so compli-
cated and it contains nested or overlapping sub-divergencies but unfortu-
nately, it does not restore much information about a physical system. In-
deed infinite formal expansions of Feynman diagrams (as polynomials with
respect to coupling constants) do play important roles because they are ca-
pable to encode various possible interactions which could or might happen
among elementary particles in a physical theory. These expansions, which
live in Green’s functions, have been studied by using the self-similar nature of
Green’s functions which allows us to formulate fixed point equations known
as Dyson–Schwinger equations. There are some numerical methods such as
large N limit, Borel resummation, lattice models and theory of instantons
to deal with these equations. [118, 119, 120]

In addition, these non-perturbative equations in physical theories with
strong couplings have been considered in the context of the Connes–Kreimer
renormalization Hopf algebra to provide some new advanced mathematical
tools for the computation of their solutions. This Hopf algebraic formalism
is one of the original motivations of this research program and it is necessary
to review the structure of combinatorial Dyson–Schwinger equations.

The Hochschild cohomology of (commutative) bialgebras is formulated
as the dual notion of the Hochschild cohomology of (commutative) algebras.
For a given commutative Hopf algebra H, consider linear maps T : H −→
H⊗n as n-cochains where the coboundary operator is defined by

bT := (id⊗ T )∆ +
n∑
i=1

(−1)i∆iT + (−1)n+1T ⊗ I (1.7)

such that ∆i is the coproduct ∆ of H applied to the i-th factor in H⊗n. The
Kreimer’s renormalization coproduct on Feynman diagrams can be refor-
mulated recursively in terms of a linear operator B+ on Feynman diagrams
known as the grafting operator as the following way

∆FGB
+ = (id⊗B+)∆FG +B+ ⊗ I. (1.8)
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The operator B+, as a homogeneous linear endomorphism of degree one,
replaces a vertex in a given Feynman diagram with a whole graph in terms of
the type of the targeting vertex and the types of external edges of the second
graph. Thanks to (1.7) and (1.8), the grafting operator is a generator of the
first rank Hochschild cohomology group of the Connes–Kreimer Hopf algebra
of Feynman diagrams. In other words, for each 1PI Feynman diagram γ,
B+
γ is a Hochschild one cocycle. [33, 54, 58, 90]

The first importance of the grafting operator is its role for the represen-
tation of Feynman diagrams in the langauge of decorated trees where we
can encode the Hopf algebra HFG(Φ) by a decorated version of a combina-
torial Hopf algebra HCK of non-planar rooted trees. The grafting operator
acts on each forest t1...tn to deliver a rooted tree by adding a new vertex
r as the root and n new edges which connect the roots of tns to r. Dec-
orations on trees enable us to update HCK with respect to each physical
theory. Each 1PI Feynman graph, which is free of sub-divergencies, is a
primitive element in the Hopf algebra HFG and it can be encoded by a ver-
tex in a tree. In this setting, we can show the existence of an injective Hopf
algebraic homomorphism from HFG(Φ) to the Hopf algebra HCK(Φ) of dec-
orated non-planar rooted trees. In addition, the pair (HCK, B

+) enjoys a
universal property with respect to the Hochschild cohomology theory where
it plays the role of the initial object for a particular category of objects
(H,T ) consisting of a commutative Hopf algebra H and a Hochschild one
cocycle T on H. The Hopf algebra homomorphisms which commute with
the cocycles are morphisms of this category. Therefore we can have a Hopf
algebra homomorphism from HCK to HFG(Φ) for each physical theory Φ.
[18, 19, 20, 56, 57, 74, 87, 89, 91]

The second importance of the grafting operator is its fundamental role
in the reconstruction of Dyson–Schwinger equations under a combinatorial
setting. For a given family {γn}n≥1 of primitive (1PI) Feynman diagrams
with the corresponding Hochschild one cocycles {B+

γn}n≥1, a class of combi-
natorial Dyson–Schwinger equations in H[[g]] is defined by

X = I +
∑
n≥1

gnωnB
+
γn(Xn+1) (1.9)

such that g is the coupling constant. This class of equations accepts a unique
solution X =

∑
n≥0 g

nXn as formal expansion of finite Feynman diagrams
where for each n > 0, we have

Xn =

n∑
j=1

ωjB
+
γj (

∑
k1+...+kj+1=n−j, ki≥0

Xk1 ...Xkj+1
). (1.10)

We set X0 as the empty tree and it can be seen that each Xn is an object in
the Hopf algebra HFG(Φ) while the unique solution X lives in a completion
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of H[[g]] with respect to the n-adic topology. Thanks to Cartier–Quillen–
Milnor–Moore theorem, the unique solution of each Dyson–Schwinger equa-
tion DSE determines the generators of a Faa di Bruno type Hopf subalgebra
HDSE of the Connes–Kreimer renormalization Hopf algebra. HDSE is a free
commutative unitial counital non-cocommutative connected graded finite
type Hopf subalgebra where its coproduct on generators Xn does not de-
pend on the parameters ωj . The Mellin transform allows us to deform these
combinatorial type of equations to their original integral versions. It is pos-
sible to lift this formalism onto the level of systems of Dyson–Schwinger
equations where we deal with a system (S) of a finite collection of equations
with the general form

(S) : ∀i ∈ I, xi =
∑
j∈Ji

B+
(i,j)(f

(i,j)(xk, k ∈ I)) (1.11)

such that I := {1, ..., n}, Ji is a graded connected set, B+
(i,j)s are Hochschild

one cocycles and f (i,j)s are formal series in K[[α1, ..., αn]]. It is shown that
the system (S) has a unique solution such that under some conditions it can
determine the Hopf subalgebra H(S) as a consequence of the Hopf subalge-
bras H1, ...,Hn generated by combinatorial Dyson–Schwinger equations in
the system. [9, 27, 53, 61, 62, 63, 90, 93]

The main skeleton of a combinatorial Dyson–Schwinger equation is ac-
tually a family of Hochschild one cocycles. There exists a surjective map
from the first rank Hochschild cohomology group to the space of primitive
Feynman diagrams of the renormalization Hopf algebra. It means that each
family {γn}n≥1 of primitive Feynman diagrams determines the correspond-
ing family {B+

γn}n≥1 of Hochschild one cocycles. It is important to note that
each 1PI Feynman diagram, which is free of sub-divergencies, is a primitive
element but they are not the only primitives in the renormalization Hopf
algebra. In other words, there are primitive Feynman diagrams in higher
degrees which can determine Hochschild one cocycles. [9, 33, 91]

1.3 Recent progress and objectives

The combinatorial reformulation of Dyson–Schwinger equations in terms of
the theory of Hopf algebras and Hochschild cohomology theory has played a
central role for the creation of many interesting and rigorous mathematical
constructions which can improve our knowledge about the phenomenology
of non-perturbative parameters under different settings. [25, 53, 63, 64, 90,
92, 93, 100, 103, 124, 147, 150, 151, 152, 164, 165, 170]

The Milnor–Moore theorem ([126]) allows us to determine the infinite
dimensional complex graded pro-unipotent Lie group GΦ(C) which is actu-
ally the complex points of the affine group scheme GΦ = Hom(HFG(Φ),−).
This Lie group, which is the projective limit of linear algebraic groups Gn
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embedded as Zariski closed subsets in some GLmns, is rich enough to en-
code (dimensionally regularized) Feynman rules characters with respect to
the scale and angle dependence of amplitudes [22]. In addition, we can also
determine the infinite dimensional complex graded pro-unipotent Lie group

GDSE(C) := Hom(HDSE,C) (1.12)

for each given Dyson–Schwinger equation DSE. There exists a natural in-
jective Hopf algebra homomorphism ρ : HDSE −→ HFG(Φ). If we apply
Spec as a contravariant functor, then we can obtain a surjective morphism
ρ̃ : Spec(HFG(Φ)) −→ Spec(HDSE) between spaces of prime ideals in the
commutative algebras HFG(Φ) and HDSE equipped with the Zariski topol-
ogy. This map can be lifted onto the surjective group homomorphism

ρ : GΦ(C) −→ GDSE(C). (1.13)

The existence of Lie subgroups GDSE(C) corresponding to Dyson–Schwinger
equations have been applied to bring a new geometric setting for the study
of non-perturbative parameters in the context of differential systems to-
gether with singularities. The construction of a category of flat equi-singular
GDSE(C)-connections with respect to each equation DSE has been addressed
to encode the BPHZ renormalization of the unique solution XDSE in the
context of differential Galois theory. In other words, the Connes–Marcolli
geometric interpretation of counterterms and the Connes–Marcolli universal
Tannakian machinery in dealing with renormalizable physical theories have
been developed for the study of Dyson–Schwinger equations where each
equation DSE could be considered on the basis of representations of the Lie
group GDSE(C) which is organized in a neutral Tannakian category RepG∗DSE

of finite dimensional representations. This class of categories has been em-
bedded as subcategories into the Connes–Marcolli universal category ECM.
Thanks to these backgrounds, we already have the construction of a differ-
ential Galois theory for the computation of fundamental non-perturbative
parameters such as global β-functions and non-perturbative counterterms in
the language of Picard–Fuchs equations. In addition, it is now possible to
identify a class of mixed Tate motives with respect to each Dyson–Schwinger
equation. [140, 142, 143, 144]

On the one hand, under a Hopf algebraic setting, Dyson–Schwinger equa-
tions are important sources for the production of Hopf subalgebras. The
concept of substructure is one of the fundamental tools in the theory of
computation where the mathematics of Galois theory has been modified to
deal with intermediate algorithms. On the other hand, the Manin’s program
for the interpretation of the Halting problem in the context of the Connes–
Kreimer BPHZ renormalization machinery has initiated the foundations of a
brilliant interrelationship between the amount of computability and the com-
putation of counterterms originated from the renormalization Hopf algebra
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of Halting problem. Thanks to these investigations, now we have a mathe-
matical machinery for the description of intermediate algorithms on the basis
of Dyson–Schwinger equations where some new tools in Operad Theory and
theory of Hall sets for the study of the amount of computability have been
obtained. Results in this direction can also be applied in Theoretical Com-
puter Science and Quantum Field Theory. [52, 113, 114, 115, 147, 172, 173]

Applications of the theory of graphons to Quantum Field Theory is an-
other output of this Hopf algebraic formalism. The foundations of a new
combinatorial interpretation of Feynman diagrams and their infinite for-
mal expansions have been studied recently where we embed (large) Feyn-
man diagrams into a compact topological space obtained by an enrichment
of the Connes–Kreimer renormalization Hopf algebra with respect to the
cut-distance topology. The immediate consequence of this new topological-
combinatorial setting is the formulation of a generalization of the BPHZ
renormalization for solutions of Dyson–Schwinger equations. In this direc-
tion, thanks to some tools in Measure Theory, a new differential calcu-
lus machinery on Feynman diagrams was built which has led us to study
the evolution of Dyson–Schwinger equations in terms of their partial sums.
[77, 107, 148, 149]

Applications of non-commutative differential graded algebras to Quan-
tum Field Theory were also considered to study the geometry of quantum
motions where some new models of gauge theories have been obtained. In
addition, the structure of a non-perturbative version of the Connes–Kreimer
renormalization group has been described in the language of integrable sys-
tems. [41, 42, 43, 45, 141, 146]

As the conclusion for this part, combinatorial Dyson–Schwinger equa-
tions and Connes–Kreimer–Marcolli Hopf algebraic renormalization are the
main motivational objects for us in this research to study non-perturbative
Quantum Field Theory. Our main attempt in this work is to develop math-
ematical structures originated from Dyson–Schwinger equations to discover
some new information about complicated behavior of Quantum Field The-
ories in strong coupling constants. This work aims also to bring some new
mathematical tools to deal with the computation of non-perturbative pa-
rameters. Under a combinatorial setting, we plan to apply the graphon
representation of Feynman diagrams together with other combinatorial and
topological tools to provide a Hopf algebraic renormalization machinery for
objects in the topological space

SΦ,g =
⋃
λ

SΦ(λg) (1.14)

of all Dyson–Schwinger equations originated from Green’s functions of a
given Quantum Field Theory Φ under different scales λg of the bare coupling
constant g where 0 < λ ≤ 1. The topology on this space, which is the result
of the graphon representation of Feynman diagrams, can be determined by
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the metric
d(XDSE1 , XDSE2) := dcut([WXDSE1

], [WXDSE2
]) (1.15)

such that dcut is the distance between two unlabeled graphon classes. We
then address some new applications of combinatorial polynomials such as
Kirchhoff–Symanzik and Tutte polynomials to formulate a parametric repre-
sentation of large Feynman diagrams. This study is useful for the construc-
tion of algebro-geometric Feynman rules on the topological Hopf algebra
SΦ

graphon. Then we concern the concept of complexity for the description
of non-perturbative parameters where we explain the construction of a new
multi-scale renormalization group machinery on SΦ,g which is useful on two
levels. Firstly, it can provide a mathematical machinery for the approxi-
mation of Dyson–Schwinger equations in strong couplings via equations in
weaker couplings. Secondly, it helps us to initiate a new version of the
Kolmogorov complexity in dealing with Dyson–Schwinger equations. Un-
der a geometric setting, we show some new applications of Noncommutative
Geometry, Measure Theory and Functional Analysis to describe the geom-
etry of non-perturbative Quantum Field Theory in the language of spectral
triples. This study enables us to bring the idea of a spectral geometry frame-
work in dealing with Dyson–Schwinger equations. In addition, it leads us
to define the concept of evolution on SΦ,g with respect to a generalized ver-
sion of the Fourier transformation. Furthermore, this work considers some
intrinsic foundations of Quantum Field Theory with strong couplings such
as quantum entanglement and logical concepts. In this direction, we offer
a new mathematical methodology for the description of quantum entangle-
ment in interacting quantum physical theories in the context of the theory
of lattices and intermediate structures in the theory of computation. This
mathematical formalism enables us to explain information flow in physical
theories with strong couplings on the basis of lattices of topological Hopf
algebras and Lie subgroups. We lift this mathematical modeling onto a
categorical setting to show that the universal category ECM is suitable to
encode the quantum entanglement process. At this level, we expect to show
a new application of motives in dealing with information flow. In addi-
tion, we put forward the construction of a new topos of presheaves on a
particular base category which encodes the logic of topological regions of
Feynman diagrams. We discuss that the topos model for non-perturbative
parts of physical theories should respect the strength of couplings. Thanks
to this setting, we expect to deal with logical propositions originated from
Dyson–Schwinger equations.
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Chapter 2

A theory of renormalization for
Dyson–Schwinger equations

• Quantum Field Theory
• Hochschild cohomology of the renormalization Hopf algebra
• Renormalization Hopf algebra of Feynman graphons and filtra-
tion of large Feynman diagrams
•The BPHZ renormalization of large Feynman diagrams via Feyn-
man graphons

22



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

Having no comprehensive physical description of infinite formal expan-
sions of Feynman diagrams which contribute to polynomials with respect to
strong coupling constants such as (1.6), it is indeed difficult to analyze a
renormalization program for these infinite expansions. The major discourse
in this situation is to find some meaningful mathematical insights deeply re-
lated to fixed point equations of Green’s functions. Then these mathematical
reasonings serve to compel technical terms and models for the explanation
of the renormalization process for Dyson–Schwinger equations.

The original task in this chapter is to explain a renormalization program
on the space SΦ,g which consists of Dyson–Schwinger equations with respect
to running couplings λg in a given physical theory Φ with the bare coupling
constant g. For this purpose, we apply theory of graphons to describe a
graph function representation of (larga) Feynman diagrams which leads us
to build a new graded Hopf algebraic structure SΦ

graphon. Then we lift the
Connes–Kreimer BPHZ formalism onto the level of this Hopf algebra with
respect to the cut-distance topology where we can compute algebraically
some physical parameters generated by Dyson–Schwinger equations such as
non-perturbative counterterms and their corresponding renormalized values.
It will be shown that the complex Lie group associated to the Hopf algebra
SΦ

graphon is the central object for the formulation of a renormalization group
at the level of large Feynman diagrams.

2.1 Quantum Field Theory

Suppose we have a quantized field theory with the Lagrangian L = L(φ, ∂µφ)
which is divided into two parts. The typical free Lagrangian density is given
by

Lfree :=
1

2

(
(∂µφ)(∂µφ)−m2φ2

)
(2.1)

which leads us to the free Klein–Gordon equation of motion(
∂µ∂

µ +m2
)
φ = 0. (2.2)

The interaction part Lint encodes interactions of elementary particles in the
physical theory. The transition amplitudes from initial states to all finite
states is already studied under S-Matrix setting. These matrix elements can
be calculated in terms of a class of correlation functions with the general
form

Gn(x1, ..., xn) :=< 0|Tφ(x1)...φ(xn)|0 > (2.3)

such that |0 > is the vacuum ground state. These equations, known as
Green’s functions, allow us to formulate perturbative Quantum Field Theory
in terms of formal expansions with the general form

Gn(x1, ..., xn) =
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∞∑
j=1

(−1)j

j!

∫
d4y1...d

4yj < 0|Tφin(x1)...φin(xn)Lint(y1)...Lint(yj)|0 > (2.4)

such that φin is the initial state of φ in the infinite past. If we apply Wick’s
Theorem and normal ordering, then the vacuum expectation value can be
described as the integrals of propagators that typically depend on differences
of space-time vectors. The rigorous challenge is the existence of divergencies
in these integrals with respect to the domains of integrations where applying
regularization machineries (such as dimensional regularization) help us to
study these integrals in the context of Laurent series with finite pole parts.
[23, 30]

Feynman diagrams in Quantum Field Theory enable us to represent
combinatorially the summation over probability amplitudes corresponding
to all possible exchanges of virtual particles compatible with a process at a
given order. These decorated diagrams, as a set of edges and a set of vertices,
aim to simplify the description of interactions of elementary particles with
respect to the parameter of time in a quantum system. Their decorations,
which are determined by fundamental parameters of the physical theory
where we can interpret momentum and position as Fourier transforms of
each other, are useful to translate diagrams with respect to momentum
space to their corresponding iterated integrals via Feynman rules. As the
fundamental rules, first, each closed loop associates to an integrate over the
corresponding momentum and second, these graphs should obey the law of
the conservation of momenta which tells us that the amount of momenta
for input particles in an interaction procedure is the same as the amount of
momenta for output particles.

For example, thanks to the Schwinger parameter t, we can consider

1

p2 +m2
=

∫ ∞
0

dt exp(−t(p2 +m2)) (2.5)

as the propagator for each edge and∫
d4x exp(i

∑
j

pjx) (2.6)

as the propagator for each vertex. In this setting, each edge has a factor

G(x, y; t) =

∫
d4p

(2π)4
exp(ip.(x− y)− t(p2 +m2)). (2.7)

Thanks to this machinery, it is possible to describe combinatorially
Green’s functions in the language of expansions of Feynman diagrams. It can
be seen that the general formulation of Green’s function enjoys a self-similar
property which means that

G := 1 +

∫
Iγ +

∫ ∫
IγIγ +

∫ ∫ ∫
IγIγIγ + ...
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= 1 +

∫
Iγ(1 +

∫
Iγ +

∫ ∫
IγIγ + ...) (2.8)

such that Iγ is the Feynman integral corresponding to the primitive (1PI)
Feynman diagram γ. Therefore we have

G = 1 +

∫
IγG (2.9)

such that its fixed point equations determine Dyson–Schwinger equations.
[23, 30, 129, 168]

This formulation of Quantum Field Theory is the result of the path in-
tegral method to Lagrangian formalism where we study the behavior of an
elementary particle in a system with infinite degrees of freedom in terms
of the sum over all possible situations (such as trajectories, interactions)
which could be selected by particle. In terms of some conditions dictated
by physical theory, each possible situation has a particular weight which
should be considered in computational processes. For example in QED we
deal with interactions of electron and positron (as matter) with photons
(as electromagnetic waves with different quantized sizes of energies). There
exists six fundamental interactions namely, the emission of photon from
electron or positron, absorbing a photon via electron or positron, the cre-
ation of a photon via annihilation of the pair (electron, positron), creation
of a pair (electron, positron) via the annihilation of a photon. All other
Feynman diagrams in QED, which might contain complicated off-shell in-
teractions of virtual particles, are built on the basis of those six fundamental
interactions. There exists a class of elementary graphs which play the role
of building blocks to make other Feynman diagrams in a physical theory.
These graphs, which are called one particle irreducible Feynman diagrams,
remain connected after removing one internal edge from each graph. By
induction we can define n-particle irreducible Feynman diagrams which re-
main connected after removing n internal edges from each graph. It is easy
to see that each n-particle irreducible graph is a (n− 1)-particle irreducible
graph.

The coupling constants in Quantum Field Theory aim to describe the
strength of the interactions among elementary particles. The regularization
of UV divergent integrals and the renormalization procedure results a scale
dependence where the UV cut-off dependence of the coupling is eliminated
by allowing the couplings and masses (which appear in the Lagrangian) to
acquire a scale dependence. Then we normalize them to a measured value at
a given scale. Generally speaking, there are two classes of couplings namely,
the bare coupling constant as the original strength of a fundamental force
and the running coupling constants or effective couplings as the result of
renormalization procedures. Quantum Chromodynamics (QCD) is known
as the most successful fundamental gauge theory of strong interactions. It
studies the hadronic interactions involving quarks and gluons at both long
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and short distances. Its symmetry group is SU(3) where it includes Nf fam-
ily of quarks ψif and gluons Aiµ. Some experimental evidences inform us that
at a critical temperature around Tc ≈ 170 MeV QCD matter undergoes a
deconfining phase transition into quark-gluon plasma. Perturbative QCD is
a method based on expanding different physical quantities with respect to
the gauge coupling constant g which is applied in the region T � Tc where g
is small. The phenomenology of the (bare and running) coupling constants
have been discussed in terms of the uncertainties in their values at short dis-
tances which leads us to a total theoretical uncertainty in Physics at large
hadron collider such as Higgs production via gluon fusion. In this situa-
tion we can still have hope to apply asymptotic freedom and perturbative
calculations of renormalization group equations. However at high pertur-
bative orders it becomes necessary to evaluate large numbers of multi-loop
Feynman diagrams in the effective theory. [7, 40, 119]

But on the other hand, the behavior of coupling constants at long dis-
tances such as the scale of the proton mass in order to understand hadronic
structure, quark confinement and hadronization processes should be ana-
lyzed under non-perturbative settings such as Dyson–Schwinger equations
where the phenomenology of the bare and running coupling constants can
be understandable via advanced mathematical methodologies. In this sit-
uation we can address recent theoretical progress for the computation of
non-perturbative parameters in the context of Combinatorics, Geometry
and Category Theory. [9, 25, 92, 118, 120, 137, 142, 143, 144, 165, 170]

The running of a coupling constant originates from the renormalization
procedure while predictions for observables should be determined indepen-
dent of the choice of renormalization map and regularization scheme. This
invariance under the choice of renormalization program is encoded via a
symmetry group. The running coupling is an expansion parameter in the
perturbative series describing an observable and there exists the Landau
pole as the point where the perturbative expression of the running coupling
diverges. It means that this perturbative expression is a non-observable
quantity. The observable is independent of the renormalization scheme but
the series’s coefficients and the running coupling will depend on the renor-
malization scheme. Under asymptotic freedom behavior at short distances,
we can get the first coefficient series as an independent parameter but at very
large distances dependency will play important role. This discussion tells
us that the running couplings are not observables because they are strongly
depended on the renormalization scheme at large distances. In short, the
running couplings have weak scale dependence at distances smaller than
10−16 m such that this controllable weak behavior tends to a strong scale
dependence larger than a tenth of a Fermi. This dependency on the scale
is restored at larger distances due to the confinement of quarks and gluons.
[7, 40, 118]

The Ward–Takahashi identities on Feynman diagrams tell us that the

26



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

photon propagator is the only propagator in QED which contributes to
the running of coupling constant. The Slavnov–Taylor identities on Feyn-
man diagrams tell us that intermediate gauge-dependent quantities in non-
abelian gauge theories provide final gauge-independent results for observ-
ables [99, 155]. Thanks to these facts, it is possible to rewrite Dyson–
Schwinger equations in terms of some running couplings to achieve some
intermediate quantities which are useful to simplify the original complicated
non-perturbative type of equations by some approximations. In a general
configuration, Dyson–Schwinger equations are polynomials with respect to
bare or running coupling constants which means that any change in the
amount of running couplings will make direct influence on the behavior of
these equations. Therefore these non-perturbative type of equations are
good tools for the study of the phenomenology of strong couplings.

Dimensional regularization was introduced by ’t Hooft, Veltman, Bollini
and Gambiagi as a method to regularize ultraviolet divergencies in a gauge
invariant way to complete the proof of renormalizability. The method works
in D = 4− 2ε space-time dimensions where divergencies for D → 4 appears
as poles in 1/ε. This method also regulates infrared singularities where if
we remove the auxiliary IR regulator, the IR divergencies appear as poles
in 1/ε. For ε > 0, we can obtain a well-defined result which we can be ana-
lytically extended to the whole complex D-plane. The only essential change
in the structure of Feynman rules is to replace the couplings in the La-
grangian via the transformation g 7−→ gµε such that µ is an arbitrary mass
scale. Dimensional regularization together with minimal subtraction pro-
vide a practical renormalization program for Feynman integrals with nested
sub-divergencies. These ill-defined parts can be eliminated step by step
under a forest formula setting and the Bogoliubov–Parasiuk–Hepp prepara-
tion allows us to generate some finite values. This particular renormalization
program was reconsidered by Connes and Kreimer under a Hopf algebraic
setting to generate counterterms and renormalized values in terms of the
Riemann–Hilbert problem and the Birkhoff factorization. In this context,
dimensional regularization is encapsulated by the space of loops with the
domain of a punctured infinitesimal disk around zero and with values in
a pro-unipotent complex Lie group associated to the renormalization Hopf
algebra of Feynman diagrams. [34, 35, 58, 66, 98, 102]

While working on the applications of the BPHZ procedure to the level of
many-loop graphs is one of the interesting topics in Quantum Field Theory,
the main information of a physical theory are encoded in (infinite) formal
expansions of Feynman diagrams. Thanks to the Connes–Kreimer–Marcolli
theory, the required mathematical tools for an extension of the BPHZ proce-
dure to the level of Dyson–Schwinger equations has already been considered
under geometric and algebraic settings. According to this new machinery,
we consider each equation DSE with respect to its corresponding complex
Lie group GDSE(C) where the existence of the Hopf–Birkhoff factorization

27



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

on this Lie group has led us to determine counterterms (which contribute
to the unique solution of the equation DSE) in the language of differential
systems together with irregular singularities. These differential systems,
which are on the basis of equi-singular flat GDSE(C)-connections, determine
a new class of systems of Picard–Fuchs equations with regular singularities.
[144, 147]

2.2 Hochschild cohomology of the renormaliza-
tion Hopf algebra

The basic elements of the path integral method in Quantum Field Theory
are (divergent) iterated Feynman integrals over the momentum space such
that the integrands are determined from a definite collection of rules origi-
nated from the physical theory. We can encode these integrals in terms of a
class of combinatorial decorated finite diagrams which are known as Feyn-
man diagrams where sub-divergencies in the original integral are presented
in terms of the existence of nested or overlapping loops in the main diagram.
The Kreimer’s coproduct, which highlights the combinatorics of removing
sub-divergencies from integrals, enables us to factorize the original com-
plicated Feynman diagram into its basic sub-divergencies (as sub-graphs).
This factorization reduces several layers of complications in the computa-
tional processes of perturbative renormalization in terms of a certain graded
commutative non-cocommutative Hopf algebra denoted by HFG(Φ). It is
a graded Hopf algebra with respect to the first Betti number of Feynman
diagrams which means that HFG(Φ) =

⊕
n≥0Hn such that H0 = {I} and for

each n, Hn is the vector space of divergent 1PI n-loop Feynman diagrams
and products of Feynman diagrams with overall loop number n. There is
also another graduation parameter to build a graded Hopf algebra. We can
show that HFG(Φ) is a graded Hopf algebra with respect to the number of
internal edges of Feynman graphs such that the components of this grading
have finite dimensions as the vector spaces. [16, 37, 87, 95]

The original version of the Kreimer’s coproduct was defined in the lan-
guage of parenthesized words to characterize nested, independent or over-
lapped sub-divergencies via sequences of letters and their linear combina-
tions. It encapsulates the Bogoliubov–Zimmermann forest formula based on
the formal expansion

∆FG(Γ) = Γ⊗ I + I⊗ Γ +
∑
γ⊂Γ

γ ⊗ Γ/γ (2.10)

for each Feynman diagram Γ such that the sum is over all disjoint unions of
1PI divergent proper subgraphs. [33, 65, 66, 87]

Generally speaking, for a unital algebra (A,m, e) and a counital coal-
gebra (C,∆, ε) over a field K of characteristic zero, let Hom(C,A) be the
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vector space of all K-linear maps from C to A. Equip this space with a
convolution product defined in terms of the following composition

C −→∆ C ⊗ C −→f∗g A⊗A −→m A (2.11)

to achieve an algebra with the unit e◦ε. A bialgebra (H,m, e,∆, ε) in which
the identity map idH is invertible under the convolution product is a Hopf
algebra. This particular inverse S which obeys the following property

idH ∗ S = S ∗ idH = e ◦ ε (2.12)

is called the antipode such that it is a unital algebra counital coalgebra
antihomomorphism. [27, 66]

There are natural graduation parameters on Feynman diagrams such as
number of internal edges or number of independent loops. The graduation
parameter and the coproduct (2.10) determine the required antipode for the
construction of a free commutative connected graded finite type Hopf algebra
on Feynman diagrams of a given physical theory Φ. The antipode deforms
Feynman rules characters to obtain renormalized values. The Hopf algebra
HFG(Φ) has a Lie algebraic origin and in addition, it can be simplified
via decorated rooted trees to provide a universal model for perturbative
renormalization. The rooted tree version of the renormalization coproduct
(2.10) can be defined in terms of the notion of admissible cut on trees.
[24, 54, 56, 57, 65, 125]

The factorization of a Feynman diagram into its primitive components
can be reversed under some conditions via the insertion operator which
enables us to glue sub-diagrams. It is important to note that in gauge
field theories we should work on a quotient of the renormalization Hopf
algebra with respect to Ward identities and Slavnov–Taylor identities to
achieve a unique factorization for each Feynman diagram with respect to the
insertion operator. The insertion operator provides a Lie algebraic structure
on Feynman diagrams such that the graded dual of its universal enveloping
algebra will be equivalent to the renormalization Hopf algebra. [66, 91, 125,
156]

Theory of Hochschild cohomology for bialgebras is useful for us to formu-
late the Hochschild equation on Feynman diagrams which results a recursive
formulation for the renormalization coproduct. For a given bialgebra H such
as HFG(Φ), the dual of the coalgebra (H,∆, ε) is an algebra H∗ such that
the unit map I of H transposes to a character It of H∗. Therefore we can
build Hochschild cohomology groups Hn(H,H∗) such that n-cochains are
linear maps such as T : H −→ H⊗n. We can transpose them to n-linear
maps such as ρT : (H∗)n −→ H∗ where we have

ρT (Γ1, ...,Γn) := T t(Γ1 ⊗ ...⊗ Γn). (2.13)
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In this setting, the Hochschild coboundary operator b can be determined
by the relation

< Γ1 ⊗ ...⊗ Γn+1,bT (Γ) >:=< bρT (Γ1, ...,Γn+1),Γ > (2.14)

for each Γ ∈ H. Define ∆j : H⊗n −→ H⊗(n+1) as the homomorphism which
applies the coproduct ∆ only on the jth factor. Now we can show that

< ρT (Γ1, ...,ΓjΓj+1, ...,Γn+1),Γ >=< Γ1 ⊗ ...⊗ Γn+1,∆j(T (Γ)) > . (2.15)

It leads us to rewrite the Hochschild coboundary operator as the following
way

bT (Γ) := (id⊗ T )∆(Γ) +

n∑
j=1

(−1)j∆j(T (Γ)) + (−1)n+1T (Γ)⊗ I. (2.16)

The resulting cohomology groups Hn(H∗, H∗It) are indeed the Hochschild
cohomology theory of the bialgebra H. It is easy to check that linear forms
on H are 0-cochains and one cocycles are linear maps such as l : H −→ H
which obeys the following relation

∆(l) = l ⊗ I + (id⊗ l)∆. (2.17)

The Hochschild cohomology with values in a H-bimodule A (such as the
regularization algebra) is defined by working on n-cochains via the vector
space Cn := Cn(H,A) consisting of n-linear maps ψ : Hn −→ A with the
H-bimodule structure

(γ1.ψ.γ2)(Γ1, ...,Γn) := γ1.ψ(Γ1, ...,Γn).γ2. (2.18)

The coboundary map b : Cn −→ Cn+1 is given by

b(ψ)(Γ1, ...,Γn+1) = Γ1.ψ(Γ2, ...,Γn+1)

+
n∑
j=1

(−1)jψ(Γ1, ...,ΓjΓj+1, ...,Γn+1) + (−1)n+1ψ(Γ1, ...,Γn).Γn+1. (2.19)

The resulting cohomology groups are denoted by Hn(H,A).
Let us consider the Hochschild equation for the algebra K[X] which is

also equipped with a cocommutative coalgebra structure by considering the
indeterminate X as the primitive object where ε(X) = 0. For all k ≥ 2, by
induction, we can show that

∆(Xk) = (∆X)k =
k∑
j=0

(
k

j

)
Xk−j ⊗Xj . (2.20)
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For any linear form % on K[X], we have

b%(Xk) = (id⊗ %)∆(Xk)− %(Xk)⊗ I =
k∑
j=1

(
k

j

)
%(Xk−j)Xj . (2.21)

b% is a linear transformation of polynomials which does not increase the
degree. It shows that the integration map T (Xk) := Xk+1/(k + 1) is not a
1-coboundary but it is an one cocycle.

Thanks to this Hochschild cohomology theory, it is possible to define the
renormalization coproduct under a recursive setting.

A graded bialgebra H over a field K is graded as an algebra and as
a coalgebra. It is called connected if the degree zero component of the
graduation structure consists of scalars (i.e. elements of the field K). We
have

H =
⊕
n≥0

Hn, HmHn ⊂ Hm+n, ∆(Hn) ⊂
⊕
p+q=n

Hp ⊗Hq. (2.22)

The coproduct in a connected graded bialgebra can be presented in terms
of the Sweedler notation such that for Γ ∈ H(n), we have

∆(Γ) = Γ⊗ I + I⊗ Γ +
∑

Γ′1 ⊗ Γ′2 (2.23)

where terms Γ′1 and Γ′2 all have degrees between 1 and n − 1. The counit
equations∑

ε(Γ′1)Γ′2 =
∑

Γ′1ε(Γ
′
2) = Γ,

∑
S(Γ′1)Γ′2 =

∑
Γ′1S(Γ′2) = ε(Γ)I (2.24)

tell us that ∆(Γ) must contain terms Γ ⊗ I ∈ H(n) ⊗ H(0) and I ⊗ Γ ∈
H(0) ⊗ H(n) and the remaining terms which have intermediate bidegrees.
They address the equation

Γ = (ε⊗ id)(∆(Γ)) = ε(Γ)I + Γ +
∑

ε(Γ′1)Γ′2 (2.25)

which leads us to the relation ε(Γ) = 0 for every non-trivial Feynman dia-
gram. Therefore the augmentation ideal is given by

Kerε =
∞⊕
n=1

Hn. (2.26)

For P := id − Iε as the projector onto the augmentation ideal, define
Augm := (P ⊗ ...m times... ⊗ P )∆m−1 and then set Hm := Augm+1/Augm

for all m ≥ 1. This gives us the bigraded structure

H =
⊕
n≥0

Hn =
⊕
m≥0

Hm (2.27)
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such that for all k ≥ 1

Hk ⊂
k⊕
j=1

Hj , H0 ' H0 ' K. (2.28)

In addition, the graded structure on the bialgebra of Feynman diagrams
allows us to define a recursive formulation for the antipode

S(Γ) = −Γ−
∑

S(Γ′1)Γ′2 (2.29)

which can be applied to show the existence of a convolution inverse for the
identity map. Number of internal edges or number of independent loops can
be applied as the graduation parameters on the renormalization bialgebra
which leads us to formulate its antipode inductively. [53, 65, 66, 90, 91, 174]

2.3 Renormalization Hopf algebra of Feynman graphons

and filtration of large Feynman diagrams

In this section we present a new discovered interrelationship between theory
of infinite graphs and the fundamental structure of Green’s functions. We
apply the rooted tree representation of Feynman diagrams to define a new
graph function representation for these physical diagrams which leads us
to make a new interpretation of solutions of Dyson–Schwinger equations
with respect to partial sums and cut-distance topology. Thanks to this
treatment, we will show the structure of a new Hopf algebra of graphons
which contribute to Feynman diagrams as a result of the enrichment of the
renormalization coproduct. In addition, we explain the construction of a
filtration on large Feynman diagrams.

The representation of Feynman diagrams in the language of decorated
rooted trees and the recursive nature of the renormalization coproduct are
the key tools to build a new Hopf algebra HCK of non-planar rooted trees.
This combinatorial Hopf algebra together with the grafting operator B+

has a universal property with respect to Hochschild cohomology theory in a
category of commutative Hopf algebras.

On the one hand, Dyson–Schwinger equations are reformulated in terms
of the renormalization Hopf algebra and the grafting operator. The unique
solution of each equation DSE with the general form (1.9) is an infinite
formal expansion of Feynman diagrams. In physical theories with weaker
coupling constants, we can expect to achieve some finite values by applying
many-loop computation techniques under perturbative setting. In physical
theories with strong enough couplings, it is expected to deal with infinite ex-
pansions of finite Feynman diagrams such as

∑
n≥0(λg)nXn such that g is the

bare coupling constant while λg is any running coupling or a re-scaled ver-
sion of these values. These expansions are actually the solutions of equations
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of motion in Quantum Field Theory where we deal with Dyson–Schwinger
equations which encode the self-similar nature of Green’s functions. [92]

On the other hand, graph limits, as a modern branch in infinite com-
binatorics, study limits of finite combinatorial objects such as weighted or
directed graphs, multi or hyper graphs, bipartite graphs and posets. The-
ory of graphons and random graphs is one of the recent progress in infinite
combinatorics where we deal with (symmetric) measurable functions such
as W defined on the probability space Ω. Actually, a graph limit, as the
convergent limit of an infinite sequence of graphs, can be represented by a
graphon which does not have necessarily the unique representation. The key
tool which allows us to concern convergence and equivalence of graphons is
the concept of cut-metric. [107]

Thanks to these information, it is reasonable to think about any rela-
tionship between solutions of combinatorial Dyson–Schwinger equations and
theory of graphons. This idea has already been discussed in [148, 149] where
these infinite complicated Feynman graphs are interpreted in the language
of graph functions and cut-distance topology. Now we plan to develop our
studies and build a new Hopf algebra structure on the space of all Dyson–
Schwinger equations in a given physical theory Φ with strong bare coupling.
As we know, Dyson–Schwinger equations are polynomials with respect to
the coupling constants where by changing the running couplings or rescal-
ing the bare coupling, the behavior of these equations can be changed. For
a fixed bare coupling constant g, define SΦ(λg) as the set of all Dyson–
Schwinger equations with the general form DSE(λg) which has the unique
solution XDSE(λg) =

∑
n≥0(λg)nXn. The rescaling parameter λ has the val-

ues in (0, 1] which enables us to define the family SΦ,g =
⋃
λ SΦ(λg). It

contains all equations DSEs in different rescalings of the bare coupling in
the physical theory.

Generally speaking, theory of graph limits aims to assign a limit to a se-
quence of finite graphs such as {Gn}n≥0 when number of vertices of graphs
in the sequence tends to infinity. There are some different approaches to
define the concept of convergence at this level but the one approach which
is based on random graphs and cut-distance topology is very useful. We
can say that a sequence {Gn}n≥0 of finite graphs is convergent when |Gn|
tends to infinity, if for each fixed value k, the distribution of the random
graph Gn[k] converges when n tends to infinity. In this setting, Gn[k] is a
labeled subgraph of Gn with vertices 1, ..., k obtained by selecting k distinct
vertices v1, ..., vk ∈ Gn under a uniformly random process. Graph limits can
be also interpreted as equivalence classes of convergent sequences of finite
graphs. There are abstract objects, known as graphons, which allow us to
study graph limits. For a given probability space Ω, graphons are bounded
measurable symmetric functions W : Ω× Ω −→ [0, 1]. The symmetric con-
dition can be removed when we work on another class of graphons known as
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bigraphons. Since we plan to explain the graphon representation of Feyn-
man diagrams in the language of rooted trees, in some situations we need to
address the decorations of trees (such as direction from the root to other ver-
tices) where it is useful to consider non-symmetric graphons, otherwise we
can work on the symmertic version. In addition, the graphon representation
of graph limits is not unique and it depends on selecting decorations and
other presentation parameters. We use the notation ”labeled graphons” in
this situation. We can address pixel pictures as the most common examples
of labeled graphons for the description of graph limits which are built by
the adjacency matrix.

A map ρ : Ω1 −→ Ω2 between two probability spaces (Ω1,F1, µ1) and
(Ω2,F2, µ2) is called measure preserving if it is measurable and µ1(ρ−1(A)) =
µ2(A) for each measurable set A ∈ F2. ρ is called measure preserving
bijection if it is a bijection map and ρ, ρ−1 are measure preserving. It is
easy to check that for a given measure preserving map ρ, the map ρ ⊗ ρ :
Ω2

1 −→ Ω2
2 defined by ρ⊗ρ(x, y) := (ρ(x), ρ(y)) is also a measure preserving

map. If ρ is a bijection, then fρ, W ρ are called rearrangements of f (as a
function on Ω2) and W (as a function on Ω2

2). Actually, relabeling of labeled
graphons can be understood as a kind of rearrangement. In other words, for
a given measure preserving map ρ, the pull backs of f and W are defined
by

fρ(x) := f(ρ(x)), W ρ(x, y) := W (ρ(x), ρ(y)). (2.30)

If f ∈ L1(Ω2) and W ∈ L1(Ω2
2), then ‖ fρ ‖1=‖ f ‖1 and ‖ W ρ ‖1=‖ W ‖1.

[77, 107]

Definition 2.3.1. An unlabeled graphon is a graphon up to relabeling such
that a relabeling is defined by an invertible measure preserving transforma-
tion of the unit interval.

For a given labeled graphon W , its corresponding unlabeled graphon
class [W ] is given by

[W ] := {W ρ : (x, y) 7−→W (ρ(x), ρ(y)) : ρ is an arbitrary rearrangement}.
(2.31)

Set W(Ω) as the set of all labeled graphons on a given probability space
Ω. It is not difficult to see that if [0, 1] is the probability space, then W(Ω)
is the subspace of symmetric functions in L∞([0, 1]2). By defining a suitable
equivalence relation on labeled graphons, which encodes exchanging decora-
tions, it is possible to associate a unique graphon class to each graph limit.
This graphon class is called unlabeled graphon. Set [W](Ω) as the family of
all unlabeled graphons on a given probability space Ω.

Graphons, as edge weighted graphs on the vertex set [0, 1], provide a
generalization of common graphs. We can show that each finite simple graph
G defines naturally an unlabeled graphon class [WG]. First we can build a

34



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

labeled graphon WG with respect to the information of the adjacency matrix.
Consider V (G) as a probability space such that each vertex has probability

1
|G| . Define the map W 1

G : V (G)× V (G) −→ [0, 1] as follows

W 1
G(u, v) := {1, if u and v are adjacent

0, otherwise . (2.32)

It is easy to see that W 1
G is a symmetric measurable function. In an al-

ternative setting, we can also consider Ω = (0, 1] as the probability space
which is equipped with a partition {Ini }i=1,...,n such that Ini := ( i−1

n , in ]. If
the vertices of G is labeled by 1, .., n, then the corresponding graph function
W 2
G is given by

W 2
G(x, y) = W 1

G(i, j) = 1, x ∈ Ini , y ∈ Inj . (2.33)

Homomorphism density is one important concept in dealing with the
probability of the existence of a subgraph in an extremely large graph. For
a given finite graph G, the homomorphism density of each subgraph H into
G is given by

t(H,G) :=
hom(H,G)

|V (G)||V (H)| (2.34)

such that hom(H,G) is the number of graph homomorphisms from H into
G. It is possible to generalize this idea for the level of graph limits where
this parameter informs the density of H as a subgraph in G asymptotically
when the number of vertices of G tends to infinity. For a given graphon
W : Ω2 −→ [0, 1] and a simple finite graph H, the homomorphism density
is defined by

t(H,W ) :=

∫
Ω|H|

∏
ij∈E(H)

W (xi, xj)dµ(x1)...dµ(x|H|). (2.35)

If the graphon WG is a labeled graphon with respect to a given graph G,
then we have t(H,G) := t(H,WG). The homomorphism density provides an-
other alternative way to describe convergence. It is shown that the sequence
{Gn}n≥0 converges to the labeled graphon W iff the sequence {t(H,Gn)}n≥0

of homomorphism densities converges to the homomorphism density t(H,W )
for each simple subgraph H. [77, 107]

The space of graphons provides the completion of the space of finite
graphs with respect to a topology generated by a particular metric namely,
cut-distance. The cut-distance between labeled graphons W,U is defined by

δcut(W,U) := infρ,τ supS,T |
∫
S×T

W (ρ(x), ρ(y))−U(τ(x), τ(y))dxdy| (2.36)

such that the infimum is taken over all relabelings ρ of W and τ of U and the
supremum is taken over all measurable subsets S, T of the closed interval.
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The infimum over relabeling allows us to define the cut-distance on the space
of unlabeled graphons.

Two graphons W,U are called weakly equivalent U ≈W iff for all finite
subgraphs H, we have t(H,W ) = t(H,U). It is equivalent to say that there
exists a graphon V and measure-preserving maps ρ, τ (as relabelings) such
that V ρ = W and V τ = U almost everywhere. Therefore two weakly equiva-
lent graphons have the same corresponding symmetric measurable functions
almost everywhere. The distance (2.36) does not distinguish between weakly
isomorphic graphons.

Theorem 2.3.2. Each graphon is the cut-distance convergent limit of a
sequence of finite graphs. In addition, the cut-distance δcut determines a
compact topological structure on the space W(Ω)/ ≈ of labeled graphons up
to the weakly equivalent relation. [77, 107]

It is the place to deal with a new application of graph limits to Quantum
Field Theory where we aim to achieve a new interpretation of Feynman
diagrams and their corresponding formal expansions. In general, a Feynman
diagram, as a weighted graph decorated by some physical parameters, might
have many nested or overlapping loops. Infinite series of many-loop Feynman
diagrams, which appear in theories with strong couplings, are actually good
examples of complicated dense graphs. Theory of graphons might be our
best chance for the handling of these strange objects in the context of infinite
combinatorial tools. For this purpose we apply rooted tree representations
of Feynman diagrams to reach to a new graph function interpretation.

Lemma 2.3.3. The algebraic combinatorics of each Feynman diagram can
be encoded by a unique unlabeled graphon class.

Proof. A rooted tree t is a finite, connected oriented graph without loops
in which every vertex has exactly one incoming edge, except one namely,
the root which has no incoming but only outgoing edges. We can put two
classes of decorations on each tree namely, vertex-labeled and edge-labeled.
The rooted tree representations of Feynman diagrams can be defined via the
grafting operator. The free commutative algebra generated by isomorphism
classes of non-planar rooted trees is actually the polynomial algebra gen-
erated by symbols t where each symbol represents one isomorphism class.
The concatenation is the product and the empty tree is the unit for this
polynomial algebra. In addition, this polynomial algebra can be equipped
by a modified version of the renormalization coproduct given by

∆CK(t) = I⊗ t+ t⊗ I +
∑
c

Rc(t)⊗ Pc(t) (2.37)

such that the sum is taken over all admissible cuts c on t which divides the
tree into two parts. The partRc(t) contains the original root of t and the part
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Pc(t) is a forest of subtrees. The resulting Hopf algebra HCK of non-planar
rooted trees is connected graded free commutative non-cocommutative finite
type. Decorations enable us to adapt this combinatorial Hopf algebra with
respect to physical theories. Each graph Γ, which might contain divergent
subgraphs, is encoded by a decorated non-planar rooted tree tΓ such that
the root represents the full graph and each leaf is a divergent subgraph
which has no further subdivergencies. If the original graph has overlapping
subdivergencies, then we can replace the single rooted tree by a sum of
decorated rooted trees after disentangling the overlaps. Thanks to these
rules, we can embed the Hopf algebra HFG(Φ) of Feynman diagrams of Φ
into the decorated Connes–Kreimer Hopf algebra HCK(Φ) as a closed Hopf
subalgebra. This embedding is encapsulated by the injective Hopf algebra
homomorphism

Γ 7−→ Ξ(Γ) :=
r∑
j=1

B+
Γj ,Gj,i

( kj∏
i=1

Ξ(γj,i)
)

(2.38)

such that Γ =
∏kj
i=1 Γj ?j,i γj,i and Gj,i’s are the gluing information. For a

given decorated non-planar rooted tree t, if the longest path from the root
to a leaf contains k edges, then the renormalization coproduct ∆CK(t) is
a sum of at least k + 1 terms. In other words, the decorated non-planar
rooted tree t represents an iterated integral with k nested sub-divergencies
while each vertex corresponds to a sub-integral without any sub-divergencies.
[54, 56, 57, 65, 74]

Therefore each Feynman diagram with nested loops can be represented
by a labeled rooted tree where the root is the symbol for the original graph
and other vertices are symbols of nested loops. Edges among vertices deter-
mine the positions of nested loops with respect to each other. In addition,
it is possible to represent Feynman diagrams with overlapping divergencies
with rooted trees where we should deal with linear combinations of decorated
rooted trees. [65, 66, 88, 91]

For a Feynman diagram Γ without overlapping sub-divergencies, the dec-
orated tree tΓ := Ξ(Γ) is a simple finite weighted graph where thanks to its
corresponding adjacency matrix we can determine the labeled graphons WtΓ

of the form (2.32) or (2.33). Set [WtΓ ] as the unlabeled graphon class asso-
ciated to tΓ. The definition (2.31) of the class [.] guarantees the uniqueness
of the unlabeled graphon [WtΓ ]. Thanks to the embedding (2.38), [WtΓ ] is
the unique unlabeld graphon class of the Feynman diagram Γ.

For a Feynman diagram Γ which has some overlapping sub-divergencies,
uΓ := Ξ(Γ) is a linear combination of decorated non-planar rooted trees. In
this situation, the labeled graphons such as WuΓ can be determined by nor-
malizing the combination of labeled graphons Wt1 , ...,Wtn as the following
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way

WuΓ(x, y) :=
Wt1 + ...+Wtn

|Wt1 + ...+Wtn |
. (2.39)

Definition 2.3.4. A sequence {Γn}n≥0 of Feynman diagrams is called con-
vergent when n tends to infinity, if the corresponding sequence {[WtΓn ]}n≥0

of unlabeled graphon classes is convergent with respect to the cut-distance
topology when n tends to infinity.

Suppose the unlabeled graphon class [W ] is the convergent limit for the
sequence {[WtΓn ]}n≥0. If we consider the pixel picture representation of
the graphon [W ], then we can associate an infinite tree or forest t such
that Wt ∈ [W ] and W ∈ [Wt]. Therefore [W ] = [Wt]. Thanks to the
homomorphism (2.38), it is possible to build an extremely large Feynman
diagram Γt with respect to the infinite tree or forest t. This Γt can be
described as the convergent limit of the sequence {Γn}n≥0 with respect to
the cut-distance topology. We can also show that this limit is unique up to
the weakly equivalent relation.

Finding a new connection between random graphs and Feynman dia-
grams is the immediate consequence of the graph function representation of
these physical theories.

The study of random graphs was begun by Erdos, Renyi and Gilbert
when they were working on a probabilistic construction of a graph with
large girth and large chromatic number. After a short period of time, work
on random graphs Gn,m has been concerned by many mathematicians in
Combinatorics and Discrete Mathematics. Nowadays it is not difficult to
observe various applications of these combinatorial objects in many fields
in Mathematics and other applied sciences. Generally speaking, theory of
random graphs aims to provide some results such as ”a combinatorial prop-
erty A almost always implies another combinatorial property B”. Generally
speaking, let n be an integer and 0 ≤ p ≤ 1, a random graph G(n, p) is de-
fined by taking n nodes and connecting any two of them with the probability
p, making an independent decision about each pair. There are alternative
ways to achieve random graphs. As an example, consider Ln,m as the col-
lection of all labeled graphs with vertex set V = [n] = {1, 2, ..., n} and m
edges such that 0 ≤ m ≤

(
n
2

)
. To each G ∈ Ln,m, assign a probability

P(G) =
1((n2)
m

) . (2.40)

In other words, start with an empty graph on the set [n] and insert m

edges in such a way that all possible
((n2)
m

)
choices are equally likely. The

resulting graph Gn,m := ([n], En,m) is known as the uniform random graph.
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As other example, fix 0 ≤ p ≤ 1 and for each graph G with vertex set [n]
and 0 ≤ m ≤

(
n
2

)
edges, assign the following probability

P(G) = pm(1− p)(
n
2)−m. (2.41)

In other words, start with an empty graph with the vertex set [n] and con-
sider

(
n
2

)
to insert edges independently with probability p. The resulting

graph Gn,p := ([n], En,p) is known as the binomial random graph.
It is shown that the random graph Gn,p with 0 ≤ m ≤

(
n
2

)
edges is

the same as one of the
((n2)
m

)
graphs that have m edges. For enough large n,

random graphs Gn,m and Gn,p have the same behavior whenever the number
of edges m in Gn,m is very close to the expected number of edges of Gn,p in
the following means

m =

(
n

2

)
p ≈ n2p

2
. (2.42)

It is equivalent to say that the edge probability in Gn,p should be p ≈ 2m
n2 .

[67]

Lemma 2.3.5. Each labeled graphon determines a class of random graphs.

Proof. If we have a simple weighted graph G, then we can build a random
simple graph R(G) by including the edge with probability equal to its weight.
Thanks to this idea, suppose we have a labeled graphon W and finite subset
S := {s1, ..., sn} in [0, 1]. We can make a weighted graph G(S ,W ) with
|S | = n nodes such that the edge sisj has the weight W (si, sj). In general,
the random graph R(n,W ) := R(G(S ,W )) with respect to the weighted
graph G(S ,W ) is our promising graph such that S is a set of n points which
are selected independently from the closed interval.

The random graphs R(n,W ) have the ability to approximate graphons
W associated to large numbers of points in the closed interval. It is shown
that with probability 1, the sequence {R(n,W )}n≥0 is convergent to the
graphon W with respect to the cut-distance topology when n tends to in-
finity. [107]

Thanks to the discussed topics, it is time to observe some new applica-
tions of the graph function representations of Feynman diagrams in dealing
with expansions of these physical graphs in Quantum Field Theory. At the
first step we address a new interpretation of Dyson–Schwinger equations in
the context of random graphs.

Theorem 2.3.6. The unique solution of each combinatorial Dyson–Schwinger
equation can be described as the cut-distance convergent limit of a sequence
of finite Feynman diagrams.
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Proof. The full proof is given in [149] and here we only address the main
idea. Suppose DSE be a combinatorial Dyson–Schwinger equation with the
general form (1.9) such that its unique solution is given by

XDSE =
∑
n≥0

(λg)nXn (2.43)

such that g is the bare coupling constant and generators Xn are determined
by the recursive relations (1.10). Make the new sequence {Ym}m≥1 of partial
sums of the expansion

∑
n≥0 g

nXn such that we have

Ym := (λg)1X1 + ...+ (λg)mXm. (2.44)

It is shown in [9, 61] that the expression XDSE belongs to a completion of
HFG[[g]] with respect to the n-adic topology. We claim that the sequence
{Ym}m≥1 of finite graphs converges to the large Feynman diagram XDSE

with respect to the cut-distance topology. For this purpose, we can apply
the n-adic metric and the graphon representations of the components Xn to
build a random graph with respect to each graph Ym. It leads us to associate
a sequence {R(Ym)}m≥1 of random graphs with respect to the sequence
{Ym}m≥1 which is cut-distance convergent to the large graph XDSE.

The structure of a modification of the Connes–Kreimer BPHZ renormal-
ization for large Feynman diagrams has been formulated in [149] where we
worked on a topological completion of the renormalization Hopf algebra of
Feynman diagrams with respect to the cut-distance topology. As the second
application of the theory of graphons, we are going to develop this formalism
and build a renormalization program on the collection SΦ,g under a Hopf
algebraic setting. This new approach enables us to proceed our knowledge
about non-perturbative versions of Feynman rules which act on large Feyn-
man diagrams. For this purpose we explain the structure of a new Hopf
algebra derived from the renormalization coproduct on graphons.

Theorem 2.3.7. Thanks to the renormalization coproduct, there exists a
topological Hopf algebraic structure on the collection SΦ

graphon of all unla-
beled graphons which contribute to represent (large) Feynman diagrams of a
physical theory Φ.

Proof. We plan to equip SΦ
graphon with an enriched version of the renormal-

ization Hopf algebra which is completed with respect to the cut-distance
topology.

Thanks to Lemma 2.3.3, for each finite Feynman diagram Γ, we asso-
ciate the unlabeled graphon class [WΓ]. In addition, the unique solution
of each combinatorial Dyson–Schwinger equation DSE in SΦ,g determines a
unique large Feynman diagram XDSE such that thanks to Theorem 2.3.6,
this infinite graph can be interpreted as the convergent limit of the sequence
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of partial sums with respect to the cut-distance topology. Therefore it does
make sense to replace objects of SΦ,g with large Feynman diagrams such as
XDSE as the unique solution of the equation DSE. Thanks to Lemma 2.3.3,
we associate a unique unlabeled graphon class [WtXDSE

] to the large Feyn-
man diagram XDSE via the rooted tree representation of Feynman diagrams.
For simplicity in the presentation, from now we use the notation [WXDSE

]
for this graphon class.

It is possible to lift the renormalization coproduct (2.10) onto the level of
unlabeled graphons which contribute to the description of (large) Feynamn
diagrams. For a given finite Feynman diagram Γ with the corresponding
unlabeled graphon [WΓ], define

∆graphon([WΓ]) :=
∑

[Wγ ]⊗ [WΓ/γ ] (2.45)

such that the sum is taken over all unlabeled graphon classes such as [Wγ ]
associated to γ as the disjoint union of 1PI superficially divergent subgraphs
of Γ.

Thanks to Theorem 2.3.6, for the unlabeled graphon class [WXDSE
] cor-

responding to the large Feynman diagram XDSE, define its coproduct as the
convergent limit of the sequence {∆graphon([WYm ])}m≥1 of the coproducts of
the finite partial sums with respect to the cut-distance topology.

Now we can adapt (2.45) for the level of large Feynman diagrams and
define

∆graphon([WXDSE
]) :=

∑
[WΥ]⊗ [WXDSE/Υ] (2.46)

such that the sum is taken over all unlabeled graphon classes such as [WΥ]
associated to Υ as the disjoint union of 1PI superficially divergent subgraphs
of XDSE.

If we consider objects of SΦ
graphon as generators of a free commutative

algebra, then thanks to (2.45) we obtain a bialgebra structure on Feynman
graphons which is graded in terms of the number of independent loops of
the corresponding Feynman diagrams. The unlabeled graphon class [WI]
corresponding to the empty graph is the unit for this bialgebra. The counit
is also defined by

ε̃([WΓ]) = {1, [WΓ]=[WI]
0, else . (2.47)

The existence of the graduation parameter is the key tool to define an
antipode map. For each finite Feynman diagram Γ, we have

Sgraphon([WΓ]) = −[WΓ]−
∑

S([Wγ(1)
])[Wγ(2)

] (2.48)

such that ∆graphon([WΓ]) =
∑

[Wγ(1)
]⊗ [Wγ(2)

].
Thanks to Theorem 2.3.6, for the unlabeled graphon class [WXDSE

] cor-
responding to the large Feynman diagram XDSE, define its antipode as
the convergent limit of the sequence {Sgraphon([WYm ])}m≥1 of unlabeled

41



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

graphons of finite partial sums Ym with respect to the cut-distance topol-
ogy. Since partial sums are finite graphs, their corresponding graphon type
antipodes Sgraphon([WYm ]) can be obtained inductively by the coproduct
∆graphon where we have

Sgraphon([WYm ]) = −[WYm ]−
∑

S([WΓ(1)
])[WΓ(2)

] (2.49)

such that ∆graphon([WYm ]) =
∑

[WΓ(1)
]⊗ [WΓ(2)

].
Now we can adapt the antipode (2.48) for the level of large Feynman

diagrams and define

Sgraphon([WDSE]) = −[WDSE]−
∑

S([WΥ(1)
])[WΥ(2)

] (2.50)

such that ∆graphon([WDSE]) =
∑

[WΥ(1)
]⊗ [WΥ(2)

].

Therefore SΦ
graphon becomes a connected graded free commutative non-

cocommutative (not necessarily finite type) Hopf algebra. In addition, the
constructions of the coproduct (2.46) and the antipode (2.50) guarantee the
compatibility of this Hopf algebraic structure with the cut-distance topology.
In addition, SΦ

graphon is completed with respect to this topology.

We use the phrase ”Feynman graphons” to address the objects of SΦ
graphon.

Corollary 2.3.8. Let V be a complex vector space with a basis labeled
by coupling constants of a given Quantum Field Theory Φ, and suppose
Diff(V ) be the group of formal diffeomorphisms of V tangent to the identity
at 0 ∈ V and Hdiff(V ) be its corresponding Hopf algebra. The complex Lie
group GΦ

graphon(C) of characters on Feynman graphons can be represented by
Diff(V ).

Proof. The Hopf algebra Hdiff(C) of formal diffeomorphisms of C tangent
to the identity has generators such as an which play the role of coordinates
of

φ(x) = x+
∑
n≥2

an(φ)xn (2.51)

such that φ is a formal diffeomorphism satisfying φ(0) = 0, φ′(0) = id. Its
coproduct is given by

∆(an)(φ1 ⊗ φ2) = an(φ2 ◦ φ1). (2.52)

We can define a Hopf algebra homomorphism Ψ : Hdiff(V ) −→ HFG(Φ)
with the corresponding dual group homomorphism Ψ̂ : GΦ(C) −→ Diff(V ).
The map Ψ maps the coefficients of the expansion of formal diffeomorphisms
to the coefficients in the renormalization Hopf algebra of the expansion of
the effective coupling constants of theory as formal power series in the bare
coupling constants. As the consequence, for each Dyson–Schwinger equa-
tion DSE with the corresponding Hopf subalgebra HDSE and Lie subgroup
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GDSE(C), we can define a group homomorphism Ψ̂DSE from GDSE(C) to
Diff(V ). [37, 144]

Thanks to Lemma 2.3.3, we can embed HFG(Φ) into the renormalization
Hopf algebra SΦ

graphon of Feynman graphons. This allows us to lift the map
Ψ onto the level of Feynman graphons and build a new Hopf algebra ho-
momorphism Ψ : Hdiff(V ) −→ SΦ

graphon with the corresponding dual group

homomorphism Ψ̂ : GΦ
graphon(C) −→ Diff(V ).

The construction of a canonical filtration on terms Xns of the unique
solution of a Dyson–Schwinger equation has been explained in [103] where
each filtered term maps to a certain power of L in the log-expansion. The
original idea is to filter images of Feynman diagrams in a particular uni-
versal enveloping algebra which generates a quasi-shuffle type Hopf algebra.
Thanks to Theorem 2.3.6 and Theorem 2.3.7, we aim to adapt this filtration
for large Feynman diagrams.

Theorem 2.3.9. Renormalized Feynman rules characters of the Hopf alge-
bra SΦ

graphon filtrate large Feynman diagrams.

Proof. Set Hword as the vector space of words which contains Hletter as
the subspace of letters. Set a commutative associative map Θ : Hletter ×
Hletter −→ Hletter as the Hoffman pairing which sends two generators a, b to
another generator Θ(a, b) and adds degrees. Define the generalized quasi-
shuffle product 	Θ on Hword as follows

au	Θ bv := a(u	Θ bv) + b(au	Θ v) + Θ(a, b)(u	Θ v) (2.53)

which builds a commutative associative algebra with empty word I as the
unit. We can equip this algebra with the following coproduct structure

∆word(w) =
∑
vu=w

u⊗ v (2.54)

which gives us a bialgebra structure on Hword with the counit Îword. The
length of each word determines a natural graduation parameter on this bial-
gebra which leads us to define an antipode recursively. As the consequence,
(Hword,	Θ, I,∆word, Îword, Sword) is a graded connected commutative unital
non-cocommutative counital Hopf algebra [55, 73]. We have

	Θ ◦ (Sword⊗ id) ◦∆word = 	Θ ◦ (id⊗Sword) ◦∆word = Iword ◦ Îword. (2.55)

In this setting, the grafting operator on words allows us to add a letter to
the first place

B+
a (u) := au. (2.56)
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We can check that for each a, the grafting operators are Hochschild one-
cocycles. It is possible to embed the renormalization Hopf algebra of Feyn-
man diagrams into the Hopf algebra of words. This embedding is defined in
terms of the following homomorphism ν : HFG(Φ) −→ Hword

ν(I) = Iword, 	Θ ◦ (ν ⊗ ν) = ν ◦m, Îword ◦ ν = ν ◦ Î,

∆word ◦ ν = (ν ⊗ ν) ◦∆FG, Sword ◦ ν = ν ◦ S, B+
an ◦ ν = ν ◦B+

γn . (2.57)

The morphism ν sends each primitive Feynman graph γn to a letter an.
Thanks to Theorem 2.3.7, it is possible to lift the embedding ν onto a
new homomorphism ν which embeds the renormalization Hopf algebra of
graphons SΦ

graphon into the Hopf algebra of words. It is enough to replace
each Feynman diagram Γ with its corresponding unlabeled graphon class
[WΓ].

Consider Dyson–Schownger equations for 1PI Green’s functions with the
general form

Γn̄ = 1 +
∑

γ,res(γ)=n̄

g|γ|

Sym(γ)
B+
γ (Xγ

R) (2.58)

such that B+
γ are Hochschild closed one-cocycles of the Hopf algebra of Feyn-

man diagrams indexed by Hopf algebra primitives γ with external legs n̄,
Xγ
R is a monomial in superficially divergent Green’s functions which dress

the internal vertices and edges of γ. If we apply the renormalized Feyn-
man rules character φr to a Feynman graph which contributes to this class
of equations, then we can obtain a polynomial in a suitable external scale
parameter L = logS/S0 such that S0 fixes a reference scale for the renor-
malization process. At the end of the day, we can get a renormalized version
Gr(g, L, θ) of Green’s functions. Lemma 2.3.3 and Theorem 2.3.7 are use-
ful to reformulate the equation (2.58) in the language of graphons as an
equation in the Hopf algebra SΦ

graphon. The embedding ν enables us to lift
this graphon model Dyson–Schwinger equations onto their corresponding
equations in the Hopf algebra of words. We have

XDSE,word = ν([WXDSE
]) = Iword +

∑
n≥1

gnB+
ln

(X
	Θ(n+1)
DSE,word) (2.59)

such that XDSE,word is the word representation of the unlabeled graphon
class [WXDSE

] with respect to the large graph XDSE. We have XDSE,word =∑
n≥0(λg)nzn such that each zn = ν(Xn) is determined recursively by the

relations

zn =

n∑
m=1

B+
lm

(
∑

k1+...+km+1=n−m, ki≥0

zk1 	Θ ...	Θ zkm+1). (2.60)
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We plan to explain the filtration structure on words and then by applying
the inverse of the embedding ν, we can adapt it for the level of (large)
Feynman diagrams.

The canonical candidate for the filtration on words is built in terms of the
lower central series at the Lie algebra level where we need to apply theory
of Hall sets and Hall basis. The Milnor–Moore theorem ([126]) allows us
to build the graded dual Hopf algebra to Hword in terms of the universal
algebra of a particular Lie algebra.

A bilinear anti-symmetric map [., .] on a vector space L over the field
K with characteristic zero defines a Lie algebra structure if it obeys the
following conditions

- ∀x ∈ L : [x, x] = 0,
- ∀x, y, z ∈ L : [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.
The lexicographical ordering enables us to build the Hall basis for the

Lie algebra L [70, 71]. For a given ordering x1 < x2 < ... < [x1, x2] < ... on
L, define [x, x′] as an element of a Hall basis for L iff

- x, x′ ∈ L are Hall basis elements with x < x′,
- if x′ = [x1, x2], then x′ ≥ x2.
The unique universal enveloping algebra associated to L is defined in

terms of the tensor algebra (T (L),⊗, 1) such that

T (L) :=
⊕
n≥0

L⊗n. (2.61)

Set

I := {s⊗ (x⊗ y − y ⊗ x− [x, y])⊗ t : x, y ∈ L; s, t ∈ T (L)} (2.62)

as a two sided ideal and then define the equivalent classes of the form

[t] := {s ∈ T (L) : s− t ∈ I}. (2.63)

T (L)/I is actually the unique universal enveloping algebra U(L) generated
by L where the product of this algebra is given by

mU(L)([s]⊗ [t]) := [s⊗ t] (2.64)

and [1] is the unit of this algebra. In addition, we can equip U(L) by a
graded Hopf algebra structure with the coproduct

∆U(L)([x]) = [x]⊗ I + I⊗ [x] (2.65)

Set Lword as the Lie algebra corresponding to the Hopf algebra Hword.
Define the decreasing sequence

Lword = L1 ≥ L2 ≥ L3 ≥ ... (2.66)
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such that Ln+1 is generated by all objects [x, y] with x ∈ L and y ∈ Ln. For
letters a1, a2, ...,Θ(a1, a2), ... ∈ Hletter, set x1, x2, ...,Θ(x1, x2), ... ∈ L/L2.
The duality between Hword and U(Lword) can be determined by the unique
linear invertible map ν such that

ν(ai) = [xi], ν(Θ(ai, aj)) = [Θ(xi, xj)], ν(aiaj) = [xi ⊗ xj ], .... (2.67)

The universal enveloping algebra U(Lword) is a filtered bialgebra.
Thanks to the structure of the quasi-shuffle product, we can build a

filtration algorithm where it requires to consider all words with length k
into the lexicographical order in terms of the concatenation commutator
with respect to the Hall basis which generates words with the length k − 1.
This procedure, which starts with the maximal length of words, should be
repeated for the full quasi-shuffle products of the k corresponding letters and
then insert them into the expression [103]. Now if we apply the inverse of
the embedding ν, then this filtration can be defined on Feynman graphons
and large Feynman diagrams which live in SΦ

graphon.
Let us now apply renormalized Feynman rules characters on large Feyn-

man diagrams. The Hopf algebra homomorphism ν sends the renormalized
Feynman rules character φr to

ψr = φr ◦ ν−1. (2.68)

In [103], it is shown that for each word w ∈ Hword with the corresponding
[x] ∈ U(Lword), if x ∈ T (Lword) is also an element of the Lie algebra Lword,
then ψr(u) maps to the L-linear part of the log-expansion of the renormalized
Green’s functions. In addition, we have

ψr(u�Θ v) = ψr(u).ψr(v). (2.69)

For a given Feynman diagram Γ with the coradical degree rΓ, we have

φr(Γ) =

rΓ∑
j=1

cΓ
j (θ)Lj (2.70)

such that
cΓ
j = c⊗j1 ∆̃j−1

FG (Γ) (2.71)

while c⊗j1 : HFG(Φ) ⊗ ...j times ⊗ HFG(Φ) −→ C is a symmetric function.
Thanks to the Hopf algebra homomorphism ν which preserves the co-radical
degree, for any word u ∈ Hword, we have

ψr(u) =

ru∑
j=1

dujL
j (2.72)

such that duj = c
ν−1(u)
j .
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Thanks to the graphon representations of Dyson–Schwinger equations
(Theorem 2.3.6 and Theorem 2.3.7), we want to lift the Feynman rules
character (2.70) onto the level of large Feynman diagrams.

In [103], it is shown that ψr maps the shuffle product u1 	Θ ...	Θ un to
the Ln-term in the log expansion such that as the result, this process filtrates
coefficientsXn in the unique solution of each Dyson–Schwinger equation. We
lift this story onto the level of Feynman graphons where the renormalized
character ψ̃r := φ̃r ◦ ν−1 maps the formal expansions

∑m
1 ui1 	Θ ... 	Θ uik

of shuffle products of words corresponding to the partial sums Ym of XDSE

to a certain term in the expansion

φ̃r(Ym) =

rYm∑
j=1

cYmj (θ)Lj (2.73)

such that
cYmj = c⊗j1 ∆̃j−1

graphon(Ym). (2.74)

When m tends to infinity the sequence {cYmj }m≥1 of coefficients converges

to cXDSE
j (for each j) with respect to the cut-distance topology. In addition,

Feynman rules characters are linear homomorphisms which means that when
m tends to infinity, the sequence {φ̃r(Ym)}m≥1 is cut-distance convergent to
φ̃r(XDSE).

Therefore for the infinite graph XDSE, we can obtain the following formal
expansion as the result of the application of the renormalized Feynman rules
character φ̃r.

φ̃r(XDSE) =

rXDSE∑
j=1

cXDSE
j (θ)Lj (2.75)

such that
cXDSE
j = c⊗j1 ∆̃j−1

graphon(XDSE). (2.76)

Suppose SΦ
graphon,(i) is the vector space generated by some Feynman

graphons derived from Dyson–Schwinger equations such that these graphons
are filtered in terms of the canonical filtration on their corresponding words.
Namely, the filtration (i) can be defined by applying ν and ψ̃r while the
associated words map to a similar term i in the log-expansion (2.75). Set

SΦ
graphon,(0) � S

Φ
graphon,(1) � ... � S

Φ
graphon,(i) � ... � S

Φ,g
graphon (2.77)

as the resulting filtration on all Feynman graphons which contribute to solu-
tions of Dyson–Schwinger equations such that SΦ,g

graphon :=
⋃
i≥0 SΦ

graphon,(i) ⊂
SΦ

graphon. It defines the graded vector space GΦ given by

GΦ
[0] = SΦ

graphon,(0)
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GΦ
[i] := SΦ

graphon,(i)/S
Φ
graphon,(i−1), ∀i > 0 (2.78)

where we have
GΦ =

⊕
i≥0

GΦ
[i]. (2.79)

We can show that GΦ and SΦ,g
graphon are isomorphic as vector spaces.

Theory of words and quasi-shuffle products were studied in [73] where
the existence of Hopf algebra structures on words have been addressed. The
applications of shuffle type of products to Hopf algebraic renormalization
have been addressed in different settings [55, 91, 140, 145]. There is also
another alternative machinery ([140]) to lift Dyson–Schwinger equations in
SΦ,g onto their corresponding equations in the Hopf algebra of words. Ac-
cording to this approach, we apply the rooted tree representation of the
Connes–Marcolli shuffle type renormalization Hopf algebra HU and then
embed HU into an adapted version of the Hopf algebra HCK decorated by
a particular Hall set. In this setting, we can address the question about
the existence of another filtration on Dyson–Schwinger equations originated
from Hopf algebra of words.

Thanks to the explained Hopf algebraic formalism we are ready to for-
mulate a generalization of the BPHZ renormalization machinery for non-
perturbative QFT in the context of Feynman graphons which will be dis-
cussed in the next part.

2.4 The BPHZ renormalization of large Feynman

diagrams via Feynman graphons

In gauge field theories with strong couplings such as QCD, the size of the
coupling constant even at rather large values of the exchanged momentum
is such that the convergence of the perturbative expansion is slow. Al-
though in higher energy levels, the theory enjoys the asymptotic freedom
property, several orders of perturbation theory should be concerned to pro-
vide a greater accuracy where we need to deal with the evaluation of a large
class of higher order Feynman diagrams. We can address the corrections to
the quark self-energy as a complicated example in this setting. The situa-
tion goes stranger when we deal with QCD in relatively lower energy levels
where non-perturbative aspects do appear. This is the level that we need
to build a powerful theoretical model for the study of interactions of ele-
mentary particles. Thanks to the Hopf algebra structure SΦ

graphon, which
encodes Dyson–Schwinger equations of a given physical theory Φ, in this
part we plan to build a Hopf algebraic renormalization program for large
Feynman diagrams in the context of the Riemann–Hilbert problem. We de-
scribe the construction of the Connes–Kreimer renormalization group at the
level of Feynman graphons.
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The renormalization Hopf algebra HFG(Φ) of Feynman diagrams of the
physical theory Φ encodes enough mathematical tools to explain the step by
step removal of sub-divergencies. The graded dual of this Hopf algebra iden-
tifies an infinite dimensional complex pro-unipotent Lie group denoted by
GΦ(C). Feynman rules, which allow us to replace Feynman diagrams with
their corresponding Feynman integrals, are encoded by some elements of
GΦ(C). This Lie group has been applied by Connes and Kreimer to describe
perturbative renormalization as a special instance of a general mathemati-
cal procedure of multiplicative extraction of finite values in the context of
the Riemann–Hilbert problem. According to this approach, the BPHZ per-
turbative renormalization can be described as the existence of the Birkhoff
factorization for loops such as γµ defined on an analytic curve C ⊂ CP 1 (as
the domain) which has values in GΦ(C). It is shown that

γµ(z) = γ−(z)−1γµ,+(z) (2.80)

such that γµ,+(z) is the boundary value of a holomorphic map from the
inner domain of C to the group GΦ(C) and γ−(z) is the boundary value of
an outer domain of C to the group GΦ(C). In addition, γ− is normalized by
γ−(∞) = 1. The renormalized theory is the evaluation of the holomorphic
part γµ,+ of γµ as a product of two holomorphic maps γ± from the connected
components C± of the complement of the circle C in the Riemann sphere
CP 1. For dimensional regularization, we are interested in an infinitesimal
disk around z = 0 and C as the boundary of this disk. In this situation we
have 0 ∈ C+ and ∞ ∈ C−. [34, 35]

Each regularized Feynman integral U z(Γ(p1, ..., pN )) defines a loop γµ(z)
which allows us to lift the analytic formulation of the Birkhoff factorization
onto the level of affine group schemes. Set

K = C{z}[z−1], O1 = C{z}, O2 = C[z−1]. (2.81)

It is shown that each character φ ∈ GΦ(K) has a unique Birkhoff factoriza-
tion φ = (φ−◦S)∗φ+ such that φ+ ∈ GΦ(O1), φ− ∈ GΦ(O2) and ε−◦φ− = ε.
The BPHZ renormalization procedure has been interpreted by

Γ 7−→ SφRms ∗ φ(Γ) (2.82)

such that

SφRms(Γ) = −Rms(φ(Γ))−Rms(
∑
γ⊂Γ

SφRms(γ)φ(Γ/γ)). (2.83)

Therefore we have

SφRms ∗ φ(Γ) = R(Γ) + SφRms(Γ) (2.84)
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such that

R(Γ) = U zµ(Γ) +
∑
γ⊂Γ

c(γ)U zµ(Γ/γ) = φ(Γ) +
∑
γ⊂Γ

SφRms(γ)φ(Γ/γ) (2.85)

is the Bogoliubov’s operation. For the given Feynman integral Uµ(Γ), the

mathematical term SφRms(Γ) generates the counterterm and the mathemat-

ical term SφRms ∗ φ(Γ) generates the corresponding renormalized value. [34,
35, 54, 66]

Each Dyson–Schwinger equation determines a commutative graded Hopf
subalgebra HDSE of HFG(Φ) where the morphism (1.13) embeds the com-
plex Lie group GDSE(C) into GΦ(C). This Lie group has been applied to
formulate an algebro-geometric setting for the computation of a class of
counterterms which contribute to the renormalization of Feynman diagrams
in the equation DSE. In addition, this approach has determined global β-
functions with respect to DSEs where they play the central role for the
transformation of the information between different regularization schemes.
Furthermore, this study has been lifted onto a categorical setting to asso-
ciate the category RepG∗DSE

of finite dimensional representations of the affine
group scheme GDSE to each equation DSE. This categorical formalism has
led us to encode some non-perturbative physical information in the Connes–
Marcolli universal category ECM in the context of differential systems with
singularities. [140, 142, 143, 144]

In this part we plan to provide a new interpretation of the renormaliza-
tion of (large) Feynman diagrams in the context of the Hopf algebra SΦ

graphon.
We will then provide a new class of differential equations which contribute
in the computation of non-perturbative counterterms.

Theorem 2.4.1. The Hopf–Birkhoff factorization process provides a renor-
malization program for each large Feynman diagram in SΦ,g.

Proof. We first build a renormalization program for Feynman graphons
which belong to the Hopf algebra SΦ

graphon and then thanks to the graph
function representation of Feynman diagrams, we will enable to pull back
the results to the level of Feynman diagrams.

Thanks to Milnor–Moore Theorem ([126]), the commutative graded Hopf
algebra SΦ

graphon (Theorem 2.3.7) determines the complex infinite dimen-

sional pro-unipotent Lie group GΦ
graphon(C). Choose dimensional regular-

ization and minimal subtraction as the renormalization program where the
commutative algebra Adr of Laurent series with finite pole parts encodes the
regularization scheme and the linear map Rms, which projects series onto
their pole parts, encodes the renormalization scheme. Set Loop(GΦ

graphon(C), µ)
as the space of loops γµ on the infinitesimal punctured disk ∆∗ around the
origin in the complex plane with values in GΦ

graphon(C). These loops describe

unrenormalized regularized Feynman rules characters in GΦ
graphon(C) which
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act on Feynman graphons. The Rota–Baxter property of (Adr, Rms) sup-
ports the existence of a unique Birkhoff factorization (γ−, γ+) which can be
lifted onto the level of Feynman rules characters to achieve the factorization
(φ̃−, φ̃+) for Feynman rules character φ̃. In addition, we have

φ̃z([WΓ]) := φz(Γ) (2.86)

as the modified version of the regularized Feynman rules character φ which
acts on Feynman graphons.

For a given Feynman graphon [WX ] corresponding to the unique solution
of an equation DSE, set [WYm ] (for each m) as the unlabeled graphon classes
with respect to the partial sums Ym of the infinite graph X.

Now if we apply the renormalization coproduct formulas (2.45), (2.46)
on Feynman graphons, the renormalization antipode formulas (2.49), (2.50)
on Feynman graphons and also the Hopf algebraic BPHZ process given by

(2.83), (2.84), (2.85), then we can build the sequence {Sφ̃Rms
([WYm ])}m≥1

of Feynman graphons which is convergent with respect to the cut-distance
topology. We have

Sφ̃Rms
([WX ]) = limm→∞S

φ̃
Rms

([WYm ]) = limm→∞

m∑
i=1

Sφ̃Rms
([WXi ])

= limm→∞

m∑
i=1

(−Rms(φ̃([WXi ])−Rms(
∑

Sφ̃Rms
([Wγ ])φ̃([WXi/γ ]))). (2.87)

The functional Sφ̃Rms
is the negative component of the Birkhoff factorization

of φ̃. In addition, the expression Sφ̃Rms
([WX ]) addresses the counterterm with

respect to the Feynman graphon [WX ].

Furthermore, we can build the sequence {Sφ̃Rms
∗ φ̃([WYm ])}m≥1 of Feyn-

man graphons which is convergent with respect to the cut-distance topology.
We have

Sφ̃Rms
∗ φ̃([WX ]) = limm→∞S

φ̃
Rms
∗ φ̃([WYm ]) = limm→∞

m∑
i=1

Sφ̃Rms
∗ φ̃([WXi ])

(2.88)
such that ∗ is the convolution product of the Lie group GΦ

graphon(C) deter-

mined by the coproduct ∆graphon. The functional Sφ̃Rms
∗ φ̃ is the positive

component of the Birkhoff factorization of φ̃. In addition, the expression

Sφ̃Rms
∗ φ̃([WX ]) addresses the renormalized value with respect to the Feyn-

man graphon [WX ].

Thanks to the filtration parameter on Feynman graphons on the ba-
sis of the Hopf algebra of words given by Theorem 2.3.9, consider a new
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one-parameter group {θt}t of automorphisms on GΦ
graphon(C) with the in-

finitesimal generator
d

dt
|t=0θt = Y (2.89)

such that Y sends each Feynman graphon [WΓ] to its corresponding filtration
rank n[WΓ]. In other words, for each character φ̃, we have

< θt(φ̃), [WΓ] >:=< φ̃, θt([WΓ]) > (2.90)

Lemma 2.4.2. Suppose γµ ∈ Loop(GΦ
graphon(C), µ) encodes the regularized

unrenormalized Feynman rules character φ̃. Then we have

γetµ(z) = θtz(γµ(z)).

In addition, the limit

Ft = limz→0γ−(z)θtz(γ−(z)−1)

defines a new one-parameter subgroup of GΦ
graphon(C) such that for each

t ∈ R
γetµ+(0) = Ftγµ+(0).

Proof. Thanks to the construction of the renormalization Hopf algebra of
Feynman graphons (Theorem 2.3.7) and Proposition 1.47 in [37], we have
the proof.

It is possible to lift the Connes–Marcolli geometric approach onto the
level of the renormalization Hopf algebra of Feynman graphons. For this
purpose we need to adapt the regularization bundle and then classify equi-
singular flat connections, which encode counterterms, in terms of the renor-
malization of Feynman graphons.

Proposition 2.4.3. There exists a bijective correspondence (independent
of the choice of a local regular section σ : ∆ −→ B) between equivalence
classes of flat equi-singular GΦ

graphon(C)-connections on the regularization

bundle and elements of the Lie algebra gΦ
graphon(C).

Proof. The regularization parameter in dimensional regularization can be
encoded by the punctured version of an infinitesimal disk ∆ around the
origin z = 0. Set Pgraphon := (∆×C∗)×GΦ

graphon(C) as the trivial principal
bundle over the base space ∆× C∗. Remove the fiber over z = 0 to obtain
the bundle P 0

graphon = ∆ × C∗ − π−1({0}) × GΦ
graphon(C) as the regulariza-

tion bundle modified with respect to the renormalization Hopf algebra of
Feynman graphons.
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A flat GΦ
graphon(C)-connection $ on P 0

graphon is a gΦ
graphon(C)-valued one

form such that gΦ
graphon(C) is the Lie algebra of the Lie group GΦ

graphon(C)

which contains all linear maps l : SΦ
graphon −→ C with the property

l([WΓ1 ][WΓ2 ]) = l([WΓ1 ])ε([WΓ2 ]) + ε([WΓ1 ])l([WΓ2 ]). (2.91)

The Lie bracket is given by the formula

[l1, l2]([WΓ]) =< l1 ⊗ l2 − l2 ⊗ l1,∆graphon([WΓ]) > . (2.92)

The one-parameter group {θt}t∈C of automorphisms of GΦ
graphon(C) can be

lifted onto the level of Lie algebra.
A flat GΦ

graphon(C)-connection $ on P 0
graphon is called equi-singular if it

is Gm-invariant and for any solution f of the differential equation Df = $
with respect to the logarithmic derivative, the restrictions of f to sections
σ : ∆ −→∆× C∗ have the same type of singularity.

Thanks to [37], the negative component of the Birkhoff factorization of
each γµ ∈ Loop(GΦ

graphon(C), µ) determines a unique element β in gΦ
graphon(C)

where we have

γ−(z) = T exp(
−1

z

∫ ∞
0

θ−t(β)dt) (2.93)

formulated in terms of the time order exponential.
We can show that for each $ ∈ gΦ

graphon(K) with the trivial monodromy,

there exists a solution ψ̃ ∈ GΦ
graphon(K) for the differential equation Dψ̃ = $.

Two connections $1, $2 with the trivial monodromy are called equiva-
lent if they are gauge conjugate by an element regular at z = 0. It leads us to
show that for equivalent connections $1, $2, the solutions of the differential
equations Dψ̃$1 = $1 and Dψ̃$2 = $2 have the same negative components
of the Birkhoff factorization

ψ̃$1
− = ψ̃$2

− . (2.94)

Thanks to (2.93), (2.94) and the Connes–Marcolli Classification Theorem
(Theorem 1.67 in [37]), each element β ∈ gΦ

graphon(C) determines a unique

class $ of flat equi-singular GΦ
graphon(C)-connections on P 0

graphon in terms of
a differential equation with the general form Dγµ = $ such that

γµ(z, v) = T exp(
−1

z

∫ v

0
uY (β)

du

u
) (2.95)

where u = tv, t ∈ [0, 1] and uY is the action of Gm on GΦ
graphon(C).

Proposition 2.4.4. The category ECM encodes the renormalization group
corresponding to the BPHZ renormalization of large Feynman diagrams.
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Proof. Thanks to Proposition 2.4.3, for the Hopf algebra SΦ
graphon, we can

determine a family of flat equi-singular GΦ
graphon(C)-connections which en-

code counterterms on the basis of the β-functions. Thanks to [37], these
geometric objects form a new category EΦ

graphon which is recovered by the
category RepGΦ,∗

graphon
of finite dimensional representations of the affine group

scheme GΦ,∗
graphon. In addition, the renormalization Hopf algebra HFG(Φ)

of Feynman diagrams of the physical theory Φ determines the category EΦ

of geometric objects recovered by the category RepG∗Φ
of finite dimensional

representations of the affine group scheme G∗Φ. Thanks to the explained
categorical formalism in [37], we can embed RepG∗Φ

as a sub-category of

ECM. It is shown that ECM is isomorphic to the category RepU∗ such that
the complex Lie group U(C) can be described in terms of its Lie algebra
LU generated by elements e−n of degree −n for each n > 0 such that the
sum e =

∑
e−n is an element of this Lie algebra. We can lift e onto the

morphism rg : Ga −→ U. The universality of ECM supports the existence of
a new class of graded representations such as

ϑ : U(C) −→ GΦ
graphon(C). (2.96)

Now the composition ϑ ◦ rg determines the renormalization group {Ft}t∈C
at the level of Feynman graphons (i.e. Lemma 2.4.2).

Lemma 2.3.3 and Theorem 2.3.7 enable us to embedHFG(Φ) into SΦ
graphon

which leads us to define an epimorphism of affine group schemes from
GΦ,∗

graphon to G∗Φ. In addition, the renormalization Hopf algebra of Feyn-
man graphons includes solutions of all Dyson–Schwinger equations in the
physical theory Φ. It means that the category EΦ

graphon restores some more

physical information than the category EΦ (or RepG∗Φ
).

As the summary, we have shown that the renormalization topological
Hopf algebra of Feynman graphons is capable to encode the renormalization
of Feynman diagrams and solutions of Dyson–Schwinger equations. In ad-
dition, we have embedded this graphon model of renormalization into the
universal Connes–Marcolli categorical setting. These achievements suggest
the existence of a new unexplored interconnection between motivic renor-
malization and Dyson–Schwinger equations in the context of the theory of
graphons.
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Chapter 3

The complexity of
non-perturbative computations
under a combinatorial setting

• A parametric representation for large Feynman diagrams: a
computational machinery
• The optimization of non-perturbative complexity via a multi-
scale renormalization group
− A renormalization group program on SΦ,g

− Kolmogorov complexity of Dyson–Schwinger equations
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The major motivation for the introduction of Feynman graphons is to
clarify and study infinities originated from non-perturbative aspects in Quan-
tum Field Theory with strong couplings. From a physicist’s perspective,
these infinities do not acceptable and applying some approximation meth-
ods are useful for the production of some intermediate values such as running
couplings, N large methods, etc. Then the Physics of elementary particles
and its phenomenology shall be described in terms of those approximations.
From a mathematician’s perspective, we have a different story where it is
possible to deal with infinities under different settings instead of only remov-
ing them. The Cartier’s cosmic Galois group as a universal group of symme-
tries aims to organize the structure of the divergencies in perturbative gauge
field theories. The motivic Galois group associated to the renormalization
Hopf algebra SΦ

graphon of Feynman graphons can be considered as a suitable
candidate to organize the structure divergencies originated from large Feyn-
man diagrams. In this chapter we plan to apply Feynman graphons for the
discovery of more entities about solutions of Dyson–Schwinger equations via
graph polynomials.

As we have seen in the previous chapter, graphons were applied for
the renormalization of large Feynman diagrams where some new interpre-
tations from counterterms and renormalized values originated from Dyson–
Schwinger equations have been achieved. In this chapter we are going to
investigate some other combinatorial applications of graphons to Quantum
Field Theory where we build a new parametric representation of large Feyn-
man diagrams in the language of graph polynomials. Then we focus on
the concept of complexity for the description of non-perturbative parame-
ters where we explain the construction of a new multi-scale renormalization
group on the space SΦ,g of all Dyson–Schwinger equations in a physical
theory with the bare coupling constant g equipped with the cut-distance
topology. We try to show that this renormalization group machinery op-
timizes the complexity of non-perturbative computations. In addition, we
lift the concept of Kolmogorov complexity onto SΦ,g to discuss more about
the role of the defined multi-scale renormalization group in optimizing non-
perturbative computations. This study suggests a new contextualization for
the description of non-perturbative situations and their complexity.

3.1 A parametric representation for large Feyn-
man diagrams: a computational machinery

The original task in Quantum Field Theory is to compute correlations
(Green’s functions) in a (non-)perturbative expansion setting whose terms
are decorated by Feynman diagrams. Each term in this class of expansions
consists of a multiple ill-defined integral such that the integrand is codified
by the combinatorial information of its corresponding Feynman diagram.
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Generally speaking, we can work in momentum space of D dimensions such
that a preliminary count of the powers of the momenta in the integrands
determines a superficially divergent integral. In this situation, the renor-
malization program associates a counterterm to each superficially divergent
subgraph to finally produce a finite result by subtraction. All superficially
divergent subgraphs should be considered under a recursive setting to as-
sign a finite value to the full graph. Studying Feynman diagrams via tree
representations enables us to formulate perturbative renormalization theory
under a simplified universal setting. Furthermore, it provides also a com-
binatorial reformulation of Dyson–Schwinger equations where we can study
solutions of these non-perturbative type of equations in the context of partial
sums of decorated non-planar rooted trees. [9, 61, 62, 92, 97, 164, 174]

In the previous sections we have shown that the unique solution of each
Dyson–Schwinger equation is described as the convergent limit of a sequence
of Feynman graphons with respect to the cut-distance topology. This for-
malism has been applied to lift the BPHZ renormalization program onto the
level of large Feynman graphs to generate some new expressions for the de-
scription of counterterms and renormalized values associated to fixed point
equations of Green’s functions. Using graph polynomials for the study of
Feynman integrals has played an important role in the computational pro-
cesses where this class of combinatorial polynomials can bring some power-
ful algorithms for the analysis of the behavior of these divergent integrals
([6, 11, 83, 84, 101, 117, 130, 162, 168]). In this section we show another
application of this graphon representation of non-perturbative parameters
where we deal with the concept of parametric representation of large Feyn-
man diagrams. We study solutions of Dyson–Schwinger equations in the
language of Tutte polynomial and Kirchhoff–Symanzik polynomials.

The Tutte Polynomial, as a two variables graph polynomial, enjoys a
universal property which enables us to evaluate any multiplicative graph
invariant with a deletion/contraction reduction machinery [158, 159, 160,
161, 166]. This fundamental property provides the opportunity to demon-
strate how graph polynomials can be specialized or generalized. The Aluffi–
Marcolli approach has clarified the practical importance of Tutte Polynomi-
als in dealing with Feynman rules characters and Feynman integrals under
an algebro-geometric setting where a motivic perspective on perturbative
renormalization program has been formulated very nicely. [5, 6, 116, 117]

In this part we plan to review the basic structure of Tutte polynomials
on finite graphs, its different reformulations and its universal property ([117,
159, 160, 161, 166]) and then we will formulate graph polynomials for large
Feynman diagrams.

A given finite graph G has a set V (G) of vertices and a set E(G) of
edges. For two isomorphic graphs G1, G2, we should have a bijection such
as ρ between the sets V (G1) and V (G2) such that for each edge uv in G1,
ρ(uv) is an edge in G2 and vice versa. For any subset A ⊂ E(G) of edges,
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the rank r(A) and the nullity n(A) are defined by the relations

r(A) := |V (G)| − κ(A), n(A) := |A| − r(A) (3.1)

such that κ(A) is the number of connected components of the graph. In
general, finite graphs can be classified in terms of their numbers of non-
trivial connected components where a graph is called n-connected, if we
should remove at least n edges from the graph to obtain a disconnected
graph. Rooted trees, as fundamental tools for us, are connected graphs
which have no cycles or loops. They can be applied as non-trivial connected
components of forests (as more complicated graphs). Sometimes working
on subgraphs of a given complicated (finite) graph enables us to determine
some fundamental properties of the original graph. In general, subsets of the
set of vertices or the set of edges can give us subgraphs. Spanning subgraphs
are applied as one important class of subgraphs for the construction of graph
polynomials. A spanning subgraph covers all vertices of the original graph
with the optimum number of edges.

The notion of ”dual” in Graph Theory enables us to build the algebraic
combinatorics of graphs. If we can embed a graph into the plane without
any crossing in edges, then the graph is called planar. Each planar graph
can separate the plane into regions known as faces. Faces are key tools for
the construction of the dual of a graph. For a given planar graph G, its
corresponding connected dual graph is built by assigning a vertex to each
face where there exists m edges between two vertices in the dual graph if the
corresponding faces of the original graph have m edges in their boundaries.
We denote G∗ as the dual of the connected planar graph G and it can be
seen that

(G∗)∗ = G. (3.2)

There are two fundamental commutative operations on graphs namely,
deletion and contraction which enable us to build the algebraic combina-
torics of graphs. For a given finite graph G, we can build a new graph G \ e
as the result of deleting an edge e ∈ E(G). This new graph has the same
set of vertices V (G) and the set of edges E(G) − {e}. We can also build
another new graph G/e as the result of contracting an edge e in terms of
identifying the endpoints of the edge e by shrinking this edge. It is easy to
check that the deletion and the insertion on a self-loop edge determine the
same resulting graph.

Lemma 3.1.1. (i) For any given different edges e1, e2 of a given planar
graph G, the graph (G \ e1)/e2 is isomorphic to the graph (G/e2) \ e1.

(ii) A planar graph and its dual have the same numbers of spanning trees.
(iii) The rank of a dual graph is well-defined. [159, 166]

The deletion or contraction of an edge determines a minor of a graph.
In more general setting, if a graph H is isomorphic to G \ A/A′ for some
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choice of disjoint subsets A1, A2 of E(G), then it is called a minor graph. In
this setting, a class of graphs is called minor closed if whenever the graph
G is in the class, then any minor of G is also in the class.

Graph invariants allow us to characterize graphs in terms of particular
properties. In general, a graph invariant is a function on the class of all
graphs such that it has the same output on isomorphic graphs. Graph
polynomials (such as Tutte polynomial) are indeed some graph invariants
such that the images belong to some polynomial rings.

There are several different (but equivalent) (re)formulations for Tutte
polynomials such as rank–nullity generating function method, linear recur-
sion machinery and spanning tree expansion method which was originally
applied by Tutte. The linear recursion form can be described as a collection
of reduction rules to rewrite a graph as a weighted formal sum of graphs
that are less complicated than the original graph. As the output of this
formalism, we can identify a collection of simplest or irreducible graphs.
[117, 159, 160, 161, 166]

Definition 3.1.2. The Tutte polynomial T (G;x, y) of a given graph G as
a two variables polynomial with respect to the independent variables x, y is
defined by the following recursive machinery.
- If G has no edges, then T (G;x, y) = 1; otherwise, for any edge e ∈ E(G),
- T (G;x, y) = T (G \ e;x, y) + T (G/e;x, y),
- T (G;x, y) = xT (G/e;x, y), if e is a coloop,
- T (G;x, y) = yT (G \ e;x, y), if e is a loop.

In general, if G has i bridges and j loops, then its corresponding Tutte
polynomial is given by

T (G;x, y) = xiyj . (3.3)

In addition, thanks to Definition 3.1.2, the Tutte polynomial of the disjoint
union of two graphs is determined by

T (G ∪H) = T (G)T (H). (3.4)

We can redefine Tutte polynomials in the language of the rank–nullity
generating functions known as (infinite) polynomials with coefficients which
can count structures that are encoded by the exponents of variables. In this
setting we have

T (G;x, y) =
∑

A⊂E(G)

(x− 1)r(E(G))−r(A)(y − 1)n(A). (3.5)

The Tutte polynomials of a planar graph G and its dual graph G∗ can
determine each other in the sense that

T (G;x, y) = T (G∗; y, x). (3.6)
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We can also redefine Tutte polynomials in the language of spanning
trees. In this setting, we need to define a total order ≺ on the set of edges
E(G) = {v1, ..., vn} of a given graph G such as

vi ≺ vj ⇐⇒ i > j. (3.7)

For a given tree t, an edge e is called internally active if e is an edge of t
and it is the smallest edge in the cut defined by e. We can lift this concept
onto the dual level where an edge u is called externally active if e 6∈ t and it
is the smallest edge in the cycle defined by u. Now the Tutte polynomial of
the totally ordered graph G can be defined (independent of the chosen total
order) by the formal expansion

T (G;x, y) =
∑
i,j

tijx
iyj (3.8)

such that tij counts spanning trees with internal activity i and external
activity j. [6, 83, 117, 158, 159, 166]

The most fundamental property of the Tutte polynomial is its univer-
sality under a graph invariant setting. This means that any multiplica-
tive graph invariant on disjoint unions and one-point joins of graphs which
is formulated via a deletion/contraction reduction can be described as an
evaluation of the Tutte polynomial. There are different notions for the gen-
eralization of the Tutte polynomials and here we address the one which is
useful for us. [6, 117]

Definition 3.1.3. Let G be the set of isomorphism classes of finite graphs.
A graph invariant F from G to a commutative ring such as the polynomial
ring C[α, β, η, x, y] is called Tutte–Grothendieck invariant of graphs, if it has
the following properties:
- F (G) = η# V (G) if the set of edges is empty,
- F (G) = xF (G/e) if the edge e ∈ E(G) is a bridge,
- F (G) = yF (G \ e) if the edge e ∈ E(G) is a looping edge,
- For any ordinary edge, which is not a bridge nor a looping edge,

F (G) = αF (G/e) + βF (G \ e). (3.9)

- For every G,H ∈ G, if G ∪ H ∈ G or G • H ∈ G, then F (G ∪ H) =
F (G)F (H) and F (G •H) = F (G)F (H) such that the one-point join G •H
is defined by identifying a vertex of G and a vertex of H into a new single
vertex of G •H.

We can apply induction machinery to show that

T (G •H) = T (G)T (H). (3.10)

Therefore the Tutte polynomial does not distinguish between the one-point
join of two graphs and their disjoint union. In fact, the Tutte polynomial
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is a Tutte–Grothendieck invariant which is independent of the choice of
any ordering of edges of the graph. We can show that for any given map
f : G −→ R, if there exist a, b ∈ R such that f is a Tutte–Grothendieck
invariant, then f can be presented in terms of the Tutte polynomial and we
have

f(G) = a|E(G)|−r(E(G))br(E(G))T (G;
x0

b
,
y0

a
). (3.11)

Thanks to this background and the graphon representation of large Feyn-
man diagrams (discussed in the previous parts), now we can build a new
class of Tutte polynomials which contribute to the fundamental structures
of Dyson–Schwinger equations.

Theorem 3.1.4. There exists a new class of Tutte polynomials with respect
to large Feynman diagrams.

Proof. Let the large Feynman diagram XDSE =
∑

n≥0Xn be the unique so-
lution of a given Dyson–Schwinger equation DSE. Thanks to Theorem 2.3.6,
the sequence {Ym}m≥1 of partial sums is convergent to XDSE with respect to
the cut-distance topology. For each m ≥ 1, the Tutte polynomial T (Ym;x, y)
with respect to the finite graph Ym can be determined by Definition 3.1.2
which leads us to the formulation (3.8). Our idea is to implement an effi-
cient algorithm for the computation of the Tutte polynomial T (XDSE;x, y)
in terms of handling intermediate graphs (i.e. partial sums) and their cor-
responding Tutte polynomials to avoid unnecessary recomputations.

On the first side, for each m ≥ 1, the Tutte polynomial of the disjoint
union Ym = X1 + ...+Xm is given by

T (Ym;x, y) =
m∏
s=1

T (Xs;x, y) =
m∏
s=1

∑
is,js

tisjsx
isyjs (3.12)

such that tisjs is the number of spanning trees in Xs with internal activity
is and external activity js.

On the second side, limm→∞Ym = XDSE with respect to the cut-distance
topology. It means that for each ε > 0, there exists Nε such that for each
m1,m2 ≥ Nε, we have

d(Ym1 , Ym2) = dcut([WYm1
], [WYm2

]) < ε. (3.13)

Therefore
dcut([WYm1

], [WYm2
]) = 0⇔ [WYm1

] = [WYm2
]. (3.14)

As we know for each m, the class [WYm ] is determined in terms of the
rooted tree representations of Feynman diagrams X1, ..., Xm where deco-
rated rooted trees tX1 , ..., tXm are the only spanning trees in themselves.
Thanks to the relation (3.14), for enough large orders, unlabeled graphon
classes corresponding to partial sums are weakly equivalent and actually
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they converge to the unique graphon class [WXDSE
]. It means that spanning

forests of partial sums for enough large orders tend to the spanning forest
tXDSE

of the unique graph limit XDSE. In addition, the Tutte polynomial
for each arbitrary rooted tree t is given by

T (t;x, y) =
∑
s∈R(t)

x|E(s)|(y + 1)|E(s)|−|L(s)| (3.15)

such that R(t) is the set of all subtrees of t, |E(s)| is the number of edges
of a subtree s and |L(s)| is the number of leaves of a subtree s.

For the collection {
∏m
s=1 T (tXm ;x, y)}m≥1 of Tutte polynomials, we can

define a collection {pm :
∏∞
s=1 T (tXs ;x, y) −→

∏m
s=1 T (tXm ;x, y)}m≥1 of

projections. Thanks to the universal property of the Tutte polynomial,
for any graph invariant T (which enjoys the properties in Definition 3.1.2)
together with the collection {fm : T −→

∏m
s=1 T (tXm ;x, y)}m≥1, we can

define the unique map

z : T −→
∞∏
s=1

T (tXs ;x, y) (3.16)

such that fm = pm ◦ z. As the consequence, we can consider the direct
product

∏∞
s=1 T (tXs ;x, y) as the Tutte polynomial for the infinite tree (or

forest) tXDSE
.

If we replace rooted tree representations with the original Feynman di-
agrams, then we can build the Tutte polynomial for the large Feynman
diagram XDSE in terms of the direct product over the Tutte polynomials for
simpler finite graphs (i.e. partial sums) {T (Xs;x, y)}s≥1. We have

T (XDSE;x, y) =
∞∏
s=1

T (Xs;x, y). (3.17)

We can address here some interesting applications of this class of Tutte
polynomials in dealing with the complexity of non-perturbative parameters.

As the first application, it is possible to describe the complexity of a
large Feynman diagram XDSE in terms of the complexity of finite Feynman
diagrams which live in partial sums Ym, (m ≥ 1). The complexity of Ym
is interpreted in terms of the number of different spanning trees which live
in the graph. We can compute the complexity of Ym under a recursive
algorithm where at each stage of the algorithm, only an edge belonging
to the proper cycle is chosen. The algorithm starts with a given graph and
produces two graphs at the end of the first stage. By applying the elementary
contraction to a multiple edge, the resulting graph can have a loop and
therefore the procedure can be still continued. At each subsequent stage
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one proper cyclic edge from each graph is chosen (if it exists) for applying
the recurrence. On termination of the algorithm, we get a set of graphs
(or general graphs) none of which have a proper cycle. The complexity of
Ym is the sum of the number of these graphs. If we perform this recursive
algorithm for each Ym when m tends to infinity, then we can get a sequence
which presents the behavior of complexities when the partial sums converge
to XDSE.

As the second application, we can interpret Feynman rules characters
of the renormalization Hopf algebra of Feynman graphons in the context of
deletion and contraction operators. This approach leads us to formulate a
universal motivic Feynman rule character on large Feynman diagrams.

Corollary 3.1.5. The Tutte polynomial invariant defines an abstract ver-
sion of Feynman rules on the renormalization Hopf algebra of Feynman
graphons.

Proof. Graphon classes in SΦ
graphon recover finite Feynman diagrams and

their finite or infinite formal expansions which contribute to Dyson–Schwinger
equations.

For each unlabeled graphon class [WΓ] corresponding to a finite Feynman
diagram Γ, the Tutte polynomial T ([WΓ];x, y) can be defined as follows

T ([WΓ];x, y) := T (Γ;x, y). (3.18)

Thanks to Proposition 2.2 in [6], the Tutte polynomial is multiplicative
over disjoint unions of finite (Feynman) diagrams. To see this property
requires to describe each connected Feynman diagram Γ as a tree tΓ with
1PI graphs inserted at the vertices of that tree. Now we can compute the
Tutte polynomials of the resulting trees (i.e. formula (3.15)) to show that
the Tutte polynomial of disjoint union of Feynman graphons [WΓ1 ], [WΓ2 ]
corresponding to finite Feynman diagrams Γ1,Γ2 can be determined by the
Tutte polynomial of disjoint union of decorated rooted trees tΓ1 and tΓ2

which is multiplicative. As the result, we have

T ([WΓ1 ] t [WΓ2 ];x, y) = T (Γ1 t Γ2;x, y) (3.19)∑
s=(s1,s2)

(x− 1)b0(s1)+b0(s2)−b0(Γ1tΓ2)(y − 1)b1(s1)+b1(s2)

= T (Γ1;x, y)T (Γ2;x, y) = T ([WΓ1 ];x, y)T ([WΓ2 ];x, y)

such that the sum is taken over all pairs s = (s1, s2) of subgraphs of Γ1 and
Γ2, respectively where V (si) ⊆ V (Γi), E(si) ⊂ E(Γi), b0(s) = b0(s1)+b0(s2).

Furthermore, for a finite connected Feynman diagram Γ, we have

Γ =
⋃

v∈V (tΓ)

Γv (3.20)
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such that Γvs are 1PI Feynman diagrams inserted at the vertices of the tree
tΓ. The internal edges of the tree tΓ are all bridges in the resulting graph
and thus

T (Γ;x, y) = x|Eint(tΓ)|T (Γ/ ∪e∈Eint(tΓ) e;x, y). (3.21)

It is possible to lift this property onto the level of Feynman graphons where
the decomposition (3.20) can be described by the disjoint unions of Feynman
graphons. In other words, for each v1, ..., vr ∈ V (tΓ), set [WΓv ] as the
unlabeled graphon class with respect to the graph Γv. Then we have

WΓv1t...tΓvr =

∑r
j=1WΓvj

|
∑r

j=1WΓvj
|
, (3.22)

[WΓ] = [WΓv1
] t ... t [WΓvr ]. (3.23)

Thanks to (3.18), the Tutte polynomial of each [WΓvj
] is defined in terms

of the Tutte polynomial of the graph Γvj . Then we have

T ([WΓ];x, y) =

r∏
j=1

T ([WΓvj
];x, y) (3.24)

which leads us to a Feynman graphon version of the relation (3.21).
Theorem 3.1.4 describes the Tutte polynomial of a large Feynman di-

agram XDSE on the basis of the Tutte polynomials of the partial sums
{Ym}m≥1. The cut-distance convergence of the sequence of partial sums
to XDSE and the universality of the Tutte polynomial enable us to lift the
properties (3.19) and (3.21) onto the Feynman graphon [WXDSE

]. As the
consequence, we can define the abstract Feynman rules characters on large
Feynman diagrams in terms of the Tutte polynomial where we have

Ũ([WXDSE
]) := T ([WXDSE

];x, y) = T (XDSE;x, y). (3.25)

Now we explain the construction of another important class of combi-
natorial polynomials namely, the first Kirchhoff–Symanzik polynomials for
large Feynman diagrams.

The Feynman parametric representation of a Feynman integral U(Γ) can
be described by the integration theory over a topological simplex such as
σn with respect to Feynman parameters w = (w1, ..., wn) ∈ σn such that
n is the number of internal edges of the corresponding Feynman diagram
Γ. If l = b1(Γ) be the first Betti number of Γ (as the maximum number of
independent loops in the graph) and an orientation has been fixed on the
graph, then we can define the circuit matrix η̂ = (ηik)ik such that i ∈ E(Γ)
and k ranges over the chosen basis of loops. If an edge ei belongs to a loop
lk with the same/reverse orientations, then ηik = 1, ηik = −1, respectively.
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If the edge ei does not belong to a loop lk, then ηik = 0. The arrays of the
corresponding l × l Kirchhoff–Symanzik matrix MΓ(w) are given by

(MΓ(w))kr =
n∑
i=1

wiηikηir (3.26)

which defines a function MΓ : An −→ Al2 , w = (w1, ..., wn) 7−→MΓ(w) over
higher dimensional affine spaces. The first Kirchhoff–Symanzik polynomial
of the graph Γ is then defined by the equation

ΨΓ(w) = det(MΓ(w)) (3.27)

which is independent of the choice of an orientation on the graph and the
basis of loops. This function on An, which is a homogeneous polynomial of
degree l, can be formulated in the language of spanning trees where we have

ΨΓ(w) =
∑
T⊂Γ

∏
e6∈E(T )

we (3.28)

such that the sum is over all spanning trees T of the graph Γ and for each
spanning tree the product is over all edges of Γ that are not in the selected
spanning tree. We can show that this product is multiplicative over con-
nected components.

Now consider a large Feynman diagram X with the corresponding se-
quence {Ym}m≥1 of partial sums. For each m, we know that the first
Kirchhoff–Symanzik polynomial of Ym is the product of the polynomials
of each of its components which means that

ΨYm(w) =
m∏
j=1

ΨXj (3.29)

where
ΨXj (w) =

∑
Tj⊂Xj

∏
e6∈E(Tj)

we (3.30)

such that the sum is taken over all the spanning forests Tj of Xj and for
each spanning forest the product is taken over all edges of Xj that are not
in that spanning forest.

Thanks to the cut-distance divergence of the sequence {Ym}m≥1 to X,
for each ε > 0, there exists Nε such that for each m1,m2 ≥ Nε, we have

d(Ym1 , Ym2) = dcut([WYm1
], [WYm2

]) < ε. (3.31)

It means that

dcut([WYm1
], [WYm2

]) = 0⇔ [WYm1
] = [WYm2

]. (3.32)

For enough large m, spanning forests of Ym tend to the spanning forests
of the unique graph limit X.
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Definition 3.1.6. The first Kirchhoff–Symanzik polynomial ΨX(w) of the
large Feynman diagram X is defined as the convergent limit of the sequence
{ΨYm(w)}m≥1 of the first Kirchhoff–Symanzik polynomials of finite graphs
Ym := X1 t ... tXm with respect to the cut-distance topology.

We can present this polynomial by the expansion

ΨX(w) =
∞∏
j=1

ΨXj =
∑
T⊂X

∏
e6∈E(T )

we (3.33)

such that the sum is taken over all the spanning forests T of X and for each
spanning forest the product is taken over all edges of X that are not in that
spanning forest.

Lemma 3.1.7. The first Kirchhoff–Symanzik polynomial ΨX(w) of the large
Feynman diagram X can be defined recursively in terms of the deletion and
the contraction operators.

Proof. Set

F :=
∂ΨX

∂wn
= ΨX \ e (3.34)

as the deletion operator which is the result of deleting the edge e = en from
the original graph. In addition, set

G := ΨX |wn=0 = ΨX/e (3.35)

as the contraction operator which is the result of contracting the edge e = en
to a point in the original graph.

For each edge e which is not a bridge or self-loop in the large Feynman
diagram X, we can show that

ΨX = weF +G (3.36)

such that weF collects the monomials corresponding to spanning forests that
do not include e.

At the end of this section, we address a new application of the first
Kirchhoff–Symanzik polynomial for the study of polynomial invariants of
large Feynman diagrams and Feynman rules characters which act on Feyn-
man graphons.

For a given large Feynman diagram X with the corresponding first
Kirchhoff–Symanzik polynomial ΨX(w), define

V̂X = {w ∈ A∞ :=

∞∏
i=1

Ani : ΨX(w) = 0} (3.37)
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such that the affine hypersurface complement A∞ \ V̂X enjoys the multi-
plicative property. We have

A∞ \ V̂X =
∞∏
i=1

Ani \ V̂Xi (3.38)

such that ni is the number of internal edges of the Feynman diagram Xi.
Consider the Grothendieck ring F of immersed conical varieties gener-

ated by the equivalence classes [V̂ ] up to linear changes of coordinates of
varieties V̂ ⊂ A∞ embedded in some affine space, that are defined by ho-
mogeneous ideals, with the usual inclusion-exclusion relation

[V̂ ] = [R̂] + [V̂ \ R̂] (3.39)

for closed embedding. Now we can define an algebro-geometric Feynman
rules character on the renormalization Hopf algebra of Feynman graphons.
It is an abstract Feynman rules character Û : SΦ

graphon −→ Adr with the
general form

Û([WX ]) = I([A∞ \ V̂X ]) (3.40)

such that [A∞ \ V̂X ] is the class in F and I : F −→ Adr is a ring homomor-
phism.

We can also define a new invariant of infinite Feynman diagrams in terms
of a generalization of the Chern–Schwartz–MacPherson (CSM) characteristic
classes of singular varieties. The algebro-geometric Feynman rules have been
constructed in terms of a polynomial invariant originated from the CSM
characteristic classes ([5, 6, 117]) and here we plan to lift that study onto
the level of Feynman graphons.

Corollary 3.1.8. There exists an extension of the CSM homomorphism for
the level of large Feynman diagrams generated by Dyson–Schwinger equa-
tions.

Proof. The existence of the CSM-homomorphism I∞CSM is another conse-
quence of the cut-distance topology and graphon representation of Feynman
diagrams.

For a given large Feynman diagram XDSE as the unique solution of an
equation DSE, suppose ΨXDSE

(w) is the first Kirchhoff–Symanzik polyno-
mial and V̂XDSE

is its associated hypersurface. In addition, suppose 1V̂XDSE

is the function for V̂XDSE
⊂ A∞ and A(P∞) is the associated Chow group.

The natural transformation

1V̂XDSE
7−→ a0[P0] + a1[P1] + a2[P2] + ... ∈ A(P∞) (3.41)

allows us to define

GV̂XDSE
(T ) := a0 + a1T + a2T

2 + ...+ aNT
N + .... (3.42)
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Now define

I∞CSM : F −→ Z[T ], [V̂XDSE
] 7−→ GV̂XDSE

(T ) (3.43)

and extend it by linearity to achieve a group homomorphism.

3.2 The optimization of non-perturbative com-
plexity via a multi-scale renormalization group

In complexity theory, the efficiency of an algorithm against a problem is
judged in terms of the algorithm’s capability in dealing with computa-
tional demands about quantities originated from the intrinsic complexity of
that problem. An algorithm is known as feasible if it has a polynomial-
time asymptotic scaling and it is known as infeasible if it has a super-
polynomial (typically, exponential) scaling. The calculations of quantum
field-theoretical scattering amplitudes at high precision or strong couplings
are infeasible on classical computers but recently, there are some research ef-
forts which aim to show that these calculations can be feasible on quantum
computers. Traditional calculations of scattering amplitudes in Quantum
Field Theory is on the basis of a series expansion in powers of the coupling
constant (i.e. the coefficients of the interaction terms) such that the running
coupling constant is taken to be small. Feynman diagrams provide an intu-
itive way to organize this class of perturbative expansions where the number
of loops is associated with the power of the coupling constant. The num-
ber of this class of combinatorial diagrams gives us a reasonable measure
to evaluate the computational complexity of perturbative calculations. This
measure increases factorially with the number of loops and the number of
external particles. Furthermore, if the amount of the coupling constant is
insufficiently small, then the perturbative machinery can not provide cor-
rect results while the series expansions are divergent or asymptotic even at
weak coupling constants. Indeed, if we include higher-order terms beyond
a certain point, then the approximations can be inappropriate. In fact, by
increasing the coupling constant, one eventually reaches a quantum phase
transition at some critical couplings such that in the parameter space near
this phase transition perturbative methods become unreliable. This region
can be studied under strong-coupling regimes.

Generally speaking, limits of computations and the efficiently comput-
ing of things are the most important topics in information theory where
people deal with the Halting problem as an undecidable type of problem
which determines whether the program will finish running or continue to
run forever. Thanks to rooted trees decorated by primitive recursive func-
tions, Manin discovered a new reinterpretation of the Halting problem in
the context of the BPHZ perturbative renormalization where the amount of
(non-)computability have been encapsulated via the existence of the Birkhoff
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factorization at the level of the renormalization Hopf algebra of the Halting
problem [52, 113, 114, 115].

Algorithms belong to the intermediate steps between programs and func-
tions which means that they are classified as substructures in the context
of Galois theory. This fundamental fact has already been applied to de-
scribe the foundations of a new categorical-geometric setting for the study
of (systems) of Dyson–Schwinger equations (as the generators of intermedi-
ate steps) in the renormalization Hopf algebra of the Halting problem under
dimensional regularization and the global β-functions. As the consequence
of this treatment, we already have the construction of a new class of neu-
tral Tannakian subcategories of the universal Connes–Marcolli category ECM

which encode intermediate algorithms in the context of systems of differen-
tial equations together with singularities. In addition, these subcategories
can address the existence of a new interrelationship between mixed Tate
motives and theory of computation. Furthermore, thanks to the combina-
torial reformulation of the universal counterterm, some new computational
techniques for the study of the amount of non-computability in the language
of the theory of Hall words have been obtained. As the big picture, infinities
in the Computation Theory can be dealt via a renormalization theory on
(systems) of Dyson–Schwinger equations and vice versa. [52, 113, 147]

It is so difficult to have an optimal solution when we want to consider
a complex problem under a limited period of time. In this situation we
work on the construction of anytime algorithms by computing an initial
potentially highly suboptimal solution and then we improve the computed
suboptimal solution as time allows.

The Kolmogorov complexity, as an uncomputable concept, aims to de-
termine the length of the shortest algorithm which produces an object as
the output of a procedure. Let Σ as the set of alphabets or letters and
f be a computable function on the set of all possible strings generated by
elements in Σ. A description of a string σ is some string τ with f(τ) = σ.
The Kolmogorov complexity Kf is defined by

Kf (σ) :=
{min{|τ |:f(τ)=σ}
∞, otherwise

. (3.44)

It is possible to modify this definition independent of choosing f where we
need to apply a universal Turing machine. In fact, there exists a Turing
machine U such that for all partial computable functions f , there exists a
program p such that for all y, we have U(p, y) = f(y). It enables us to
define K(σ) as the Kolmogorov complexity of σ. It is shown that for all n,
there exists some σ with |σ| = n such that K(σ) ≥ n. Such σ are called
Kolmogorov random.

In this section, we plan to apply the graphon representation of (large)
Feynman diagrams to study the Kolmogorov complexity of non-perturbative
parameters. We will show that optimal algorithms in dealing with non-
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perturbative parameters can be achieved by working on a multi-scale non-
perturbative Wilsonian renormalization group defined on the space SΦ,g.

3.2.1 A renormalization group program on SΦ,g

One important method for the study of the dynamics of quantum systems
is changing the scales of fundamental parameters of the physical theory
such as momentum, energy and mass. Theory of Renormalization Group
aims to describe the behavior of quantum systems under this class of re-
scalings where the possibility of exchanging information from scale to scale
is considered under the fundamental principles of Quantum Mechanics. The
interpretation of the concept of mass in the context of time and distance by
using the Planck constant and the interpretation of the concept of time in
the context of distance by using the speed of light enable us to study the
dynamics of relativistic quantum systems under the re-scaling of the distance
parameter. In this situation, small distances and times are equivalent to
large momenta, energies and masses which produce divergencies in Quantum
Field Theory.

There is another important parameter in Quantum Field Theory which
encodes the strength of the fundamental forces. This parameter, which is
known as the coupling constant, appears in the interaction part of the La-
grangian where we encode information of physical theory in the language
of Green’s functions and Feynman integrals. The amount of the coupling
constant has direct influence on the complexity of Green’s functions. As the
basic fact, in QED we deal with couplings smaller than 1 while in QCD we
deal with couplings at the size of 1 or larger than 1. In theoretical and ex-
perimental studies we study coupling constants under two settings namely,
the bare couplings and the running couplings. Running coupling constants
are the outputs of (dimensional) regularization and renormalization schemes
and they have been applied in high energy levels to generate some interme-
diate quantities which are useful for the approximation of non-perturbative
parameters. Running couplings guide us to deal with changing the scale of
the momentum parameter where the Wilsonian type of the renormalization
group has been formulated.

Generally speaking, there are two different well-known approaches for
the formulation of non-perturbative renormalization group in Theoretical
Physics namely, Wilson–Polchinski framework and effective average action.
In Wilson–Polchinski framework, Physics at very small scale corresponds to
a scale Λ in momentum space which is actually the inverse of a microscopic
length where the partition function is given by

Z[B] =

∫
dµCΛ

(φ)exp
(
−
∫
V (φ) +

∫
Bφ
)

(3.45)

such that dµCΛ
is a functional Gaussian measure with a cut-off at scale Λ.

Now if we separate the field φp = φ(p) into rapid and slow modes φp,<, φp,>
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with respect to a scale k, then we can rewrite the partition function in terms
of these components which lead us to define a running potential Vk at scale
k via performing the integration on φ>. As the output we have

Z =

∫
dµCk(φ<)exp(−

∫
Vk(φ<)) (3.46)

such that when k ≤ Λ, Vk involves derivative terms with any power of the
derivatives of φ<. The Wilson–Polchinski equation is indeed a differential
equation for the evolution of Vk with k such that the flow of potentials Vk(φ<)
do not contain all information on the initial theory and in addition, Vk(φ)
involves infinitely many couplings contrarily to perturbation theory that
involves only the renormalizable ones. In this method of non-perturbative
renormalization group there is no general achievement about the convergence
of the series of approximations that are used. In addition, the anomalous
dimension is depended on the choice of cut-off parameters that separate the
rapid and the slow modes whereas it should be independent of it. In effective
average action method, the basic idea is to build the 1-parameter family of
models for which a momentum depended mass term is added to the original
Hamiltonian where we have

Zk[B] =

∫
Dφ(x)exp

(
−H[φ]−∆Hk[φ] +

∫
Bφ
)

(3.47)

∆Hk[φ] =
1

2

∫
q
Rk(q)φqφ−q. (3.48)

For 0 < k < Λ, the rapid modes are almost unaffected by the cut-off function
Rk(q) (as a homogeneous to a mass square) which means that Rk(|q| > k) '
0. Set

Wk[B] := logZk[B] (3.49)

with the corresponding Legendre transformation Γk[M(x)] = Γk[
δWk
δB(x) ]. The

renormalization group equation on Γk is the differential equation of the type

∂kΓk = f(Γk). (3.50)

It is shown that by working on dimensionless and renormalized quantities,
the resulting non-perturbative renormalization group can be written inde-
pendently of the scales k and Λ. The geometry of the resulting renormal-
ization group flow from this framework supports the universality of self-
similarity and decoupling of massive modes. [38, 85, 118, 127, 128, 131, 132,
134, 167]

In this part we address an alternative Renormalization Group treat-
ment for the study of non-perturbative parameters in terms of changing
the scales of Dyson–Schwinger equations via re-scaling bare and running
couplings. Our study provides a mathematical procedure to exchange in-
formation among non-perturbative aspects under different scales. For this
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purpose, we plan to build a new multi-scale Renormalization Group ma-
chinery on the space SΦ,g of all Dyson–Schwinger equations in the physical
theory Φ under different scales λg of the bare coupling constant g.

The bare couplings are independent of any regularization and renormal-
ization schemes and therefore their re-scalings can be helpful for us to ap-
proximate non-perturbative parameters originated from Dyson–Schwinger
equations under a universal setting. There are two fundamental challenges
in Theoretical High Energy Physics about running coupling constants. On
the one hand, running couplings are unobervable. On the other hand, the
most important mission of the renormalization group is to show that the pre-
dictions for the observables do not depend on theoretical conventions such
as renormalization or regularization schemes, the initial state, the choice of
effective charge or the choice of running coupling constants. Therefore differ-
ent choices of these couplings should be related to each other which means
that search for an optimal choice is very important. Our promising non-
perturbative renormalization group enables us to study Dyson–Schwinger
equations under changing the scales of bare couplings and running cou-
plings not simultaneously but related to each other. We expect that this
alternative machinery is helpful to provide a theoretical algorithm for the
determination of effective couplings where the complexity of the correspond-
ing Dyson–Schwinger equations will be controlled in terms of changing the
scale of the bare coupling constant.

Let X g be the collection of all interacting Lagrangians with coefficients
in the ring R[[g]], invariant under the change φ −→ −φ, and interaction
parts with the general form

I(φ) :=
∑
k≥2

Ik(φ) (3.51)

such that for all k, Ik = O(g) with respect to the bare coupling constant g.
Changing the scale of g allows us to obtain an effective Lagrangian at the
scale τ ≤ λ of a Lagrangian L at the initial scale λ. The interaction part
is the original source of Dyson–Schwinger equations and therefore the re-
scaling of the coupling constants lead us to re-scale these non-perturbative
type of equations. The renormalization group with respect to this class
of momentum type re-scaling enables us to discuss about the possibility of
exchanging information among re-scaled Dyson–Schwinger equations.

For each k, set Fk as the set of all smooth functions on the hyperplane∑k
i=1 vi = 0 in (V ∗)⊕k such that V is the Euclidean 4-dimensional space-

time. Define F :=
∏∞
i=1 F2i to formulate Green’s functions G given by

G : X g ×Mm −→ F, G := (G2,G4, ...) (3.52)

such that
- Mm is the set of scales of the momentum parameter,
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- the value Gk at (L, λ) is called the k-point correlation function of the La-
grangian L at the scale λ,
- for each k, Gk is the formal expansion of amplitudes of all Feynman dia-
grams with k external edges.

Dyson–Schwinger equations are actually formulated as the fixed point
equations of G with the general form

G = 1 +

∫
IγG (3.53)

such that Iγ is the integral kernel with respect to the (IPI) primitive Feyn-
man diagram γ.

Definition 3.2.1. An equation in SΦ,g is called effective at the scale τ of
the original Dyson–Schwinger equation DSE at the initial scale λ, if the
fixed point equation of the Green’s function G(LΦ, λ) coincides with the
fixed point equation of the Green’s function G(LΦ, τ).

It is shown in [150] that we can build a unique effective equation at the
scale τ for any equation DSE in SΦ,g at the original scale λ of the momentum
parameter. It enables us to change the scale of the momenta of internal edges
of each term in the formal expansion of the solution of DSE.

In higher orders in perturbation theory we should deal with a large num-
ber of Feynman diagrams which cost us exponentially growing of the mo-
mentum scale. Therefore all orders in perturbation theory do not accessible
for any scale of the momentum parameter. The asymptotic freedom behav-
ior of QCD at very high energies enables us to study the physics of hadrons
under perturbative setting but at a relatively low energy scale, the amount of
the coupling constant becomes too large where non-perturbative situations
do happen. Running coupling constants, as the functions of the momen-
tum parameter, describe the strength of the interactions among quarks and
gluons. The determination of this class of couplings has very uncertainty
nature which makes so many computational and phenomenological diffi-
culties. Dimensional regularization allows us to replace the bare coupling
constant with a class of scaled depended couplings. The ultraviolet diver-
gencies are eliminated by normalizing the coupling at a specific momentum
scale. In addition, the ultraviolet cut-off dependency is removed by allow-
ing the couplings and masses, which appear in the Lagrangian, to have a
scale dependency where we can produce running couplings on the basis of
normalizing them to a measured value at a given scale. This normalization
of the coupling to a measured value makes the running coupling to not have
sensitivity to the ultraviolet cut-off. The scale dependency of the strong
coupling can be controlled by β-function as the infinitesimal generator of
the renormalization group. [40, 119, 120]

Thanks to this background, it is possible to formulate a new multi-scale
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renormalization group on SΦ,g to analyze the behavior of Dyson–Schwinger
equations.

Theorem 3.2.2. There exists a renormalization group machinery on SΦ,g

which encodes the dynamics of Dyson–Schwinger equations under changing
the scales of the bare and running coupling constants.

Proof. Set Mrunning as the set of scales of the running couplings. For scales

Λ1,Λ2,Λ3 ∈Mrunning such that Λ1 < Λ2 < Λ3, define the scale map Rrunning
−−

on SΦ,g which satisfies the property

Rrunning
Λ1Λ2

Rrunning
Λ2Λ3

= Rrunning
Λ1Λ3

. (3.54)

For each equation DSE, Rrunning
Λ1Λ2

DSE is the effective Dyson–Schwinger equa-
tion at the scale Λ2 of the equation DSE at the original scale Λ1. Now define
an action of the semigroup R+

≤1 on the space SΦ,g ×Mrunning given by

r ◦ (DSE,Λ) := (Rrunning
Λ,rΛ DSE, rΛ). (3.55)

The resulting Renormalization Group allows us to study the dynamics of
Dyson–Schwinger equations under the re-scaling of the running couplings.

Set Mbare as the set of scales of the bare coupling constant g. For scales
τ1, τ2, τ3 ∈Mbare such that τ1 < τ2 < τ3, define the scale map Rbare

−− on SΦ,g

which satisfies the property

Rbare
τ1τ2R

bare
τ2τ3 = Rbare

τ1τ3 . (3.56)

For each equation DSE in SΦ,g define a new Dyson–Schwinger equation
Rbare
τ1τ2DSE which is a re-scaled equation at the scale τ2 of the equation DSE

at the initial scale τ1. Now define an action of the semigroup R+
≤1 on the

space SΦ,g ×Mbare given by

r ◦ (DSE, τ) := (Rbare
τ,rτ DSE, rτ). (3.57)

The resulting Renormalization Group allows us to study the dynamics of
Dyson–Schwinger equations under the re-scaling of the bare coupling con-
stant g.

Thanks to (3.55) and (3.57), we can define a new multi-scale renormaliza-
tion group on SΦ,g where it is possible to re-scale the bare coupling constant
g 7−→ τg before the application of regularization schemes.

Each equation (DSE, τg,Λτ ) in SΦ,g×Mbare×Mrunning presents a Dyson–
Schwinger equation DSE as a polynomial on the re-scaled bare and running
coupling constants which is an infinite formal expansion of Feynman inte-
grals with respect to the re-scaled bare coupling constant τg (as the initial
scale) such that each Feynman integral in the expansion is defined based on
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the momentum parameter at the initial scale Λτ . Now define a new action
of the semi-group R+

≤1 on SΦ ×Mbare ×Mrunning as the following way

λ ◦ (DSE, τg,Λτ ) := (Rmulti
(τg,Λτ ),(λτg,λΛτ )DSE, (λτg, λΛτ )). (3.58)

The equation Rmulti
(τg,Λτ ),(λτg,λΛτ )DSE is the unique effective Dyson–Schwinger

equation with respect to the re-scaled bare coupling λτg and re-scaled mo-
mentum parameter λΛτ which lives in SΦ,g.

Roughly speaking, the renormalization machinery enables us to redefine
the unrenormalized constants which exist in the Lagrangian in such a way
that the observable quantities remain finite when the ultraviolet cut-off is
removed. This machinery requires a new quantity µ with the dimension of
a mass where all intermediate quantities are depended on µ. The confine-
ment in QCD does not allow us to determine a natural scale for µ. The
µ dependence of the coupling constant and various quark masses in QCD
force us to define running coupling constants and running masses where the
renormalization group equations can control the µ dependence of the result-
ing renormalized quantities. The running coupling constant g(µ2) can be
studied in terms of the equation

µ2dg(µ2)

dµ2
= β(g(µ2)) (3.59)

which leads us to

g(µ2) =
1

β0ln(µ2/Λ2)
(3.60)

such that the dimensional scale Λ is the scale at which the coupling diverges
and perturbation theory becomes meaningless. When the cut-off parameter
tends to infinity, β(g(µ2)) remains finite such that in perturbation theory
we have

β(g(µ2)) = −g(µ2)2(β0 + β1g(µ2) + β2g(µ2)2 + ...). (3.61)

The Renormalization Group machinery defined by Theorem 3.2.2 is non-
commutative because the scale of the momentum parameter is completely
depended on the chosen re-scaling of the bare coupling. It encodes the
dynamics of non-perturbative aspects of quantum systems by collections of
Dyson–Schwinger equations derived from changing the scales of couplings.

Dimensional regularization or other regularization schemes changes the
nature of the bare couplings to describe QFT under a perturbative setting
but it fails to be functional in enough high orders. Theorem 3.2.2 enables us
to generate a new class of running couplings in terms of the re-scaled bare
coupling which are independent of any regularization process. Therefore the
resulting running couplings preserve the nature of the bare coupling which
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means that they have physical meanings. As one practical consequence, this
multi-scale Renormalization Group provides a new alternative machinery
for the description of each Dyson–Schwinger equation at the strong cou-
pling constant g in terms of a sequence of Dyson–Schwinger equations at
the weaker couplings λg in the space SΦ,g equipped with the cut-distance
topology. This approach enables us to apply Feynman graphons for the de-
scription of the complexity of an equation DSE in terms of less complicated
equations with respect to our given running couplings. In other words, we
can compute the unique solution X(λg) of the equation DSE(λg) for λg < 1
as intermediate values for the approximation of the large Feynman diagram
X(g).

Corollary 3.2.3. For each large Feynman diagram X(g) =
∑∞

m=0 g
mXm

derived from an equation DSE in SΦ,g at the strong bare coupling constant
g ≥ 1, there exists a sequence of large Feynman diagrams at weaker effective
couplings which converges to X(g) with respect to the cut-distance topology.

Proof. Thanks to Theorem 3.2.2, we can build the sequence {Rbare
g, n
n+1

gDSE}n≥1

of Dyson–Schwinger equations with respect to the re-scaled bare coupling
constants n

n+1g for each n ≥ 1 where the initial scale of the equation DSE
is at least 1.

For each n, Rbare
g, n
n+1

gDSE is an equation in SΦ,g which has the unique

solution

Y (
n

n+ 1
g) =

∞∑
m=0

(
n

n+ 1
g)mXm. (3.62)

The scales n
n+1 for each n ≥ 1 provide an increasing sequence of effective

couplings derived from the bare coupling constant g where n
n+1g < g. There-

fore for each n, the solution Y ( n
n+1g) of the equation Rbare

g, n
n+1

gDSE is actually

a disjoint union of multi-loop Feynman diagrams which can be handled by
higher order perturbation methods. It remains to show that the sequence
{Y ( n

n+1g)}n≥1 is convergent to X(g) with respect to the cut-distance topol-
ogy. Thanks to Lemma 2.3.3, for each n ≥ 1, we can associate a unique
unlabeled graphon class [WY ( n

n+1
g)] with respect to each large Feynman

diagram Y ( n
n+1g). Thanks to Definition 2.3.4, it is enough to show that

the sequence {[WY ( n
n+1

g)]}n≥1 is convergent to the unlabeled graphon class

[WX(g)].
For a fixed n ≥ 1, we can check that the labeled grahons W( n

n+1
g)mXm and

WgmXm belong to the same unlabeled graphon class which means that they
are weakly equivalent (for each m ≥ 0). Therefore when m tends to infinity,
labeled graphons WY ( n

n+1
g) and WX(g) are also weakly equivalent.

Corollary 3.2.4. For any Dyson–Schwinger DSE in SΦ,g, there exists a se-
quence of many-loop Feynman diagrams such that their corresponding BPHZ
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counterterms and renormalized values converge to the counterterm and renor-
malized value generated by the renormalization of the equation DSE.

Proof. Thanks to Corollary 3.2.3, there exists a sequence {Γn}n≥1 of many-
loop Feynman diagrams in SΦ,g at the re-scaled bare coupling constants λng
and running couplings Λλn which converges to the unique solution XDSE(g)
with respect to the cut-distance topology. Now apply Theorem 2.4.1 to each
graph Γn to build sequences

{Sφ̃Rms
([WΓn ])}n≥1 (3.63)

and
{Sφ̃Rms

∗ φ̃([WΓn ])}n≥1 (3.64)

which are cut-distance convergent to Sφ̃Rms
([WXDSE(g)]) and Sφ̃Rms

∗φ̃([WXDSE(g)]),
respectively

Thanks to these investigations, we expect that the multi-scale renormal-
ization group defined by Theorem 3.2.2 plays a practical role to optimize
the computational procedures in dealing with non-perturbative parameters.
We deal with this topic in the next section.

3.2.2 Kolmogorov complexity of Dyson–Schwinger equations

In this part, we plan to address the complexity of computations in non-
perturbative parameters in the context of the multi-scale renormalization
group machineryRmulti

(.,.),λ(.,.) and the Halting problem to study non-perturbative
Feynman rules characters on Feynman graphons.

We define the Kolmogorov complexity of each Dyson–Schwinger equa-
tion DSE in SΦ,g in terms of changing the scale of the bare coupling con-
stant where exchanging information among equations at different scales have
been encoded by the non-perturbative multi-scale renormalization group
Rmulti

(.,.),λ(.,.) (i.e. Theorem 3.2.2).

For our framework we need to see SΦ,g as the constructive world which
covers all non-perturbative situations in Quantum Field Theory Φ with
strong bare coupling constant g. Thanks to Corollary 3.2.3, define

ug : Z+ × SΦ,g −→ SΦ,g, (n,DSE(g)) 7−→ DSE(
n

n+ 1
g) (3.65)

as a semi-computable function in the sense that there exists an algorithm
which encodes the application of ug on Dyson–Schwinger equations.

Definition 3.2.5. The Kolmogorov complexity of an equation DSE(λg) at
the scale λg with respect to the function ug is determined by the relation

Kug(DSE(λg)) := min{n ∈ Z+ : ug(n,DSE(g)) ⊆ DSE(λg)} (3.66)
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such that the inclusion means that the unique solution XDSE( n
n+1

g) as a

large graph can be embedded as a subgraph into the large Feynman diagram
XDSE(λg).

Lemma 3.2.6. There exists the Kolmogorov total order on SΦ,g.

Proof. The Kolmogorov order of SΦ,g is defined as a bijection Kug : SΦ,g −→
Z+ which arranges all Dyson–Schwinger equations of the physical theory Φ
in the increasing order of their complexities Kug(DSE(λg)). Define

DSE(λ1g) < DSE(λ2g)⇐⇒ Kug(DSE(λ1g)) < Kug(DSE(λ2g)). (3.67)

It is possible to determine some constants c0 > 0 such that for all Dyson–
Schwinger equations such as DSE(λg),

c0Kug(DSE(λg)) ≤ Kug(DSE(λg)) ≤ Kug(DSE(λg)). (3.68)

Thanks to Definition 3.2.5 and Definition 3.2.6, it is now possible to
consider SΦ,g as a poset such that for any given partial recursive map σ :
SΦ,g −→ SΦ,g which generates a permutation, we can define a new map

σKug
:= Kug ◦ σ ◦K−1

ug (3.69)

where it provides a permutation of the subset

D(σKug
) := Kug(Dom(σ)) ⊆ Z+. (3.70)

Now suppose equation DSE(λg) ∈ Dom(σ) such that its corresponding orbit
σZ(DSE(λg)) is infinite. Set

Kug(DSE(λg)) := kλDSE (3.71)

such that for each n > 0, we have

σnKug
(kλDSE) = Kug(σ

n(DSE(λg))) ≤ cKug(n) (3.72)

In [112] it is discussed that for any partial recursive function f : Z+ −→ Z+

and x ∈ Dom(f) we have

K(f(x)) ≤ cfK(x) ≤ c′fx. (3.73)

We want to apply the inequality (3.73) for the Kolmogorov complexity of
Dyson–Schwinger equations defined by Definition 3.2.5 and bijection Kug .
Define

Y := {σn(DSE(λg)) : n ∈ Z+} (3.74)
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as a recursively enumerable subset of SΦ,g which plays the role of the domain
for a partial recursive function A : SΦ,g −→ Z+ given by

A(DSE(τg)) = n, if σn(DSE(λg)) = DSE(τg). (3.75)

We have

K−1
ug (n) = K−1

ug (A(DSE(τg))) ≤ c′Kug(DSE(τg)) = c
′
Kug(σ

n(DSE(λg))).
(3.76)

As the consequence, we can obtain the following upper and lower boundaries
for the permutation σKug

,

c1K
−1
ug (n) ≤ σnKug

(kλDSE) ≤ c2K
−1
ug (n). (3.77)

Lemma 3.2.7. Consider SΦ,g as the constructive world and equip this col-
lection with a total recursive structure of additive group without torsion with
the zero element 0. The Halting problem for any partial recursive func-
tion f : Z+ × SΦ,g −→ SΦ,g can be described in the language of fixed point
equations.

Proof. Extend f to a new function

gf : Z+ × (SΦ,g
∐
{0}) −→ (SΦ,g

∐
{0}) (3.78)

such that
gf ((n,X)) := 0, if (n,X) 6∈ Dom(f). (3.79)

Now define a new permutation

τf : Z+ × (SΦ,g
∐
{0})× (SΦ,g

∐
{0}) −→ (SΦ,g

∐
{0})× (SΦ,g

∐
{0}),

τf (n, (X,Y )) := (X + gf ((n, Y )), Y ). (3.80)

We can check that finite orbits of τf are fixed points. It leads us to build a
new partial recursive permutation σf with the domain

Dom(σf ) := (SΦ,g
∐
{0})×Dom(f). (3.81)

Thanks to [112, 114] and the definition of gf , we can show that the com-
plement to Dom(σf ) in the constructive world (SΦ,g

∐
{0}) × (SΦ,g

∐
{0})

covers the fixed points of τf . This process reduces the Halting problem for
f to the determination of the fixed points of τf .

For the constructive world SΦ,g, the map ug given by (3.65), the map
σKug

given by (3.69) and (3.70), the integer value kλDSE given by (3.71),
define

Ψ(kλDSE, σ, u
g, z) :=

1

(kλDSE)2
+
∑
n≥1

zKug (DSE(λ n
n+1

g))

(σnKug
(kλDSE))2

. (3.82)
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Corollary 3.2.8. - If the σ-orbit of the equation DSE(λg) ∈ Dom(σ) is
finite, then Ψ(kλDSE, σ, u

g, z) is a rational function in the complex variable
z. All poles of this formal series, which are of the first order, live at roots
of unity.

- If the σ-orbit of the equation DSE(λg) ∈ Dom(σ) is infinite, then
Ψ(kλDSE, σ, u

g, z) is the Taylor series of an analytic function on the region
|z| < 1 which is continuous at the boundary of this region.

Proof. It is a direct result of the discussions in [112, 114] where we need to
replace the constructive world Z+ with SΦ,g.

Thanks to the Manin’s reconstruction of the Halting problem in the
language of the BPHZ renormalization program ([113, 114, 115]) and the
explained machinery with respect to the constructive world SΦ,g, now it is
possible to deal with the Halting problem for a given partial recursive map
f : Z+×SΦ,g −→ SΦ,g. We can reduce f to a partial recursive permutation

σf : Dom(σf ) ⊂ SΦ,g −→ Dom(σf ) ⊂ SΦ,g (3.83)

to interpret the problem of recognizing whether a positive integer number k
belongs to the domain Dom(σf ) to the problem of whether the corresponding
analytic function Ψ(k, σf , u

g, z) of a complex parameter z has a pole at z = 1.

Theorem 3.2.9. The BPHZ renormalization of Feynman graphons encodes
the Halting problem for a given partial recursive map f : Z+×SΦ,g −→ SΦ,g.

Proof. Thanks to the construction of the renormalization Hopf algebra of
Feynman graphons SΦ

graphon and the BPHZ renormalization of large Feynman
diagrams, consider the character

ϕk : SΦ
graphon −→ Adr, ϕk([WXDSE

]) := Ψ(kλDSE, σf , u
g, z). (3.84)

Thanks to the Birkhoff factorization on the regularization algebra Adr, we
have Adr = A+⊕A− such that A+ is the unital algebra of analytic functions
in the region |z| < 1 which are continuous on the boundary |z| = 1 and
A− := (1− z)−1C[(1− z)−1].

By applying Lemma 3.2.7 and Corollary 3.2.8, discussion about the ex-
istence of a pole at z = 1 for the analytic function Ψ(kλDSE, σf , u

g, z) enables
us to determine whether kλDSE lives in D(σf ).

The main reason of this important result is the existence of a class of
semi-computable maps such as ug (for a given strong coupling g) which has
led us to define a modified version of the Kolmogorov complexity for Dyson–
Schwinger equations (i.e. Definition 3.2.5). The dynamics of the well-defined
map ug (3.65) can be studied by the multi-scale Renormalization Group ma-
chinery which is defined on SΦ,g. We can define the Kolmogorov complexity
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Kw on Dyson–Schwinger equations with respect to other arbitrary elements
w of the set of Kolmogorov optimal functions where the optimality means
that for any partial recursive v : Z+ ×SΦ,g −→ SΦ,g there exists a constant
cv,w > 0 such that for each Dyson–Schwinger equation DSE(λg),

Kw((n,DSE(λg))) ≤ cv,wKv((n,DSE(λg))). (3.85)

Thanks to Corollary 3.2.3, relations (3.68) and (3.77) and Theorem 3.2.9,
which determines the amount of non-computability via the Halting problem
at the level of Feynman graphons, those semi-computable maps defined in
terms of the map Rmulti

−− can be considered as the truth candidate for this
optimality.
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Chapter 4

The dynamics of
non-perturbative QFT in the
language of noncommutative
geometry

• A spectral triple model for quantum motions
• A noncommutative symplectic geometry model for SΦ

graphon
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Noncommutative geometry studies geometric properties of singular spaces
on the basis of suitable coordinate algebras where point spaces are replaced
by (noncommutative) function algebras. The standard differential and inte-
gral calculi have been adapted to a more general setting in the way compat-
ible with the interpretation of variable quantities in Quantum Mechanics as
operators on the Hilbert space of states and spectral analysis. The interplay
between Algebra and Topology has been studied conceptually and contex-
tually under two general settings on the basis of the theory of Hopf algebras
(or quantum groups) and the theory of C*-algebras. In the resulting dictio-
nary, noncommutative C*-algebras, which are interpreted as the algebras of
continuous functions on some virtual noncommutative spaces, are the dual
arena for noncommutative topology. As the important consequence of this
interrelationship, the theory of spectral triples and the theory of noncom-
mutative differential graded algebras enable us to build the foundations of
differential and integral calculi in noncommutative geometry. [36, 43]

The idea of applying noncommutative geometry to Quantum Field The-
ory has already been considered and developed by different groups of math-
ematicians and mathematical/theoretical physicists where we can address
new models of gauge field theories or the mathematical foundations of Stan-
dard Model and its modified versions in dealing with elementary particles
[29, 37, 41, 44, 45, 109, 122]. Furthermore, thanks to the renormalization
Hopf algebra, some new applications of noncommutative geometry tools in
dealing with Dyson–Schwinger equations were found where two classes of
differential graded algebras had been formulated to describe the geometry
of quantum motions. The first class of differential graded algebras was built
in the way to determine a family of connections which encode quantum
motions independent of the chosen regularization scheme [141]. The second
class of differential graded algebras was built in the way to encode regulariza-
tion and renormalization processes of Feynman diagrams which contribute
to solutions of Dyson–Schwinger equations in the language of noncommu-
tative differential forms. This setting, which applies shuffle products and
Rota–Baxter algebras ([68]), has provided a new geometric interpretation
of the Connes–Kreimer renormalization group in the context of integrable
systems under a non-perturbative setting [146].

In this chapter, we plan to continue our search for some new applica-
tions of noncommutative geometry to non-perturbative aspects ([150]). At
the first step, we explain the construction of a new class of spectral triples
which encodes the geometry of Dyson–Schwinger equations under an op-
erator theoretic setting. This study provides the foundations of a theory
of spectral geometry for the description of large Feynman diagrams. At
the second step, we search for a new class of differential graded algebras on
Feynman graphons to build a noncommutative differential geometry machin-
ery for the description of physical parameters generated by large Feynman
diagrams.
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4.1 A spectral triple model for quantum motions

Geometric objects associated to any n-dimensional C∞ manifold M such
as vector fields, differential forms, general tensor fields, vector bundles, Rie-
mannian metric, connections, curvature tensor, etc are encoded via the com-
mutative algebra C∞(M) (i.e. infinite times differentiable functions on M)
and some extra operators on this algebra. If we replace the algebra C∞(M)
with a noncommutative algebra A (such as the algebra generated by some de-
formation procedures on C∞(M)), then we can achieve the basic elements of
noncommutative geometry as a generalization of the standard commutative
geometry of manifolds. The basic pedagogical example of a noncommutative
space is given via Gelfand–Naimark Theorem where studying commutative
C*-algebras is translated to studying compact topological (Hausdorff) spaces
and vice versa. It leads us to a general idea that studying noncommutative
C*-algebras becomes to studying ”noncommutative” compact topological
spaces. [36]

Classical Mechanics can be interpreted as the fundamental example of
a commutative geometry where the phase space of a system of N non-
relativistic particles is a 6N dimensional symplectic manifold M and the
physical observables, energy, angular momentum, etc are functions in C∞(M).
Quantum Mechanics can be interpreted as the fundamental example of a
noncommutative geometry where we should deal with a noncommutative
algebra of quantum observables consisting of operators on the Hilbert space
of states. The position operator Q and the momentum operator P (as
unbounded self-adjoint operators) satisfy the canonical Heisenberg’s com-
mutation relation

PQ−QP = −i~I. (4.1)

The physical observables are represented by hermitian operators. If we apply
one-parameter unitary groups Us = eisP , Vt = eitQ, then we have the Weyl
form of the commutation relation namely,

UsVt = e−i~stVtUs. (4.2)

Set s = t = 1, λ = −2π~ to obtain unitary bounded operators U, V on
the same Hilbert space which enjoy the property UV = e2πiλV U . The
noncommutative polynomial algebra Aλ generated by U, V and their corre-
sponding adjoint operators and equipped with the operator norm is actually
a noncommutative C∗-algebra derived from Quantum Mechanics.

Deformation quantization focuses on the construction of a noncommuta-
tive algebra of quantum observables in terms of defining some new noncom-
mutative type of products on the vector space C∞(M). The deformation of
the coordinates of space-time with respect to relations such as [x̂µ, x̂ν ] = iθµν

is another machinery in this setting to build a noncommutative geometry
model.
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In an alternative approach, Connes developed a formulation of differen-
tial geometry in terms of commutative algebras to build a noncommutative
generalization where we can consider a compact manifold of arbitrary dimen-
sion with a well-defined Riemannian structure which gives rise to a first order
differential operator known as the Dirac operator. It is shown that the man-
ifold, including the metric tensor, can be completely reconstructed from the
discrete eigenvalues of this operator such that the properties of the spectrum
can be encoded by a spectral triple which contains some algebraic informa-
tion. In summary, an ordinary compact Riemannian manifold M is reinter-
preted in terms of the spectral triple (A = C∞(M),H = L2(.), D = iγµ∂x

µ)
which is called a commutative spectral triple. Thanks to this setting, Connes
achieved a new modified version of the Gelfand–Naimark Theorem for com-
pact Riemannian manifolds and spectral triples. The generalization of this
approach has led us to the concept of noncommutative spectral triples
where some new applications of noncommutative geometry to the description
of relativistic quantum theory, elementary particles and space-time at the
micro-scale Physics have been discovered by mathematicians and mathemat-
ical/theoretical physicists. As an example we can address the mathematical
description of Standard Model and its modified versions in the language of
noncommutative geometry. [36, 37]

Here we plan to explain the structure of a new class of spectral triples
originated from solutions of Dyson–Schwinger equations. The resulting spec-
tral triples encode the geometry of those parts of Quantum Field Theories
with strong coupling constants where quantum motions have complicated
non-perturbative behaviors.

In general, a spectral triple is a collection (A,H, D) of related mathemat-
ical structures such that A is a (unital) involutive algebra which is faithfully
represented on a Hilbert space H via a representation π. D is a self-adjoint
operator acting on H with compact resolvent where for any a ∈ A, π(a)
maps dom(D) into itself and also, [D,π(a)] extends to a bounded operator
on H.

Theory of Clifford algebras and spin structures have provided the founda-
tions of the algebraic reconstruction of the geometry of smooth (compact)
Riemannian manifolds in the context of theory of spectral triples. For a
given n-dimensional (locally) compact C∞-Riemannian manifold M with-
out boundary, set A1(M) := Γ(M,T ∗CM) as the space of sections of the
complex cotangent bundle, which are differentiable 1-forms on M , with the
corresponding dual space ℵ(M) := Γ(M,TCM) as the space of sections of
the tangent bundle, which are differentiable vector fields on M . The met-
ric g is therefore a C∞(M)-valued symmetric bilinear positive definite form
on A1(M) (or ℵ(M)). Application of the Cech cohomology theory to the
algebra of Clifford sections enables us to define spinc structures and then de-
termine the corresponding spin structures under Morita equivalent relation.
A spinc connection on a spinor module Γ(M,S) is defined (compatible with
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the action of the algebra of Clifford sections) as a Hermitian connection

∇S : Γ(M,S) −→ A1(M)⊗C∞(M) Γ(M,S). (4.3)

It is called a spin connection, if it commutes with the anti-linear charge
conjugation c for each real vector field. The Riemannian distance on the
manifold M is determined in terms of the Dirac operator as a complex
linear operator such as D : Γ(M,S) −→ Γ(M,S) defined by the composition
−iĉ ◦ ∇S such that

ĉ ∈ HomC∞(M)(B ⊗ Γ(M,S),Γ(M,S)) (4.4)

is given by ĉ(ρ1, ρ2) := c(ρ1)ρ2 while B is the Clifford algebra bundle. It
is also possible to present this operator under a local setting in terms of
the spaces of vector fields and 1-forms. This explains the Dirac operator as
an essentially self-adjoint operator on its original domain, where we can see
that [D, f ] = −ic(df) for any smooth function f . Thanks to this treatment

d(x, y) = sup{|f(y)− f(x)| : f ∈ C∞(M), ||[D, f ]|| ≤ 1} (4.5)

describes the geodesic distance in terms of an unbounded Fredholm module
over the C*-algebra C∞(M) [36, 37]. Therefore all geometric information
of the manifold M can be encapsulated by the spectral triple

(C∞(M), L2(M,S), D). (4.6)

Theorem 4.1.1. Consider {(Am,Hm, Dm)}m≥1 as a countable family of
spectral triples with the corresponding family of representations {πm}m≥1.
For each m, let ||.||m be the norm on Hm and then choose {αm}m≥1 as a se-

quence of non-zero real numbers such that the sequence {||(1+α2
mD

2
m)
−1
2 ||m}m≥1

converges to zero when m goes to infinity. There exists a spectral triple

(A⊕,H⊕, D⊕) (4.7)

such that H⊕ :=
⊕

m≥1 Hm, D
⊕ :=

⊕
m≥1 αmDm with the corresponding

self-adjoint extension D⊕. In addition,

A⊕ := {(am)m≥1 ∈
∏
m

Am :

supm≥1||πm(am)||m < +∞, supm≥1||[αmDm, πm(am)]||m < +∞}

such that for each a⊕ ∈ A⊕, π⊕(a⊕) :=
⊕

m≥1 πm(am). [59]

The graduation parameter on the renormalization Hopf algebra and Hopf
subalgebras generated by Dyson–Schwinger equations enable us to describe
the corresponding complex Lie groups GΦ(C) and GDSE(C) under projective
limits of Lie subgroups.
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Generally speaking, for a given commutative (graded) Hopf algebra H,
let Spec(H) be the set of all prime ideals of H equipped with the Zariski
topology and the structure sheaf. This topological space accepts a group
structure generated by the coproduct of H. Under a categorical setting, the
functional Spec is a contravariant functor from the category of commutative
algebras to the category of topological spaces which leads us to define an-
other functional GH = Spec(H) as a covariant representable functor from
the category of commutative algebras to the category of groups. For each
commutative algebra A, the Lie group GH(A) = Spec(H)(A) is the set of
morphisms with the general form

ϕ : H −→ A, ϕ(h1h2) = ϕ(h1)ϕ(h2), ϕ(1h) = 1A, (4.8)

which is equipped with the convolution product

ϕ1 ∗ ϕ2(h) := m ◦ (ϕ1 ⊗ ϕ2) ◦∆H(h). (4.9)

Thanks to Milnor–Moore Theorem ([126]), the finite dimensional com-
plex Lie group GLn of n×nmatrices with non-zero determinants corresponds
to the Hopf algebra

HGLn = k[xi,j , t]i,j=1,...,n/det(xi,j)t− 1 (4.10)

with the coproduct

∆(xi,j) =
∑
s

xi,s ⊗ xs,j . (4.11)

It is shown that if the Hopf algebra H is finitely generated as an algebra,
then its corresponding affine group scheme is a linear algebraic group which
can be embedded as a Zariski closed subset of some GLn. [121]

If we have a graduation parameter on the commutative Hopf algebra
H, then there exists a family {Hn}n≥0 of commutative Hopf subalgebras
such that H =

⋃
n≥0Hn and for all n and m, we can find some k where

Hn ∪ Hm ⊂ Hk. It is called a finite type graded Hopf algebra if each
component of the grading structure is finitely generated as an algebra which
means that for each n, there exists the corresponding linear algebraic group
of the form

Gn(C) = Spec(Hn)(C) < GLmn(C) (4.12)

for some mn. These algebraic groups generate the affine group scheme GH

corresponding to the Hopf algebra H via the projective limit

GH = lim←−nGn. (4.13)

Theorem 4.1.2. There exists a class of infinite dimensional spectral triples
which describes the geometry of quantum motions in physical theories with
strong coupling constants.
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Proof. We are going to build a spectral triple with respect to each Dyson–
Schwinger equation in SΦ,g such that the bare coupling constant g is strong
enough to produce non-perturbative situations. Suppose the large Feyn-
man diagram XDSE =

∑
n≥0Xn is the unique solution of an equation DSE.

It is discussed that terms Xn are generators of the free graded connected
commutative finite type Hopf subalgebra HDSE(Φ) of the Connes–Kreimer
renormalization Hopf algebra HFG(Φ) of Feynman diagrams graded by num-
ber of internal edges. Present HDSE(Φ) in terms of its graded components
as follows

HDSE(Φ) =
⋃
n≥0

H
(n)
DSE(Φ). (4.14)

For each n, the finite dimensional Hopf subalgebra H
(n)
DSE(Φ) determines

the finite dimensional complex Lie subgroup G(n)
DSE(C) which is embedded

as a closed subset of the linear algebraic group GLmn(C) for some mn with
respect to the Zariski topology. Thanks to (4.13), the complex pro-unipotent

graded Lie group GDSE(C) is the projective limit of G(n)
DSE(C)s as closed

subsets of GLmn(C)s.
For each mn, GLmn(C) is a finite dimensional Riemannian manifold with

the corresponding spectral triple

S(mn) := (C∞(GLmn(C)), L2(GLmn(C), S), DGLmn (C)). (4.15)

A restriction of this spectral triple enables us to build the spectral triple

corresponding to the complex Lie group G(n)
DSE(C). We present it by

S(n)
DSE = (A

(n)
DSE,H

(n)
DSE, D

(n)
DSE). (4.16)

Now consider the family {S(n)
DSE}n≥0 of countable number of spectral triples

derived from components of the graduation structure of the Hopf subalgebra
HDSE(Φ) generated by the equation DSE. Let {αn}n≥1 be a sequence of non-
zero real numbers such that

{||(1 + α2
n(D

(n)
DSE)2)

−1
2 ||n}n≥1 (4.17)

converges to zero when n tends to infinity where ||.||n is the norm on H(n)
DSE.

Apply Theorem 4.1.1 to achieve the infinite dimensional spectral triple

S⊕DSE := (A⊕DSE,H
⊕
DSE, D

⊕
DSE) (4.18)

originated from the five-tuples (A
(n)
DSE,H

(n)
DSE, D

(n)
DSE, π

(n)
DSE, αn) for each n.

The norm of the Hilbert space H⊕DSE is given by

||.||⊕ := supn||.||n. (4.19)

88



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

In addition, we can check that the representation π⊕DSE and the commutator
[D⊕DSE, π

⊕
DSE(A⊕DSE)] are bounded where the sequence {αn}n≥1 controls the

behavior of the sequence {D(n)
DSE}n≥1. It means that∑

n

dim(KerD
(n)
DSE) <∞. (4.20)

It is reasonable to name S⊕DSE as the non-perturbative spectral triple
with respect to the Dyson–Schwinger equation DSE.

Remark 4.1.3. If the coupling constant of a physical theory is weak enough
where (many-loop) perturbation methods can be applied to solve Dyson–
Schwinger equations, then we can describe the geometry of this class of
quantum motions in terms of summing a finite number of finite dimensional
spectral triples.

Corollary 4.1.4. Each non-perturbative spectral triple has a graphon rep-
resentation.

Proof. For a given spectral triple S⊕DSE with respect to the equation DSE,
we can associate the unlabeled graphon class [WtXDSE

] determined by the
labeled graph functions of the infinite tree (or forest) tXDSE

.

The geometry of the underlying manifold determines the spectrum but
the main challenge is the possibility of recovering geometrical information
from the spectrum to determine completely the metric or the shape of the
boundary. While the answer to this challenge is negative but noncommu-
tative geometry gives us an advanced machinery to deal with the theory of
spectral geometry on the basis of an operator theoretic setting. The fun-
damental integral in noncommutative geometry is described as the Dixmier
trace which extends the Wodzicki residue from pseudodifferential operators
on a manifold to a general framework which concern spectral triples [36].
For a given spectral triple, we have∫

T := Ress=0Tr(T |D|−s). (4.21)

It is possible to adapt this integral to deal with the geometry of Dyson–
Schwinger equations. The construction of the non-perturbative spectral

triple S⊕DSE (Theorem 4.1.2) ensures that for each n, S(n)
DSE is a finite di-

mensional spectral triple. Actually, S(n)
DSE is the result of the restriction of

the spectral triple associated to the complex Lie group Glmn(C) for some
mn. Therefore for each n, the functional

a 7−→ Tr+(a|D(n)
DSE|

−mn) (4.22)
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determines a differential calculus theory and spectral geometry with respect

to the Riemannian volume form for S(n)
DSE. This differential calculus is de-

scribing the geometric behavior of a quantum motion in terms of its ap-
proximation with respect to partial sums of the unique solution XDSE of the
corresponding equation DSE. Thanks to this interpretation, we may have
chance to search for the existence of a noncommutative integral with the
general form

a⊕ 7−→ Trω(a⊕|D⊕DSE|−p) (4.23)

for some p ≥ 1 and state ω. This noncommutative integral, which is on the
basis of the Connes–Dixmier traces, can lead us to build a theory of spectral
geometry for large Feynman diagrams.

4.2 A noncommutative symplectic geometry model

for SΦ
graphon

We have discussed that for a given smooth manifold M with the correspond-
ing complex commutative unital *-algebra C∞(M), it is possible to recon-
struct M together with its smooth structure and the objects attached to the
manifold (such as smooth vector fields) in terms of the spaces of characters
and derivations of the algebra C∞(M). The choice of the generalization
method for the notion of module over a commutative algebra when this al-
gebra is replaced by a noncommutative algebra is related to the choice of the
noncommutative generalization of the classical commutative case. There are
some approaches to build the algebraic generalizations of differential geom-
etry such as Koszul framework. This framework is on the basis of Der(A)
as the space of all derivations of a commutative associative algebra A where
a graded differential algebra (as the generalization of the algebra of differ-
ential forms) determines another graded differential algebra C∧(Der(A), A)
of A-valued Chevalley–Eilenberg cochains of the Lie algebra Der(A). The
Koszul framework admits a generalization to the noncommutative setting
via derivation-based differential calculus. It is actually the suitable differ-
ential calculus for Quantum Mechanics. In this setting, an algebraic version
of differential geometry in terms of a commutative associative algebra A,
A-modules and connections on these modules have been designed. If we
replace the commutativity of the algebra with non-commutativity, then dif-
ferent classes of generalizations of the notion of a module over a noncommu-
tative algebra can be resulted such as the notions of left or right A-modules
and left or right Z(A)-modules. [41, 42, 43, 45, 109]

The algebraic interpretation of classical geometry requires a commuta-
tive setting where we have two options to fix the algebra. The first one
is the real commutative algebra AR of smooth real valued functions where
its complexified extension is canonically a complex commutative *-algebra.
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The second one is the complex commutative *-algebra AC of smooth complex
valued functions where the set Ahermitian of its hermitian elements is a real
commutative algebra and thus AC will be the complexification of Ahermitian.

The algebraic interpretation of Quantum Physics requires a noncom-
mutative setting where we already have two classes of generalizations of
the algebra of real valued functions. The first one is the real Jordan algebra
Ahermitian of all hermitian elements of a complex noncommutative associative
*-algebra A. The second one is a real associative noncommutative algebra.
The most important challenge at this level is the choice of the mathemat-
ical machinery to build a differential calculus theory. One generalization
approach has been formulated by Connes in terms of theory of cyclic co-
homology of an algebra where the generalization of the cohomology of a
manifold in noncommutative geometry is actually the reduced cyclic homol-
ogy of an algebra which replaces the standard algebra of smooth functions.
As we know the computation of cohomology theory of classical manifolds
is not a unique way and furthermore, we can expect the construction of
noncommutative generalizations of differential geometry for which the gen-
eralization of de Rham theorem fails to be true. These facts show that any
cochain complex, which has the reduced cyclic homology as cohomology, can
not be an acceptable generalization of differential forms. Thanks to these
efforts, the best candidate for the construction of a noncommutative differ-
ential calculus is on the basis of the space of derivations as generalizations
of vector fields. This formalism, which had been initiated and developed
by Kozul and Dubois-Violette, has already provided the foundations of a
noncommutative symplectic geometry for the study of quantum theories.
[41, 45, 46, 82]

In a different story, the Connes–Kreimer Hopf algebraic renormalization
is the direct result of the existence of the Birkhoff factorization on a class of
Lie groups. The original source of this particular factorization is the multi-
plicativity of perturbative renormalization which is encoded by the theory
of Rota–Baxter algebras. The determination of a class of Hopf subalgebras
via Dyson–Schiwnger equations together with the renormalization of these
equations under dimensional regularization had been applied to build a class
of Dubois–Violette’s differential graded algebras which encode the geometric
information of these equations in the context of noncommutative differen-
tial forms. The basic idea in this approach is to associate a noncommutative
algebra to each equation DSE and then build a theory of noncommutative
(symplectic) geometry to encode Feynman diagrams which contribute to the
solution of DSE and their renormalization process. One interesting output
of this machinery is the description of the Connes–Kreimer non-perturbative
renormalization group in the context of integrable systems [146]. Our main
task in this part is to develop this approach and explain the construction
of a noncommutative differential calculus theory for the topological Hopf
algebra SΦ

graphon of Feynman graphons which is originated from the BPHZ
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renormalization (Theorem 2.4.1) and theory of Rota–Baxter algebras ([68]).
Our study brings a new concept of integrable systems at the level of large
Feynman diagrams. For this purpose, we need first to associate a (noncom-
mutative) algebra to SΦ

graphon and then build a theory of noncommutative
differential forms on this algebra.

The BPHZ procedure contains two general steps namely, dimensional
regularization and minimal subtraction defined by the Rota–Baxter map
Rms such that it acts on the regularization algebra. We want to show that the
application of each step to Feynman graphons can lead us to the structure
of a theory of noncommutative differential calculus. These calculi enable us
to study the evolution of large Feynman diagrams under regularization and
renormalization steps.

Theorem 4.2.1. The minimal subtraction map Rms in the BPHZ renor-
malization of Feynman graphons (Theorem 2.3.7 and Theorem 2.4.1) de-
termines a noncommutative symplectic geometry model for the Hopf algebra
SΦ

graphon.

Proof. Consider Adr := A+ ⊕ A− as the algebra of Laurent series with fi-
nite pole parts which encodes dimensional regularization (i.e. regularization
scheme) and Rms as the linear map on Adr which projects a series onto its
corresponding pole parts. The pair (Adr, Rms) satisfies the conditions of a
Rota–Baxter algebra which enables us to define a new family of convolu-
tion products on the space L(SΦ

graphon, Adr) of linear maps by the following
procedure.

It is possible to lift Rms onto L(SΦ
graphon, Adr),

R(φ) := Rms ◦ φ (4.24)

to achieve the Rota–Baxter algebra (L(SΦ
graphon, Adr),R). Set R̂ := Id−R

and for each λ ∈ R define a new class of Nijenhuis maps Rλ := R − λR̂.
Now define a new family of products on L(SΦ

graphon, Adr) of the form

φ1 ◦λ φ2 := Rλ(φ1) ∗gr φ2 + φ1 ∗gr Rλ(φ2)−Rλ(φ1 ∗gr φ2) (4.25)

such that ∗gr is the convolution product with respect to the coproduct
∆graphon on Feynman graphons (2.45) where we have

ψ1∗grψ2([WΓ]) =
∑

ψ1([WΓ′ ])ψ2([WΓ′′ ]), ∆graphon([WΓ]) =
∑

[WΓ′ ]⊗[WΓ′′ ].

(4.26)
The non-cocommutativity of the renormalization Hopf algebra of Feynman
graphons shows that the convolution product ∗gr and new products ◦λ are
noncommutative. The Nijenhuis property of Rλ shows that

Rλ(φ1 ◦λ φ2) = Rλ(φ1) ∗gr Rλ(φ2) (4.27)
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which supports the associativity of these new products. Set

Cgraphon
λ := (L(SΦ

graphon, Adr), ◦λ) (4.28)

as the unital associative noncommutative algebra generated by the minimal
subtraction map. In addition, for each λ, the commutator with respect to
◦λ determines a Lie bracket [., .]λ on the space L(SΦ

graphon, Adr) given by

[φ1, φ2]λ = [Rλ(φ1), φ2] + [φ1,Rλ(φ2)]−Rλ[φ1, φ2]. (4.29)

We are going to build a noncommutative differential calculus on Cgraphon
λ

with respect to the Lie bracket [., .]λ.

Set Derλgraphon as the space of all derivations on Cgraphon
λ . It has all linear

maps such as θ : Cgraphon
λ −→ Cgraphon

λ which enjoys the Leibniz rule. The

Lie bracket [., .]λ determines naturally the Poisson bracket {., .}λ on Cgraphon
λ

where for each φ ∈ Cgraphon
λ , its corresponding Hamiltonian derivation is

defined by
ham(φ) : ψ 7−→ {φ, ψ}λ. (4.30)

Set Hamλ
graphon as the Z(Cgraphon

λ )-module generated by all Hamiltonian

derivations on Cgraphon
λ .

Now define

Ω•λ,graphon(Cgraphon
λ ) := (

⊕
n≥0

Ωn
λ,graphon(Cgraphon

λ ), dλ) (4.31)

as the differential graded algebra on Cgraphon
λ such that for each n ≥ 1,

- Ωn
λ,graphon(Cgraphon

λ ) is the space of all Z(Cgraphon
λ )-multilinear antisym-

metric mappings from Hamλ
graphon×...n×Hamλ

graphon into Cgraphon
λ . The zero

component of this differential graded algebra is the initial algebra Cgraphon
λ .

- For each ω ∈ Ωn
λ,graphon(Cgraphon

λ ) and θi ∈ Hamλ
graphon, the anti-

derivative degree one differential operator dλ is defined by

dλω(θ0, ..., θn) :=

n∑
k=0

(−1)kθkω(θ0, ..., θ̂k, ..., θn)+

∑
0≤r<s≤n

(−1)r+sω([θr, θs]λ, θ0, ..., θ̂r, ..., θ̂s, ..., θn) (4.32)

such that we have d2
λ = 0.

Thanks to this differential graded (Lie) algebraic machinery, we can de-
termine a class of symplectic structures generated by the Lie bracket [., .]λ.
Define

ωλ : Hamλ
graphon ×Hamλ

graphon −→ Cgraphon
λ
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ωλ(θ, θ′) :=
∑
i,j

ui ◦λ vj ◦λ [fi, hj ]λ (4.33)

such that {f1, ..., fm, h1, ..., hn} ⊂ Cgraphon
λ , {u1, ..., um, v1, ..., vn} ⊂ Z(Cgraphon

λ ),

θ =
∑
i

ui ◦λ ham(fi), θ′ =
∑
j

vj ◦λ ham(hj). (4.34)

ωλ is a Z(Cgraphon
λ )-bilinear anti-symmetric non-degenerate closed 2-form in

Ω2
λ,graphon(Cgraphon

λ ).

For a given f ∈ Cgraphon
λ with the corresponding symplectic vector field

θλf , we have
{f, g}λ := iθλf

(dλg) (4.35)

such that

iθ(ω0dλω1...dλωn) =
n∑
j=1

(−1)j−1ω0dλω1...θ(ωj)...dλωn (4.36)

is the super-derivation of degree -1. We can check that

{f, g}λ = iθλf
iθλgωλ. (4.37)

Theorem 4.2.2. The dimensional regularization in the BPHZ renormaliza-
tion of Feynman graphons (Theorem 2.3.7 and Theorem 2.4.1) determines
a noncommutative symplectic geometry model for the Hopf algebra SΦ

graphon.

Proof. There exists a universal setting for the construction of a Nijenhuis
algebra with respect to the commutative unital algebra Adr. We present the
product of formal series by m(f, g) = [fg] and consider the graded tensor
module T (Adr) :=

⊕
n≥0A

⊗n
dr generated by expressions such as f1 ⊗ f2 ⊗

...⊗ fn. From now we name each series in Adr as a letter and each sequence
U := f1f2...fn of letters as a word with the length n. The empty word e
which has the length zero is the unit object in T (Adr). By induction we can
define the following shuffle type product on T (Adr)

fU } gV := f(U } gV ) + g(fU } V )− e[fg](U } V ) (4.38)

which is unital and associative. Thanks to (4.38), we can define the following
quasi-shuffle type product on T (Adr) :=

⊕
n≥1A

⊗n
dr ,

fU � gV := [fg](U } V ) (4.39)

which is also unital and associative. Now consider the linear map B+
e on

T (Adr) which sends each word U of length n to the new word eU of length
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n+ 1. Thanks to investigations discussed in [55], the triple (T (Adr),�, B+
e )

is a Nijenhuis algebra which enjoys the universal property in a category of
Nijenhuis algebras generated by the initial algebra Adr. Lift the linear map
B+
e onto L(SΦ

graphon, T (Adr)) to define the new Nijenhuis map

Ngraphon(ψ) := B+
e ◦ ψ. (4.40)

The resulting Nijenhuis algebra is the key tool for us to build a new product
◦u on L(SΦ

graphon, T (Adr)) defined by

ψ1 ◦u ψ2 := Ngraphon(ψ1) ∗� ψ2 + ψ1 ∗� Ngraphon(ψ2)−Ngraphon(ψ1 ∗� ψ2)
(4.41)

such that ∗� is the convolution product with respect to the coproduct
∆graphon on Feynman graphons (2.45) and the product �. We have

ψ1∗�ψ2([WΓ]) =
∑

ψ1([WΓ′ ])�ψ2([WΓ′′ ]), ∆graphon([WΓ]) =
∑

[WΓ′ ]⊗[WΓ′′ ].

(4.42)
The non-cocommutativity of the renormalization Hopf algebra of Feynman
graphons shows that the convolution product ∗� and the new product ◦u
are noncommutative. The Nijenhuis property shows that

Ngraphon(ψ1 ◦u ψ2) = Ngraphon(ψ1) ∗� Ngraphon(ψ2) (4.43)

which supports the associativity of this new product. Set

Cgraphon
u := (L(SΦ

graphon, T (Adr)), ◦u) (4.44)

as the unital associative noncommutative algebra generated by dimensional
regularization. In addition, the commutator with respect to the product ◦u
determines a Lie bracket [., .]u on the space L(SΦ

graphon, T (Adr)) given by

[ψ1, ψ2]u := [Ngraphon(ψ1), ψ2]+[ψ1,Ngraphon(ψ2)]−Ngraphon[ψ1, ψ2]. (4.45)

We are going to build a noncommutative differential calculus on Cgraphon
u

with respect to the Lie bracket [., .]u.

Set Derugraphon as the space of all derivations on Cgraphon
u . It has all linear

maps such as θ : Cgraphon
u −→ Cgraphon

u which enjoys the Leibniz rule. The
Lie bracket [., .]u naturally determines the Poisson bracket {., .}u on Cgraphon

u

where for each φ ∈ Cgraphon
u , its corresponding Hamiltonian derivation is

defined by
ham(φ) : ψ 7−→ {φ, ψ}u. (4.46)

Set Hamu
graphon as the Z(Cgraphon

u )-module generated by all Hamiltonian

derivations on Cgraphon
u .

Now define

Ω•u,graphon(Cgraphon
u ) := (

⊕
n≥0

Ωn
u,graphon(Cgraphon

u ), du) (4.47)
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as the differential graded algebra on Cgraphon
u such that for each n ≥ 1,

- Ωn
u,graphon(Cgraphon

u ) is the space of all Z(Cgraphon
u )-multilinear antisym-

metric mappings from Hamu
graphon×...n×Hamu

graphon into Cgraphon
u . The zero

component of this differential graded algebra is the initial algebra Cgraphon
u .

- For each ω ∈ Ωn
u,graphon(Cgraphon

u ) and θi ∈ Hamu
graphon, the anti-

derivative degree one differential operator du is defined by

duω(θ0, ..., θn) :=

n∑
k=0

(−1)kθkω(θ0, ..., θ̂k, ..., θn)+

∑
0≤r<s≤n

(−1)r+sω([θr, θs]u, θ0, ..., θ̂r, ..., θ̂s, ..., θn) (4.48)

such that we have d2
u = 0.

Thanks to this differential graded (Lie) algebraic machinery, we can de-
termine a class of symplectic structures generated by the Lie bracket [., .]u.
Define

ωu : Hamu
graphon ×Hamu

graphon −→ Cgraphon
u

ωu(θ, θ′) :=
∑
i,j

ui ◦u vj ◦u [fi, hj ]u (4.49)

such that {f1, ..., fm, h1, ..., hn} ⊂ Cgraphon
u , {u1, ..., um, v1, ..., vn} ⊂ Z(Cgraphon

u ),

θ =
∑
i

ui ◦u ham(fi), θ′ =
∑
j

vj ◦u ham(hj). (4.50)

ωu is a Z(Cgraphon
u )-bilinear anti-symmetric non-degenerate closed 2-form in

Ω2
u,graphon(Cgraphon

u ).

For a given f ∈ Cgraphon
u with the corresponding symplectic vector field

θuf , we have
{f, g}u := iθuf (dug) (4.51)

such that

iθ(ω0duω1...duωn) =
n∑
j=1

(−1)j−1ω0duω1...θ(ωj)...duωn (4.52)

is the super-derivation of degree -1. We can check that

{f, g}u = iθuf iθugωu. (4.53)
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The structure of the modified version of the Connes–Kreimer renormal-
ization group for Feynman graphons has been explained in Lemma 2.4.2
where we apply the filtration parameter on Feynman graphons (Theorem
2.3.9). Thanks to the built noncommutative differential geometry on SΦ

graphon,
we can provide a new geometric interpretation for the behavior of the Connes–
Kreimer renormalization group when it acts on large Feynman diagrams.

Lemma 4.2.3. Let {Ft}t be the renormalization group on Feynman graphons
(defined by Lemma 2.4.2). For each t and any large Feynman diagram X,
Ft(X) is the convergent limit of the sequence {Ft(Xn)}n≥1 with respect to
the cut-distance topology.

Proof. Consider the loop γµ ∈ Loop(GΦ
graphon(C), µ) which encodes the Feyn-

man rules characters in the renormalization Hopf algebra of Feynman graphons
with respect to a given physical theory Φ. For a given Dyson–Schwinger
equation DSE with the unique solution X =

∑
n≥0Xn, we have

γµ(z)([WX ]) := U zµ(X) (4.54)

such that U zµ(X) is a Laurent series as the regularized large Feynman integral
with respect to X. The one-parameter group {θt}t∈C sends the unlabeled
graphon class [WX ] to the filtration rank of the equation DSE (Theorem
2.3.9). The resulting renormalization group {Ft}t (i.e. Lemma 2.4.2) is a
subgroup of GΦ

graphon(C) which means that for each t, Ft is a linear homo-
morphism. On the other hand, thanks to Theorem 2.3.6, we know that
the large Feynman diagram X is the convergent limit of the sequence of its
partial sums with respect to the cut-distance topology. Therefore we have

Ft(X) = Ft(limm→∞Ym) = Ft(limm→∞

m∑
n=1

Xn) =

limm→∞

m∑
n=1

Ft(Xn) = limm→∞

m∑
n=1

limz→0γ−(z)(Xn)θtz(γ
−1
− (z)(Xn))

= limm→∞limz→0

m∑
n=1

γ−(z)(Xn)θtz(γ
−1
− (z)(Xn)) (4.55)

such that according to Proposition 1.47 in [37], for each t, Ft(Xn) is a
polynomial in t.

Corollary 4.2.4. The Connes–Kreimer renormalization group on Feynman
graphons determines an infinite dimensional integrable system.

Proof. We work on the unital associative noncommutative algebra Cgraphon
0 :=

(L(SΦ
graphon, Adr), ◦0) generated by the minimal subtraction map for λ = 0.

Thanks to Theorem 4.2.1, consider the differential graded algebra

Ω•0,graphon(Cgraphon
0 ) := (

⊕
n≥0

Ωn
0,graphon(Cgraphon

0 ), d0) (4.56)

97



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

with respect to the Lie bracket [., .]0. Each character Ft of the renormaliza-

tion group {Ft}t given by Lemma 4.2.3 is an object in the algebra Cgraphon
0 .

Therefore the motion integral equation with respect to the character Ft0 is
given by the equation

{f, Ft0}0 = 0 (4.57)

such that f ∈ Cgraphon
0 . Thanks to the existence of a noncommutative sym-

plectic form ω0 on Cgraphon
0 with respect to the Lie bracket [., .]0 (Theorem

4.2.1), the motion integral can be determined by the equation

{f, Ft0}0 = iθ0
Ft0

iθ0
f
ω0 = w0(θ0

Ft0
, θ0
f ) = [f, Ft0 ] = 0. (4.58)

On the one hand, from the definition of the deformed Lie bracket [., .]0 and
the idempotent Rota–Baxter property of (Adr, Rms), we have

{Ft, Fs}0 = [Rms(Ft), Fs] + [Ft, Rms(Fs)]−Rms([Ft, Fs]). (4.59)

On the other hand, for each t, Ft([WΓ]) is a polynomial in t which means
that Rms(Ft([WΓ])) = 0 and in addition, for each s, t, Ft∗Fs = Ft+s. Thanks
to these facts, we can observe that for each s, t,

{Ft, Fs}0 = 0. (4.60)
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Chapter 5

A theory of functional analysis
for large Feynman diagrams

• The Haar integration on SΦ,g and its application
• The Gâteaux differential calculus on SΦ,g and its application
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This chapter aims to provide the foundations of a functional analysis
machinery for the study of large Feynman diagrams which contribute to
solutions of Dyson–Schwinger equations. We build an integration theory
and a differentiation theory for the functionals on the space SΦ,g (when
the bare coupling constant g is strong) which can be embedded into the
topological Hopf algebra Hcut

FG(Φ) of (large) Feynman diagrams equipped
with the cut-distance topology. Actually, Hcut

FG(Φ) consists of all Feynman
diagrams and their corresponding finite or infinite formal expansions where
solutions of all non-perturbative Dyson–Schwinger equations belong to the
boundary region. As we have shown in the previous parts, this enriched Hopf
algebra of Feynman diagrams can be encoded via the Hopf algebra SΦ

graphon of
Feynman graphons. Therefore at the first step, we study measure theory on
the set SΦ,g where we equip it with a new topological group structure which
leads us to a new Haar measure integration theory for functionals on large
Feynman diagrams. Then we deal with some applications of the resulting
measure space where a new generalization of the classical Johnson–Lapidus
Dyson series for large Feynman diagrams will be obtained. In addition, we
work on the construction of a new Fourier transformation machinery on the
Banach algebra L1(SΦ,g, µHaar) which enables us to describe the evolution
of large Feynman diagrams on the basis of their corresponding partial sums
under a functional setting. At the second step, we concern the Gâteaux
differentiability of real valued functionals on Hcut

FG(Φ) where we obtain Taylor
expansion representations for these functionals under some conditions.

The promising differential calculus and integration theory enable us to
describe the dynamics of topological regions of Feynman diagrams on the
basis of the behavior of functionals with respect to the built Haar integration
theory and Gâteaux differentiation theory on Feynman graphons.

5.1 The Haar integration on SΦ,g and its applica-
tion

For a given physical theory Φ with strong coupling constant g ≥ 1, set
V (Φ) as the set of all vertices which appear in Feynman diagrams and their
corresponding formal expansions as interactions among elementary particles.
This infinite countable set allows us to count interactions independent of
their physical types. Set KV (Φ) as the complete graph with V (Φ) as the
set of vertices and all possible edges among these vertices except self-loops.
The collection {0, 1}KV (Φ) as the family of all functions from KV (Φ) to {0, 1}
allows us to characterize Feynman diagrams which contribute to physical
theory Φ. Therefore, each (large) Feynman diagram Γ can be determined by
its corresponding characteristic function χΓ which sends vertices v ∈ KV (Φ)

to 1 if v ∈ Γ and sends other vertices to 0. For each edge e ∈ KV (Φ), if Ve
be the set of vertices in V (Φ) which are attached to the edge e, then the

100



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

infinite Cartesian product ×e∈KV (Φ)
P(KVe) has enough vertices and edges

to contain all Feynman graphs in Hcut
FG(Φ) as subsets.

Lemma 5.1.1. SΦ,g can be equipped with an abelian compact Hausdorff
topological group structure.

Proof. Thanks to characteristic functions, we can associate a function fX ∈
{0, 1}KV (Φ) to each large Feynman graph X for the identification of vertices
and edges which contribute to the corresponding Dyson–Schwinger equation
DSE. It means that we can embed the family SΦ,g into {0, 1}KV (Φ) which is
useful to define new addition and multiplication operators on (large) Feyn-
man diagrams in terms of the pointwise addition and multiplication of their
corresponding characteristic functions. Therefore we can lift the set SΦ,g

onto a vector space generated by infinite graphs X which allows us to have
a commutative Z2-algebra.

In addition, define a new binary operation on SΦ,g by the symmetric
difference operator

(Γ1,Γ2) 7−→ Γ14Γ2. (5.1)

By adding the empty graph I to SΦ,g as the zero element, (SΦ,g,4) is an
abelian group which can be equipped with a compatible topology to obtain
a compact topological group. For this purpose, suppose α be a bijection
between KV (Φ) and the set of natural numbers N. For the fixed coupling

constant g ≥ 1 and each ε > 0, define a new map dg,α,ε : SΦ,g × SΦ,g −→
[0,∞) given by

dg,α,ε(Γ1,Γ2) :=
∑

e∈Γ14Γ2

(g + ε)−α(e) (5.2)

such that the sum is taken over all vertices e which belongs to only one of
the large Feynman graphs Γ1 or Γ2. dg,α,ε is a translation invariant metric
such that dg,α,ε1 and dg,α,ε2 have the equivalent topology. As the result, SΦ,g

together with the symmetric difference operator and the topology generated
by the metric dg,α,ε is a compact Hausdorff abelian topological group.

Thanks to the translation-invariant metric dg,α,ε defined by Lemma 5.1.1,
for each large Feynman diagram X define

‖ X ‖g,α,ε:= dg,α,ε(I, X). (5.3)

such that I is the empty graph. In this setting, a sequence {Γn}n≥1 of large
Feynman diagrams in SΦ,g is convergent to a unique large Feynman diagram
Γ, if each indicator sequence {1e∈Γn}n≥1 converges to the indicator 1e∈Γ for
any e ∈ KV (Φ).

Theorem 5.1.2. The topological group SΦ,g can be equipped with the Haar
measure µHaar.
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Proof. Lemma 5.1.1 supports the existence of the unique Haar measure µHaar

on SΦ,g originated from the compact topological structure. We build this
measure which has a Bernoulli probability nature.

Consider the product σ-algebra
∑

prod on SΦ,g generated by cylinder sets

SΓ0 := ×Γ 6=Γ0{I, {Γ}} × {Γ0} (5.4)

for each large Feynman diagram Γ0 in SΦ,g. Each Γ can be seen as an infinite
countable subset of KV (Φ) which contributes to the unique solution of an
equation DSE.

Each function P ∈ {0, 1}KV (Φ) identifies a new function P̃ : SΦ,g −→
[0, 1] which enables us to define the measure µP̃ on the σ-algebra

∑
prod.

For finite intersections of cylinder sets SΓ1 , ..., SΓn , we have

µP̃ (SΓ1 ∩ SΓ2 ∩ ... ∩ SΓn) =

n∏
i=1

P̃ (Γi) (5.5)

for large Feynman diagrams Γ1, ...,Γn which contribute to SΦ,g. In fact, µP̃
is a probability measure on SΦ,g and we can present it as the following way

µP̃ :=
∏

X∈SΦ,g

µP̃ ,X . (5.6)

Now we need to show that the measure µP̃ is the Haar measure. In other
words, we claim that the Haar measure is equal with µP̃ where P (X) = 1/2
for each large Feynman diagram X ∈ SΦ,g.

For subsets Z1, Z2 of KV (Φ), define

I(Z1, Z2) := {DSE ∈ SΦ,g : Z1 ⊂ XDSE, Z2 ⊂ KV (Φ)\XDSE} (5.7)

and then consider the σ-algebra
∑
I generated by all sets I(Z1, Z2). The

σ-algebra
∑
I is the same as the σ-algebra generated by all sets I(Z1, Z2)

for disjoint sets Z1, Z2. In addition, we have SΓ = I(I, {Γ}) which leads us
to show that

∑
prod =

∑
I .

Thanks to some standard analysis methods [138], we can determine the
unique translation-invariant probability measure µHaar on the compact topo-
logical group SΦ,g. For a given large Feynman diagram X and a subset Z
of KV (Φ), define

Z +X := {γ tX : γ ∈ Z}. (5.8)

Then we can show that

I(Z1, Z2) = I(I, Z1 t Z2) + Z2. (5.9)

Thanks to this fact, for given large Feynman diagrams Γ1,Γ2, set Γ = Γ1tΓ2.
Then we have

µHaar(I(Γ1,Γ2)) = µHaar(I(Γ1,Γ2) + Γ2) = µHaar(I(I,Γ)) (5.10)
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which informs the translation-invariance. On the other hand, let the subset
Z of KV (Φ) contains a finite number of large Feynman diagrams Γ1, ...,Γn.
We can show that as the set

SΦ,g =
∐
Z0⊂Z

I(Z0, Z\Z0) (5.11)

which leads us to obtain

µHaar(I(Z1, Z2)) = 2−n = µ1/2(I(Z1, Z2)). (5.12)

In general, if (Ω, A) ba σ-algebra generated by a subset C ⊂ A which
is closed under finite intersections, then two probability measures on A are
equal if and only if they agree on C. If C has an algebraic structure which
is equipped by a probability measure µ, then we can extend µ to a unique
measure on A [138]. Thanks to this fact, µHaar agrees with µ1/2 on σI .

We can also check that σI is equal with the Borel σ-algebra generated by
all open sets in SΦ,g with respect to the metric dg,α,ε. For a given bijection
α : KV (Φ) −→ N, set

En(α) := {e ∈ KV (Φ) : α(e) ≤ n}. (5.13)

For each large Feynman diagram X in SΦ,g, set B(X, r, ‖ . ‖g,α,ε) as the
open ball in (SΦ,g, dg,α,ε) with center X and radius r. In addition, for given
disjoint finite subsets N1, N2 ⊂ N such that N1 ∪N2 = {1, 2, ..., n}, define

I(N1, N2) := I(α−1(N1), α−1(N2)). (5.14)

Then we have

I(N1, N2) = B(α−1(N2), 2−n, ‖ . ‖g,α,2)
⋃
B(KV (Φ)\α−1(N1), 2−n, ‖ . ‖g,α,2)

(5.15)
such that B(α−1(Ni), 2

−n, ‖ . ‖g,α,2) is the open ball in (SΦ,g, dg,α,g+ε=2)
with center α−1(Ni) and radius 2−n.

Now a large Feynman diagram X ∈ SΦ,g can be described as the con-
vergent limit of the sequence {Γn}n≥1 such that Γn := X ∩ En(α).

Furthermore, we know that SΦ,g is a compact Hausdorff topological
group (Lemma 5.1.1). Therefore K ⊂ SΦ,g is compact iff SΦ,g\K is open.
It shows that the σ-algebra generated by all compact sets is the same as the
Borel σ-algebra generated by all open sets.

As the result, µHaar on σprod determines uniquely the Haar measure.
Therefore µHaar = µ1/2.

Theorem 5.1.3. For a given bijection α, the Haar measure of any ball of
radius 0 ≤ r ≤ 1 in the normed vector space (SΦ,g, ‖ . ‖g,α,g+ε=2) is r.

Proof. The proof is a direct result of Theorem 5.1.2 and the proof of Theo-
rem A in [81].
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The resulting measure space enables us to initiate an integration theory
on the family of (large) Feynman diagrams which can be interpreted in the
context of the Riemann–Lebesgue integration theory on the measure space
(R,B(R)).

Theorem 5.1.4. The integration theory on the measure space (SΦ,g, µHaar)
can be described by the Riemann–Lebesgue integration theory on real numbers
with respect to the Borel σ-algebra generated by all open sets.

Proof. Thanks to the structure of the topological group SΦ,g (Lemma 5.1.1)
where the norm ‖ . ‖g,α,2 (5.3) and the Haar measure µHaar (Theorem 5.1.2)
are defined on large Feynman diagrams, we can adapt the proofs of Lemma
3.22 and Proposition 3.23 in [148] for large Feynman diagrams to obtain the
following results.

(i) We can show that the norm ‖ . ‖g,α,2 (as a real valued function on
SΦ,g) is the Haar measure-preserving map.

(ii) We can show that for any Lebesgue integrable real valued function
f on [0, 1],

EµHaar [f(‖ . ‖g,α,2)] =

∫ 1

0
f(x)dx. (5.16)

(iii) We can show that for any integrable real valued function h on SΦ,g,

EµHaar [h] =

∫ 1

0
h((‖ . ‖g,α,2)−1(x))dx. (5.17)

Therefore the Haar integration theory on (SΦ,g, µHaar) can be described
by transferring the Riemann–Lebesgue integration theory from the unit in-
terval to large Feynman diagrams.

The rest of this section provides some applications of this integration
theory for functionals on (SΦ,g, µHaar).

Consider a single quantum particle which moves in a given potential such
that its behavior can be studied by a class of functionals on C[0, t] given by

Z(y) := exp{
∫

(0,t)
θ(s, y(s))ds} (5.18)

where the complex valued function θ on [0, t]×Rn is the given potential. This
formulation is on the basis of the standard Lebesgue–Stieltjes measure but
under some conditions it is possible to formulate these functionals with re-
spect to other complex Borel measures. It has been shown that for each com-
plex number with positive real part λ, the operators Kλ(Zn) exist for each
n such that Zn(y) := (

∫
(0,t) θ(s, y(s))dη)n and Kλ(Z) =

∑
n≥0 anKλ(Zn).

The central motivation of this formulation was to deal with Feynman’s op-
erational calculus in QED and other quantum theories. [79]
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A modification of the Johnson–Lapidus Dyson series for a measure space
of Feynman diagrams which contribute to the topological Hopf algebra
Hcut

FG(Φ) has been obtained in [148]. Thanks to the Haar integration theory
on the topological group of large Feynman diagrams, we want to formulate
the Johnson–Lapidus Dyson series on SΦ,g which leads us to understand the
evolution of Dyson–Schwinger equations with respect to other large Feyn-
man diagrams.

Theorem 5.1.5. Let θ be a complex valued function on SΦ,g×R2 and v(z) =∑
n≥0 anz

n with the radius of convergence strictly grater than ||θ||∞;µBorel
.

For a functional Z on the measure space L1(SΦ,g, µHaar) of all complex valued
µHaar-integrable functions on SΦ,g given by

Z(F ) := v(

∫
SΦ,g

θ(X,F (X))dµBorel) (5.19)

, there exists a family of operators {Kλ(Zn)}n∈N such that parameters λ are
complex numbers with positive real parts and Zn(F ) := (

∫
SΦ,g θ(X,F (X))dµBorel)

n.
In addition, we have

Kλ(Z) =
∑
n≥0

anKλ(Zn). (5.20)

Proof. Theorem 5.1.2 and Theorem 5.1.4 enable us to understand the Haar
integration theory on SΦ,g in the language of the Riemann–Lebesgue inte-
gration theory for real valued functions on the closed interval. In addition,
we have discussed the equivalency between the product σ-algebra

∑
prod on

cylinders determined by large Feynman diagrams and the Borel σ-algebra
of open balls with respect to the norm ‖ . ‖g,α,2. It enables us to determine
uniquely the Borel measure µBorel on SΦ,g corresponding to the Haar mea-
sure µHaar (i.e. Theorem 5.1.2). Thanks to these facts, it does make sense to
extend the classical Johnson-Lapidus Dyson series to the level of the Haar
measure µHaar on SΦ,g.

We have shown the existence of a compact Hausdorff topological group
structure on SΦ,g. Thanks to standard methods in Analysis ([138]), it is
easy to show that the topological space Cc(SΦ,g) consisting of continuous
functions on SΦ,g with compact support is dense in L1(SΦ,g, µHaar). Apply
(5.17) to transfer the Haar measure integral

EµHaar [h] =

∫
SΦ,g

h(X)dµHaar (5.21)

of each h ∈ Cc(SΦ,g) to its corresponding Riemann–Lebesgue integral.
It remains only to lift the proof of the classical Johnson-Lapidus gener-

alized Dyson series given in [79] onto L1(SΦ,g, µHaar).

Corollary 5.1.6. (i) The Johnson–Lapidus Dyson series can describe the
behavior of a combinatorial Dyson–Schwinger equation in a given potential.
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(ii) The functionals Kλ(Z) (determined by Theorem 5.1.5) enable us
to describe the evolution of each large Feynman diagram X in terms of a
sequence of Dyson–Schwinger equations in SΦ,g.

Proof. (i) Suppose XDSE(g) =
∑

n≥0 g
nXn is a large Feynman diagram

as the unique solution of an equation DSE in the normed vector space
(SΦ,g, ‖ . ‖g,α,2). Thanks to the Hahn–Banach Theorem ([138]), there exists
a continuous linear map ψDSE : SΦ,g −→ R such that

ψDSE(XDSE) =‖ XDSE ‖g,α,2, ‖ ψDSE ‖≤ 1 (5.22)

where the operator norm ‖ ψDSE ‖ is defined

‖ ψDSE ‖:= inf{c ≥ 0 : |ψDSE(X)| ≤ c ‖ X ‖g,α,2, ∀X ∈ SΦ,g}. (5.23)

Now apply Theorem 5.1.5 for ψDSE ∈ L1(SΦ,g, µHaar).
(ii) If we apply the multi-scale renormalization machinery (Theorem

3.2.2)Rmulti
(τg,Λτ ),(λτg,λΛτ )DSE, then we can build the sequence {DSE( n

n+1g)}n≥1

of Dyson–Schwinger equations where we have

XDSE(
n

n+ 1
g) ⊂ XDSE(

n+ 1

n+ 2
g). (5.24)

For each n, set χnDSE as the characteristic function with respect to the large
Feynman diagram XDSE( n

n+1g) on SΦ,g such that χnDSE ∈ L1(SΦ,g, µHaar).
Now apply Theorem 5.1.5 to the sequence {χnDSE}n≥1 to obtain a description
for the evolution of XDSE(g) in terms of large sub-graphs. A free evolution
from XDSE(0) = I (empty graph) to XDSE(1

2g), interactions of particles in
XDSE(1

2g) with the potential θ, free evolution from XDSE(1
2g) to XDSE(2

3g),
and so on up to nth integration with θ at the level XDSE( n

n+1g) followed by
a free evolution from XDSE( n

n+1g) to XDSE(g) when n tends to infinity.

Lemma 5.1.7. Thanks to the symmetric difference as a binary operation
on large Feynman diagrams, there exists a complex commutative Banach
algebra structure on L1(SΦ,g, µHaar).

Proof. We have seen that the binary operation 4 determines an abelian
compact Hausdorff topological group structure on SΦ,g such that the empty
graph I is the zero element of this group. Now define the following convolu-
tion product on L1(SΦ,g, µHaar)

F1 ∗4 F2(Γ1)

=

∫
SΦ,g

F1(Γ2)F2(Γ−1
2 4Γ1)dµHaar(Γ2), F1, F2 ∈ L1(SΦ,g, µHaar) (5.25)

such that Γ−1
2 is the inverse of the graph with respect to the group structure

4. The compatibility between the product (5.25) and the L1 norm

‖ F ‖:=
∫
SΦ,g

| F (X) | dµHaar(X) (5.26)
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provides our promising Banach algebra. The commutativity of the group
(SΦ,g,4) guarantees the commutativity of this Banach algebra. In addition,
we add the infinitesimal delta function δ as the multiplicative unit for this
Banach algebra. We have∫

SΦ,g

F (X)δ(X)dµHaar(X) = F (I) (5.27)

for each F ∈ L1(SΦ,g, µHaar) and each large Feynman diagram X ∈ SΦ,g

such that I is the empty graph.

Proposition 5.1.8. (i) Each functional F ∈ L1(SΦ,g, µHaar) has a non-
empty spectrum.

(ii) The space Ω(L1(SΦ,g, µHaar)) of all characters of the complex Banach
algebra L1(SΦ,g, µHaar) is a compact Hausdorff topological space.

Proof. We need only to adapt the standard procedures in Functional Anal-
ysis ([138]) to achieve the results.

(i) We show that

sp(F ) := {λ ∈ C : F − λδ not invertible} (5.28)

is non-empty. If F = 0, then thanks to the definition of the infinitesimal
delta function, we have the result. If F be a non-zero functional, suppose
its spectrum is empty which means that the new function

R : C −→ L1(SΦ,g, µHaar), λ 7−→ (F − λδ)−1 (5.29)

is well-defined, holomorphic, non-constant and bounded. For any bounded
linear functional Υ on L1(SΦ,g, µHaar), define a new function Υ̃ on R2 given
by

Υ̃(x, y) := Υ(R(xeiy)). (5.30)

We can show that Υ̃ is continuously differentiable with respect to variables x
and y. Now by differentiation under the integral sign from the holomorphic
bounded function K(x) :=

∫ 2π
0 Υ̃(x, y)dy, we have K ′(x) = 0. Therefore K

is a constant function which is a contradiction with the initial assumption.
(ii) The ideal generated by kernel of any character provides a natural

correspondence between the set of maximal ideals of the Banach algebra
L1(SΦ,g, µHaar) and the set of characters on the space L1(SΦ,g, µHaar).

Each character ψ ∈ Ω(L1(SΦ,g, µHaar)) is actually an algebra homomor-
phism from L1(SΦ,g, µHaar) to C such that ψ(δ) = 1. We can show that ψ is
continuous of norm 1, otherwise there exists a function F ∈ L1(SΦ,g, µHaar)
such that ||F || < 1 and ψ(F ) = 1. Apply the convolution product to define
G :=

∑
n≥1G

n. From the equation G = F + FG we have

ψ(G) = ψ(F ) + ψ(F )ψ(G) = 1 + ψ(G) (5.31)
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which shows a contradiction. So the norm of ψ is less than or equal to 1
and ψ(δ) = 1 which implies that ||ψ|| = 1. Thanks to this fact, we can
see that Ω(L1(SΦ,g, µHaar)) is a closed subset of the unit ball of the dual
space L1(SΦ,g, µHaar)

∗ which is a compact Hausdorff space with respect to
the weak-? topology. As the consequence, Ω(L1(SΦ,g, µHaar)) is a compact
Hausdorff topological space.

Thanks to the Gelfand transform, define

L1(SΦ,g, µHaar) −→ C0(Ω(L1(SΦ,g, µHaar))) (5.32)

F 7−→ F̃ , F̃ (ψ) := ψ(F ).

It is a norm decreasing algebraic homomorphism such that its image sepa-
rates µHaar-integrable functions on SΦ,g. It can be seen that

||F̃ ||∞ = max{|λ| : λ ∈ sp(F )}. (5.33)

Thanks to the Pontryagin duality Theorem [138], we can obtain a cor-
respondence between elements of the topological space Ω(L1(SΦ,g, µHaar))
and elements of the Pontryagin dual. In this situation, the canonical iso-
morphism

evL1(SΦ,g ,µHaar)(X)(ρ) = ρ(X) ∈ S1 ⊂ C (5.34)

can be applied to define a modification of the Fourier transformation on
L1(SΦ,g, µHaar).

Definition 5.1.9. For a given Quantum Field Theory Φ with the strong cou-
pling constant g ≥ 1 and the corresponding collection SΦ,g of all large Feyn-
man diagrams generated by Dyson–Schwinger equations, the Fourier trans-
formation F on the complex commutative unital Banach algebra L1(SΦ,g, µHaar)
is well-defined. For F ∈ L1(SΦ,g, µHaar), we have

F̂ (ρ) =

∫
SΦ,g

F (X)ρ(X)dµHaar(X). (5.35)

for any character ρ.

For functionals G,H ∈ L1(SΦ,g, µHaar), we have

F{G ∗4 H} = F{G}F{H}. (5.36)

The original motivation to formulate the Gelfand transform (5.32) is pro-
viding a way to separate functionals in L1(SΦ,g, µHaar). Thanks to this idea,
the Fourier transformation (5.35) encodes the mathematical procedure for
the decomposition of the functional F in terms of large Feynman diagrams
which contribute to Dyson–Schwinger equations in SΦ,g. In particular, if
we restrict our discussion to a fixed Dyson–Schwinger equation DSE with
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the unique solution XDSE, then our generalized Fourier transformation de-
scribes the evolution of the large Feynman diagram XDSE with respect to
µ-integrable functions originated from large subdiagrams (or partial sums)
which converges to XDSE.

As the final note, we have built and developed a theory of Haar inte-
gration theory on large Feynman diagrams in the language of the classical
Riemann–Lebesgue integral and it is useful if we think about an analogous
version of the classical Newton–Leibniz differentiation theory for the level
of large Feynman diagrams and metrics dg,α,ε.

5.2 The Gâteaux differential calculus on SΦ,g and
its application

In the second section of the previous chapter we have explained the construc-
tion of a noncommutative differential geometry model on the Hopf algebra
SΦ

graphon which is derived from the BPHZ renormalization process of Feyn-
man graphons. In [148] we have applied the analysis of linear spaces to
discuss the construction of a theory of differentiation on the space of Feyn-
man diagrams in the context of unlabeled graphon classes and Gâteaux
differentiability under the cut-distance topology where we worked on admis-
sible directions to define well-defined differentiations. It has led us to obtain
Taylor series type representations for continuous functionals on Feynman
graphons on the basis of homomorphism densities. The homomorphism
densities can be considered as functionals WΓ 7−→ t(G,WΓ) on Feynman
graphons such that G is an arbitrary finite graph. If G is a simple graph
(such as rooted trees), then we can show that the corresponding homomor-
phism density is continuous with respect to the cut-distance topology and
it is also L1-integrable. Thanks to the disjoint union operator, we can build
an algebraic structure on the linear span of homomorphism densities with
respect to finite simple graphs which is dense in the space C(SΦ

graphon) of

all continuous functions on SΦ
graphon with respect to the topology of uniform

convergence. In addition, we can compute the Gâteaux derivatives of ho-
momorphism densities where their Fréchet differentiability can be achieved
with respect to simple graphs (i.e. decorated non-planar rooted trees) under
some conditions where we might need to remove the symmetric condition of
Feynman graphons and work on Feynman bigraphons. Thanks to these ob-
servations, homomorphism densities play central roles for functional analysis
of graphons.

In this section, we concern the question of how to endow with a differen-
tial calculus on large Feynman diagrams independent of any renormalization
program. We consider the real or complex vector space SΦ,g generated by
all Dyson–Schwinger equations in the physical theory Φ and equip this space
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with the cut-distance topology determined by

d(DSE1,DSE2) := dcut([f
XDSE1 ], [fXDSE2 ]). (5.37)

It enables us to define the cut-norm for each large Feynman diagram

‖ XDSE ‖cut= supA,B⊂[0,1] |
∫
A×B

fXDSE(x, y)dxdy | (5.38)

such that the supremum is taken over Lebesgue measurable subsets A,B of
the closed interval. The resulting space can be interpreted as a closed topo-
logical subspace of the compact topological space of all unlabeled graphons.
It means that we can consider SΦ,g as a Banach space and build a Gâteaux
differential calculus on (large) Feynman diagrams. Then we apply the func-
tional analysis of graphons ([39]) to obtain a new Gâteaux differential cal-
culus machinery for the study of C(SΦ,g).

Total derivative and directional derivatives are the most common differ-
entiation machineries in finite dimensions such that their analogous versions
in infinite dimensions are Fréchet derivative and Gâteaux derivative.

For a given function F : X −→ Y between two Banach spaces (or normed
vector spaces), the Gâteaux derivative at x0 ∈ X is by definition a bounded
linear operator Tx0 : X −→ Y ∈ B(X,Y ) such that for every u ∈ X,

limt−→0
F (x0 + tu)− F (x0)

t
= Tx0u. (5.39)

If for some fixed u the limit

δuF (x) :=
d

dt
|t=0F (x+ tu) = limt→0

F (x+ tu)− F (x)

t
(5.40)

exists, then we call F has a directional derivative at x in the direction u.
Therefore F is Gâteaux derivative at x0 if and only if all the directional
derivatives δuF (x) exist and form a bounded linear operator

DF (x) : u 7−→ δuF (x). (5.41)

Tx0 is called the Fréchet derivative of F at x0, if the limit (in the sense of
the Gâteaux derivative) exists uniformly in u on the unit ball in X. If we
set y = tu then t tends to zero is equivalent to y tends to zero. Now F is
Fréchet differentiable at x0 if for all y,

F (x0 + y) = F (x0) + Tx0(y) + o(‖ y ‖) (5.42)

which means that

lim‖h‖→0
‖ F (x+ h)− F (x)− Th ‖

‖ h ‖
= 0 (5.43)
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holds. As we can see, the limit in the Fréchet derivative only depends on the
norm of y where the operator T defines the natural linear approximation of
F in a neighborhood of the point x0. In this setting, we call Tx0 = DF (x0)
as the derivative of F at x0. In addition, we can show that being Fréchet
differentiable at a point implies being Gâteaux differentiable at a point such
that in this case the Gâteaux derivative is equal to the Fréchet derivative.

If F is Gâteaux differentiable on X, then we have the mean value formula

‖ F (y)− F (x) ‖≤‖ x− y ‖ sup0≤θ≤1 ‖ DF (θx+ (1− θ)y) ‖ . (5.44)

This enables us to show that if F is Gâteaux differentiable on an open neigh-
borhood U of x and DF (x) is continuous, then F is Fréchet differentiable
at x. [60, 138]

We plan to study (smooth) real valued continuous functions on the Ba-
nach space SΦ,g in terms of their Taylor series representation under the
higher orders Gâteaux differentiations. We show that the solution space of
the natural generalization of the equation dn

dxnF (x) ≡ 0 to large Feynman
diagrams namely, Gâteaux type differential equations with the general form

dN+1F (X;Z1, ..., ZN+1) = 0 (5.45)

for all large Feynman diagrams X,Z1, ...ZN+1 ∈ SΦ,g, can be described
by homomorphism densities. Solutions of this class of equations enjoy the
property

F (Z) = F (I) + dF (I;Z) +
d2F (I;Z,Z)

2
+ ...+

dnF (I;Z, ..., Z)

n!
. (5.46)

Definition 5.2.1. For a given function F : SΦ,g −→ R and each large
Feynman diagram X, the Gâteaux derivative exists at X in the direction
Y ∈ SΦ,g, if the limit

dF (X;Y ) = limt−→0
F (X + tY )− F (Y )

t
(5.47)

exists. The higher orders of the Gâteaux differentiability can be defined by
induction where for any n ≥ 2, F is called n-time Gâteaux differentiable at
X in directions Z1, ..., Zn if at the first, the higher mixed Gâteaux derivatives

dn−1F (X + λZn;Z1, ..., Zn−1) (5.48)

exist for each real number λ and at the second, the limit

dnF (X;Z1, ..., Zn) =

limλ−→0
dn−1F (X + λZn;Z1, ..., Zn−1)− dn−1F (X;Z1, ..., Zn−1)

λ
(5.49)

exists.
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It is easy to check that the Gâteaux derivatives dnF (X;Z1, ..., Zn) are
multilinear maps in Zi and in addition, for any permutation τ ∈ Sn, we have

dnF (X;Z1, ..., Zn) = dnF (X;Zτ(1), ..., Zτ(n)). (5.50)

The description of large Feynman diagrams via Feynman graphons in
SΦ

graphon allows us to think about the concept of density of a subgraph in the
solution of a given Dyson–Schiwnger equation. From the Quantum Field
Theory viewpoint, each subgraph may contain a class of subdivergencies
derived from some particular virtual particles and their interactions. In this
situation, one important question is to estimate the appearance of these
subdivergencies in an infinite expansion of finite Feynman diagrams. The
homomorphism density, as a class function on SΦ

graphon or SΦ,g, is a useful
tool to formulate this story.

Proposition 5.2.2. The homomorphism density is a well-defined operator
on large Feynman diagrams.

Proof. Proposition 4.6 in [149] shows that the unique solution XDSE of a
given Dyson–Schwinger equation DSE can be interpreted as the convergent
limit of the sequence {Ym}m≥1 of its partial sums with respect to the cut-
distance topology. For each unlabeled Feynman graphon class [W ], we plan
to characterize the homomorphism density t(XDSE,W ) as the ”limit” of the
sequence {t(Ym,W )}m≥1 of homomorphism densities corresponding to finite
expansions Ym of finite graphs (which do not have self-loops but have loops).
For each m, if Ym has km vertices, we have

t(Ym,W ) =

∫
[0,1]km

∏
(i,j)∈E(Ym)

W (xi, xj)dx1...dxkm . (5.51)

For each m ≥ 1, Ym := X1 + ...+Xm, by induction we can show that

t(Ym+1,W ) = t(Ym,W )t(Xm+1,W ). (5.52)

In addition, the condition dcut(W
′,W ) = 0 implies t(Ym,W

′) = t(Ym,W )
which leads us to t(XDSE,W

′) = t(XDSE,W ). Therefore we can define
a poset on homomorphism densities where a family of injections {fij :
t(Yi,−) → t(Yj ,−)}i≤j on the space of Feynman graphons can be formu-
lated. This gives us an inverse system where its inverse limit can be identified
as a subset of the direct product of the t(Yi,−)s. This inverse limit can be
considered as the homomorphism density with respect to the large Feynman
diagram XDSE. We have

t(XDSE,−) = lim←mt(Ym,−)

= {
−→
W ∈

∞∏
m=1

t(Ym,−) : fij(Wj) = Wi, ∀i ≤ j} ⊆
∞∏
m=1

t(Ym,−). (5.53)
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For 1 ≤ n ≤ ∞, set [n] := {i ∈ N : i ≤ n}. For a given Feynman
graphon W , define a random graph G(n,W ) with vertex set [n] (chosen
points {x1, ..., xn} at random from the closed unit interval) by letting ij be
an edge in G(n,W ) with the probability W (xi, xj). It is possible to build
G(n,W ) for all n by first constructing G(∞,W ) as an exchangeable random
graph namely, its distribution is invariant under permutations of the vertices
and every exchangeable random graph is a mixture of such graphs. Then
take the subgraph defined by the first n vertices. In general, for a Feyn-
man diagram Γ (as a labeled graph), the homomorphism density t(Γ,W )
equals the probability that Γ is a subgraph of G(∞,W ) or of G(n,W ) for
any n ≥ |Γ|. In other words, the family {t(Γ,W )}Γ and the distribution of
G(∞,W ) determine each other. It is important to note that for given Feyn-
man graphons W,W ′, G(∞,W ) and G(∞,W ′) have the same distribution
if and only if those two graphons are weakly equivalent.

Lemma 5.2.3. Homomorphism densities provide a class of random graphs
with respect to large Feynman diagrams.

Proof. We know that XDSE = limm→∞Ym with respect to the cut-distance
topology such that |Ym| → ∞. For each [k] there exists a random graph
Ym[k] on the vertex set [k] such that {Ym[k]}m≥1 converges to XDSE[k] with
respect to the metric

ddens(Γ,Γ
′) =

∑
i

2−i|t(Wi,Γ)− t(Wi,Γ
′)| (5.54)

which is equivalent to the cut-distance ([17, 77]). Therefore there exists
a random infinite graph XDSE on [∞] such that XDSE[k] ≡ XDSE|[k] with
respect to the metric ddens which means that

limm→∞Ym[k] = XDSE|[k]. (5.55)

Corollary 5.2.4. The distribution of the random graphs Ym[k] with respect
to partial sums of XDSE converges when m tends to infinity.

Proof. Thanks to Lemma 5.2.3, for each k ≤ |Ym|, there exists Ym[k] as
the random induced subgraph of Ym with k vertices determined by selecting
k separate vertices v1, ..., vk of Ym at uniformly random procedures. Now
thanks to graphon representations of Feynman diagrams, it is enough to
apply the definition of convergent sequences in the theory of graphons via
random graphs ([77]) to the sequence {Ym}m≥1 which converges to XDSE.

Lemma 5.2.5. Dyson–Schwinger equations which generate isomorphic Hopf
subalgebras have the same homomorphism density.
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Proof. Suppose Hopf subalgebras HDSE1 , HDSE2 corresponding to the equa-
tions DSE1 and DSE2 are isomorphic which means that the unique solutions
XDSE1 and XDSE1 are isomorphic infinite graphs. We can lift the weakly
equivalent relation on graphons onto the level of large Feynman diagrams.
We say that two large Feynamn diagrams XDSE1 , XDSE2 are weakly equiva-
lent if their corresponding labeled graphons have the same unlabeled mea-
surable function almost everywhere. In other words, XDSE1 and XDSE2 are
weakly equivalent if

dcut(f
XDSE1 , fXDSE2 ) = 0. (5.56)

Thanks to Borgs–Chayes–Lovasz Theorem ([107]) and Proposition 5.2.2, we
can show that two weakly equivalent large Feynamn diagrams XDSE1 , XDSE2

have the same homomorphism density for all (finite) simple graphs. In other
words,

t(H, fXDSE1 ) = t(H, fXDSE2 ). (5.57)

In the rest of this part we try to show that homomorphism densities of
the type t(XDSE,−) can play the role of a basis for the space of smooth real
valued functions on SΦ,g.

Define a new graduation parameter on the collection H(Φ) of all Feyn-
man diagrams of a physical theory Φ in terms of the number of edges. For
each n, set Hn(Φ) as the isomorphism classes of Feynman diagrams with n
internal and external edges, no isolated vertices, no self-loops but possible
multi-edges. Set H≤n(Φ) =

⋃
j≤nHj(Φ). The homomorphism density for

all Feynman graphs Γ ∈ Hj(Φ) is well-defined.

Theorem 5.2.6. For each n ≥ 1, define

Fn : SΦ
graphon −→ R, Fn(WΓ) :=

∑
γ∈H≤n(Φ)

aγt(γ,WΓ) (5.58)

for some constants aγ. Then
(i) Fn is continuous in the L1-topology.
(ii) It is possible to lift Fn onto the space of large Feynman diagrams and
define a new real valued map F̃ on SΦ,g which is continuous in the L1-
topology.

Proof. (i) Define a new real valued multilinear functional τ on (SΦ
graphon)n

given by

τ((We)e∈E(γ)) :=

∫
[0,1]|γ|

∏
e∈E(γ)

We(xi, xj)
∏

i∈V (γ)

dxi. (5.59)

We can show that

|τ((We)e∈E(γ))− τ((W ′e)e∈E(γ))| ≤
∑

e∈E(γ)

‖We −W ′e ‖1 (5.60)
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which leads us to

|t(γ,W )− t(γ,W ′)| ≤ |E(γ)| ‖We −W ′e ‖1 . (5.61)

(ii) Thanks to Proposition 5.2.2, we plan to lift the above process onto
the level of large Feynman diagram XDSE with the partial sums Ym, m ≥ 1.
It is enough to extend the relation (5.61) to Ym+1 = Ym +Xm+1. We have∣∣t(Ym tXm+1,W )− t(Ym tXm+1,W

′)
∣∣ =∣∣t(Ym tXm+1,W )− t(Ym tXm+1,W

′)± t(Ym,W ′)t(Xm+1,W )
∣∣ =∣∣t(Xm+1,W )

(
t(Ym,W )−t(Ym,W ′)

)
+t(Ym,W

′)
(
t(Xm+1,W )−t(Xm+1,W

′)
)∣∣

≤ |t(Xm+1,W )||(t(Ym,W )−t(Ym,W ′))|+|t(Ym,W ′)||t(Xm+1,W )−t(Xm+1,W
′)|

(5.62)
≤ |t(Xm+1,W )|

(
|E(Ym)| ‖We−W ′e ‖1

)
+|t(Ym,W ′)|

(
|E(Xm+1)| ‖We−W ′e ‖1

)
such that ‖We ‖∞, ‖W ′e ‖∞≤ 1.

Lift the multilinear operator τ onto the multilinear operator τ̃ defined
as a bounded operator on the Banach space SΦ,g. Now define the new map
F̃ on SΦ,g given by

F̃ (XDSE) :=
∞∏
m=1

Fm(WYm) (5.63)

such that each term Fm(WYm) is a L1-continuous function. Therefore F̃ , as
the product of continuous functions, is also continuous with respect to the
L1- topology.

The space W[0,1] of all (bi-)graphons can be embedded into the vector
space W of bounded (symmetric) measurable functions f : [0, 1]2 −→ R
which is equipped by a semi-norm. Under weakly equivalent relation ∼, we
can build a complete metric structure on the quotient space W[0,1]/ ∼. The

topological space SΦ
graphon of all unlabeled graphons which contribute to the

representations of Feynman diagrams and Dyson–Schwinger equations sits
inside W[0,1]/ ∼. Each [W ] ∈ SΦ

graphon is a class of bounded (symmetric)

measurable functions from [0, 1]2 −→ [0, 1] up to relabeling which is gener-
ated by rooted tree representations of (large) Feynman diagrams. Rooted
trees are simple graphs where the adjacency matrices determine their cor-
responding graphon classes. Orientations on decorated non-planar rooted
trees, which encode positions of nested loops in the main Feynman diagram,
inform us that we might need only the upper part or the lower part of
the adjacency matrix for the reconstruction of a Feynman diagram from its
graphon representation. It means that we do not need the symmetric prop-
erty of graphons and we can work only on the bounded measurable functions
f : [0, 1]2 −→ [0, 1] up to relabeling. This class of objects, which are known
as bi-graphons in Combinatorics, enables us to have Fréchet differentiability
of homomorphism densities.
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Lemma 5.2.7. (i) The Homomorphism densities on SΦ
graphon are Fréchet

differentiable.
(ii) The Homomorphism densities on SΦ,g are Fréchet differentiable.

Proof. (i) We compute the Fréchet derivatives of the homomorphism densi-
ties on SΦ

graphon for ladder trees l1, l2, l3 and the rooted tree
∨

where vertices
2, 3 are adjacent to the root 1.

For the tree with only one vertex, t(l1,−) ≡ 1 which is obviously Fréchet
differentiable.

For the oriented decorated ladder tree l2 with two vertices 1, 2 and one
edge e12 from 1 to 2, the Gâteaux derivative can be computed by

d(t(H,WΓ);WΓ′) =∫
[0,1]k

∑
(i1,j1)∈E(H)

WΓ′(xi1 , xj1)
∏

(i,j)∈E(H)\(i1,j1)

WΓ(xi, xj)dx1...dxk (5.64)

which leads us to compute the unique Fréchet derivative by the linear map

WΓ′ 7−→ d(t(l2,WΓ);WΓ′) =

∫
[0,1]2

WΓ′(x1, x2)dx1dx2. (5.65)

We have

limWΓ′→0

∣∣t(H,WΓ +WΓ′)− t(H,WΓ)−
∫

[0,1]2 WΓ′(x1, x2)dx1dx2

∣∣
‖WΓ′ ‖cut

(5.66)

= limWΓ′→0
0

‖WΓ′ ‖cut
= 0

which approves the Fréchet differentiability in terms of the formula (5.43).
For the oriented decorated ladder tree l3 with three vertices 1, 2, 3 and

two edges e12, e23 which connect the vertices 1 to 2 and 2 to 3, the unique
candidate for the Fréchet derivative of t(l3,−) should be

WΓ′ 7−→ d(t(l3,WΓ);WΓ′) =∫
[0,1]3

WΓ′(x1, x2)WΓ(x2, x3) +WΓ(x1, x2)WΓ′(x2, x3)dx1dx2dx3 (5.67)

= 2

∫
[0,1]3

WΓ(x1, x2)WΓ′(x2, x3)dx1dx2dx3.

t(l3,−) is Fréchet differentiable if the following limit exists and equals to
zero,

limWΓ′→0

∣∣t(l3,WΓ +WΓ′)− t(l3,WΓ)− d(t(l3,WΓ); g)
∣∣

‖WΓ′ ‖cut
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= limWΓ′→0

∣∣ ∫
[0,1]3 WΓ′(x1, x2)WΓ′(x2, x3)dx1dx2dx3

∣∣
‖WΓ′ ‖cut

. (5.68)

If this limit is not zero, then there are some below boundaries c > 0 which
means that we can define a sequence {Wn}n≥1 of graphons which converges
to zero with respect to the cut-norm but the limit (5.68) does not zero when
n tends to infinity. In other words, we might have

0 < c ≤ 1

n
=
∣∣ ∫

[0,1]2,x2∈[0,1/n]
1dx1dx2dx3

∣∣ =

∣∣ ∫
[0,1]2,x2∈[0,1/n]

Wn(x1, x2)Wn(x2, x3)dx1dx2dx3

∣∣ ≤ (5.69)

∣∣ ∫
[0,1]3

Wn(x1, x2)Wn(x2, x3)dx1dx2dx3

∣∣.
This situation supports the existence of sequences of graphons such as
Wn = 1(min(x1, x2) < 1/n) which satisfy the above inequality. On the other
hand, we can build the topological renormalization Hopf algebra SΦ

graphon of

Feynman graphons by measurable bounded functions from [0, 1]2 to [0, 1]
in terms of working only on the upper parts or lower parts of the adja-
cency matrices of oriented decorated non-planar rooted trees. In this non-
symmetric setting, the sequences such as {Wn}n≥1 of graphons does not
belong to SΦ

graphon. As the consequence, the only lower boundary for Feyn-
man graphons is zero itself which means that the limit (5.68) is zero.

By a similar discussion, we can show the existence of Fréchet derivative
for other oriented rooted trees H which contains the tree

∨
where vertices

2, 3 are adjacent to the root 1. In this situation, we need to deal with

limn→∞

∣∣t(H,WΓ +WΓ′)− t(H,WΓ)− d(t(H,WΓ);WΓ′)
∣∣

‖WΓ′ ‖cut
(5.70)

where if this limit is not zero then we get some lower boundaries c > 0 such
that

c|E(H)|−2

∫
[0,1]3

WΓ′(x1, x2)WΓ′(x2, x3)dx1dx2dx3 ≤∫
[0,1]|V (H)|

WΓ′(x1, x2)WΓ′(x2, x3)
∏

(ij)∈E(H)\{(1,2),(2,3)}

WΓ(xi, xj)dx1...dx|V (H)|

≤ t(H,WΓ +WΓ′)− t(H,WΓ)− d(t(H,WΓ);WΓ′). (5.71)

This situation allows us to determine sequences of graphons which do not
belong to SΦ

graphon. Therefore the limit (5.70) should be zero.

(ii) Objects in the Banach space SΦ,g are large Feynman diagrams namely,
infinite formal expansions of Feynman diagrams which have nested or over-
lapping loops. Thanks to Theorem 5.2.2, homomorphism densities on large
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Feynman diagrams can be computed in terms of homomorphism densities
of finite partial sums. For large Feynman diagrams X,Z, we have

t(X,Z) = lim←mt(Ym, Z) (5.72)

such that for each m ≥ 1,

t(Ym, Z) =
m∏
i=1

t(Xi,WZ) (5.73)

such that X(g) =
∑

n≥0 g
nXn and WZ is a Feynman graphon which lives

in SΦ
graphon where it can not have a non-zero lower boundary. Furthermore,

thanks to the formula (5.42), we know that the Fréchet differentiability
depends only on the norm WZ where by applying (i), each t(Xm,WZ) is
Fréchet differentiable. Thanks to the product rule, t(Ym, Z) as the product
of Fréchet differentiable functions is also Fréchet differentiable for each m.
Since t(X,Z) can be identified by a subset of the direct product

∏∞
m=1 t(Ym, Z),

t(X,Z) will be also Fréchet differentiable.

Lemma 5.2.8. For a given Cn (n > 0) class function G : SΦ,g −→ R,
dnG(I;Z1, ..., Zn) is a symmetric S[0,1]-invariant multilinear functional.

Proof. We can extend the functions

GX,Z(λ1, ..., λm) := G(X + λ1Z1 + ...+ λmZm) (5.74)

to Cn functions on Rm where the equality of mixed partial derivatives show
that for any permutation σ ∈ Sn, we have

dnG(X;Z1, ..., Zn) = dnG(X;Zσ(1), ..., Zσ(n)). (5.75)

In addition, we can extend dnG(I;Z1, ..., Zn) multilinearly to each

(spanR(Γ1, ...,Γm))n. (5.76)

Corollary 5.2.9. Let F̃ : SΦ,g −→ R be a L1-continuous functional (de-
termined by Theorem 5.2.6) such that for some N ≥ 1, F̃ is N + 1 times
Gâteaux differentiable. Then for each large Feynman diagram X and also
Z1, ..., ZN+1 in the Banach space SΦ,g,

dN+1F̃ (X;Z1, ..., ZN+1) = 0

if and only if there exists a unique family {aγ}γ of real constants such that
F̃ (X) =

∑
γ∈H≤N (Φ) aγt(γ,WX).
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Proof. Thanks to Definition 5.2.1, Proposition 5.2.2, Theorem 5.2.6, Lemma
5.2.7, Lemma 5.2.8, we can apply the main result in [39].

Corollary 5.2.10. Let G : SΦ,g −→ R be a continuous functional with
respect to the cut-distance topology and smooth with respect to the Gâteaux
derivation. For each large Feynman diagram X define the following sequence
of Taylor polynomials

Pn(X) :=
n∑

m=0

1

m!
dmG(0;X, ...,X), ∀n ≥ o (5.77)

which converges to G(X) when n tends to infinity. In addition, let the Taylor
expansion

∞∑
m=0

∑
γ∈Hm(Φ)

aγt(γ,WX) (5.78)

is absolutely convergent to P (G)(X) such that∑
γ∈Hm(Φ)

aγt(γ,WX) =
1

m!
dmG(0;X, ...,X). (5.79)

Then G(X) = P (G)(X).

Proof. A sufficient condition under which the Taylor series of a smooth
function on the space of unlabeled graphons is convergent has been obtained
in [39]. Now it is enough to adapt that procedure for to the level of Feynman
graphons (which is already addressed in [148]) and then lift it onto the level
of SΦ,g in terms of Definition 5.2.1, Proposition 5.2.2, Theorem 5.2.6, Lemma
5.2.7, Lemma 5.2.8 and Corollary 5.2.9.
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Chapter 6

The intrinsic foundations of
QFT under a non-perturbative
setting

• Information flow via Feynman graphons
• Quantum logic via non-perturbative propositional calculus
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Quantum concepts such as entanglement and superposition have been
applied as the fundamental tools for a theory of quantum computation
which performs operations on information on the basis of quantum bits.
The sate of a quantum bit lives in a superposition of two orthonormal states
|ψ >:= α|0 > +β|1 > such that α, β are complex numbers. The measure-
ment of one quantum bit collapses the wave function of the other quantum
bit. Generally speaking, the theory of quantum entanglement deals with
three fundamental subjects which could be studied under deterministic and
indeterministic settings. The first challenge is to explain how we can detect
optimally entanglement under theoretical models and experimental tests.
The second challenge is to build theoretical models and experimental tests
which reverse an inevitable process of degradation of entanglement. The
third challenge is to design computational algorithms which enable us to
characterize, control and quantify entanglement. The main objective in deal-
ing with these challenges is to find a way to estimate optimally the amount
of quantum entanglement of compound system in an unknown state if only
incomplete data in the form of average values of some operators detecting
entanglement are accessible. In this direction, a notion of minimization of
entanglement has been formulated under a chosen measure of entanglement
with constrains in the form of incomplete set of data from experiment. In
addition, theory of positive maps has been also developed to provide strong
tools for the detection of entanglement. [28, 75, 76, 135, 139]

Entanglement in Quantum Field Theories have also been considered re-
cently where the measurements of the amount of entanglement in a quantum
system with infinity degrees of freedom were modeled under some settings
such as entropy, kinematic entanglement, particle mixing and oscillations,
theory of neutrino oscillations and entangled space-time points. Entropy
is on the basis of partitioning an extended quantum system into two com-
plementary subsystems and calculating the entanglement entropy defined
as the von Neumann entropy of the reduced density matrix of one subsys-
tem. This treatment does not provide information about the entanglement
between two non-complementary parts of a larger system because of the ex-
istence of a mixed state. Negativity is one interesting tool to deal with this
issue in Quantum Field Theory. Multi-mode entanglement of single-particle
states has been concerned via particle mixing and flavor oscillations. It is
shown that in Quantum Field Theory these phenomena exhibit a fine struc-
ture of quantum correlations as multi-mode multi-particle entanglement ap-
pears. Quantum information theory is capable to provide appropriate tools
to quantify the content of multi-particle flavor entanglement in QFT sys-
tems where the multi-particle flavor-species entanglement associated with
flavor oscillations of the QFT neutrino system has been studied in terms of
the particle-antiparticle species as further quantum modes. Neutrino oscil-
lations are due to neutrino mixing and neutrino mass differences. Theory
of entanglement in neutrino oscillations is another progress in this direc-
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tion where mode entanglement can be expressed in terms of flavor tran-
sition probabilities. Charged-current weak-interaction processes together
with their associated charged leptons enable us to identify flavor neutrinos.
Neutrino oscillations and CP violation concern neutrino mixing such that
neutrino masses as corrections to Standard Model play their essential roles
in the procedure. [4, 13, 14, 15, 28, 69, 80]

In the first part of this chapter our original effort is to build a new mathe-
matical model for the description of information flow among virtual particles
and elementary particles in interacting gauge field theories. This mathemat-
ical model enables us to analyze quantum entanglement via fundamental
tools in Category Theory and Theoretical Computer Science. We apply
Dyson–Schwinger equations (their combinatorial versions) as the building
blocks of information flow among distant elementary particles in a system
with infinite number of freedom. The cut-distance topology is applied to con-
struct topological regions around elementary particles which encode passing
information. The whole machinery will be encapsulated via a new lattice
model of intermediate algorithms which contribute to transferring informa-
tion among entangled particles. [151]

Passing from Classical Physics to Quantum Physics changes the logical
foundations of our mathematical frameworks. If we have a rigorous formula-
tion for the logic of quantum systems with infinite degrees of freedom, then it
definitely helps us to develop our knowledge about entanglement machinery
in QFTs. The logical foundations of Quantum Mechanics were firstly built in
the context of propositional calculus ([10]) and then thanks to applications
of Category Theory, some advanced topos models for the logical descriptions
of physical phenomena have been designed and developed. Thanks to this
modern perspective, Classical Physics has been reconstructed on the cate-
gory of sets while Quantum Physics has been reconstructed on the category
of presheaves on a particular base category. This categorical machinery has
been developed to QFT models where nowadays we have some topos models
for gauge field theories. [1, 8, 47, 48, 49, 50, 51, 104, 108, 111, 123]

The original aim of the propositional calculus in logic is to evaluate
propositions with the general form ” the physical quantity such as A of a
given system S has a value in the subset ∆ of real numbers.” In this context,
the main task is to find what truth-values such propositions have in a given
state of the system and how the truth-value changes with the state in time.
In Classical Physics, there is a space of states such as points in a topological
space equipped with some additional structures (such as Poisson brackets,
Symplectic forms, ...) such that in any given state, each physical quantity
has its value and each proposition of the form A ∈ ∆, which is represented
by some Borel subsets of the state space, has a truth-value true or false.
The Borel subsets of the state space form a Boolean σ-algebra which means
that the logic of classical physical systems is definitely a Boolean logic. This
description enables us to label Classical Physics as a realist theory. Quan-
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tum Physics does not have this explicit realistic nature and according to
the Kochen–Specker Theorem, there is no state space of a quantum system
analogous to the classical state space. As the assumptions of this Theorem,
the physical quantities are represented as real-valued functions on the hy-
pothetical state space of a quantum system and then it is shown that such
a space does not exist and it is impossible to assign values to all physical
quantities at once and therefore it is also impossible to assign true or false
values to all propositions. Birkhoff and von Neumann built the foundations
of an instrumentalist approach to quantum logic where upon measurement
of the physical quantity A, we could find the result belong in ∆ with a de-
termined probability. In this approach, pure states are represented by unit
vectors in one particular Hilbert space and propositions with the general
form A ∈ ∆ are represented by projection operators on this Hilbert space.
These projections form a non-distributive lattice. Set Ê[A ∈ ∆] as the pro-
jection which represents the proposition A ∈ ∆. The probability of A ∈ ∆
being true in a given state |ψ > is determined by

P (A ∈ ∆|ψ >) :=< ψ|Ê[A ∈ ∆]|ψ >∈ [0, 1]. (6.1)

Non-distribuitivity, dependence on measurement tools and the use of real
numbers as continuum are the most fundamental and conceptual issues of
this instrumentalist approach and its generalizations. Thanks to topos the-
ory, a new contextual form of quantum logic has been built where it is
possible to reconstruct the foundations of physical theories in the context of
search for a suitable representation in a topos of a certain formal language.
[1, 31, 32, 104, 111]

In the second part of this chapter our original task is to build a new math-
ematical model for the description of logical propositions of non-perturbative
aspects in gauge field theories with strong couplings. We explain the fun-
damental structure of a new topos of presheaves which is capable to en-
code topological regions of elementary particles and the strength of coupling
constants. This topos has enough physical information to evaluate logical
propositions about infinite formal expansions of Feynman diagrams which
contribute to quantum motions. [152]

6.1 Information flow via Feynman graphons

The mathematical formulation of Standard Model in the context of Noncom-
mutative Geometry can motivate to bring a new approach for the description
of quantum entanglement in gauge field theories. In Standard Model we have
six quarks, six leptons and gauge bosons which are responsible to carry fun-
damental forces. Gauge bosons describe exchanging information between
elementary particles and their interactions in strong, weak and electromag-
netic forces. For example, the exchanging virtual photons (as the gauge
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boson in quantum electrodynamics) makes transferring information as the
force between two electrons which is repulsive. Gluons are involved gauge
bosons in strong interactions among hadrons (i.e. six quarks) which live
in the nucleus of an atom. Electrons and neutrinos do not feel strong nu-
clear force. Every charge particle feels the electromagnetic force. W±, Z are
involved gauge bosons in weak interactions where everything is effected by
weak nuclear force. Graviton is the theoretical candidate for gauge bosons of
gravity which effects everything. The modified versions of Standard Model
aim to describe the contribution of gravity. Heavier gauge bosons are bosons
of the fundamental force with the shortest range of effect. Photons are mass-
less which means that the electromagnetic force has infinite range. W±, Z
bosons are extremely heavy and they have very short range. For example, a
neutron can decay into a proton and the gauge boson W− where at the very
short time, this boson quickly decays into an electron and an antielectron
neutrino. A proton can decay into a neutron and the gauge boson W+ where
at the very short time this boson quickly decays into a positron and a neu-
trino. Protons and neutrons are built by quarks. W± bosons can contribute
to exchanging a type of quark to another type where as the result a proton
converts to a neutron and vice versa. Since W± are heavy, they need to
borrow energy to perform this exchange and then they should pay back the
energy by converting to pairs (positron, neutrino) or (electron, antielectron
neutrino) very quickly. Quarks enjoy the Pauli exclusion principle which
means that quarks should be in different quantum states. This distinction
is encoded by colors. Gluons govern any possible interactions among quarks
which convert or exchange the colors of quarks by absorbtion or emission
of gluons. Gluons can also produce other gluons and they glue quarks to-
gether. Force between two quarks is independent of distance between them
and therefore we need infinite amount of energy to separate quarks. This
fact, known as quark confinement, tells us that we can not isolate a quark.
Thanks to gluons, strong force also governs the existence of protons and
neutrons together inside the nucleus but the force at this level is not inde-
pendent of distance. Theoretically, the amount of energy can be converted
to a pair of quark and anti-quark where some interactions could happen to
exchange colours. [37, 94, 129, 136, 137, 163]

It is possible to encapsulate all possible interactions in terms of Green’s
functions where their self-similar nature enable us to study interactions in
the context of fixed point equations of Green’s functions namely, Dyson–
Schwinger equations. The strength of the fundamental forces dictate the
appearance of perturbative, asymptotic freedom or non-perturbative behav-
iors to these equations. It is mentioned that gauge bosons provide informa-
tion exchange and here we plan to mathematically describe the existence of
information flow among elementary particles at strong levels of the coupling
constants in interacting gauge field theories via towers of Dyson–Schwinger
equations, cut-distance topological regions of Feynman diagrams which con-
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tribute to solutions of these equations and the vacuum energy. The vacuum
energy guarantees the existence of virtual particles in the vacuum state
which will be used in our setting.

Remark 6.1.1. The vacuum state in free field theory can be described in
terms of a tensor product of the Fock space vacuum states for each inde-
pendent field mode where there is no entanglement between the field modes
at different momenta. The full vacuum state in interacting Quantum Field
Theory can be described in terms of a superposition of Fock basis states
where the modes of different momenta are entangled.

The existence of divergencies originated from non-perturbative aspects
is a strong evidence which inform us the indeterministic nature of Quantum
Field Theories with strong coupling constants. Our mathematical model
shows a deep dependence of the quantum entanglement on the indetermi-
nateness of elementary particles in gauge field theories with strong enough
couplings.

Definition 6.1.2. For each n, consider γpn as a (1PI) primitive Feynman
diagram which contribute to present some interactions of an elementary
particle p with other (virtual) particles in the physical theory. For each
Feynman diagram Γ, B+

γpn
(Γ) builds a new disjoint union of graphs as the

result of all possibilities for the insertion of Γ into γpn in terms of the types
of vertices in γpn and types of external edges in Γ. Each family {B+

γpn
}n≥0

of this class of Hochschild one cocycles can determine a particular Dyson–
Schwinger equation DSEp which encodes a collection of possible interactions
between p and other (virtual) particles in the physical theory.

We plan to describe quantum entanglement in the language of lattice
theory. As reminding, a lattice is a partially ordered set such that each pair
of its elements has a unique join ∨ which is the least upper bound and a
unique meet ∧ which is the greatest lower bound. A lattice is called bounded
if there exist the greatest element and the least element. A lattice is called
distributive, if the operations meet and join obey the distributive conditions.

Theorem 6.1.3. The information flow between the particle p and all unob-
served intermediate states can be described in terms of a lattice of topological
Hopf subalgebras.

Proof. Intermediate states address virtual particles. Dyson–Schwinger equa-
tions are the best tools for us to build Hopf subalgebras of the Connes–
Kreimer renormalization Hopf algebraHFG(Φ) of Feynman diagrams. Thanks
to the cut-distance topology defined on Feynman graphons (Theorem 2.3.7),
we can naturally equip each Hopf subalgebra HDSE with this topology such
that the distance between Feynman diagrams Γ1,Γ2 is given by

d(Γ1,Γ2) := dcut([f
Γ1 ], [fΓ2 ]). (6.2)
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[fΓi ] is the unique unlabeled graphon class with respect to the graph Γi and

dcut([f
Γ1 ], [fΓ2 ]) = infφ,ψsupA,B|

∫
A×B

fΓ1(φ(x), φ(y))−fΓ2(ψ(x), ψ(y))dxdy|

(6.3)
where the infimum is taken over all different relabelings of φ, ψ for the labeled
graphons fφ, fψ, respectively. The supremum is taken over all Lebesgue
measurable subsets A,B of the closed interval.

In addition, the coproduct of HDSE is a linear bounded operator on the
cut-normed space of Feynman diagrams which leads us to consider each
Hcut

DSE as a topological Hopf subalgebra.
Thanks to Definition 6.1.2, choose an equation DSEp which contains

some interactions related to the particle p. For each j ≥ 1, build a new

collection {Γ(j)
n }n≥1 of primitive graphs

Γ(j)
n := Γ

(j−1)
1 + ...+ Γ(j−1)

n (6.4)

such that Γ
(0)
n = γpn for each n ≥ 1.

Thanks to the Milnor–Moore Theorem ([126]), the Connes–Kreimer renor-
malization Hopf algebra HFG(Φ) is isomorphic to the graded dual of the uni-
versal enveloping algebra of the Lie algebra of primitive elements in HFG(Φ)∗

where for each Feynman diagram Γ, we can consider its corresponding in-
finitesimal character ZΓ in the dual space. Since the renormalization co-
product is a linear map, we can check easily that the sum of a finite number
of primitive graphs is primitive. Therefore for each j ≥ 1 and n ≥ 1, the
operator B+

Γ
(j)
n

is the corresponding Hochschild one cocyle such that for each

Feynman diagram Γ, this operator concerns all possible situations for the

insertion of Γ into the disjoint unions of Feynman diagrams Γ
(j−1)
1 , ...,Γ

(j−1)
n .

In addition, by induction, we can show that for each j, the resulting graph
B+

Γ
(j)
n

(Γ) covers B+

Γ
(j−1)
n

(Γ) as a subgraph.

For each j ≥ 1, we can consider the Dyson–Schwinger equation

DSE(j)
p :=< {B+

Γ
(j)
n

}n≥1 >, (6.5)

with the corresponding Hopf subalgebra H
DSE

(j)
p

. There exists a natural

injective Hopf algebra homomorphism from H
DSE

(j)
p

to H
DSE

(j+1)
p

which leads

us to build the following increasing chain of Hopf subalgebras

HDSEp ≤ HDSE
(1)
p
≤ H

DSE
(2)
p
≤ ... ≤ H

DSE
(j)
p
≤ .... (6.6)

If X
DSE

(j)
p

=
∑

n(j)≥0 g
n(j)Xj

n(j)
is the unique solution of the equation DSE

(j)
p ,

then for each n(j) ≥ 1, set

H(Xj
1 , ..., X

j
n(j)

) (6.7)

126



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

as the graded Hopf subalgebra of H
DSE

(j)
p

free commutative generated alge-

braically by graphs Xj
1 , ..., X

j
n(j)

.
Our plan is to equip these Hopf subalgebras with the cut-distance topol-

ogy and then consider the corresponding completed versions of these Hopf
subalgebras. We have discussed that solutions of Dyson–Schwinger equa-
tions are actually graph limits of sequences of finite Feynman diagrams with
respect to the cut-distance topology. The Hopf subalgebra HDSE generated
by a given Dyson–Schwinger equation DSE is graded with respect to the
number of internal edges or the number of independent loops. We have

HDSE =
⊕
n≥0

HDSE,(n) (6.8)

such that HDSE,(n) is the homogeneous component of degree n and

HDSE,(p)HDSE,(q) ⊂ HDSE,(p+q),

∆(HDSE,(n)) ⊂
⊕
p+q=n

HDSE,(p) ⊗HDSE,(q), S(HDSE,(p)) ⊂ HDSE,(p). (6.9)

Define a new parameter val for Feynman diagrams in HDSE given by

val(Γ) := Max{n ∈ N : Γ ∈
⊕
k≥n

HDSE,(k)} (6.10)

which determines the n-adic metric on HDSE defined by the formula

d(Γ1,Γ2) := 2−val(Γ1−Γ2). (6.11)

Thanks to Proposition 4.6 in [149], the n-adic metric enables us to build
a sequence {Rn(DSE)}n≥1 of random graphs which is convergent to the
unique solution XDSE with respect to the cut-distance topology. Now if
we apply the graphon representations of Feynman diagrams, then we can
embed HDSE into the renormalization topological Hopf algebra of Feynman
graphons SΦ

graphon. Equip HDSE with the cut norm and add graph-limits to
it to obtain a topological Hopf algebra. It is important to note that the
coproduct ∆HDSE

is a linear bounded map on the normed space HDSE which
makes it a continuous operator. Thanks to the graduation parameter, the
antipode is also a continuous operator in this setting. Denote Hcut

DSE as the
resulting topological Hopf algebra.

Thanks to the explained machinery, set Hcut

DSE
(j)
p

as the resulting topo-

logical Hopf subalgebra corresponding to each equation DSE
(j)
p . The family

Cp of these topological Hopf subalgebras can be equipped by the following
binary relation

V 4W ⇐⇒ (6.12)
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there exists a finite sequence of topological Hopf subalgebras V1, ..., Vr ∈ Cp
together with injective morphisms V → V1 → V2 → ... → Vr → W which
connect V to W . As the result, (Cp,4) is a lattice of topological Hopf

subalgebras with the greatest lower bound H(X
(0)
1(0)

)cut. For each subset

{V1, V2} of (Cp,4), if V1 4 V2 then define

V1 ∧ V2 := V1, V1 ∨ V2 := V2. (6.13)

The lattice (Cp,4) enables us to relate a class of Dyson–Schwinger equa-
tions derived from the basic equation DSEp to each other with respect to
morphisms among their corresponding topological Hopf subalgebras. This
means that the lattice (Cp,4) mathematically describes the transferring of
information from one equation to another which includes information flow
between p and its intermediate states.

Definition 6.1.4. Set Rp as the smallest collection of all Feynman diagrams

in Φ which contribute to the equations DSEp and DSE
(j)
p for all j ≥ 1. Then

equip it with the cut-distance topology and add garph limits to obtain a
complete topological region Rp.

Thanks to Theorem 6.1.3, the lattice (Cp,4) shows us the information
flow processes among all (virtual) particles which contribute to the topolog-
ical region Rp.

Theorem 6.1.5. There exists a lattice of topological Hopf subalgebras which
describes the information flow in an entangled system of elementary particles
in an interacting Quantum Field Theory.

Proof. At the first step, we are going to show the existence of a class of
Dyson–Schwinger equations for the description of information flow between
two space-time far distant particles which belong to an entangled system in
interacting Quantum Field Theory.

Thanks to Theorem 6.1.3, we already have described the entanglement
process in a topological region around an elementary particle on the basis
of the cut-distance topology. Here we need to show the possibility of infor-
mation flow between two entangled particles p, q while p does not belong to
Rq, q does not belong to Rp and Rp ∩Rq = ∅.

We have identified topological subspaces Rp and Rq of the topological
Hopf algebra Hcut

FG(Φ) in terms of their contribution to the entanglement
of intermediate states (Definition 6.1.4). Now thanks to the metric (6.2),
define the distance between this class of regions by

d(Rp, Rq) := inf{d(X,Y ) : X ∈ Rp, Y ∈ Rq}. (6.14)

We want to show the existence of topological regions such as Rcpq in Hcut
FG(Φ)

with the following conditions

Rp ∩Rcpq 6= ∅, Rq ∩Rcpq 6= ∅. (6.15)
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For d(Rp, Rq) > 0, there exists j1, j2 ≥ 0 such that the corresponding

equations DSE
(j1)
p and DSE

(j2)
q have the following conditions

X
DSE

(j1)
p

= limn→∞

n∑
k=0

X
(j1)
k , X

DSE
(j2)
q

= limn→∞

n∑
k=0

X
(j2)
k (6.16)

d(Rp, Rq) = dcut(XDSE
(j1)
p
, X

DSE
(j2)
q

) > 0. (6.17)

For each ε > 0, we can determine Hochschild one cocycles B+
γεn,p

, n ≥ 1
which fulfills the following conditions:

- Each γεn is a finite primitive (1PI) Feynman diagram such that

∀n ≥ 1, γεn /∈ Rp, γεn /∈ Rq, γεn ∈ HFG(Φ). (6.18)

- The equation DSE
(ε)
p as the Dyson–Schwinger equation originated from

the family {B+
γεn,p
}n≥1 with the unique solution Xp

ε =
∑

n≥0X
(ε)p
n has the

following property that there exists Nε ∈ N such that for each n > Nε, we

have d(X
(j1)
n , X

(ε)p
n ) ≤ ε.

Thanks to the triangle inequality of the cut-distance metric, we can
obtain

d(X
DSE

(j1)
p
, Xp

ε ) ≤ ε (6.19)

In addition, for each ε > 0, we can determine Hochschild one cocycles
B+
ηεn,q

, n ≥ 1 which fulfills the following conditions:
- Each ηεn is a finite primitive (1PI) Feynman diagram such that

∀n ≥ 1, ηεn /∈ Rp, ηεn /∈ Rq, ηεn ∈ HFG(Φ). (6.20)

- The equation DSE
(ε)
q as the Dyson–Schwinger equation originated from

the family {B+
ηεn,q
}n≥1 with the unique solution Xq

ε =
∑

n≥0X
(ε)q
n has the

following property that there exists N ′ε ∈ N such that for each n > N ′ε, we

have d(X
(j2)
n , X

(ε)q
n ) ≤ ε.

Thanks to the triangle inequality of the cut-distance metric, we can
obtain

d(X
DSE

(j2)
q
, Xq

ε ) ≤ ε. (6.21)

The vacuum in an interacting physical theory can be described as a
homogeneous system of virtual particles where its states are invariant by all
transformations of the invariance group. Some particles in the vacuum have
negative energies where without violating the conservation laws they can
annihilate ([136]). Thanks to this fact, we can determine Rcpq as the smallest
topological subset ofHcut

FG(Φ) consisting of Feynman graphs which contribute

to equations of the types DSE
(ε)
p and DSE

(ε)
q . This region contains virtual

particles (created by the vacuum energy) which has separate contributive
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parts with topological regions Rp and Rq. The relations (6.19) and (6.21)
guarantee that

Rp ∩Rcpq 6= ∅, Rq ∩Rcpq 6= ∅. (6.22)

Now if we apply Theorem 6.1.3, then graphs which belong to the region Rcpq

(as the completion of Rcpq with respect to the cut-distance topology) make
informational bridges between entangled particles p, q and their correspond-
ing intermediate states (virtual particles) which live in Rp ∪Rq ∪Rcpq .

At the second step, we want to formulate the above machinery in the
language of lattice theory.

Suppose DSEp and DSEq are the basic Dyson–Schwinger equations cor-
responding to entangled particles p and q. Thanks to the built lattice by
Theorem 6.1.3, let (Cp,4) be the lattice of topological Hopf subalgebras

Hcut

DSE
(j)
p

generated by equations of the type DSE
(j)
p which live in the topo-

logical region Rp and let (Cq,4) be the lattice of topological Hopf subal-

gebras Hcut

DSE
(l)
q

generated by equations of the type DSE
(l)
q which live in the

topological region Rq.
Thanks to the previous part of the proof, we can show the existence of

j1, j2 ≥ 0 such that DSE
(j1)
p and DSE

(j2)
p contribute in the description of the

distance between two topological regions Rp and Rq (i.e. metric (6.14)). Set

j∗1 := Min{j1 : DSE(j1)
p }, j∗2 := Min{j2 : DSE(j2)

q }. (6.23)

Consider the sub-lattice (Cj
∗
1
p ,4) which contains only the first j∗1 columns of

the original lattice (Cp,4) and the sub-lattice (Cj
∗
2
q ,4) which contains only

the first j∗2 columns of the original lattice (Cq,4). These two sub-lattices
have the greatest lower bound and the smallest upper bound.

Thanks to the structure of the topological region Rcpq , we can build a new

lattice (Cj
∗
1 j
∗
2

cpq ,4) which is the result of the disjoint union of the sub-lattices

(Cj
∗
1
p ,4) and (Cj

∗
2
q ,4) which are connected to each other by topological Hopf

algebra homomorphisms associated to Dyson–Schwinger equations of the

types DSE
(ε)
p and DSE

(ε)
q . We have

Hcut
DSEp ≤ H

cut

DSE
(1)
p
≤ ... ≤ Hcut

DSE
(j∗1 )
p

(6.24)

Hcut
DSEq ≤ H

cut

DSE
(1)
q
≤ ... ≤ Hcut

DSE
(j∗2 )
q

(6.25)

which belong to the new lattice in terms of one of the following topological
Hopf algebra homomorphisms

Hcut

DSE
(j∗1 )
p

−→ Hcut

DSE
(ε)
p
−→ Hcut

DSE
(k)
c
−→ Hcut

DSE
(ε)
q
−→ Hcut

DSE
(j∗2 )
q

(6.26)

or

Hcut

DSE
(j∗2 )
q

−→ Hcut

DSE
(ε)
q
−→ Hcut

DSE
(k)
c
−→ Hcut

DSE
(ε)
p
−→ Hcut

DSE
(j∗1 )
p

(6.27)
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such thatHcut

DSE
(k)
c

is the topological Hopf subalgebra associated to the Dyson–

Schwinger equation DSE
(k)
c which lives in the region Rcpq and derived from

the virtual particle c.

The Milnor–Moore theorem provides a correspondence between pro-
unipotent Lie groups and graded commutative Hopf algebras ([27, 121]).
This correspondence enables us to translate the determination of Hopf sub-
algebraic structures in the renormalization Hopf algebra to a problem in Lie
groups. One interesting application of Galois theory is to find a fundamental
interrelationship between subgroups of the group of all automorphisms and
intermediate algorithmic structures which live in the middle of programs
and computable functions [172, 173]. Dyson–Schwinger equations can be
applied for the determination of substructures in the renormalization Hopf
algebra HFG(Φ) and the determination of Lie subgroups of the complex Lie
group GΦ(C) of characters. Therefore these non-perturbative equations play
the middle bridge between Computation Theory and Quantum Field Theory
[52, 147].

Theorem 6.1.3 and Theorem 6.1.5 have explained the entanglement of
elementary particles in the context of the existence of substructures raised
via Dyson–Schwinger equtations. This mathematical setting addresses a
deep connection between the concept of information flow in Quantum Field
Theory and the existence of subobjects inside an object originated from the
Galois Fundamental Theorem. The immediate consequence of this inves-
tigation is to recognize a new approach to quantum entanglement in the
language of intermediate algorithms in Theoretical Computer Science. We
deal with this interesting challenge on the basis of the representation theory
of Lie groups.

Theorem 6.1.6. The intermediate algorithms corresponding to Lie sub-
groups of the complex Lie group GΦ

graphon(C) can encode the information
flow in an entangled system in an interacting Quantum Field Theory Φ in
terms of a lattice of Lie subgroups.

Proof. At the first step, we plan to show that the information flow between
the particle p and all unobserved intermediate states can be encoded via a
lattice of Lie subgroups of GΦ(C). Thanks to Theorem 6.1.3, the entangle-
ment of the particle p and its related virtual particles is encapsulated by the
lattice (Cp,�) of topological Hopf subalgebras. Each pair of Hopf subalge-
bras H

DSE
(k)
p
� H

DSE
(l)
p

in this lattice determines the injective Hopf algebra

homomorphism
ikl : H

DSE
(k)
p
−→ H

DSE
(l)
p
. (6.28)

The passing from Hopf subalgebras to Lie subgroups can be formulated by
applying the contravariant functor Spec which sends a commutative algebra

131



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

to a topological space. For each object H
DSE

(k)
p
∈ (Cp,�), Spec(H

DSE
(k)
p

)

is the set of all prime ideals of the commutative algebra H
DSE

(k)
p

equipped

with the Zariski topology and the structure sheaf. The homomorphism ikl
can be lifted onto the surjective homomorphism

ĩkl : Spec(H
DSE

(l)
p

) −→ Spec(H
DSE

(k)
p

) (6.29)

of affine group schemes. For a fixed Hopf subalgebra H
DSE

(k)
p

, Spec(H
DSE

(k)
p

)

is a representable covariant functor which sends a topological space to a
group. Set Gp(k) := Spec(H

DSE
(k)
p

)(C) as the complex Lie subgroup cor-

responding to the Hopf subalgebra H
DSE

(k)
p

such that its group structure

is given by the convolution product generated by the coproduct ∆H
DSE

(k)
p

.

Thanks to this setting, we can build a new lattice (Gp,�) of complex Lie
groups such that

G � K ⇐⇒ (6.30)

There exists a finite sequence of complex Lie subgroups G1, ..., Gr ∈ Gp to-
gether with surjective group homomorphisms G→ G1 → G2 → ...→ Gr →
K which connect G to K. In addition, for each n ≥ 1, define G(Xj

1 , ..., X
j
n)

as the finite dimensional complex Lie subgroup corresponding to the free
commutative graded Hopf subalgebra H(Xj

1 , ..., X
j
n) of H

DSE
(j)
p

. The lattice

(Gp,�) of Lie groups encodes the information flow between p and its related
virtual particles.

At the second step, we plan to show that there exists a lattice of Lie
subgroups which describes the information flow in an entangled system of
elementary particles in a given interacting gauge field theory. For this pur-
pose, we need to build a lattice of Lie subgroups for the description of the
quantum entanglement process between space-time far distant elementary
particles which belong to an entangled system in the physical theory Φ.

Theorem 6.1.5 determines a lattice (Cj
∗
1 j
∗
2

cpq ,�) of Hopf subalgebras which
describes the entanglement process. Thanks to the first part of the Proof,
it is possible to lift the increasing chains (6.24), (6.25) onto the following
decreasing chains of Lie subgroups

G
p(j∗1 ) ≥ Gp(j∗1−1) ≥ ... ≥ Gp(1) ≥ GDSEp (6.31)

G
q(j∗2 ) ≥ Gq(j∗2−1) ≥ ... ≥ Gq(1) ≥ GDSEq (6.32)

with the corresponding group homomorphisms

G
q(j∗2 ) −→ Gq(ε) −→ Gc(k) −→ Gp(ε) −→ G

p(j∗1 ) (6.33)

or
G
p(j∗1 ) −→ Gp(ε) −→ Gc(k) −→ Gq(ε) −→ G

q(j∗2 ) (6.34)
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such that Gc(k) is the complex Lie subgroup corresponding to the Hopf sub-

algebra H
DSE

(k)
c

generated by the equation DSE
(k)
c which lives in the topo-

logical region Rcpq . The existence of the virtual particle c, which contributes
to interactions of the particles p, q, is the consequence of the energy of the
vacuum in interacting QFT. Now we can define a new lattice

(Gj
∗
1 j
∗
2

cpq ,�) (6.35)

of Lie subgroups and Lie group epimorphisms. This lattice encodes the
entanglement processes between p and q.

As we have shown in the previous parts of this work, the renormaliza-
tion Hopf algebra of Feynman graphons SΦ

graphon is capable to recover the
renormalization Hopf algebra HFG(Φ) and Hopf subalgebras generated by
all Dyson–Schwinger equations. Therefore for each Dyson–Schwinger equa-
tion DSE with the corresponding Hopf subalgebra HDSE, we can embed
the associated complex Lie subgroup GDSE(C) into the complex Lie group
GΦ

graphon(C).

The study of Dyson–Schwinger equations had been developed to a cate-
gorical setting where we associated a category of geometric objects to each
system of these equations. Then we have embedded this class of categories
into the universal Connes–Marcolli category ECM of flat equi-singular vector
bundles. Thanks to this machinery, some new geometric and combinatorial
tools for the computation of non-perturbative parameters have already been
obtained [140, 142, 144, 147]. Thanks to Theorem 6.1.6, now it is possible
to describe quantum entanglement in the context of the representation the-
ory of Lie groups where we can address a new application of Tannakian
formalism to Quantum Field Theory.

Theorem 6.1.7. There exists a lattice of Tannakian subcategories which
describes quantum entanglement in interacting Quantum Field Theory.

Proof. At the first step, we show the existence of a lattice (Catp,�) of
Tannakian subcategories which encodes the quantum entanglement between
an elementary particle p and all unobserved intermediate states (as virtual
particles).

Thanks to Theorem 6.1.3, the entanglement of the particle p and its
related virtual particles is encapsulated by the lattice (Cp,�) of topological
Hopf subalgebras.

Each pair of objects Hcut

DSE
(k)
p

4 Hcut

DSE
(l)
p

determines the natural injective

Hopf algebra homomorphism

ikl : H
DSE

(k)
p
−→ H

DSE
(l)
p

(6.36)

which can be lifted onto the surjective group homomorphism

ĩkl : Gp(l) −→ Gp(k) . (6.37)
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For each object Gp(l) of the lattice (Gp,�), let

G∗
p(l) := Gp(l) oGm (6.38)

such that Gm is the multiplicative group which acts on the original group.
Define RepG∗

p(l)
as the category of finite dimensional representations of the

complex Lie group G∗
p(l) which is a neutral Tannakian category. Thanks

to the representation theory of affine group schemes ([121]), the surjective
morphism ĩkl allows us to send each representation σ : Gp(k) −→ GLV to a
representation

σ ◦ ĩkl : Gp(l) −→ GLV (6.39)

which leads us to achieve an exact fully faithful functor

RepG∗
p(k)
−→ RepG∗

p(l)
. (6.40)

This information is enough to build a new lattice (Catp,�) of subcategories
such that

RepH∗ � RepK∗ ⇐⇒ (6.41)

there exists a finite sequence of subcategories RepH∗1 , ...,RepH∗t ∈ Catp to-
gether with exact fully faithful functors

RepK∗ → RepH∗1 → ...→ RepH∗t → RepH∗ (6.42)

derived from the epimorphisms ĩkl.
At the second step, we show the existence of a lattice of Tannakian

subcategories for the description of the entanglement between space-time
far distant elementary particles which belong to an entangled system.

Thanks to Theorem 6.1.5, the information flow between p and other

distant particle q is described by the lattice (Cj
∗
1 j
∗
2

cpq ,�) of topological Hopf

subalgebras which inherits a lattice (Gj
∗
1 j
∗
2

cpq ,�) of Lie subgroups (Theorem
6.1.6). The decreasing chains (6.31) and (6.32) can be lifted onto the cate-
gorical setting to achieve the following chains of categories and exact fully
faithful functors

RepG∗DSEp
≥ RepG∗

p(1)
≥ ... ≥ RepG∗

p
(j∗1−1)

≥ RepG∗
p
(j∗1 )

(6.43)

RepG∗DSEq
≥ RepG∗

q(1)
≥ ... ≥ RepG∗

q
(j∗2−1)

≥ RepG∗
q
(j∗2 )

. (6.44)

We can connect these two chains to each other in terms of one of the following
sequences of exact fully faithful functors

RepG∗
q
(j∗2 )
−→ RepG∗

q(ε)
−→ RepG∗

c(k)
−→ RepG∗

p(ε)
−→ RepG∗

p
(j∗1 )

(6.45)
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or

RepG∗
p
(j∗1 )
−→ RepG∗

p(ε)
−→ RepG∗

c(k)
−→ RepG∗

q(ε)
−→ RepG∗

q
(j∗2 )

. (6.46)

This information is enough to define (Cat
j∗1 j
∗
2

cpq ,�) as a lattice of Tan-
nakian subcategories which encodes the entanglement process between p
and q.

Theorem 6.1.8. Flat equi-singular vector bundles provide a new geometric
description of the information flow in interaction Quantum Field Theories
on the basis of the Riemann–Hilbert correspondence.

Proof. Flat equi-singular vector bundles have been applied for the construc-
tion of the Connes–Marcolli category ECM which is a neutral Tannakian
category. It is isomorphic to the category RepU∗ of finite dimensional rep-
resentations of the universal affine group scheme U∗. [37]

This universal category is rich enough to recover all categories RepG∗
p(j)

as subcategories which enable us to define a surjective functor

π∗j : RepU∗ −→ RepG∗
p(j)

(6.47)

of categories. Now if we apply the chain (6.45) or (6.46), then we can
determine one of the functors

ρpqj∗1 j∗2
: RepG∗

p
(j∗1 )
−→ RepG∗

q
(j∗2 )

(6.48)

or
ρpqj∗2 j∗1

: RepG∗
q
(j∗2 )
−→ RepG∗

p
(j∗1 )

. (6.49)

These functors allow us to formulate one of the following equations

πj∗2 = ρpqj∗1 j∗2
◦ πj∗1 , or πj∗1 = ρpqj∗2 j∗1

◦ πj∗2 (6.50)

at the level of functors. They are the key tools for us to determine some
flat equi-singular vector bundles which contribute to the information flow in
entangled systems.

Corollary 6.1.9. There exists a category of mixed Tate motives which in-
terprets the information flow in an entangled system of particles in an in-
teracting Quantum Field Theory.

Proof. The category ECM is equivalent to the motivic category

TMmix(Spec O[1/N ]) (6.51)

of mixed Tate motives (i.e. Proposition 1.110, Corollary 1.111 in [37]).
Thanks to Theorem 6.1.8, neutral Tannakian subcategories RepG∗

p
(j∗1 )

and
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RepG∗
q
(j∗2 )

can be embedded into this motivic category. Therefore the in-

formation flow is equivalent to determining subcategories of the category
TMmix(Spec O[1/N ]) which contain those mixed Tate motives identified
by motivic Galois groups G∗

p(j∗1 ) and G∗
q(j∗2 ) . We denote the resulting motivic

subcategories with Mot(G∗
p(j∗1 )) and Mot(G∗

q(j∗2 )), respectively. On the other

hand, thanks to Theorem 6.1.6, we have already determined a new class of

Dyson–Schwinger equations DSE
(k)
c which describes the information flow in

the topological region Rcpq . Now by applying Theorem 6.1.7, we have the
category RepG∗

c(k)
of representations with respect to this class of Dyson–

Schwinger equations which encodes the information flow. This category can
be also embedded into ECM which leads us to characterize another class of
mixed Tate motives identified with the motivic Galois group G∗

c(k) . We de-
note the resulting motivic subcategory with Mot(G∗

c(k)). The disjoint unions
of objects of these motivic subcategories make a new subcategory

Motpq := Mot(G∗
p(j∗1 ))

⊔
Mot(G∗

c(k))
⊔

Mot(G∗
q(j∗2 )) (6.52)

of TMmix(Spec O[1/N ]). Motpq is a category of mixed Tate motives which
contribute to the entanglement processes between space-time far distant
particles p, q via virtual particles of the vacuum energy.

The explained mathematical machinery for the description of quantum
entanglement is on the basis of the strength of the bare or effective coupling
constants of the physical theories where we deal with Dyson–Schwinger equa-
tions. We can show that our machinery still works after changing the scale
of the momenta (i.e. running coupling constant).

Theory of renormalization group is the key tool in Quantum Field Theory
to study the changes of the dynamics of a quantum system with infinite
degrees of freedom when the scales of some physical parameters such as
momentum, energy and mass have been changed. It allows us to concern the
possibility of exchanging information from scale to scale in the appearance
of uncertainty principle. We apply the Connes–Marcolli universal affine
group scheme to define a suitable renormalization group which encodes the
information flow under the re-scaling of the momentum parameter.

Corollary 6.1.10. The information flow between an elementary particle p
and all unobserved intermediate states exists independent of changing the
scale of the momenta of particles.

Proof. The universal category ECM is isomorphic to the category RepU∗
with respect to the universal affine group scheme U∗. The Connes–Marcolli
universal shuffle type Hopf algebra of renormalization HU is the result of the
graded dual of the universal enveloping algebra of the free graded Lie algebra
LU which is generated by elements e−n of degree −n for each n > 0. The
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Milnor–Moore Theorem determines its corresponding affine group scheme U.
The sum e :=

∑
n e−n is an element of the Lie algebra LU where thanks to the

pro-unipotent structure of U, we can lift it onto the morphism rg : Ga → U.
[37]

Now apply Theorem 1.106 in [37] to determine a graded representation

τp : U∗(C)→ G∗DSEp (6.53)

such that the resulting map τp ◦ rg provides the renormalization group with
respect to the equation DSEp. By this method, we can build a renormal-

ization group with respect to each Dyson–Schwinger equation DSE
(j)
p for

each j ≥ 1. These renormalization groups make the possibility to study the
behavior of the information flow in the topological regions such as Rp under
changing the scales of the momentum parameter.

6.2 Quantum logic via non-perturbative proposi-

tional calculus

The fundamental purpose in this section is to address a new category model
for the study of logical propositions about large Feynman diagrams by ap-
plying Feynman graphons. We explain the construction of a topos model
which concerns the strength of the (bare) coupling constants in the structure
of the base category. It enables us to study the logical evaluation of non-
perturbative parameters originated from Dyson–Schwinger equations. We
will determine a new class of computable Heyting algebras which concerns
logical propositions about topological regions of Feynman diagrams.

Generally speaking, a quantum system is described by its von Neumann
algebra B(H) of observables which contains all bounded operators on an
infinite dimensional separable Hilbert space H. Each physical quantity A
has a corresponding self-adjoint operator Â in B(H) and vice versa. Set
V(H) as the poset of all unital abelian von Neumann subalgebras of B(H)
which can be seen also as the context category. For objects V1 ⊂ V2 in the
context category, the subalgebra V1 has less number of self-adjoint operators
and less number of projections than the subalgebra V2. The restriction
process from the subalgebra V2 to the subalgebra V1 or the lifting process
from V1 onto V2 are fundamental issues in propositional calculus of quantum
systems. These translation issues have been studied under coarse-graining
process. On the one hand, it enables us to map self-adjoint operators and
projections from V2 to V1. For a proposition A ∈ ∆ about a given physical
quantity A, suppose its corresponding projection P̂∆

A belongs to V2 but not
belong to V1. It means that this proposition can not be evaluated from the
perspective of V1. The daseinisation process has been designed to adapt the
projection P̂∆

A and the proposition A ∈ ∆ to V1 by making them coarser.
On the other hand, every self-adjoint operator and every projection in V1
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belong also to V2 but the embedding of the smaller subalgebra into the larger
one requires some extra structures and objects which live in V2. To concern
this issue has led people to build a topos of contravariant functors from the
context category V(H) to the category Set. This categorical setting has
been developed very fast for the reconstruction of physical theories in the
context of higher order logic. [1, 10, 48, 49, 50, 51, 104, 111, 123, 153]

The original motivation for the construction of a new topos model is to
provide a new analogous of this propositional calculus for the study of situ-
ations beyond perturbation theory in Quantum Field Theories with strong
couplings in the context of logical conceptions. Our topos model shows the
importance of the strength of the (bare) couplings in the construction of
the category of context (i.e. base category). The context category of our
new topos is actually more complicated than V(H) because the inclusion
HDSE1 ⊂ HDSE2 between two Hopf subalgebras in this base category does
not mean in general that the equation DSE1 should have less physical in-
formation than the equation DSE2. We can remind the calculus of ordinals
in Set Theory, where we deal with different types of infinities, and see that
sometimes a subset of a set and the set can have the same cardinal. There-
fore coarse-graining process is not noticed in the foundations of our topos
model and we need to concern other parameters to deal with propositions
at the level of large Feynman diagrams.

Let us give a short overview about the concept of topos . The fundamen-
tal motivation for the study of topos came from the concept of abstraction in
Mathematics. In fact, Category Theory, as a modern discipline, comes to the
game whenever we plan to study a general theory of structures. Categories
enable us to concern mathematical structures in terms of interrelationships
among objects (which are formally known as morphisms) while under a set
theoretic perspective, we choose to deal with properties of mathematical
structures on the basis of elements and membership relations. Many basic
concepts such as spaces and elements in Set Theory can be replaced by ob-
jects and arrows in the categorical setting, respectively. It is reasonable to
think about Category Theory as a generalization of Set Theory where we are
capable to study a mathematical structure in terms of its relations with other
structures. This approach leads us to a universal fundamental language in
dealing with mathematical structures where we have general powerful tools
such as functors between categories and natural transformations between
functors instead of the equality relation between elements of sets in Set
Theory. Actually, the language of Category Theory provides a new under-
standing of the notion of ”element” of an object in a mathematical structure
which is more general than its set theoretic version. Each arrow is indeed
a generalized element of its own codomain which means that each object
X can be described in terms of consisting of different collections of arrows
Y −→ X. This interpretation is known as the varying of elements of X over
the stages Y which corresponds to the notion of absolute element x of a set
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X in Set Theory. This story is encapsulated in terms of a map x : {∗} −→ X
where we enable to address the terminal object underlying the categorical
setting. Questions about the existence of a class of categories which could
be regarded as a categorical-theoretic replacement and generalization of the
category of sets and functions have led people to build elementary topos and
Grothendieck topos such that the second class is known as a replacement
for the notion of ”space”. The concept of topos has all tools of the set-
theoretical world which are necessary for the construction of mathematical
structures and their models under a categorical configuration. It provides
a generalized version of the notions of space and logic where we enable to
interpret it as a categorical-theoretic generalization of the structure of a
universe of sets and functions that disappears certain logical and geometric
restrictions of the base mathematical structure. Generally speaking, for a
given mathematical theory, we can have a treatment to evaluate and study
the theory under different stages with respect to objects of a fixed base cat-
egory. So there is a chance to consider possible relations among toposes in
the context of a special family of functors which are called geometric mor-
phisms. A fundamental example of a topos tells us more about the value of
this modern categorical methodology in dealing with mathematical struc-
tures. Consider the category SetC

op
of contravariant functors from the base

category C to the standard category Set of sets and functions. Elements
of that mathematical theory corresponded to the base category C, which
have been already modeled as objects in the mentioned topos, become rep-
resentable in terms of set-valued functors over the base category C. Roughly
speaking, a topos is a Cartesian closed category with equalisers and subob-
ject classifier. In other words, it has terminal object, equalisers, pullbacks,
all other limits, exponential objects and subobject classifier. The category
Set of all sets and functions is an example of a topos which is the basis
for the construction of more complicated toposes such as the Grothendieck
topos of sheaves over a given base category. [78, 105, 106, 108, 133, 154]

It is time to explain the construction of a new topos which encodes non-
perturbative aspects of gauge field theories.

Definition 6.2.1. Topological Hopf algebras Hcut
DSE(λg) generated by solu-

tions of Dyson–Schwinger equations in a given gauge field theory Φ with
the strong bare coupling constant g and their closed Hopf subalgebras can
be organized in the context of a poset structure. For each pair (H1, H2) of
objects, we can define arrows pointing from H1 to H2 (i.e. H1 ≤ H2) if
and only if there exists a homomorphism H1 −→ H2 of Hopf algebras which
is continuous with respect to the cut-distance topology. This poset can be
seen also as a category denoted by Cnon,g

Φ .

The existence of the graduation parameters on the topological Hopf al-
gebra Hcut

FG allow us to describe it in terms of infinite systems of Dyson–
Schwinger equations which means that this Hopf algebra can belong to the

139



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

category Cnon,g
Φ . Therefore Cnon,g

Φ can be considered as a small category. In
addition, the category Cnon,g

Φ is capable for the description of topological
neighborhoods around a single Feynman diagram which contributes to some
Dyson–Schwinger equations. Thanks to the metric defined by cut-norm,
these topological regions are Hausdorff which means that we can separate
(large) Feynman diagrams from each other.

Lemma 6.2.2. There exists a topos structure on the small category Cnon,g
Φ .

Proof. The natural choice is the topos of presheaves on the category Cnon,g
Φ

(as the category of context). We denote this category by Tnon,g
Φ .

An object in Tnon,g
Φ is a contravariant functor from the category Cnon,g

Φ

to the standard category Set of sets and functions.
A morphism between a pair (F1, F2) of objects is a natural transfor-

mation such as η : F1 −→ F2 which is actually a family of morphisms
{ηH : F1(H) −→ F2(H)}H∈Obj(Cnon,g

Φ ) which respect to the contravariant

property. It means that for each morphism f : H1 → H2 in Cnon,g
Φ , we have

ηH1 ◦ F1(f) = F2(f) ◦ ηH2 .
A sieve on an object H ∈ Cnon,g

Φ is defined as a collection S of morphisms
f : H −→ H ′ in Cnon,g

Φ with the property that if f belongs to S and if
g : H ′ −→ H ′′ is any other morphism in Cnon,g

Φ , then g ◦ f : H −→ H ′′ also
belongs to S.

The terminal object 1 : Cnon,g
Φ −→ Set can be defined by 1(H) := {∗}

at all stages H in Cnon,g
Φ , if f : H −→ H ′ is a morphism in Cnon,g

Φ then
1(f) : {∗} −→ {∗}. It is a terminal object because for any other presheaf
F we can define a unique natural transformation η : F −→ 1 such that its
components ηH : F (H) −→ 1(H) = {∗} are the constant maps Γ 7−→ ∗ for
all Γ ∈ F (H).

The subobject classifier Ωnon is a presheaf Ωnon : Cnon,g
Φ −→ Set such

that for any objectH ∈ Cnon,g
Φ , Ωnon(H) is identified by the set of all sieves on

H. If f : H ′ −→ H ′′ is a morphism in Cnon,g
Φ , then Ωnon(f) : Ωnon(H ′′) −→

Ωnon(H ′) is given by

Ωnon(f)(S) := {h : H ′′ −→ H ′′′, h ◦ f ∈ S} (6.54)

for all sieves S which lives in Ωnon(H).

Heyting algebras are practical models of the intuitionistic logic where
we do not have the law of excluded middle. It means that the proposition
φ ∨ ¬φ is not intuitionistically valid. [72, 104]

Definition 6.2.3. A Heyting algebra A is a bounded distributive lattice
with the largest element 1 and the smallest element 0 which obeys this
condition that for each couple (a, b) of its elements there exists a greatest
element x ∈ A such that a ∧ x ≤ b. This particular element is called the
relative pseudo-complement of a with respect to b. A is called a complete
Heyting algebra, if it is a complete lattice.
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Theorem 6.2.4. The topos Tnon,g
Φ encodes the evaluation of propositions

about topological regions of Feynman diagrams.

Proof. Truth objects corresponding to cut-distance topological regions of
Feynman diagrams can be determined by the Heyting algebraic structure
defined naturally on the subobject classifier of the topos Tnon,g

Φ .
For a given topological Hopf algebraHcut

DSE, consider the space Ωnon(Hcut
DSE)

which contains all sieves on Hcut
DSE. Now for arbitrary collections S1, S2

of sieves on Hcut
DSE which live in Ωnon(Hcut

DSE), the partial order relation on
Ωnon(Hcut

DSE) can be determined naturally by the relation

S1 ≤ S2 ⇐⇒ S1 ⊂ S2 (6.55)

which leads us to make the following elementary logical statements

S1 ∧ S2 := S1 ∩ S2, S1 ∨ S2 := S1 ∪ S2,

S1 =⇒ S2 :=

{f : Hcut
DSE,1 −→ Hcut

DSE,2 s.t. ∀g : Hcut
DSE,2 −→ Hcut

DSE,3, g◦f ∈ S1 =⇒ g◦f ∈ S2}.
(6.56)

The negation of an element S is defined by the proposition ¬S := S =⇒ 0
which means that

¬S := {f : Hcut
DSE,1 −→ Hcut

DSE,2 s.t. ∀g : Hcut
DSE,2 −→ Hcut

DSE,3, g ◦ f /∈ S}.
(6.57)

Thanks to the defined partial order (6.55), for S1, S2 ∈ Ωnon(Hcut
DSE),

there exists a proposition S1 ⇒ S2 of Ωnon(Hcut
DSE) with the property that

for all S ∈ Ωnon(Hcut
DSE),

S ≤ (S1 ⇒ S2)⇔ S ∧ S1 ≤ S2. (6.58)

In addition, the unit element in Ωnon(Hcut
DSE) is the principal sieve on Hadic

DSE

and the null element is the empty sieve ∅.
The presheaf Ωnon as the subobject classifier shows that subobjects of

any object F in the topos Tnon,g
Φ are in an one to one correspondence with

morphisms such as χ : F −→ Ωnon. In other words, for a subobject K of F ,
its associated characteristic morphism χK is determined by its components
χK
Hcut

DSE
: F (Hcut

DSE) −→ Ωnon(Hcut
DSE) where

χKHcut
DSE

(A) := {f : Hcut
DSE −→ Hcut

DSE,1 : F (f)(A) ∈ K(Hcut
DSE,1)}, (6.59)

for all A ∈ F (Hcut
DSE), is actually a sieve on Hcut

DSE. Furthermore, each mor-
phism χ : F −→ Ωnon, which is a natural transformation between presheaves,
defines a subobject Kχ of F which is given by

Kχ(Hcut
DSE) := χ−1

Hcut
DSE
{1Ωnon(Hcut

DSE)}. (6.60)

As the conclusion, for each equation DSE, (Ωnon(Hcut
DSE),≤,∧,∨,→) is

our promising Heyting algebra.
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A Heyting algebra is called finitely free, if it is generated by the equiv-
alence classes of formulas of finite number of propositional variables under
provable equivalence in the intuitionistic logic.

A subset A of natural numbers is called computable if there exists an
algorithm to decide whether a natural number belongs to A or not. In
other words, A is computable if its corresponding characteristic function is
computable. An algebraic structure is called computable if its domain can
be identified with a computable set of natural numbers where the (finitely
many) operations and relations on the structure are computable. If the
structure is infinite, people usually identify the cardinal of its domain with
the symbol ω. The computable dimension of a computable structure is the
number of classically isomorphic computable copies of the structure up to
the computable isomorphism. [153]

Definition 6.2.5. A Heyting algebra (H,≤,∧,∨,→) is called computable,
if H and all its corresponding operations are computable.

For a given Heyting algebra with one generator, there exist infinitely
nonequivalent intuitionistic formulas of one propositional variable. The con-
nection between free Heyting algebras and the intuitionistic logic leads us to
the concept of ”computable dimension” for Heyting algebras in particular
the ones which encode the logic of the topos Tnon,g

Φ .

Theorem 6.2.6. There exists a computable Heyting algebra which encodes
truth objects associated to topological regions of Feynman diagrams which
contribute to the unique solution of the Dyson–Schwinger equation DSE in
a given gauge field theory Φ.

Proof. We work on the topos Tnon,g
Φ . Thanks to Theorem 6.2.4, we can

associate the Heyting algebra Ωnon(Hcut
DSE) to each combinatorial Dyson–

Schwinger equation DSE. Therefore the subobject classifier Ωnon has the
internal structure of our interesting Heyting algebra (as the algebraic struc-
ture appropriate for the intuitionistic logic). We want to lift this logical type
of algebra onto a enriched version Ω̂non which is computable at the level of
dimension.

Consider the propositional intuitionistic logic over the given language
(Ωnon(Hcut

DSE),∧,∨,→,⊥,>) such that Ωnon(Hcut
DSE) can be seen as the col-

lection of propositional formulas in infinitely many variables modulo equiva-
lence under the intuitionistic logic where ∧,∨,→ are the logical connectives,
⊥ is false and > is truth. The codes for formulas such as φ ∧ ψ, φ ∨ ψ or
φ −→ ψ are always greater than the codes for φ and ψ.

The intuitionistic propositional logic is decidable ([32, 157]) which means
that we need a finite constructive process to apply uniformly to every propo-
sitional formula to understand either it produces an intuitionistic proof of
the formula or it shows no such proof can exist. Therefore we have a com-
putable copy of the free Heyting algebra on ω generators. Now we can
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consider elements of Ωnon(Hcut
DSE) as the equivalence classes [φ] under prov-

able equivalence in the intuitionistic logic which leads us to the following
computational operations

[φ] ≤ [ψ]⇐⇒ φ→ ψ is provable under the intuitionistic logic,

[φ] ∧ [ψ] = [φ ∧ ψ], [φ] ∨ [ψ] = [φ ∨ ψ]. (6.61)

The plan is to build Ω̂non as a computable copy which is not computabil-
ity isomorphic to Ωnon. Let αs(n) be a label at stage s determined by the
domain of Ω̂non in the construction process. It is a propositional formula in
the intuitionistic logic such that
- α(n) = limsαs(n),
- For n 6= m, the propositional formulas α(n) and α(m) are not intuitionis-
tically equivalent,
- For each intuitionistic propositional formula φ there exists such n such
that α(n) is intuitionistically equivalent to φ,
- Morphisms with the general form φe : Ω̂non −→ Ωnon can be applied to
deal with the diagonalization against all possible computable isomorphisms
([157]).

Once we define the join, meet or relative pseudo-complement of elements,
these relationships never change in future stages. Therefore, the function α,
which indicates an isomorphism map between Ω̂non and Ωnon, makes Ω̂non

computable.
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