Bound of automorphisms of surfaces of general type, I

Gang Xiao

Gang Xiao
Max-Planck-Institut für Mathematik
Department of Mathematics
East China Normal University
Gotffried-Claren-Straße 26

Shanghai 200062
D-5300 Bonn 3

Germany
China

Bound of automorphisms of surfaces of general type, I

Gang Xiao

The aim of this two-parted work is to prove
Theorem 1. Let S be a minimal smooth projective surface of general type over \mathbb{C}, $G=\operatorname{Aut}(S)$. Then

$$
\begin{equation*}
|G| \leq 42^{2} K_{S}^{2} \tag{1}
\end{equation*}
$$

Theorem 1 is a natural generalisation of the classical theorem of Hurwitz that the automorphism group of a curve of genus $g \geq 2$ is of order $\leq 84(g-1)=42 \mathrm{deg} K$.

Note that it is easy to construct examples with equality in (1) and with K_{S}^{2} arbitrarily large, by taking for S the product of a Hurwitz curve with itself: see e.g. [X2, Example 4] for details.

As long as to the knowledge of the author, the fact that the automorphism group of a surface of general type is finite and bounded by a function of K^{2} goes back to Andreotti [A], who also gives there an effective bound of $|G|$ which grows exponentially with K^{2}. Then Howard/Sommese [Ho-So] exhibited several polynomial bounds for special subgroups of G or for $|G|$ with extra conditions on S. Recently, using quite different methods, Corti [C] and Huckleberry/Sauer [Hu -Sa] have shown independently that $|G|$ is bounded by a polynomial function of small degree in K_{S}^{2}. At the same time, we obtained [X2] a linear bound for abelian subgroups of G.

Our approach here to this problem starts from a very natural consideration: we just look at the quotient space of S by the action of G (or rather the minimal resolution X of it), and get an estimate on K_{S} via the intersection form on X.

In fact, for any \mathbb{Q}-divisor L contained in the sum of K_{X} and the \mathbb{Q}-branch locus \mathfrak{B} of the projection of (some blow-up of) S onto X, if $L^{2}>0$ and some high multiple of L is effective, then $|G| / K_{S}^{2}$ is bounded by $1 / L^{2}$ (Lemma 1). So the bulk of our proof consists of finding a good candidate for L, under different possibilities of X and \mathfrak{B}. This method turns out to be much more precise than those used in the previous attempts, against a drawback of being long and computational, especially when X is a rational surface, where complicated case-to-case analyses are required in order to get the correct coefficient in Theorem 1.

In view of this complicatedness, we present in this first part the technical tools which are generally needed ($\S 1$), and prove Theorem 1 for the cases where the quotient is not rational ($\S 2, \S 3)$. As for the rational case, we give in $\S 4$ the proof of a weaker version:

Theorem 2. There exists a universal constant c such that $|G| \leq c K_{S}^{2}$.
The arguments of $\S 4$ can also be considered as a sketch of the complete proof of Theorem 1, to be found in the second part of this paper. The author hopes that such a presentation could spare some unnecessary efforts from the reader trying to unearth the conceptual insight from complicated computations (as well as insignificant technical errors which are often unavoidable in such computations).

Theorem 2 is related to the canonical ring of S in the following way. Let

$$
R=\bigoplus_{i=0}^{\infty} H^{0}\left(S, \omega_{S}^{\otimes i}\right)
$$

be the canonical ring of S, R_{G} the subring of elements fixed under the induced action of G. Then

Corollary. There is a linear function $f(x)$ such that for any minimal surface of general type S, R_{G} contains a non-zero element of degree at most $f\left(K_{S}^{2}\right)$.

Proof. As $H^{0}\left(S, \omega_{S}^{\otimes 2}\right) \neq 0$, we may take a non-sero section s in $H^{0}\left(S, \omega_{S}^{\otimes 2}\right)$. Then the element

$$
\bigotimes_{\gamma \in G} \gamma(s) \in H^{0}\left(S, \omega_{S}^{\otimes 2|G|}\right)
$$

is G-invariant.
On the other hand, if there is a universal constant c such that for any S, there exists an $i \leq c$ such that $H^{0}\left(S, \omega_{S}^{\otimes i}\right)$ contains a G-invariant subspace of dimension ≥ 2, it will result easily that $|G|$ is bounded by a linear function in K_{S}^{2}. Therefore it is an interesting question whether the function $f(x)$ in the above corollary can be replaced by a constant.

Another interesting problem is to give a classification of surfaces with large automorphism groups, as well as the automorphism groups themselves in such cases.

Finally, we are tempted by the resemblance of the situations for curves and surfaces to advance the following bet.

Conjecture. Let V be a smooth complex projective variety of general type, of dimension d. Suppose that K_{V} is nef. Then

$$
|\operatorname{Aut}(V)| \leq 42^{d} K_{V}^{d}
$$

§1. Technical preparations

We fix some notations which will be followed thoughout this paper. Let X be the minimal resolution of singularities of the quotient surface S / G. Note that S / G is a normal surface, hence has only a finite number of isolated singularities. Let $\Phi: S--\rightarrow X$ be the rational map induced by the projection of S onto $S / G, \sigma: \tilde{S} \rightarrow S$ the minimal blow-ups of S such that we have an induced morphism $\tilde{\Phi}: \tilde{S} \rightarrow X$, with the following commutative diagram:

By construction, the action of G lifts to an action on \tilde{S}, such that X is a contraction of the quotient \tilde{S} / G, or in some sense the map $\tilde{\Phi}$ is "almost Galois".

We let \tilde{B} to be the reduced divisor on X over which $\tilde{\Phi}$ is ramified.
In what follows, it is convenient to carry out computations on \mathbb{Q}-divisors on X. By definition, a \mathbb{Q}-divisor D is a symbolic sum

$$
D=\sum_{i=1}^{k} c_{i} \Gamma_{i}
$$

where the Γ_{i} 's are reduced irreducible curves on X, and c_{i} 's are rational numbers. The integral part of $D,[D]$, is by definition

$$
[D]=\sum_{i=1}^{k}\left[c_{i}\right] \Gamma_{i}
$$

where $\left[c_{i}\right]$ is the greatest integer less than or equal to c_{i}. We say that two \mathbb{Q}-divisors D_{1} and D_{2} are linearly (resp. numerically) equivalent, written as $D_{1} \equiv D_{2}$ (resp. $D_{1} \sim D_{2}$), only when $D_{1}-\left[D_{1}\right]=D_{2}-\left[D_{2}\right]$, and the integral parts of D_{1} and D_{2} are linearly (resp. numerically) equivalent. We also write $D_{1} \geq D_{2}$ if $D_{1}-D_{2}$ is numerically equivalent to an effective \mathbb{Q}-divisor. In this case D_{2} is also called a subdivisor of D_{1}.

Let \tilde{S}^{\prime} be the complement in \tilde{S} of all the curves contracted by $\tilde{\Phi}$. For a \mathbb{Q}-divisor $D=\sum c_{i} \Gamma_{i}$ on X, its inverse image on \tilde{S}^{\prime} is well defined, and we can define $\tilde{\Phi}^{*}(D)$
to be the closure of this inverse image in \tilde{S}, then define $\Phi^{*}(D)=\sigma \tilde{\Phi}^{*}(D)$. As a curve contracted by $\tilde{\Phi}$ is also contracted by σ, for any irreducible curve Γ on S, if the generic point of Γ is mapped onto that of Γ_{i} by Φ, then the coefficient of Γ in $\Phi^{*}(D)$ is $r_{i} c_{i}$, where r_{i} is the ramification number of $\tilde{\Phi}$ over Γ_{i}. Note that if $r_{i} c_{i}$ is an integer for all i, $\Phi^{*}(D)$ is an integral divisor on S.

Let $\tilde{B}=\sum_{i=1}^{k} B_{i}$ be the decomposition of \tilde{B} into irreducible components, r_{i} the ramification number of $\tilde{\Phi}$ over B_{i}. Let

$$
\tilde{\mathfrak{B}}=\sum_{i=1}^{k}\left(1-\frac{1}{r_{i}}\right) B_{i} .
$$

It is the Q-branch divisor of $\tilde{\Phi}$.
More useful in our computations is the following \mathbb{Q}-divisor. For each irreducible component B_{i} of \tilde{B}, let z_{i} be the multiplicity of its strict transform in the effective divisor $K_{\tilde{S}}-\sigma^{*} K_{S}$, and let s_{i} be the smallest positive integer such that $1 / s_{i} \leq\left(1+z_{i}\right) / r_{i}$. Let

$$
\overline{\mathfrak{B}}=\tilde{\mathfrak{B}}-\sum_{i=1}^{k} \frac{z_{i}}{r_{i}} B_{i}=\sum_{i=1}^{k} \frac{r_{i}-z_{i}-1}{r_{i}} B_{i}, \quad \mathfrak{B}=\sum_{s_{i} \geq 2}\left(1-\frac{1}{s_{i}}\right) B_{i},
$$

and let B be the support of \mathfrak{B}. We have $\tilde{B} \geq B, \tilde{\mathfrak{B}} \geq \mathfrak{B} \geq \overline{\mathfrak{B}}$.
The fact we will use most frequently (and tacitly) is that $n \tilde{\mathfrak{B}} \geq \tilde{B} \geq B$ for $n \geq 2$.
The following lemma is obvious.
Lemma 1. I) If D_{1} and D_{2} are linearly (resp. numerically) equivalent \mathbb{Q}-divisors on X, then their inverse images on S are linearly (resp. numerically) equivalent divisors.
II) Let K_{X} be a canonical divisor of X, r a positive integer, $L_{r} a$ Q-divisor on X linearly (resp. numerically) equivalent to $r\left(K_{X}+\tilde{\mathfrak{B}}\right)$. Then $\left.\tilde{\Phi}^{*}\left(L_{r}\right)\right|_{\tilde{S}^{\prime}}$ is linearly (resp. numerically) equivalent to $\left.r K_{\tilde{S}}\right|_{\tilde{S}^{\prime}}$, hence $\Phi^{*}\left(L_{r}\right)$ is linearly (resp. numerically) equivalent to $r K_{S}$.

The starting point of our proof is the following.
Lemma 2. Let r be a positive integer, and suppose that there is a \mathbb{Q}-divisor L on X such that $L \leq r\left(K_{X}+\tilde{\mathfrak{B}}\right)$, that $L A>0$ for some effective divisor A on X such that $|A|$ has no fixed part, and that $d=L^{2}>0$. Then

$$
|G| \leq \frac{r^{2}}{d} K_{S}^{2} .
$$

In particular, when L is integral, we have $|G| \leq r^{2} K_{S}^{2}$.

Proof. Let $N \gg 0$ be a large integer such that $N L$ is an integral divisor, $s=$ $h^{0}\left(\mathcal{O}_{X}(N L)\right)$. Consider the map $\psi: X \longrightarrow \longrightarrow \mathbf{P}^{s-1}$ defined by the linear system $|N L|$, and let Σ be the image of this map. As s increases quadratically with N by Riemann-Roch (note that $h^{2}(N L)=0$ because of $L A>0$), Σ is a surface. Let M be the strict transform on S of a general hyperplane section on Σ, via the composition map $\psi \circ \Phi: S \longrightarrow-\mathbb{P}^{s-1}$. We have $N r K_{S} \equiv M+Z$ for some effective divisor Z, therefore

$$
\begin{aligned}
N^{2} r^{2} K_{S}^{2} & =M^{2}+M Z+N r K_{S} Z \geq M^{2} \\
& \geq \operatorname{deg}(\psi \circ \Phi) \operatorname{deg} \Sigma \\
& =\operatorname{deg} \psi \operatorname{deg} \Sigma|G|
\end{aligned}
$$

Lemma 2 is then a direct consequence of the following lemma, by letting N go to ∞.
Lemma 3. Let L be a divisor on a smooth projective surface X with $L A>0$ for some effective divisor A such that $|A|$ has no fixed part, and $d=L^{2}>0$. For each integer N with $h^{0}(N L)>0$, let $\psi_{N}: X \longrightarrow-\rightarrow \mathbb{P}^{h^{0}(N L)-1}$ be the map associated to $|N L|$, $\Sigma_{N}=\operatorname{Im} \psi_{N}$. Then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\operatorname{deg} \psi_{N} \operatorname{deg} \Sigma_{N}}{N^{2} d} \geq 1 \tag{2}
\end{equation*}
$$

Proof. Let λ be the left-hand side of (2). We have $\lim _{N \rightarrow \infty} \frac{h^{0}(N L)}{N^{2}} \geq \frac{1}{2} d$ by RiemannRoch and $\lim _{N \rightarrow \infty} \frac{\operatorname{deg} \Sigma_{N}}{h^{0}(N L)} \geq 1$, therefore we can assume $\operatorname{deg} \psi_{N}=1$ for $N \gg 0$. And if $\lambda<1$, we will have $\lim _{N \rightarrow \infty} \frac{\operatorname{deg} \Sigma_{N}}{h^{0}(N L)}<2$, hence by [X1, Lemma 1], we have a constant integer l such that for every $N \gg 0, \Sigma_{N}$ has a pencil Λ_{N} of rational curves of degree $\leq l$.

Fix an n such that Σ_{n} is a surface and $\operatorname{deg} \psi_{n}=1$, and let $N=t n$, where t is an integer with $t>l$. Let F be the strict transform on X of a general element of Λ_{N}. As the image of F in Σ_{n} is a curve, we have $\operatorname{deg} \psi_{n}(F) \geq 1$. But it follows then that $\operatorname{deg} \psi_{N}(F) \geq t$, contradiction.

In order to compute the intersection on X, we generally have to contract X to a minimal model. Therefore Lemma 2 will be used in conjunction with the following definition.

Definition 1. Suppose that there is a birational morphism $\rho: X \rightarrow Y$, to a smooth surface Y. We decompose ρ into a series of blow-ups $\rho_{i}: X_{i+1} \rightarrow X_{i}, i=1, \ldots, k$, with $X_{1}=Y, X=X_{k+1}$. Let p_{i} be the center of ρ_{i}, and \mathfrak{E}_{i} the algebraic inverse image in X of the exceptional curve of ρ_{i}. We have $\mathfrak{E}_{i}^{2}=-1, \mathfrak{E}_{i} \mathfrak{E}_{j}=0$ for $i \neq j$.

Let \tilde{D} be an effective Q-divisor on $X, D=\rho(\tilde{D})$. Write

$$
\tilde{D} \equiv \rho^{*} D-\sum_{i=1}^{k} a_{i} \mathfrak{E}_{i}
$$

a_{i} is called the order of \tilde{D} at the point p_{i} (it may be negative a priori). Let r be a positive integer. Then the r-saturation of \tilde{D} is by definition the divisor

$$
\begin{aligned}
L & =r \rho^{*} K_{Y}+\tilde{D}+\sum_{a_{i}<r} a_{i} \mathfrak{E}_{i}+\sum_{a_{i} \geq r} r \mathfrak{E}_{i} \\
& \equiv \rho^{*}\left(r K_{Y}+D\right)-\sum_{a_{i} \geq r}\left(a_{i}-r\right) \mathfrak{E}_{i}
\end{aligned}
$$

on X. When \tilde{D} is the strict transform of D, L is also called the r-saturated pullback of D. We have

$$
\begin{equation*}
L^{2}=\left(r K_{Y}+D\right)^{2}-\sum_{a_{i} \geq r}\left(a_{i}-r\right)^{2} \tag{3}
\end{equation*}
$$

and the following properties are immediate.
I) If $\tilde{D} \leq r \tilde{\mathfrak{B}}$, then $L \leq r\left(K_{X}+\tilde{\mathfrak{B}}\right)$. In particular, this is the case when $D \leq r \rho(\tilde{\mathfrak{B}})$ and L is the r-saturated pullback of D.
II) If $K_{Y}+D$ is numerically equivalent to a non-zero effective Q-divisor, then we can find an A to meet the condition $A L>0$ in Lemma 2.
III) If L is the r-saturated pullback of D and the singularities of D have order $\leq r$, then $L \equiv \rho^{*}\left(r K_{Y}+D\right)$, and $L^{2}=\left(r K_{Y}+D\right)^{2}$.
IV) When \tilde{D} is an integral divisor, we have

$$
\begin{equation*}
\sum_{a_{i} \geq r} a_{i}\left(a_{i}-1\right) \leq\left(K_{Y}+D\right) D-\left(2 p_{a}(\tilde{D})-2\right) \tag{4}
\end{equation*}
$$

by the formula for arithmetic genus. This will be used to give an upper bound of the term $\sum_{a_{i} \geq r}\left(a_{i}-r\right)^{2}$ in (3).

Remark. When considering divisors on Y, (3) allows us to ignore blow-ups of singularities of D of order $\leq r$ (note that the strict transform of D is always a subdivisor of \tilde{D}). For example, if $r \geq 2$ and D is integral and reduced, we can assume that the only blow-ups are on singular points of D of order ≥ 3. We will often do this in the future without explicit mention.

Definition 2. We denote by \mathfrak{D} the subdivisor of $K_{X}+\tilde{\mathfrak{B}}$ such that $\left.\tilde{\Phi}^{*} \mathfrak{D}\right|_{\tilde{S}^{\prime}}=$ $\left.\sigma^{*} K_{S}\right|_{\tilde{S}^{\prime}}$. It is clear by definition that $\mathfrak{D} \leq K_{X}+\overline{\mathfrak{B}} \leq K_{X}+\mathfrak{B} \leq K_{X}+\tilde{\mathfrak{B}}$, and the difference $\mathfrak{Z}=K_{X}+\tilde{\mathfrak{B}}-\mathfrak{D}$ is a uniquely determined effective \mathbb{Q}-divisor, whose support is contained in the total inverse images Z of the singular points of S / G. Hence the components of Z are rational, $\pi_{1}(Z)$ is trivial, and the restriction of the intersection form on the subspace of $N S(X)$ generated by the classes of components of Z is negative-definite.

Lemma 4. I) \mathfrak{D} equals the maximal nef subdivisor of $K_{X}+\tilde{\mathfrak{B}}$ (and also of $K_{X}+\mathfrak{B}$).
II) $\overline{\mathfrak{B}}$ is effective, and $\mathfrak{D}=K_{X}+\overline{\mathfrak{B}}$. In particular, \mathfrak{B} and $\overline{\mathfrak{B}}$ has the same support B.

Proof. I) Take a general divisor H in $\left|5 K_{S}\right|$, which does not pass through the points blown up by σ. Then as $\tilde{\Phi}$ is "almost Galois", $\tilde{\Phi}\left(\sigma^{*} H\right)$ is linearly equivalent to $N \mathfrak{D}$, where $N=5|G|$. As $\left|5 K_{S}\right|$ has no fixed part, $N \mathfrak{D}$, hence \mathfrak{D}, is nef.

It follows also that $\mathfrak{D} Z=0$, hence as the intersection form on Z is negative-definite, if a subdivisor D^{\prime} of $K_{X}+\tilde{\mathfrak{B}}$ is not contained in \mathfrak{D}, we can find an irreducible component Z_{1} of Z such that $D^{\prime} Z_{1}<0$.
II) Let $\overline{\mathfrak{B}}=\overline{\mathfrak{B}}_{1}-\overline{\mathfrak{B}}_{2}$, where $\overline{\mathfrak{B}}_{1}$ and $\overline{\mathfrak{B}}_{2}$ are effective \mathbb{Q}-divisors with no common components. Let $\overline{\mathfrak{Z}}=K_{X}+\overline{\mathfrak{B}}_{1}-\mathfrak{D}, \bar{Z}$ its support. $\overline{\mathfrak{Z}}$ is effective by definition, with no common components with $\overline{\mathfrak{B}}_{1}$. Let $\mathfrak{D}^{\prime}=\mathfrak{D}+\overline{\mathfrak{Z}}=K_{X}+\overline{\mathfrak{B}}_{1} . \mathfrak{D}^{\prime}$ is a subdivisor of $K_{X}+\tilde{\mathfrak{B}}$.

Let C be a curve on X. If C is in \bar{Z}, then C maps to a point in S / G, hence $K_{X} C \geq 0$ as X is the minimal resolution of S / G, and then $\mathfrak{D}^{\prime} C \geq 0$; otherwise $\mathfrak{D}^{\prime} C \geq \mathfrak{D} C \geq 0$. Therefore \mathfrak{D}^{\prime} is nef, and we can use part I) to conclude that $\mathfrak{D}^{\prime}=\mathfrak{D}$.

Corollary 1. For any (-1)-curve E on X, we have $E\left(K_{X}+\mathfrak{B}\right) \geq 0$, and E has the same coefficient in $\tilde{\mathfrak{B}}, \mathfrak{B}$ and $\overline{\mathfrak{B}}$.

Proof. We just note that by construction, $\sigma \tilde{\Phi}^{-1}(E)$ is a curve on S. Hence Z does not contain E, and $E\left(K_{X}+\mathfrak{B}\right) \geq E \mathfrak{D} \geq 0$.

QED
Corollary 2. Let $\rho: X \rightarrow Y$ be a contraction to a smooth Y. Then ρ only blows up singular points of $\rho(B)$.

Proof. Suppose $\rho_{1}: Y_{1} \rightarrow Y$ is the blow-up of one point p on Y, which ρ factors through, with $\rho^{\prime}: X \rightarrow Y_{1}$. Assume that the order of $\rho(B)$ at p is ≤ 1, hence that of $\rho(\overline{\mathfrak{B}})$ equals $a<1$.

Let E be the exceptional curve of ρ_{1} in Y_{1}, and let c be the coefficient of E in $\rho^{\prime}(\overline{\mathfrak{B}})$. Then as $-c>a-c-1=\rho^{\prime}(\mathfrak{D}) E \geq 0$, we would get $c<0$, contradicting the effectiveness of $\overline{\mathfrak{B}}$.

Corollary 3. If some irreducible component Γ of B has different coefficients in \mathfrak{B} and $\overline{\mathfrak{B}}$, then $\Gamma \mathfrak{D}=0, \Gamma \cong \boldsymbol{P}^{1}$, and $\Gamma^{2}<0$.

Proof. The condition means that Γ is in Z. Furthermore, if $p_{a}(\Gamma)>0$ then $K_{X} \Gamma \geq-\Gamma^{2}$. But the coefficient of Γ in $\overline{\mathfrak{B}}$ is strictly less than 1 , so $\overline{\mathfrak{B}} \Gamma>\Gamma^{2}$, which violates the requirement $\Gamma \mathfrak{D}=0$.

Lemma 5. Let X be a smooth surface, $E=\sum_{i=1}^{l} E_{i}$ a curve on X with negativedefinite intersection form, x_{1}, \ldots, x_{l} a set of non-negative rational numbers. Then there is a unique effective \mathbb{Q}-divisor D supported in E, with the property that $D E_{i}=-x_{i}$ for $i=1, \ldots, l$.

Suppose that D^{\prime} is another \mathbb{Q}-divisor supported in E, such that $D^{\prime} E_{i} \geq-x_{i}$ for $i=1, \ldots, l$. Then $D^{\prime} \leq D$.

Proof. Let H be the subspace of $H^{2}(X, \mathbb{Q})$ generated by the classes of E_{i}, v a vector in H. Then the equation $v E_{i}=-x_{i}$ corresponds to a hyperplane H_{i} in H. The negative-definiteness means that these hyperplanes H_{1}, \ldots, H_{l} are in general position, so their intersection is a unique point, corresponding to D.

As the zero-divisor 0 satisfies $0 E_{i} \geq x_{i}$, it suffices to show the last statement. And by considering $D-D^{\prime}$, we may assume $x_{1}=\cdots=x_{l}=0$. Then if D^{\prime} is not anti-effective, we may write $D^{\prime}=D_{1}-D_{2}$, where D_{1} and D_{2} are anti-effective without common components, and $D_{2} \neq 0$. As $-D_{2}^{2}>0$, there exists an E_{i} with $D_{2} E_{i}>0$. Hence $D^{\prime} E_{i}>0$, contradiction.

QED
Remark. Let p be a singular point on $S / G, E=\sum_{i=1}^{l} E_{i}$ the intersection of its inverse image with B, D^{\prime} (resp. D) the part of \mathfrak{B} (resp. $\overline{\mathfrak{B}}$) supported on E. Letting $x_{i}=\left(K_{X}+\mathfrak{B}-D^{\prime}\right) E_{i}$, we find by Lemma 5 that the coefficients of E_{i} in $\overline{\mathfrak{B}}$ is uniquely determined by $\mathfrak{B}-D^{\prime}$ and the numerical configuration of E.

Another direct consequence of Lemma 5 is

Lemma 6. Let $\rho: X \rightarrow Y$ be a contraction, E a negative-definite configuration of (-2)-curves on Y, which is contained in $\rho(B)$. Then $\rho(B)-E$ intersects E positively.

Proof. Suppose the contrary, then $\rho(\overline{\mathfrak{B}})$ intersects every component of E nonnegatively, hence its part on E is anti-effective by Lemma 5.

QED
The following observation will also be useful.
Lemma 7. Suppose that X has a fibration $f: X \rightarrow C$. Let F be a general fibre of f. Then:

If F is elliptic, $B F>0$; if F is rational, $\mathfrak{B} F>2$.
Proof. Let $\tilde{f}: \tilde{S} \rightarrow \tilde{C}$ be the fibration on \tilde{S} pulled back from f. Let \tilde{F} be a general fibre of \tilde{f} over F. As \tilde{S} is of general type, we must have $\sigma^{*}\left(K_{S}\right) \tilde{F}>0$. This implies $\left(K_{X}+\mathfrak{B}\right) F \geq \mathfrak{D} F>0$.

QED

§2. First reductions

Proposition 1. I) If X is a surface of general type, $|G| \leq K_{S}^{2}$;
II) if $\kappa=1,|G| \leq 3 K_{S}^{2}$;
III) if X has a fibration onto a curve of genus $\geq 2,|G| \leq 10.5 K_{S}^{2}$.

Proof. I) Let $\rho: X \rightarrow Y$ be the contraction of X onto its uniquely determined minimal model Y, and let L be the 1 -saturated pullback of the 0 divisor on Y. Then $L^{2}=K_{Y}^{2}>0$, hence Lemma 2 gives the estimate.
II) Let $\rho: X \rightarrow Y$ be as above. We have a commutative diagram

where f and f_{Y} are elliptic fibrations over a curve C. The exceptional curves of ρ are all contained in fibres of f.

Let E be a general fibre of f. By Lemma 7, there is an irreducible component Γ in B with $\Gamma E>0$. Let Γ_{Y} be the image of Γ in Y, and L the 3 -saturated pullback of Γ_{Y}. As $K_{Y}^{2}=0$ and $p_{a}(\Gamma) \geq 0$, we have

$$
\begin{aligned}
L^{2} & =6 K_{Y} \Gamma_{Y}+\Gamma_{Y}^{2}-\sum_{a_{i}>3}\left(a_{i}-3\right)^{2} \\
& \geq 5+\left(2 p_{a}(\Gamma)-2\right) \geq 3 . \quad \text { by }(4)
\end{aligned}
$$

This allows us to use Lemma 2 for $r=3$, to get $|G| \leq 3 K_{S}^{2}$.
III) Let $\phi: X \rightarrow C$ be such a fibration. ϕ pulls back to a fibration $\tilde{f}: \tilde{S} \rightarrow \tilde{C}$. As $g(\tilde{C}) \geq g(C) \geq 2, \tilde{f}$ descends to a fibration $f: S \rightarrow \tilde{C}$. We have $K_{S}^{2} \geq 8(g-1)(g(\tilde{C})-1)$, where g is the genus of a general fibre F of $f[\mathrm{~B}]$. On the other hand, let $H \subset G$ be the normal subgroup consisting of elements with trivial induced action on \tilde{C}. Then we have an injective homomorphism $H \rightarrow \operatorname{Aut}(F)$ (therefore $|H| \leq 84(g-1)$), and an injection $G / H \rightarrow \operatorname{Aut}(\tilde{C})$. The latter inplies $[G: H] \leq g(\tilde{C})-1$, because the quotient C is of genus ≥ 2.

For the rest of this section, we suppose $\kappa(X)=0$. As in the proof of Proposition 1, let $\rho: X \rightarrow Y$ be the contraction to the unique minimal model Y. Let B_{1} be a connected component of $\rho(B)$.

Lemma 8. Let D be a connected effective divisor on a minimal surface Y of Kodaira dimension 0. Then:
I) if $D^{2}<0$ and D is reduced and irreducible, then D is a (-2)-curve and Y is a K3 surface or an Enriques surface;
II) if $D^{2}=0$ and the intersection form restricted to the classes of the irreducible components of D is negative semi-definite, then there is an elliptic fibration $f_{Y}: Y \rightarrow C$ such that D contains a subdivisor D^{\prime} which is some multiple of a fibre of f_{Y}.

Proof. I) is well-known (and easy). Also II) is well-known if Y is an abelian surface or a bielliptic surface (in these cases $D_{\text {red }}$ is a smooth elliptic curve). If Y is K3, we have $\operatorname{dim}|D| \geq 1$, and the condition that subdivisors of D have self-intersection ≤ 0 means that the moving part of $|D|$ has self-intersection 0 , hence it is associated to a fibration of Y. Then use Zariski's Lemma to get what we need. Finally, for Enriques Y, see [BPV, §VIII.17].

QED
There are several possibilities for the configuration of B_{1} :
Case I) B_{1} contains a component Γ with $\Gamma^{2}>0$.
Let L (resp. $\tilde{\Gamma}$) be the 2 -saturated pullback (resp. the strict transform) of Γ. We have

$$
L^{2}=\Gamma^{2}-\sum_{a_{i}>2}\left(a_{i}-2\right)^{2}>0
$$

because $-2 \leq 2 p_{a}(\tilde{\Gamma})-2=\Gamma^{2}-\sum_{i} a_{i}\left(a_{i}-1\right)$. Hence $|G| \leq 4 K_{S}^{2}$ by Lemma 2.
Case II) There exists a connected effective divisor B_{2} supported in B_{1}, with $B_{2}^{2}=0$ and with negative semi-definite intersection form.

Let $f_{Y}: Y \rightarrow C$ be as in Lemma 8, such that there is an effective divisor B_{3} supported in B_{1}, which is a multiple of a fibre F of f_{Y}. We may suppose that B_{3} is not an integral multiple of another effective divisor. Then by Kodaira's table of singular fibres in an elliptic fibration (e.g. [BPV, p. 150]), we see that the components of B_{3} have multiplicity ≤ 6.

According to Lemma 7, there exists an irreducible component Γ of B_{2} such that $B_{3} \Gamma>0$. We may suppose $\Gamma^{2} \leq 0$ in view of Case I), and $\Gamma^{2}=-2$ (hence Γ is smooth) unless B_{3} is irreducible, modulo replacement of B_{3} by Γ.

Note that the singularities of the divisor $2 B_{3}+\Gamma$ are of order at most 23 , therefore the 24 -saturated pullback L of $2 B_{3}+\Gamma$ has $L^{2}=\left(2 B_{3}+\Gamma\right)^{2} \geq 2$, and Lemma 2 gives $|G| \leq 288 K_{S}^{2}$.

Case III) There are $2(-2)$-curves in B_{1}, say Γ_{1}, Γ_{2}, such that $\Gamma_{1} \Gamma_{2} \geq 3$.
As Γ_{1} and Γ_{2} are smooth, the divisor $\Gamma=\Gamma_{1}+\Gamma_{2}$ has at most double points, therefore the 2 -saturated pullback L satisfies $L^{2}=\left(\Gamma_{1}+\Gamma_{2}\right)^{2} \geq 2$, and consequently $|G| \leq 2 K_{S}^{2}$.

Now the only possibility left for B_{1} is that all the components are (-2)-curves, and the intersection of any two different components is at most 1 . As the intersection form is not negative definite due to Lemma 6 , it is easy to see that B_{1} contains a subconfiguration with negative semi-definite intersection, and we get a divisor B_{2} for Case II). It results that the above 3 cases are exhaustive, and

Proposition 2. If $\kappa(X)=0,|G| \leq 288 K_{S}^{2}$.
According to the above two propositions and the classification of algebraic surfaces, we have

Corollary. Theorem 1 is true unless X is either a rational surface, or a surface birationally ruled over an elliptic curve.
§3. The case of elliptic ruled X
For the reader's convenience, we include a full proof of the following elementary fact (compare [H1, Proposition 3.1]).

Lemma 9. Let X be a smooth surface with a fibration $f: X \rightarrow C$ to a smooth curve C, such that a general fibre F of f is a smooth rational curve. Let B be a reduced effective divisor on X, and let $n=B F>0$. Then there is a commutative diagram

where ρ is a birational morphism, Y is geometrically ruled over C via f_{Y}, such that:
Let B_{Y} be the image of B in Y. Then the singularities of B_{Y} introduced by ρ all have order $\leq n / 2+1$, and if p is a singular point of order $>n / 2$, then B_{Y} contains the fibre of f_{Y} passing through p.

Proof. Let B_{1} be the sum of components of B which are not contained in fibres of f, and let F_{0} be a singular fibre of f. Take a (-1)-curve Γ in F_{0}. If Γ has multiplicity ≥ 2 in F_{0}, we have $B_{1} \Gamma \leq \frac{1}{2} B_{1} F_{0}=\frac{n}{2}$, therefore we can blow down Γ, introducing a singularity of the image of B_{1} of order only $B_{1} \Gamma$.

Suppose Γ is a simple component of F_{0}. Then as $K_{X} F_{0}=-2$, we must have another (-1)-curve Γ^{\prime} in F_{0}. Now as $B_{1}\left(\Gamma+\Gamma^{\prime}\right) \leq B_{1} F_{0}=n$, we can suppose $B_{1} \Gamma \leq \frac{n}{2}$, and blow down Γ. The lemma follows by induction on the Picard number of X.

Definition 3. Let $f_{Y}: Y \rightarrow C$ be a geometrically ruled surface, D a Q-divisor on Y. Let $K_{Y / C}=K_{Y}-f_{Y}^{*}\left(K_{C}\right)$ be a relative canonical divisor on Y, and F a general fibre of f_{Y}. We define the vertical degree and horizontal degree to be respectively $D F$ and $-D K_{Y / C} . D$ is also called a divisor of bidegree $\left(D F,-D K_{Y / C}\right)$.

If D_{1}, D_{2} are 2 divisors of bidegrees $\left(n_{1}, m_{1}\right)$ and (n_{2}, m_{2}) respectively, then $D_{1} D_{2}=$ $\left(n_{1} m_{2}+n_{2} m_{1}\right) / 2$. Note that this definition of horizontal degree differs from some conventional definitions by a factor of 2 . The advantage is that this horizontal degree is an integer when D is integral.

Now we suppose that X is birationally ruled over an elliptic curve C, with B as defined in $\S 1, Y, F$ as in Lemma 9.

Let B_{1} be the sum of components in $B_{Y}=\rho(B)$ which are not contained in fibres of f_{Y}, \tilde{B}_{1} the strict transform of B_{1} on X. Note that $B \geq \tilde{B}_{1}$, and $p_{a}\left(\tilde{B}_{1}\right) \geq 1$ as \tilde{B}_{1} has no rational components.

Let (n, m) be bidegree of B_{1}. We have $n \geq 3$ (Lemma 7), which implies that $m \geq 0$ (cf. [H2, §V.2]).

Now we separate different possibilities for n.
Case I) $m=0$.
As $p_{a}\left(B_{1}\right)=1$, the map $\left.f_{Y}\right|_{B_{1}}: B_{1} \rightarrow C$ is étale, in particular B_{1} is smooth.
Let $\pi: \tilde{C} \rightarrow C$ be a finite étale Galois cover such that if $\tilde{f}: \tilde{Y} \rightarrow \tilde{C}$ is the pull-back of f_{Y} by π with $\Pi: \tilde{Y} \rightarrow Y$ the induced cover, $\Pi^{-1}\left(B_{1}\right)$ is composed of n sections of \tilde{f}. Now a ruled surface with 3 disjoint sections is trivially ruled, hence we have $\tilde{Y} \cong \tilde{C} \times \mathbf{P}^{1}$, with $\tilde{f}=p_{1}$. Then as the Galois group of Π respects p_{2}, p_{2} descends to an elliptic fibration $\phi: Y \rightarrow \boldsymbol{P}^{1}$, such that B_{1} is contained in a finite number of fibres of ϕ. In particular we have $\Gamma^{2}=0$ for any irreducible component Γ of B_{1}.

Now by Lemma 7 applied to ϕ, there is a component Γ^{\prime} in B_{Y} with $B_{1} \Gamma^{\prime}>0$. By definition, Γ^{\prime} is a fibre of f_{Y}, hence $\Gamma^{\prime 2}=0$, and the divisor $B_{1}+\Gamma^{\prime}$ has at most ordinary double points.

Suppose that $B_{1}=\sum_{i=1}^{l} \Gamma_{i}$ is the decomposition into irreducible components, and let $\mathfrak{B}_{1}=\sum_{i=1}^{l}\left(1-1 / s_{i}\right) \Gamma_{i}$ be the part of $\rho(\mathfrak{B})$ supported on B_{1}.

Lemma 10. Let s_{1}, \ldots, s_{l} be l integers with $2 \leq s_{1} \leq \cdots \leq s_{l}$, such that

$$
\begin{equation*}
\Sigma=\sum_{i=1}^{l}\left(1-\frac{1}{s_{i}}\right)>2 \tag{5}
\end{equation*}
$$

Then:
I) $\Sigma-2 \geq 1 / 42$, with equality iff $l=3,\left(s_{1}, s_{2}, s_{3}\right)=(2,3,7)$;
II) there exists an integer $N \leq 42$ such that

$$
\sum_{i=1}^{l}\left[N-\frac{N}{s_{i}}\right]>2 N
$$

Furthermore, if we take $\left\{s_{i}\right\}$ to be a minimal set satisfying the condition (5), then [N $\left.N / s_{i}\right] \leq \frac{6}{7} N$ for $i=1, \ldots, l$.

Proof. As $1-1 / s_{i} \geq 1 / 2$, the lemma is obvious when $l \geq 4$ (we can take $N=2$ when $l>4$, and $N=6$ when $l=4$). So we assume $l=3$. Then it is easy to see that the triplet $\left(s_{1}, s_{2}, s_{3}\right)$ dominates one of the following three:

$$
(2,3,7),(2,4,5),(3,3,4)
$$

We may replace $\left(s_{1}, s_{2}, s_{3}\right)$ by the triplet it dominates, and take $N=42,20,12$ respectively.

QED
Let N be as in Lemma 10 , such that $N \mathfrak{B}_{1}$ contains an integral divisor B_{N}, such that for a general fibre F of $f_{Y}, B_{N} F>-N K_{Y} F=2 N$. We minimalize B_{N} as in Lemma 10 .

Let $t=N-\left[\frac{6}{7} N\right]$, and let L be the N-saturated pullback of $B_{N}+t \Gamma^{\prime}$. Then as the components of B_{N} have multiplicities $\leq \frac{6}{7} N$, singular points of $B_{N}+t \Gamma^{\prime}$ have order $\leq N$, and hence $L=\rho^{*}\left(N K_{Y}+B_{N}+t \Gamma^{\prime}\right)$. Now Lemma 2 gives

$$
|G| \leq \frac{N^{2}}{2 t} K_{S}^{2} \leq 147 K_{S}^{2}
$$

Case II) $m>0, n>4$.
Let L be the 2 -saturated pullback of B_{1}. We have

$$
L^{2}=m(n-4)-\sum_{a_{i} \geq 2}\left(a_{i}-2\right)^{2}
$$

by (3). On the other hand, the fact $2 p_{a}\left(\tilde{B}_{1}\right)-2 \geq 0$ and (4) gives

$$
\sum_{a_{i} \geq 2} a_{i}\left(a_{i}-1\right) \leq m(n-1)
$$

We conclude from these $L^{2}>0$, as $a_{i} \leq n / 2$ implies $\frac{\left(a_{i}-2\right)^{2}}{a_{i}\left(a_{i}-1\right)}<\frac{n-4}{n-1}$. Hence $|G| \leq 4 K_{S}^{2}$ by Lemma 2.

Case III) $m>0, n=4$.
Let Γ_{i}, s_{i}, F be as in Case I). According to Lemma 7, there is an i with $s_{i}>2$. Let $B_{6}=\sum_{i=1}^{l} a_{i} \Gamma_{i}$, where $a_{i}=3$ if $s_{i}=2$, and $a_{i}=4$ otherwise. We have $B_{6} \leq 6 \mathfrak{B}_{1}$, and let $t=\left(B_{6}+6 K_{Y}\right) F$, we have $1 \leq t \leq 4$.

Now B_{1} has at most double points. And modulo elementary transformations if necessary, we may suppose that the order of B_{6} at such a double point is at most $6+\left[\frac{1}{2} t\right]$.

Let L be the 6 -saturated pullback of B_{6}. Then

$$
L^{2}=t m_{6}-\sum_{a_{i} \geq 6}\left(a_{i}-6\right)^{2} \geq t m_{6}-\left[\frac{1}{2} t\right]^{2} \delta
$$

where $m_{6}>0$ is the horizontal degree of B_{6}, and $\delta \leq 3 m$ is the number of double points of B_{1} blown up.

We now show that $L^{2}>0$, hence $|G| \leq 36 K_{S}^{2}$:
In fact, this is clear when $t=1$; when $t=2$ or 3 , it is easy to see that $m_{6} \geq 3 m$, hence $t m_{6} \geq 6 m>3 m$; and if $t=4$, we have $m_{6}=4 m$.

Case IV) $m>0, n=3$.
In this case B_{1} is smooth, and as in Case I), there exists an N such that $N \mathfrak{B}_{1}$ contains an integral divisor B_{N} with $B_{N} F>2 N$. One verifies easily that the vertical degree m_{N} of B_{N} is strictly positive. Therefore the N-saturated pullback L of B_{N}, which equals $\rho^{*}\left(N K_{Y}+B_{N}\right)$, has $L^{2} \geq 2$. Moreover we may assume $N \leq 12$ because B_{1} has at most 2 irreducible components, hence

$$
|G| \leq 72 K_{S}^{2}
$$

as in Case I).
Summing up this section,
Proposition 3. If X is ruled over an elliptic curve, $|G| \leq 147 K_{S}^{2}$.

$\S 4$. The case of rational X : proof of Theorem 2

We suppose that X is a rational surface in this section. First note that if $X \cong \mathrm{p}^{2}$ and the degree of B is at least 7 , then

$$
|G| \leq 4 K_{S}^{2}
$$

by Lemma 2, letting $L=2 K_{X}+B, r=2$.
Now we suppose that X is not isomorphic to \mathbb{P}^{2}, therefore there is a fibration f : $X \rightarrow \mathbb{P}^{1}$ whose general fibres are $\cong \mathbb{P}^{1}$.

Consider the set of all such fibrations f and contractions $\rho: X \rightarrow Y$ with commutative diagrams

where all the fibres of f_{Y} are $\cong \mathbb{P}^{\mathbf{1}}$. For such a contraction, let C_{0} be a section of f_{Y} with minimal self-intersection, $e=-C_{0}^{2}$. Then minimize ρ by first restricting to those such that the vertical degree n of $B_{Y}=\rho(B)$ is minimal, then further restricting to those with B_{Y}^{2}, and finally e, minimal. We fix a ρ in the final subset of contractions, and let m be the horizontal degree of B_{Y}. Note that m has the same parity as $e n$, and $n \geq 3$ by Lemma 7 .

Definition 4. We write $B=\rho^{*} B_{Y}-\sum_{i=1}^{k} a_{i} \mathfrak{E}_{i}$, where \mathfrak{E}_{i}, p_{i} are as in Definition 1. Let also E_{i} be the strict transform in X of the exceptional curve of ρ_{i}, F_{i} the fibre of f containing E_{i}.

Definition 5. Let $\rho: X \rightarrow Y$ be a series of blow-ups of a smooth surface Y, $\rho_{1}: X_{1} \rightarrow Y_{1}$ one step among them, centered on $p \in Y_{1}$. Then the level of ρ_{1} (or of p, or its exceptional curve E in $\left.X_{1}\right), \lambda\left(\rho_{1}\right)$ or $\lambda(p)$ or $\lambda(E)$, with respect to ρ, is the level of infinitely nearness of p on Y plus 1 , which can be defined inductively:

If p is an ordinary point of Y, then $\lambda(p)=1$; otherwise $\lambda(p)$ equals 1 plus the maximal level of the exceptional curves on Y_{1} passing through p.

We can also define a curve E on X not contracted by ρ to be of level 0 .
In order to simplify notations in our future study of singularities, when we consider one singularity p_{i} individually, we will always assume that p_{1} is the image of p_{i} on Y, and p_{j} is immediately infinitely near p_{j-1} for $j=2, \ldots, i$. (In particular, $\lambda\left(p_{i}\right)=i-1$.)

Lemma 11. Let p_{i} be a point with $i=\lambda\left(p_{i}\right)>1$, and suppose that p_{1} is worse than a double point of B_{Y}. Then we have $a_{1} \geq a_{i}-1$, and if $a_{1}=a_{i}-1, E_{1}, \ldots, E_{i-1}$ form an A_{i-1}-configuration of (-2)-curves in B, which intersects other components of B only once.

Proof. Let \tilde{B} be the strict transform of B_{Y} in X, and write

$$
\tilde{B}=\rho^{*}\left(B_{Y}\right)-\sum_{i=1}^{k} b_{i} \mathfrak{E}_{i} .
$$

As $b_{j} \leq b_{j-1}$ for $j=2, \ldots, i$ and $b_{1}-1 \leq a_{1} \leq b_{1}, a_{i} \leq b_{i}+2$, the inequality $a_{i}>a_{1}+1$ is satisfied only if either E_{1} and E_{i-1} are in B, but E_{i} is not; or p_{i} is a singular point in the inverse image of p_{1} in X_{i}. In the first case we get an isolated (-2)-chain, which is excluded by Lemma 6 ; in the second case we have $b_{1} \geq 2 b_{i}$, so $a_{i} \leq b_{i}+2 \leq b_{1} / 2+2 \leq a_{1}+1$ as $b_{1}>2$. Note that equality cannot occur without introducing isolated (-2)-configuration in the second case, hence if $a_{i}=a_{1}+1, p_{j}$ is a simple point on the inverse image of p_{1} in X_{j}, for $j=2, \ldots, i$. The rest is straightforward.

Remark. In the situation of Lemma 11, it is clear that if E_{j} is the component which meets other parts of B, then $a_{1}=a_{j+1}=a_{j+2}=\cdots=a_{i-1}=a_{2}-1=a_{3}-1=\cdots=$ $a_{j}-1=a_{i}-1$.

Lemma 12. If $n \geq 5$, we have $a_{i} \leq \min \{n / 2, m / 4\}+1$.
Proof. First note that $a_{1} \leq n / 2$: otherwise an elementary transformation centered at p_{1} would contradict the minimality of B_{Y}^{2}. Hence by Lemma 11 , we can assume $m<2 n$. Then the condition $n \geq 5$ gives $e \leq 2$, also $e>0$ due to the minimality of n.

Assume $e=2$. Then B_{Y} must contain C_{0}, which is a (-2)-curve. So Lemma 6 says that $\left(B_{Y}-C_{0}\right) C_{0}>0$, or $m=2 n-2$. Then as a_{1} is not on C_{0}, the minimality of e implies further $a_{1}<n / 2$, and we are done.

Let $e=1$. We have $B_{Y} C_{0}=(m-n) / 2$, hence if p_{1} is on C_{0}, we may contract C_{0} and apply Lemma 11, to get

$$
\begin{equation*}
a_{i} \leq(m-n) / 2+1<m / 4+1 \tag{6}
\end{equation*}
$$

Otherwise, we may consider the inverse image of the pencil of curves of bidegree $(1,1)$ passing through p_{1}. Then by the minimality of n, we get $a_{1} \leq(m-n) / 2$, so (6) also holds.

QED
Definition 6. We factorise the map ρ into $\tilde{\rho}: X \rightarrow \hat{Y}$ and $\hat{\rho}: \hat{Y} \rightarrow Y$, with $\hat{K}=K_{\hat{Y}}, \hat{B}=\tilde{\rho}(B)$, such that $\hat{K}^{2}=\max \left\{K_{X}^{2}, 0\right\}$, and that \hat{B}^{2} is minimal among all such choices of \hat{Y}. When $K_{X}^{2}<0$, we may suppose that $\hat{\rho}$ consists of the first 8 blowingups $\rho_{1}, \ldots, \rho_{8}$. Then the minimality of \hat{B}^{2} means that these blow-ups are chosen in a way that a_{1}, \ldots, a_{8} are maximal in the obvious sense.

Lemma 13. When $n \gg 0$, we have $\hat{K} \hat{B}<0$.
Proof. Suppose $\hat{K} \hat{B} \geq 0$. By Riemann-Roch, there is an effective divisor \hat{D} on \hat{Y}, linearly equivalent to $-\hat{K}$. Its image $D=\hat{\rho}(\hat{D})$ on Y is a divisor of bidegree (2,4), with

$$
\hat{D}=\hat{\rho}^{*}(D)-\sum_{i=1}^{8} \mathfrak{E}_{i}
$$

Suppose first that D has an irreducible component Γ whose strict transform

$$
\hat{\Gamma}=\hat{\rho}^{*}(\Gamma)-\sum_{i=1}^{8} b_{i} \mathfrak{E}_{i}
$$

in \hat{Y} has $\hat{\Gamma} \hat{K}>0$. As $h^{0}\left(-\Gamma-K_{Y}\right)>0, \Gamma$ is either a section of f_{Y} passing through at least $\Gamma^{2}+3 p_{i}$'s (hence $\Gamma^{2} \leq 5$), a fibre passing through at least $3 p_{i}$'s, a divisor of bidegree $(2,2)$ passing through at least $5 p_{i}$'s, or that of bidegree $(2,4)$ passing through all the 8 points blown up by $\hat{\rho}$, with a double point on one of them.

Let $l=\min \{n / 2, m / 4\}$. As

$$
\hat{K} \hat{B}=-m-2 n+\sum_{i=1}^{8} a_{i} \leq 8-|m-2 n|
$$

by Lemma 12 , we have $|m-2 n| \leq 8$. This gives $e \leq 2$ when $n \gg 0$, or $\Gamma^{2} \geq-2$ when Γ is a section. It also gives $a_{i}>l-8$ for $i=1, \ldots, 8$.

Now $\hat{\Gamma}^{2}<0$, and $\hat{B} \hat{\Gamma} \geq \hat{\Gamma}^{2}$ as \hat{B} is reduced. Checking this condition with the above possibilities for Γ, one sees that this cannot be satisfied for $n \gg 0$.

Now we can assume that for every irreducible component $\Gamma, \hat{\Gamma} \hat{K} \leq 0$. Then it is immediate that \hat{D} equals the strict transform of D, so that $\hat{K} \Gamma=0$ for every irreducible component Γ of \hat{B}, hence $\hat{K} \hat{B}=0$.

Let $\hat{B}=\sum_{i=1}^{l} \Gamma_{i}$ be the decomposition into connected components. The intersection form restricted on any Γ_{i} is negative semidefinite, for otherwise Hodge Index Theorem would give triviality of \hat{K}. And it cannot be negative definite by Lemma 6 , therefore there is an effective divisor B_{i} supported on each Γ_{i}, with $B_{i}^{2}=0$. Due to the negative semidefiniteness of Γ_{i}, B_{i} contains every irreducible component of Γ_{i}.

Let $\bar{B}=\sum_{i} B_{i}$, and note that $\chi(\hat{Y}, \bar{B}+n \hat{K})>0$ for any $n \in \mathbf{Z}$. Let n be the largest integer such that $H^{0}(\hat{Y},-\bar{B}-(n-1) \hat{K})=0$. Then $h^{0}(\bar{B}+n \hat{K})=h^{2}(-\bar{B}-(n-1) \hat{K})>0$, $h^{0}(-\bar{B}-n \hat{K})>0$, which means that \bar{B} is linearly equivalent to $n \hat{D}$. As the vertical degree of B_{Y} is greater than 2 , we have $\operatorname{dim}|n \hat{D}| \geq 1$.

Let $|M|$ and Z be respectively the moving and fixed parts of $|n \hat{D}|$. Then due to $M^{2} \geq 0, Z \hat{D}=M \hat{D}=0$, we get $M^{2}=Z^{2}=M Z=0$. In other words $|M|$ is associated to an elliptic fibration $\hat{f}: \hat{Y} \rightarrow \mathbb{P}^{1}$, and Z is composed of multiples of fibres of \hat{f}. But then all the components of \hat{B} are contained in fibres of \hat{f}, which contradicts Lemma 7 .

QED
As our estimate of L^{2} is based on the inequality (4) and an estimate on $p_{a}(\tilde{D})$, the following lemmas are useful.

Lemma 14. Let $\rho^{\prime}: X \rightarrow Y^{\prime}$ be any contraction of $X, B^{\prime}=\rho^{\prime}(B)$. Then $p_{a}\left(B^{\prime}\right) \geq$ $K_{Y^{\prime}}^{2}-9=1-d$, where $d=\rho\left(Y^{\prime}\right)$ is the Picard number of Y^{\prime}.

Proof. Let $B^{\prime}=\sum_{i=1}^{l} \Gamma_{i}$ the decomposition of B^{\prime} into connected components. As Γ_{i} is reduced, we have $h^{0}\left(\mathcal{O}_{\Gamma_{i}}\right)=1$, hence $1-p_{a}\left(B^{\prime}\right)$ is greater than or equal to the number of Γ_{i} with $p_{a}\left(\Gamma_{i}\right)=0$.

Suppose $p_{a}\left(B^{\prime}\right)<1-d$. Then there are $d+1$ components, say $\Gamma_{1}, \ldots, \Gamma_{d+1}$, with $p_{a}=0$. This leads to a numerical (hence linear as Y^{\prime} is rational) equivalence relation

$$
D=\sum_{i} a_{i} \Gamma_{i} \equiv \sum_{j} b_{j} \Gamma_{j}
$$

among them, where Γ_{i} and Γ_{j} are mutually different components among $\Gamma_{1}, \ldots, \Gamma_{d+1}$, $a_{i}>0, b_{j}>0$. It implies that $|D|$ is a linear system without fixed component with $D^{2}=0$, hence it is associated to a pencil without base point. And it is immediate that $K_{Y^{\prime}} D<0$, so this is a pencil of rational curves. Now by hypothesis, all the components of B^{\prime} are contained in fibres of this pencil, which contradicts Lemma 7.

Combining Lemma 14 and (4), we get

$$
\begin{equation*}
\sum_{i=1}^{j} a_{i}\left(a_{i}-1\right) \leq m n-m-2 n+2 j+4 \tag{7}
\end{equation*}
$$

for any $j \leq k$.
Lemma 15. Fix k real constants h_{1}, \ldots, h_{k}, and let a_{1}, \ldots, a_{k} be a series of variable real numbers, with $a_{1} \geq \cdots \geq a_{k}, h_{1} \geq \cdots \geq h_{k}$, and $0 \leq a_{i} \leq h_{i}$ for $i=1, \ldots, k$. Let $r \geq 2$ be an integer. Under the condition $\sum_{i} a_{i}\left(a_{i}-1\right)=$ Const., the sum $\sum_{a_{i} \geq r}\left(a_{i}-r\right)^{2}$ attains the maximum when there is an index $j \leq k$ such that $a_{i}=h_{i}$ for $i \leq j$, and $a_{i}=0$ for $i>j+1$.

Proof. By induction, we have only to consider the case $k=2$, and we can obviously assume $a_{1} \geq a_{2} \geq r$. But in this case

$$
\sum a_{i}\left(a_{i}-1\right)-\sum\left(a_{i}-r\right)^{2}=(2 r-1)\left(a_{1}+a_{2}\right)-2 r^{2}
$$

therefore the problem is equivalent to minimizing $a_{1}^{2}+a_{2}^{2}$ for constant $a_{1}+a_{2}$. QED
Proposition 4. If $m \gg 0$ or $n \gg 0$, we have $|G| \leq 4 K_{S}^{2}$.
Proof. Let $h=m-2 n$. We consider the following cases separately.
Case I) $|h| \leq 16, n \gg 0$.
Due to the symmetry between $2 n$ and m in Lemma 12 , we may assyme $h \geq 0$ to simplify notations.

Let L be the 2 -saturation of B. Our aim is to show $L^{2}>0$ for $n \gg 0$.
Arrange the sequences of blow-ups of ρ according to Definition 6, then rearrange the numbers a_{1}, \ldots, a_{8} such that $a_{1} \geq \cdots \geq a_{8}$ (if $k<8$, just let $a_{k}+1=\cdots=a_{8}=1$). By Lemma 11, we have $a_{i} \leq a_{8}+1$ for $i>8$, and Lemma 15 allows us to further assume $a_{9}=\cdots=a_{k-1}=a_{8}+1$ (now the a_{i} 's are only real numbers). Then we can assume $\sum_{i=1}^{8} a_{i}=m+2 n-1=4 n+2 h-1$ according to Lemma 13. And maximize $\left\{a_{1}, \ldots, a_{8}\right\}$ by Lemma 15 , we can assume $a_{1}=\cdots=a_{7}=n / 2+1, a_{8}=n / 2+h-8$. Now use (7) with $j=9$, we get

$$
a_{9}\left(a_{9}-1\right) \leq n-(h-8)^{2}+14,
$$

in particular $a_{9}<a_{8}+1$ when $n \gg 0$, or $k \leq 9$. In particular, we have by (3)

$$
L^{2}=n-(h-8)^{2}-11-\left(a_{9}-2\right)^{2}>0
$$

when $n>140$, hence $|G| \leq 4 K_{S}^{2}$ by Lemma 2 .

Case II) $|h|>16, \min \{m, 2 n\} \gg 0$; or $n>6, h \gg 0$.
We may assume $m>2 n$ as in the previous case, and let L be the 2 -saturation of B. Assuming $a_{1}=\cdots=a_{k-1}=n / 2+1$ using Lemma 15, we get

$$
k<\frac{8 n(n-2)+4 h(n-1)+16}{(n+4)(n-2)}+1
$$

by (7) with $j=k-1$. Then using (3), we have

$$
(n+4) L^{2} \geq(n-6)(3 h-44)-128
$$

hence $L^{2} \gg 0$ under the condition of this case.
Case III) $n=5$ or $6, m \gg 0$.
Let B_{h} be the part of B not contained in fibres of f. In view of Lemma 9 , we can construct a new contraction $\rho^{\prime}: X \rightarrow Y^{\prime}$, where Y^{\prime} still has a fibration $f_{Y}^{\prime}: Y^{\prime} \rightarrow \mathbf{P}^{1}$ induced by f, such that the divisor $B_{1}^{\prime}=\rho^{\prime}\left(B_{h}\right)$ has only singularities of order $\leq n / 2$. Note that by the minimality of B_{Y}^{2}, the horizontal degree of the divisor $B_{Y}^{\prime}=\rho^{\prime}(B)$ is at least m. Therefore either the horizontal degree m_{1} of B_{1}^{\prime} is $\gg 0$, or B_{Y}^{\prime} contains enough fibres of f_{Y}^{\prime} which do not pass through singular points of B_{1}^{\prime}. In any case, we get a divisor B_{2}^{\prime} with $B_{1}^{\prime} \leq B_{2}^{\prime} \leq B_{Y}^{\prime}$ and with horizontal degree $m_{2} \gg 0$, having only singularities of order $\leq n / 2$. Moreover, if we blow up only the triples points of B_{2}^{\prime}, the arithmetic genus of the strict transform of B_{2}^{\prime} is at least -5 .

Let L be the 2 -saturated pullback of B_{2}^{\prime}. When $n=5, B_{2}^{\prime}$ has only double points, so $L^{2}=B_{2}^{\prime 2} \gg 0$ by the remark following Definition 1 ; while if $n=6$, we can have at most $j=\frac{5}{6} m_{2}$ triple points, hence $L^{2} \geq B_{2}^{\prime 2}-j=\frac{7}{6} m_{2}-8 \gg 0$.

Case IV) $n=4, m \gg 0$.
Again let $B_{h}=\sum_{i=1}^{l} \Gamma_{i}$ be the non-vertical part of B, and let $1-1 / s_{i}$ be the coefficient of Γ_{i} in \mathfrak{B}, as in the definition preceding Lemma 1. By Lemma 7, there is an i with $s_{i}>2$, hence letting B_{6} be the integral part of B_{h}, we have $13 \leq n_{6} \leq 16$ where n_{6} is the vertical degree of B_{6}.

As in the above case, construct $\rho^{\prime}: X \rightarrow Y^{\prime}$ such that the divisor $B_{6}^{\prime}=\rho^{\prime}\left(B_{6}\right)$ has only singularities of order $\leq n_{6} / 2$. When the horizontal degree of B_{6}^{\prime} is bounded, add a sufficient number of (reduced) fibres not passing through its singularities. We get a divisor $B^{\prime \prime}$ of arbitrarily large horizontal degree $m "$, and let L be its 6 -saturated pullback. Note that $B^{\prime \prime}$ has singularities reducing L^{2} only when $n_{6} \geq 14$, and in this case the number of such singularities is bounded by the requirement that the reduced part of the strict transform of $B^{\prime \prime}$ is at least -3 . Hence a computation as in Case III) gives $L^{2} \gg 0$.

Case V) $n=3, m \gg 0$.
In this case we may get a contraction ρ^{\prime} so that the non-vertical part of B_{Y}^{\prime} is smooth, and that B_{Y}^{\prime} contains enough fibres. So we may proceed as in Case I) of $\S 3$, to get an arbitrarily small $|G| / K_{S}^{2}$. Details are left to the reader.

QED
For the remaining cases, it is convenient to break ρ as follows:
Definition 7. Let $\rho=\rho^{\prime \prime} \circ \rho^{\prime}$, where $\rho^{\prime}: X \rightarrow Y^{\prime}\left(\right.$ resp. $\rho^{\prime \prime}: Y^{\prime} \rightarrow Y$) consists of blowing-ups of ordinary double points on the image of B (resp. that of singularities worse than ordinary double points). We denote the image by ρ^{\prime} of a \mathbb{Q}-divisor on X by adding a prime to it.

Now Theorem 1 (hence Theorem 2) is proved except if B_{Y} is of bounded bidegree in Y (hence Y has bounded invariant e), or if $X=Y \cong \mathrm{P}^{2}$ and $B=B_{Y}$ is of bounded degree. There are only a finite number of combinations of these degrees and invariant of Y; for each such combination, a finite number of numerical decompositions of B_{Y} into irreducible components; for each decomposition, a finite number of possibilities for the numerical characteristics of singularities of B_{Y}; and for each such possibility, a finite number of numerical possibilities for Y^{\prime} and B^{\prime}. Here a numerical possibility means an abelian group $N S\left(Y^{\prime}\right)$ together with the intersection form and the canonical class, the classes of irreducible components $B_{i}^{\prime}(i=1, \ldots, l)$ of B^{\prime}, and a series of symbols p_{1}, \ldots, p_{k} (representing ordinary double points of B^{\prime}), each associated to a pair of indices (i, j) (the branches of B^{\prime} passing through the double point, and we may have $i=j$).

Consequently, Theorem 2 results from the following proposition.
Proposition 5. For a fixed numerical possibility of Y^{\prime} and B^{\prime} as above, there is a constant c such that $|G| \leq c K_{S}^{2}$.

Proof. Assume the contrary. Then there exist a series of surfaces ${ }_{1} S,{ }_{2} S, \ldots$, all associated to the numerical classes of Y^{\prime} and B^{\prime}, such that ${ }_{1} c<{ }_{2} c<\cdots$, where we denote by adding a left subscript ${ }_{j}$ an object corresponding to ${ }_{j} S$, and ${ }_{j} c=\left|{ }_{j} G\right| / K_{j}^{2} S$. By a slight abuse of language, we identify ${ }_{j} Y^{\prime}$ (resp. ${ }_{j} B^{\prime}$) with Y^{\prime} (resp. B^{\prime}) as only the numerical behavior is involved.

Define the set of positive integers $\left\{{ }_{j} s_{i}\right\}_{i, j}$ by letting

$$
{ }_{j} \mathfrak{B}^{\prime}=\sum_{i=1}^{l}\left(1-\frac{1}{j s_{i}}\right) B_{i}^{\prime}
$$

By extracting a subseries from $\left\{{ }_{j} S\right\}$, we may assume that for each B_{i}^{\prime}, either ${ }_{j} s_{i}=s_{i}$ is a constant for all j (in this case B_{i}^{\prime} is called stationary), or ${ }_{j} s_{i} \geq j$.

As the blow-ups in ${ }_{j} \rho^{\prime}:{ }_{j} X \rightarrow Y^{\prime}$ are centered only on ordinary double points, for any fixed λ there are only a finite number of possibilities of blow-ups of level $\leq \lambda$. Hence
by extracting a subseries if necessary, we may assume that for all $j \geq \lambda$, blow-ups of level $\leq \lambda$ in ${ }_{j} \rho^{\prime}$ have the same numerical behavior.

Let $\rho^{\prime}(j): X(j) \rightarrow Y^{\prime}$ the part of ${ }_{j} \rho^{\prime}$ consisting of blow-ups of level up to λ. Then symbolically, for any pairs of indices j, j^{\prime} with $j<j^{\prime}$, we can write $\tilde{\rho}_{j, j^{\prime}}: X\left(j^{\prime}\right) \rightarrow X(j)$, such that $\rho^{\prime}\left(j^{\prime}\right)=\rho^{\prime}(j) \circ \tilde{\rho}_{j, j^{\prime}}$. This makes sense because we will only be dealing with intersection numbers in the inverse image of B^{\prime}. We denote the image in $X(j)$ of a Qdivisor in $j^{\prime} X$ by adding a parenthesis (j) to the right. Then as before, we may assume that for any component E in $\rho^{\prime}(j)^{-1}\left(B^{\prime}\right)$, if its coefficient in $j^{\prime} \mathfrak{B}(j)$ is $1-1 / j^{\prime} s$, then either $j^{\prime} s$ is constant for all $j^{\prime}>j$ (i.e. E is stationary), or $j^{\prime} s \geq j^{\prime}$. This allows us to pass to the limit, obtaining a symbolic "surface" $X(\infty)$ with $\rho^{\prime}(\infty): X(\infty) \rightarrow Y^{\prime}$ and a \mathbb{Q}-divisor $\mathfrak{B}(\infty)$ on it, supported on $B(\infty) \leq \rho^{\prime}(\infty)^{-1}\left(B^{\prime}\right)$. The coefficient of a component in $\mathfrak{B}(\infty)$ is either 1 or $1-1 / s$ for some integer $s>0$. We will denote the image of $B(\infty), \mathfrak{B}(\infty)$, etc. in $X(j)$ by $B(j), \mathfrak{B}(j)$, etc.

Moreover, for any irreducible curve E in $X(j)$, let ${ }_{j^{\prime}} x$ be its coefficient in $j^{\prime} \overline{\mathfrak{B}}(j)$, for $j^{\prime}=j, j+1, \ldots$ Again by extracting subseries, we may assume that the series ${ }_{j} x,{ }_{j+1} x, \ldots$ increases or decreases monotonously for every curve E in $\rho^{\prime}(j)^{-1}\left(B^{\prime}\right)$, thus defining by passing to the limit an \mathbb{P}-divisor $\overline{\mathfrak{B}}(\infty)$ with $0 \leq \overline{\mathfrak{B}}(\infty) \leq \mathfrak{B}(\infty)$, as well as a $\mathfrak{D}(\infty)$ which is the limit of $j^{\prime} \mathfrak{D}(j)$. We have $\mathfrak{D}(\infty) E \geq 0$ for a curve E in $B(\infty)$ whenever the intersection makes sense (i.e. whenever $E^{2}>-\infty$), and on any intermediate surface $X(j)$, the image of $\mathfrak{D}(\infty)$ intersects any curve in $\rho^{\prime}(j)^{-1}\left(B^{\prime}\right)$ non-negatively.

Note that by the definition of \mathfrak{B}, a curve in $X(\infty)$ is stationary iff its coefficient in $\overline{\mathfrak{B}}(\infty)$ is less than 1.

A stationary curve E is called superstationary if its coefficients in $j^{\prime} \overline{\mathfrak{B}}(j)$ and ${ }_{j}, \mathfrak{B}(j)$ coincide for $j \gg 0$. In particular, its coefficients in $\mathfrak{B}(\infty)$ and $\overline{\mathfrak{B}}(\infty)$ coincide. By applying Corollary 3 of Lemma 4 then passing to the limit, we have $\mathfrak{D}(\infty) E=0$ unless E is superstationary.

Also for a non-superstationary E, we may assume that E has different coefficients in $j^{\prime} \overline{\mathfrak{B}}(j)$ and ${ }_{j}{ }^{\prime} \mathfrak{B}(j)$ for $j \gg 0$.

In the rest of the proof, a point will be a point of level $\lambda \geq 1$ (i.e. an ordinary point on $X(\lambda-1)$), which is an ordinary double point of $B(\lambda-1)$. Let p be such a point. p is called stationary (resp. semistationary, nonstationary), if the two branches of $B(\lambda-1)$ passing through p are both stationary (resp. one stationary and one not, or both not stationary). Here the level of a point always refers to the map $\rho^{\prime}(\infty)$.

The following elementary fact will be called repeatedly, so we emphasize it by putting it into a lemma.

Lemma 16. Let p be a point, x_{1}, x_{2}, x (resp. y_{1}, y_{2}, y) the coefficients in $\overline{\mathfrak{B}}(\infty)$ (resp. in $\mathfrak{B}(\infty)$) of the two branches passing through it and the exceptional curve of its blow-up. Then $(1-x) \geq\left(1-x_{1}\right)+\left(1-x_{2}\right)$, and $y \leq \min \left\{y_{1}, y_{2}\right\}$.

Proof. Let λ be the level of p, E the (-1 -curve in $X(\lambda)$ corresponding to the blow-up of p. Then

$$
0 \leq \mathfrak{D}(\lambda) E=x_{1}+x_{2}-x-1
$$

which is just the inequality for $1-x$. That for y is then a direct consequence of this one and the minimality of coefficients in the definition of \mathfrak{B}.

QED
Corollary. I) If p is stationary (resp. semistationary), then points above p are stationary (resp. stationary or semistationary).
II) If E is a stationary component of $B(\infty)$, then $E^{2}>-\infty$.
III) If p is stationary, then the relative levels (with respect to $\lambda(p)$) of the points above p are bounded above.
IV) If p is nonstationary and if the inverse image of p in $X(\infty)$ has a stationary component, then the exceptional curve of the blow-up of p is stationary. In particular, all the points above p are stationary or semistationary.

Proof. I) is obvious.
II) Let $x<1$ be the coefficient of E in $\mathfrak{B}(\infty), N$ an integer such that $N(1-x)>1$. It suffices to show that there are no blow-ups of level $>N+\lambda$ on the image of E, where λ is the level of E.

Assume the contrary. Then there is a series of points p_{1}, \ldots, p_{N}, where p_{i} is of level $\lambda+i$, which are centers of blow-ups contained in $\rho^{\prime}(\infty)$, such that:
p_{1} is on the image of E in $X(\lambda)$, and for $i>1, p_{i}$ is the intersection point of the exceptional curve E_{i-1} of the blow-up of p_{i-1} and the image of E, in $X(\lambda+i-1)$.

Let x_{i} be the coefficient of (the strict transform in $X(\infty)$ of) E_{i} in $\mathfrak{B}(\infty)$. Then by Lemma 16, we have $1-x_{1} \geq 1-x$, and $\left(1-x_{i}\right) \geq(1-x)+\left(1-x_{i-1}\right) \geq i(1-x)$ by induction. This gives $x_{N}<0$, which is impossible.
III) Let x_{1}, x_{2} be the coefficients in $\overline{\mathfrak{B}}(\infty)$ of the two branches passing through p, with $x_{1} \leq x_{2}<1$. Let q be a point above p with $\lambda=\lambda(q)-\lambda(p)$, and let x_{λ}^{\prime} be the coefficient of the exceptional curve of the blow-up of q. Then by Lemma 16 and induction, we have $1 \geq\left(1-x_{\lambda}^{\prime}\right) \geq\left(1-x_{1}\right)+\lambda\left(1-x_{2}\right)$, or

$$
\begin{equation*}
\lambda \leq \frac{x_{1}}{1-x_{2}} \tag{?}
\end{equation*}
$$

IV) Let q be a point above p with minimal level, such that its exceptional curve is stationary, and let $\lambda=\lambda(q)-\lambda(p)$. Assume $\lambda>1$. Then one of the branches passing through q is the exceptional curve E^{\prime} of a point q^{\prime} above p with level $\lambda\left(q^{\prime}\right)=\lambda(q)-1$.

Consider the intermediate surface X_{q} between $X(\infty)$ and Y^{\prime}, on which q is blown up to a (-1)-curve E, and (the image of) E^{\prime} is a (-2)-curve. Then the image of $\mathfrak{D}(\infty)$ on X_{q} intersects E^{\prime} by at most $x-1<0$, where x is the coefficient of E in $\overline{\mathfrak{B}}(\infty)$, which is a contradiction.

Now let p be a nonstationary point of level 1 on Y^{\prime}. If the exceptional curve of p is stationary, we may incorporate the blow-up of p into $\rho^{\prime \prime}$, to assume that the inverse image of a nonstationary point does not contain stationary components.

Our main difficulty comes from semistationary points. Consider therefore such a point p, with $\lambda(p)=1$. Let Γ be the nonstationary branch passing through p. If the blow-ups on (the strict transform of) Γ have bounded level, then everything in the inverse image of p is bounded (hence stationary) by the above Corollary, and we can incorporate the blowups above p into $\rho^{\prime \prime}$ and forget about them. So we assume that there is an infinite series of points $p_{1}=p, p_{2}, p_{3}, \ldots$, such that $\lambda\left(p_{i}\right)=i$, and for $i \geq 2, p_{i}$ is the intersection point of the exceptional curve E_{i-1} of p_{i-1} with Γ. Let $q_{i}(i=3,4, \ldots)$ be the intersection point of E_{i-1} and E_{i-2}. Our aim is to prove that there is no blow-up centered at q_{i} for $i \gg 0$.

Let x_{i} (resp. $1-1 / s_{i}$) be the coefficient of E_{i} in $\overline{\mathfrak{B}}(\infty)$ (resp. $\mathfrak{B}(\infty)$). We have $x_{1} \geq x_{2} \geq \cdots, s_{1} \geq s_{2} \geq \cdots$ by Lemma 16, and $s_{N}=s_{N+1}=\cdots=s$ for $N \gg 0$.

Suppose that q_{i} is blown up. Then because q_{i} is stationary, its inverse image Q_{i} in $X(\infty)$ is supported on a chain of smooth rational curves $E_{i, 1}, \cdots, E_{i, k_{i}}$, such that

$$
E_{i-1} E_{i, 1}=E_{i, 1} E_{i, 2}=\cdots=E_{i, k_{i}-1} E_{i, k_{i}}=E_{i, k_{i}} E_{i-2}=1,
$$

with no other mutual intersections. We define the type of q_{i}, τ_{i}, to be the set of integers

$$
\left\{k_{i}, n_{i, 0}, n_{i, 1}, \ldots, n_{i, k_{i}}, n_{i, k_{i}+1}, s_{i, 1}, \ldots, s_{i, k_{i}}\right\}
$$

where $n_{i, j}=E_{i, j}^{2}$ (we let $E_{i, 0}=E_{i-1}, E_{i, k_{i}+1}=E_{i-2}$), and 1-1/si,j is the coefficient of $E_{i, j}$ in $\mathfrak{B}(\infty)$. We also let $\tau_{i}=0$ if q_{i} is not blown up.

Lemma 17. We have $x_{i}=x_{i+1}=\cdots$ for $i \gg 0$.
Proof. We assume that E_{i} is not superstationary for $i \gg 0$, for otherwise there is nothing to prove.

The lemma is easy when q_{i} is not blown up for $i \gg 0: E_{i}$ is a (-2)-curve in $X(\infty)$, and the condition $\mathfrak{D}(\infty) E_{i}=0$ gives $x_{i-1}-x_{i}=x_{i}-x_{i+1}$, hence because the series $\left\{x_{i}\right\}$ is bounded below, we must have $x_{i+1}=x_{i}$ for $i \gg 0$.

So assume that there are infinitely many q_{i} 's which are blown up. According to the part III) of the Corollary to Lemma 16, there are only a finite number of mutually different types over p. It results that there is a subseries $i_{1}<i_{2}<\cdots$, such that

$$
\tau_{i_{1}}=\tau_{i_{2}}=\cdots=\tau^{\prime} \neq 0, \tau_{i_{1}+1}=\tau_{i_{2}+1}=\cdots=\tau^{\prime \prime}
$$

Case I) $\tau^{\prime \prime} \neq 0$.
Let $i=i_{t}$. Note that both Q_{i} and Q_{i+1} contain (-1)-curves, which are superstationary by Corollary 1 of Lemma 4. Hence we may consider the maximal connected divisor M of $B(\infty)$ containing E_{i-1} and composed of non-superstationary curves. As the intersection form on M is negative definite, the Remark following Lemma 5 says that x_{i-1} is determined only by the numerical property of M and the two curves touching it in the outside world, hence only by the types τ^{\prime} and $\tau^{\prime \prime}$.

Case II) $\tau^{\prime \prime}=0$.
For each t, let u_{t} be the least index such that $E_{i_{t}, u_{t}}$ is superstationary. By extracting a subseries, we may assume that u_{t} equals a constant u.

Fix a $t \gg 0$. Let $d_{-1}=x_{i_{1}}-x_{i_{t}}, d_{j}(j=0, \ldots, u)$ be the difference of the coefficients in $\overline{\mathfrak{B}}(\infty)$ of $E_{i_{1}, j}$ and $E_{i_{t}, j}$ (so $d_{0}=x_{i_{1}-1}-x_{i_{t}-1}, d_{u}=0$). We may also assume $d_{-1} \leq d_{0}$ for the series $\left\{x_{1}, x_{2}, \ldots\right\}$ is lower-bounded.

From the condition $\mathfrak{D}(\infty) E_{i_{1}, j}=\mathfrak{D}(\infty) E_{i_{t}, j}=0$, we get $d_{j-1}+n_{i_{1}, j} d_{j}+d_{j+1}=0$ for $j=0, \ldots, u-1$. Now $n_{i_{1}, j} \leq-2$ because $E_{i_{1}, j}$ is not superstationary (Corollary 1 of Lemma 4), hence $d_{i} \geq d_{i-1}$ by induction, and $0 \leq d_{0} \leq d_{u}=0$.

QED
Corollary. q_{i} is not blown up for $i \gg 0$.
Proof. Assume the contrary, and let i be an index such that $x_{i}=x_{i+1}$, and that there exist $i^{\prime}, i^{\prime \prime}$ with $i^{\prime}<i, i+1<i^{\prime \prime}-1$, such that both $q_{i^{\prime}}$ and $q_{i^{\prime \prime}}$ are blown up. Then as in Case I) of the proof of the Lemma, x_{i} and x_{i+1} are determined by the non-superstationary block containing E_{i} and E_{i+1}, which are confined at most by superstationary (-1)-curves in the inverse images of $q_{i^{\prime}}$ and $q_{i^{\prime \prime}}$.

Let j be large enough such that ${ }_{j} X$ has points q_{k} blown up the same way as in $X(\infty)$, for $k=1, \ldots, i^{\prime \prime}$. Then the coefficients of E_{i} and E_{i+1} in ${ }_{j} \overline{\mathcal{B}}$ are also $x_{i}=x_{i+1}$. But this is impossible: let X^{\prime} be an intermediate surface between ${ }_{j} X$ and Y^{\prime}, on which the image E^{\prime} of E_{i+1} is a (-1)-curve. Then E^{\prime} would intersect the image of ${ }_{j} \mathfrak{D}$ negatively, for the coefficient of Γ in ${ }_{j} \mathfrak{D}$ is strictly less than 1 .

QED
Now it follows from this Corollary that $\rho^{\prime}(\infty)$ contains only a finite number of stationary blow-ups. Forgetting some beginning terms of the series $\left\{{ }_{j} S\right\}$ and incorporating enough blow-ups into $\rho^{\prime \prime}$, we may assume that there are no stationary blow-ups, and that for every semistationary point p, we have $s_{1}=s_{2}=\cdots=$ the corresponding number for the stationary branch passing through p.

And our proposition follows readily from the following easy lemma:
Lemma 18. Let $\rho: X \rightarrow Y$ be a contraction, \mathfrak{B} an effective \mathbb{Q}-divisor on X, $\mathfrak{B}_{Y}=\rho(\mathfrak{B})$, and p an ordinary double point of \mathfrak{B}_{Y} blown up by ρ. Let x_{1}, x_{2} be the
coefficients in \mathfrak{B}_{Y} of the two branches passing through p with $x_{1} \leq x_{2}<1$, and let $\lambda_{p}=\left[x_{1} /\left(1-x_{2}\right)\right]$.

Suppose that for every blow-up of level $\leq \lambda_{p}$ above p, the coefficient of the exceptional curve in \mathfrak{B} is $\geq x_{1}$. Then \mathfrak{B} contains a subdivisor \mathfrak{B}^{\prime}, whose 1 -saturation is equal to the algebraic inverse image of \mathfrak{B}_{Y}, on the inverse image of p.

Proof. Blow up p and replace \mathfrak{B} by the subdivisor \mathfrak{B}_{1} which equals \mathfrak{B} except on the exceptional curve, letting the coefficient of the latter in \mathfrak{B}_{1} to be $x_{1}+x_{2}-1$. The lemma then follows from induction on λ_{p}.

QED
Indeed, for $j \geq 1$, define ${ }_{j} \mathfrak{E}$ to be a \mathbb{Q}-divisor on ${ }_{j} X$ with the same support as ${ }_{j} \mathfrak{B}$, such that for any component Γ of ${ }_{j} B$, if Γ is contracted by ${ }_{j} \rho^{\prime}$, then its coefficient in ${ }_{j} \mathfrak{E}$ equals that of ${ }_{j} \mathfrak{B}$; otherwise this coefficient equals that of the corresponding component in ${ }_{1} \overline{\mathcal{B}}$.

Now there exists an N_{p} for every nonstationary or semistationary point p, such that for $j \geq N_{p}$, the morphism ${ }_{j} \rho^{\prime}:{ }_{j} X \rightarrow Y^{\prime}$ and the \mathbb{Q}-divisor ${ }_{j} \mathbb{E}$ satisfies the condition of Lemma 18 on p, with

$$
\mathfrak{B}_{Y^{\prime}}={ }_{j} \rho^{\prime}\left({ }_{j} \mathfrak{E}\right)={ }_{1} \overline{\mathfrak{B}}^{\prime} .
$$

Let $N=\max _{p}\left\{N_{p}\right\}, j \geq N$. Then the 1 -saturation ${ }_{j} L$ of ${ }_{j} \mathfrak{E}$ equals ${ }_{j} \rho^{\prime *}\left({ }_{1} \overline{\mathfrak{B}}^{\prime}\right)$, hence

$$
\frac{1}{{ }_{j} c} \geq{ }_{j} L^{2}=\left({ }_{1} \overline{\mathcal{B}}^{\prime}\right)^{2} \geq \frac{1}{{ }_{1} c}
$$

This contradiction with the hypothesis on the series $\left\{{ }_{j} c\right\}_{j}$ completes the proof of this proposition, and accordingly that of Theorem 2.

QED

REFERENCES

[A] Andreotti, A.: Sopra le superficie che possegono transformazioni birazionali in se, Rend. Mat. Appl. 9, 255-279 (1950)
[BPV] Barth, W. / Peters, C. / Van de Ven, A.: Compact Complex Surfaces, Springer-Verlag 1984
[B] Beauville, A.: Appendice a O. Debarre: "Inégalités numériques pour les surfaces de type général", Bull. Soc. Math. France 110/3, 319-346 (1982)
[C] Corti, A.: Polynomial bounds for the number of automorphisms of a surface of general type, Ann. Sci. Ecole Norm. Sup. (4) 24/1, 113-137 (1991)
[H1] Hartshorne, R.: Curves with high self-intersection on algebraic surfaces, Publ. IHES 36, 111-125 (1969)
[H2] Hartshorne, R.: Algebraic Geometry, Springer-Verlag 1977
[Ho-So] Howard, A. / Sommese, A.J.: On the orders of the automorphism groups of certain projective manifolds, in Manifolds and Lie Groups (Progress in Math. vol. 14), 145-158, Birkhäuser 1982
[Hu-Sa] Huckleberry, A. T. / Sauer, M.: On the order of the automorphism group of a surface of general type, Math. Z. 205/2, 321-329 (1990)
[X1] Xiao, G.: Algebraic surfaces with high canonical degree, Math. Annalen 274, 473-483 (1986)
[X2] Xiao, G.: On abelian automorphism group of a surface of general type, Invent. Math. 102, 619-631 (1990)

