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Let X, be a variety over the field ¢ of complex numbers,
having isolated quotient singularitles, and let X, be the
general fibre of a deformatioft f:X —— s of X, . The class
of rational singularities ia $table under deformations ( R. Elkik
{1} ) and hence xn belongs tQ this class, O. Riemenschne;der
( [9] ) conjectured that isolated quotient singularities have a
similar property, i.e. that Xn has only quotient singularities.
M. Schlessinger ( (10] ) proved that, as soon as dim(X,) 2 3,
the isolated singularities are riddid., Therefore, the only case
to consider is the two dimengiQpal One. In this note we give an

affirmative answer to RiemensChpeider's conjecture (2.5).

The known deformations of quotlent singularities often
exhibit a bewildering complexity. We are grateful to Kurt Behnke
for illustrating this to us by several interestind examples; in
particular for showing us defoXpations for which the order of the
group of X, 4is prime to that of Xn . For example, a singularity
X, » whose minimal desingulari2ation is described by the graph

OO0
-3 -2

is cyclic of order 5 . HoweveX, it can be deformed to quotients

of order 3 or order 2 .

It is well known, that fOot each rational surface singularity
one can construct a cyclic coVering. which nas Gorenstein singu-
larities (kthe "canonical coveljing” described in (1.6)). One
appfoach to study the deformatlons xn would be to try to
construct the canonical coverihgs of x° and xn simultaneously.
That of X, has rational dovhle pOints (1.7) and the known

deformation theory of rational double points would give a proof



of our main result. For this to work one must show that some powe
of the dualizing sheaf of Uo = Reg(xo) has a trivializing secti
which can be extended to X . In (3.2) we give an example where
the obstructions to extending those sections do not vanish

( Marc Levine kindly explained the necessary calculations ).

This means that we can not expect the total space X of our

deformation to have only quotient singularities.

Nevertheless, we try to deform as many sections of powers

of the dualizing sheaf w as possible ( § 2 ) and we try

Y

to study the corresponding cyclic coverings ( § 1 ). The main

idea of the proof is explained in (1.9).

We use the usual notations of algebraic geometry as explaine
in [4] ,except that the tensor product ( B ) is always suppose
to be the tensor product of modules over the structure sheaf

( ﬂo ) , and that we denote by Ox(D) the invertible sheaf
X

associated to a Cartier divisor D on X . We often write

M(D) 1instead of MEOX(D) . for an arbitary sheaf M , and

correspondingly Mi(D) = Miﬂox(D) and M(D)i = Miﬂ Ox(i-D) .

Some of the methods used in § 1 can be found in [2] , [3]
[5] and [11] . There, however, they are discussed in the case of
a projective smooth variety. We reformulate them for singular
varieties and their desingularization, in the hope that théy

will have general applications in the theory of singularities.



§.1..Cyclic coverings of singularities

Let X be a normal Cohen-Macaulay variety over € and Wy
its dualizing sheaf. Even, if we don't make this assumption, we
are interested in the affine case. We choose a desingularization
6:Y —— X , such that the exceptional locus of § 1is a normal

crossing divisor.

(1.1). As is well known ( [6] , p.: 50 ), X has only rational

singularities, if one of the following equivalent conditions is

satisfied:

a) RqG*OY =0 for g > 0 .

b) G*NY = 0y .

We denote the reflexive hull of the N-th tensor power of

the dualizing sheaf by miN]

m&"‘: c*mgnﬁltorsion . Of course,

= | mﬂ )vv and we write

wﬁN] is a coherent sheaf.

(1.2) .

Let N ——~

wiN] be an inclusion of sheaves, isomorphic outside

of the singular locus of X . We assume in the sequel that we

W IN]
Y

have choosen § such that both and M = G*N//torsion

are invertible sheaves. N and M are generated by their global

sections, at least if we choose X affine. We have the natural

inclusions

N == §M

We can find effective divisors E and D with support in
the exceptional locus of & such that M(D) = wY(E)N .



Definition (1.3). For 0 S i < N we define

(1) _ i _fi-D
Ly™ = wg(B) @ 0y (-[=571 ) .

L (1)

For simplicity we write instead of L‘%&l .
w
X

Here [éﬁg is the largest divisor ( with coefficients in

Z ) satisfying llﬁgls *lﬁg . Since

i-(E+F) - [i;igﬁg;zl] = jJ.F = [Lﬁg]

for all effective divisors F , the sheaf Lbi) does not

depend on the divisors choosen.

(1.4).

The invertible sheaves Léi) appear in a natural way in the
following construction of a cyclic cover. Assume that X 1is
affine and let t:Ox ——— N be a general section. We take

v
§NJ v:w§N] —_ 0

to be the induced section and s X

s:Ox —_

to be its dual. We consider the Ox-algebra

11V v N> (11v
A = w <g > = W,
f%% X ‘// fg) X

o

and X' = Specy, (A) .
X

By construction the zero divisof of s is non singular
over Reg(X) . Hence X' is non singular over Reg(X) , as
one sees writing down local parameters ( see also [2] ).
Moreover A 1is reflexive as an Ox—-module and therefore
A and X' must be normal. Let Y' be the normalization of Y
in the function field €(X') and 2 be a desingularization of

Y' . The induced morphisms are denoted by



Leoma_{1,5): Using the notations introduced above one knows:

i) Y' has rational singularities.

11 1 0 B
) Yu0y = 7} Oy, = 1§%L~
114) = w} -'® (1)
Yally = Wi Wy, ;g% we® Ly .
iv) the higher direct images qu*(wYﬁLéi)) =0 for q >0 and_

1 = 0,...,N-1 -

(1)~?

v) G*LN

is reflexive for 1 =0,...,N-1 .

vi) X' has rational singularities if and only if X' is

Cohen-Macaulay and 6*(wYﬂLLi))

is reflexive for

i=0'o-o,N-1 .

vii) X' has rational singularities if and only if

-1
RQG*in) =0 for q>0 and i =10,...,N-1 .

Proof. By construction m,0 is the normalization of the 0,-

Yi
algebra

B = @ wY[i]v/<aV>

120

where O:OY — ménl is the pullback of s and oY its dual.

If we choose the effective divisor E , supported in the

exceptional locus of § , large enough, we have an inclusion

(1]

Wy —— mY(E)i , and thereby we obtain a section

o't 0y —— wy (BN = WD) .



The OY— algebra

B' = @ wY(E)-i/<o'v>

120
is contained in B , and both algebras are isomorphic over an
open subvariety. Since n;Oy, is normal over 0Y , it must be

the normalization of B' as well.

The section O0' can also be described in the following way:
§* realizes HO(X,N) as a subspace of HO(Y,M) . This subspace
generates M and o' is obtained from a general member of it.
Bertini's theorem ( [4] , III, 10.9) guaranties that the zero
divisor of o¢' is of the form B + D , where B is non singqular,
OY(B) = M and B + D a normal crossing divisor. We may

apply [2], lemme 2 , where the normalization of B' is described.

Using that [i;i%IEL] = [iﬁgl we obtain

N-1 . N=1 -1
7.0, = @ w,(E) mo, (2l = @ V.
$0ye = B vy v R 2,

Since B + D contains the ramification locus of Y' over Y ,
we know from [11] or [2], lemme 1 , that Y' has at most

rational singularities. Especially

RY(s'.1),0, = R0, ana RI(s'.1),0, = RYSJuy, .

iii) follows from ii), using the duality for finite maps,
saying

LA =Homoy(n;oyj, wy) -

iv) is nothing but the Grauert-Riemenschneider vanishing

theorem, applied to 6'.t , since for q > 0
N-1
(1)
0 = m,RY(6' 1) 0, = fi% R, (0 @L ™)



In fact, this also can be obtained from the global vanishing
theorem for "integral parts of @ - divisors " ( [5] and [11] )
as described in [11] , 2.3.

v) just says that (6'-1)*0z =0 and - along the same

Yi
line - vi) and vii) are nothing but translations of the two

equivalent desriptions of rational singularities given in (1.1).

For example, from duality for finite morphisms we know that

SN ES
Ty, = Hoqu(A, wx) = fgﬁ Wy

and X' has rational singularities if and only if

n*G;T*wz = n*é;wy. is equal to T,wy, . In other words

[i+1]

6*(L£i)nwy) must be equal to wy

fOr i= 0,0-.,N‘1

Lemma _and Definjtion_(1.6). Assume that dim(X) = 2 and that

X has only rational singularities.

a) For some v EIN the sheaf w&v] is invertible. The minimal

number v > 0 with this property is denoten by Ind(X) , the

index of X .

<« Let

b) Assume that 1Ind(X) divides N and choose N = wiN]

x1 be an affine open subvariety of X . Then the covering

X! ;————+ x1 considered in (1.4) 1is &tale over Reg(xl)

and X' 1is Gorenstein. We call X' a (local) canonical covering

of X of degree N .

Proof. a) In (8] it is shown that for each singular point
P € X the scheme U = Spec(ox p)-'{p} has only finitly

’
many non-isomorphic invertible sheaves. Therefore some power of

wy is 1§omorphic to OU .



b) We may assume X to be affine and X' to be a covering

N
of X . Then by duality for finite maps T,u,, = (43 w[i] .
i=1

It contains the A - module generated by w)[(N]

and since both
are reflexive and isomorphic outside of the singular locus,

they must be equal. Therefore Wy is invertible.

Interpretating (1.5) in the situation described in (1.6),

we obtain a characterization of quotient singularities:

Proposition_(1.7). Let X be a surface with at most rational

singularities. Assume that Ind(X) divides N and choose

N = m[N]

Wy . Then the following properties are equivalent:

a) X has only quotient singularities.

b) All local canonical coverings X' of X of degree N have

rational singularities.

c) 6*(L(N-1)E wy)  is reflexive.

d) The divisors E and D ( see (1.2)) satisfy E < {%}
D D
where {ﬁ} = -[-ﬁJ .

Proof. We may assume X to be affine. The equivalence of a)
and b) is well known: If X' has rational singularities, then
it has just rational double points. Those are known to be
quotient singularities. Therefore - after replacinq X and X'
by small neighbourhoods of the singularity - we find a non
singular cover W of X , unramified outside of the singular
locus. Analytically this is just the universal covering of

Reg (X) and hence it is a Galois cover. Therefore X has a

quotient singularity.

On the other hand, if X has quotient singularities, we may



asgsume that W is a Galois cover, unramified over Reg(X) .

The normalization W' of Wxxx' is a branched cover of W ,
étale outside of a finite number of points. By "purity of the
branch locus" W' is é;ale over W and therefore non singular.
By construction of W' the surface X' is obtained as a

quotient of W' by a finite group.

From (1.5,vi)) we know that b) implies <¢) . The
sheaf 6*(L(N-1)ﬂwy) is reflexive if and only if it is equal to
miul or if and only if

[N]
mY =

Comparing the divisors on both sides, we get the equivalence of

W (N-E-D) < L‘N“’&wY = w§((N-1)-E-'[E§l-D]) X

c) and E S D-lgﬁl.D] = {%} .

N=1 .
Assume now that c) is satisfied. &,miwy, = 8, fi% L(l)&wy)

module. The invertible 0, submodule

is an A = 7,0 X

xl

5*(L(N-1)Ew already generates a reflexive A module

v
and therefore 6,miwy, must be reflexive itself. Moreover, since
X' 1is a normal surface, it is Cohen-Macaulay, and we can apply
(1.5,vi)) to obtain b). Of course,one could also use the ine-
quality d) to show that the assumption of (1.5,vi)) is satis-

fied.

QQ{Q};§£¥.11;§L; Assume that X is a surface having at most

quotient singularities, Ind(X) | N . Let Nt:wﬁN] be any subsheaf,
(N]
X

isomorphic to w outside of the singular locus of X . Then

this inclusion factors over

N 8, (1 ¥ Vauy) ——s ot



Proof. Since N is a subsheaf of §6,M it is enough to con-

struct an inclusion of M into LéN°1)Dw . We may choose

Y
the divisors E and D big enough to obtain a factorization

M—

iu] —_— wY(E)N )

If we denote the divisor given by the first inclusion by D1 ’

, we have D = D, + D, .

that of the second inclusion by D 1 2

2

D
(1.7,d)) guaranties that E s {Ez} and hence E s {%} .

We obtain N.E - D £ (N-1)-E - [Eﬁl-D] , which just means

_ N _ (N-1)
that M = wY(E) EOY( D) is a subsheaf of LN &wY .

Remark (1.9). Comparing (1.7,c}) and (1.8) one can already

guess how we are going to prove the conjecture of Riemenschneider
We have found a certain construction, attaching to a subsheaf

[N] (N-1)
N of Wy another subsheaf: 6*(L~ ﬂwY) .

A) If X has only quotient singularities, then 6*(L£N‘1)EwY)

is larger than the sheaf N we started with.

B) If X has rational singularities other than quotient

singularities, then 6*(L£N_1)&wy) # wiN]

(N]
X

, even if we start

with N =uw

In the next section we just have to verify that B) can not
happen for the general fibre of a deformation, as soon as A)
is true for the special fibre. To this aim we need a method to
lift sections from the special fibre to the total space of

the deformation. The vanishing theorem (1.5,iv)) turns out to

serve this purpose.
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Let §:Y ——» X be a desingularization of the normal
Cohen-Macaulay variety X such that the exceptional locus of

) is a normal crossing divisor and such that
w£N1= G*wﬁuy/torsion is invertible. We consider a reduced

Cartier divisor xo in X and its proper transform Y, in Y
{ later xo will be the special fibre of a deformation with
total space X ). We assume in addition that we have choosen §
suchvthat 6*(xo) = Yo+ F 1is a normal crossing divisor.

the natural morphisms are denoted by

_ .. IN1_ [N]
Lemma_(2.1). N = 1% "= wy 80 is torsionfree and the
------------ o X X X
o]
sheaf M_ = 6*N //torsion is isomorphic to 1'*w[N].
—— o) o0 Y
Proof. The first statement is true for the restriction to xo

of any reflexive sheaf F on X , which is locally free on a
subvariety i :W ——— X with codim(X-W) 2 2 . In fact, let
. . o= = * 3

15:W, WNX ——— X  and F_ 1*F . Since X  1is a
Cartier divisor we may use the projection formula to obtain

i*(i*F(-wo)) = i*(i*Fﬂi*Ox(-xo)) = (i*i*F)ﬂox(—xo) = F(—xo) .
Applying i, to the exact sequence

0 —— i*F(-Wo) —t i ¥ ——r i;Fo — 0

we obtain

0 —— F(-X_) + F + 1 WA

o*
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Hence Fo is a subsheaf of the torsionfree sheaf ioti; Fo .

Now, let K be the torsion part of G*wiN]. We have exact

sequences

1K s gV

I
6;No » M

— ] '*w)[{N]——--—* 0

+
o

(o]

1'*K is supported in the exceptional locus of 60 and

therefore it is a torsion sheaf. The induced map
1'*K ——— Mo has to be the zero map. We obtain a surjection:

1w —_— Mo . The first sheaf being invertible, this must

Y

be an isomorphism.

(2.2)

Let R be a discrete valuation ring with residue field € ,

S = Spec(R) and f:X ——— S a flat morphism. We write
g =f£f.6:Y ———— S and take Xo to be the special fibre of
f . Keeping the notations introduced above, the special fibre of

g is Yo+ F . The general fibres are denoted by xn and Yn .
Let U be the largest open subvariety of X which is smooth

over S . We assume that X-U is proper over S and that xo
is normal. We refer to those conditions by saying that xn is

a deformation of xo .

S being affine and non singular; we identify wg with

with w, .

0 and thereby w Y/s v

S with w and w

X/s X
The normal sheaves of the special fibres of £ and g can as

well be identified with the structure sheaves and we can

X XX Y

write w, = w B0 and w = u,(-F)80 = (v )ao0,(-Y -F)80
o o o Y Y, Wy Tt BUy =2 Y
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Of course,we also have mxn = wxﬂoxn and an = wYGOYn .

The sheaf No = m&N]EOX is torsionfree and restricted to

o
Uo = urwxo = Reg(xo) it is isomorphic to wg . Therefore

o)
it is a subsheaf of w&N] , isomorphic to it outside of the

o

singular locus of Xo , and we can define Lél) on Y° using

o)
(1.3) L
Lemma_{2,3), tMgo, = |
---------- 2 Y N

o o)
~ . [N]_ N

Proof. As in § 1 we write w, "= wy(N-E-D) . By construction

Yo meets E , D and F transversally and therefore the divisors

Eo = EIIYO v Do = Df\Yo and Fo = FfIYo are normal crossing

divisors. Moreover the multiplicities in Do can not be

larger than those occuring in D which implies that
i.pD

[—ﬁ—gl llﬁglleo . We have Mo = wg (N-EO+N-FO-DO) and
o
LY o Wi (1. (e _+F )-[fiEQJ) = ol(i.E-11:2)) @0
No wYo o o N Yy'** N Y .

Using the notations introduced in (1.4) the lemma (2.3)

is saying that n'-1(Y ) is normal and can also be obtained

o
as the cyclic cover corresponding to a general section of No .

Proposition_(2.4). Assume that X, 1is a surface with at most

quotient singularities, and assume that Ind(xo) divides N .

Then there exists an inclusion

N-1
N, —— 5, (L ’nwy)noxo ,

inducing an isomorphism outside of the singular locus of xo .

Proof. The generalized Grauert-Riemenschneider vanishing



theorem (1.5,iv)) implies that
1 (N-1) v - _ ol (N~-1) _ =

Therefore we have exact sequences

6, (LW Dy -y F) — 6, (LN Dy (-F) — 6, (1N Ve

Y No Yo)
I n n

(N=1)

s, (LN Va0 (-x ) — 5, (LN Ve, ) — 5,0 Bu, ) — (

Y°+F

No Yo

) = 6,0 Vay )80, . Now (2.4) follows from
(o]

and obtain thereby an inclusion from & _,( ) into

(N-1)
6*(’- mY°+F

(1.8).

Proposition (2.4) enables us to prove the main result of

this note.

Theorem_(2.5). Assume Xo to be a surface with quotient

sinqularities, and let Xn be the general fibre of a deformation

of xo over a discrete valuation ring. Then xn has quotient

singularities.

Remark (2.6). a) In the proof of (2.5) we will also obtain

some information about the sheaf No and Mo , saying that

(N-1)

N =§ (L Buw ) .
o* No Y°

o

b) Of course,the arguments usedvin the proof of (2.5) also apply

to an analytic deformation of xo over a disc and show that

all "nearby" fibres xn have quotient singularities.



c) In the proof of (2.5) we will use for simplicity Elkik's
result on deformations of rational singularities. However, the
arguments given below could be used for N = 1 to prove that

(1.1) forces xn to have rational singularities.

Proof of (2.5). We know from [1] that xn has rational
singularities. Hence Ind(xo) and Ind(xn) are defined and
we choose some N divisible by both of them. Let C( be the

cokernel of the inclusion of 6*(L(N-1)&wy) into N;N]‘

Restricting the corresponding exact sequences to Xo one obtains

(N-1) 8
. (L EwY)ono —_— No —_— CEOXO — 0 .

We know from (2.4) that the left hand side contains No and
we thereby find a map a:No  — No , isomorphic outside
of the singular locus. The induced map N;v — N;v
between invertible sheaves must be the multiplication with a

unit and hence o must be an isomorphism. Therefore 8

is surjective and C&OX =0 .
(o}

The support of (€ is closed in X , since C is coherent,
and it is contained in the non-smooth locus X-U . Hence
the support of C is proper over S . This is only possible
for C =0 , i.e. if 6*(L(N-1)&wY) is reflexive.
Regarding this on the general fibre we find 6*(L(N-1)QwY )
to be reflexive and (1.7,c)) implies that xn has only k

quotient singularities.

The remark (2.6,a)) follows from the fact that the

isomorphism o factors by construction over

-+ No

(N=1)
Ny —— Soaly Buy )

and that the sheaf in the middle is torsionfree.
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2+ 2+ x5 3+ 3 A+ F - 2t N 2 2 51 2 i i i

Keeping the notations introduced in § 2 , we assume
f: X ——— S to be a deformation of the quotient singularity xo
We denote by U the largest subvariety of X which is smooth
over S . If Ind(xo) and Ind(xn) divide N , we may assume

- replacing X by an affine neighbourhood of the singularity -

that wN = 0 and wN = 0 . It seems natural to expect
U U U U
o (o] n n
that wg = OU . in other words, to expect that the trivializing
section of wg can be extended to U . Unfortunatelly this is
o .

in general not the case, even if we replace N by some multiple

and even if we assume xn to be non singular.

(3.1). The first order obstruction to deform "trivializing

sections" ( M. Levine, [7]).

. .
Let N be any multiple of Ind(xo) and “o’xo — Xo

the canonical cover of degree N . We write

=1 = .
p:mg (Uo) U° —_ Uo for the restriction of To -
N . . . N
If so:OU — uy is an isomorphism, then p*(so) = to

(o} o

for t :0,, — w . The deformation f gives an element

L
o Uo Ué
p € H1(Uo, OU ) and the evaluation of p*(p) on to is
o
uo= <p*(p),t > € H(U', al,)
p "o o’ Ué °
Differentiating and multiplying with t§-1 we find
, _ .N-1 1,¢ N
vp = to -dup € H (Uo, wué ) and
v = traceu./U (v') € H1(Uo, wg ) .
P o/ P o)

In [7] it is shown that Vo is the obstruction wanted.



Especially vp # 0 implies that S, can not extend to a

trivializing section of mg .

.Let i:xo — a" be an embedding and T:Az —— Xo

be the Galois cover with Galois group G , é&tale over U, -

Then the first order deformations of xo are described by T; ’
(o}

the kernel of the map

H1(U°,O ) = 5 @%-{0},0 I n!@%-{0},t*i*0 NI

Us A“-{0} A

The fibre product UéxU (Az-{o}) is the disjoint union of

o
several copies of A?-{O} . In order to calculate vp , We can

consider My and vé on one of those J@Z-{O} and identify

to with dxady , where (x,y) denotes a coordinate system on

AZ ]
Example (3.2). Let G = <0o> be the cyclic group of order three
acting on €lx,y] by o(x) = e.x and o(y) = e.y for a

third root of unit e . Let X, = Spec(E[x,y]G) . The

inclusion i:xo ————q-mﬁ is defined by the invariants

X3 ' xz-y . x-y2 and y3 .

T; is generated as an Ox - module by
o o
-1 =13 -1 -1

)
Py X ey ens and Py =X -y '3y - We find

v, = (axady)V a7y 2, axady> -
1

1

= (axndy) ¥V Nax ey Vay) = -x"2.y7 1 (axaay) ¥

and similary

v = x'1-y'2-(dxAdy)N .



Both are independent elements of H1(U°,wg ) and therefore
o ,
Vo # 0 for all nontrivial p € T; . Of course, we may choose
(e}
p to be the infinitesimal deformation corresponding to a

smoothing of Xo .

Remark (3.3). It is not too surprising that vp may be non

zero. If we return to the notations of (2.2) we see that the

sheaf m&N] is larger that wg

o o

in general. The arguments

given in [7] in order to show that v, = 0 can only work for
sections of powers of dualizing sheaves. Nevertheless, our
calculation in § 2 gives some conditions for sections to be
deformable. The sheaf No is the sheaf generated by all

w&N] and (2.6,a)) gives the conditio
o)

deformable sections of

0 o] N-1
that  HO\x_,N ) =H%(x_,6, (LN Vaw, 1) .

o o
Even if we don't see at the moment how to interpretate this

condition, it seems to say that No can not be too small

compared to m&N] .
o
If one tries to use the methods of our note , i.e. the
use of vanishing theorems for integral parts of P -divisors
(and related results), to the global problem considered in [7] ,
one finds a similar description of the sheaf of deformable sectia
of powers of dualizing sheaves. It would be interesting to

reprove the results from [7] using this description.

On the other hand the obstruction classes explained in
(3.1) seem to contain some information on No . May be, if

one is able to define and to calculate those classes not only



for the fibres X, but also for fibrecomponents Y, and their
infinitesimal neighbourhoods, this could give another more

direct approach to describe Nb and to reprove (2.5).
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