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A converse of Bezout's theorem

By

Wolfgang Vogel

1. Introduction and main result

The theorem of B~zout can be seen as a landmark in algebraic

geometry end it has been extensively app~ied.lt has taken more

than three centuries of hard work by some of the foremost mathe

maticians to master B~zoUt'8 theorem.This theorem has been exten

ded to intersections with arbitrary excess (see,e.g. ,[4J, Q.2, 15J

[6J,[9J).Another possible direction might be to state a converse

ef B~zeut's theorem.lt 18 not immediately clear how such a state

cent should look.Using the Dew multiplicity of [3J for improper

intersections we will prove a converse of B~zoUt'8 theorem (see

corollary~1).The aim cf this paper 18 to prove the fOllowing

statement.

Theorem: Let k be an algebraically closed field cf arbitrary cha

racteristic.Let X,Y be pure dimensional projective subschemes cf
r 8

~,say X=i~ Xi and Y=j~ Yj where dim X = dim Xi'

dimY=dimY.
J

ger such that

for 1~ 1~ r and 1~ j~ s.Let r .. ~ 0 be the inte
:LJ

(Xi lIY j )red i8 contained in an (n-rij )-plane but

not lying in an (n-rij -1)-plane.consider the following

conditions:



(i) deg X-deg Y =

- 2 -

L ,....,
j(X,Y;C)odeg C

C~X"y

dimC=dimX n Y

(1i) deg Xodeg Y~ _> _
C.=XnY

dimC=dimX" Y

""'"j(X,Y;C)·deg C

(li1) r ij 1s independent of i and j,and the excess dimension

e :.= dim Xn Y - (dirn X + dim Y - n) = r ij

(iv) deg X·deg Y =

Then we have

c=.XI')Y
dimC=dimX n Y

j(X,Y;C).deg C

(a) (i)<tf~(ii)~(i11) =7 (iv)

(b) The implications (li1) ~ (ii) ,and (iv) ·e..../ (111) are not

true in general even in the case that X and Y are arithmetically

Cohen-Macaulay and XnY is pure dimensionsl o

This statement yields a converse of ~zout's theorem o

Corollary 1(A converse cf Bezout's theorem):With the same notations

8S in the theorem,asaume that there ia an integer r ij = o.Then

the following conditioDß are equivalent:

C:XnY
dimC=dimX fJ Y

(1) deg X-deg Y = > ,-...,
j (X,Y; 0)0 deg C

(ii) e = o.

Remark: 1.Our example 2 of § 5 shows that we cannot replace the
,...."

intersection number j(X,Y,;C) in (i) of corollary 1 by the inter-

section multiplicity as presented in [4] which 18 the same multi

plicity defined in [12] oThis coincidence of both intersection

mult1plicities follows from the magnificent thesis of L.van Gastjel[1]
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Of course,if one condition cf the corolla~ holds then
-J

j(X,YjC)=i(X,Y;C),where i(X,Y;C) is given by Weilts i-symbol

[17J defined for proper intersections o

2. An application cf corollary 1 i8 the following:We assume (i)

cf corollary 1 rar an improper intersection,that is,e> o.Then

the reduced scheme of every pair of components of X end Y 1s

contained in a hyperplane (see example 1 of § S).Suppose that X

and Y are arithmetically Cohen-Macaulay then we get stronger re

sults of this application (see,e.g.,proposition 3 of § 4).We

therefore study in § 4 the particular situation when X end Y are

locally or arithmetically Cohen-Macaulay schemes.

2.. Notations and preliminary results

Before proving the theorem we must prove several prelimin~ry re

sults.First we want to recall the definition cf the intersection
".......

numbers j(X,Y;C) and j(X,Y;C).Let X,Y be pure dimensional sub-

schemes cf Ia~ with defining ideals I (X) and I (Y) in

k[xo, ••• ,~J=:Rx.We introduce a second copy k[Yo ' ••• 'Yn1=:Ry of

Rx "and denote by I(Y)' the ideal in Ry corresponding- to I(Y).We

consider the polynomial ring R:=k[Xo, ••••xn,Yo' ••• ,YnJand the
L.i

ideal ~ = (xo-Yo' ••• ':Ih-Yn)·R.Furthermore,we introduce new inde-

-pendent variables ui,m over k where i,m=o,1, ••• ,n.Let k be the" "

algebraic closure of k(Uoo·o •• ,~).Put n

R := k[Xo ' ••• ,Xn,Yo, •••·,Yn ] and 1 i :=2:. ui,oi(xm-Ym) in R
m=o

for i=o,o.o,n.

Let C be an isolated component of X" Y with defiDing prime ideal

l(e) of Krull-dimer:sion j ~ Krull-dim XnYoWe want to construct

tWQ well-defined primary ideals belonging to (I(C)+g)-ä such that
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-j(X,Y;C) and j(X,Y;C) are given by the length cf these primary

ideals,resp.We set J" :=Kru11-dim cf I(X)+I(Y)t in R,and-
d:=Kru1l-dim of I(X)+I(Y) in Rx.Take ~he linear forms lo,.oe,

Ijf-d_1 and put

(I(X)·R + I(y)t.R)_1 := I(X)·R + I(Y)t.R, and

(I(X)-R + I(y), ..R)r := lr llR + U«I(X)-R + I(Y)'.R)r_')

for any r=o, ••• , er-d-1, where ti ( ••• ) is the intersection of all-
bighest dimensional primary ideals belonging to the ideal (o~.).

Furthermore,we put

~o := U«I(X).R + I(Y) '.R).i'-d-~ ),and if j< d

a := intersection of all primary ideals belonging to-s

U(~s_l + lcr_d+S_L-Ir) such that ~·R 16 not contained in their

associated primes for all s=1, ••• ,d-j.Following [12,15J we define

j (X,Yj C) := length of V:d-j + I/_j_1· R) (I(C )+Q)o R.

Following DJ we define
rv
j(X,Y;C) := length .of (~d-j + E.:R)(I(C)+c)-R-

In particular,if j=d,then we have

j(X,YjC) = length of «I(X).R + I(Y)'.R)n-e)(I(C)+~).R ,and

j(X,y; C) = length of «1(X)· R + I(Y)'. R)n_e + E.,oR) (I(C)-I:S).R '

where e 18 the excess dimension of X and Y,that is,

e:=d1m XI1 Y -(dim X + dim Y - n) .Moreover,for everJ isolated

component C of X" Y we put

l(X,Y;C):= length of (Hx/I(X)+I(Y»I(C)-

·Let us collect same properties cf these interaection numbers

(see [3J ,proposition 308).
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Lemma. 1: Let C be an isolated component of X n Y.Then we heve

(i) ji(X,y;C)~ min fj(XtY~C),l(X,Y;C)f.

(ii) If _9x,c and .Qy ,e are Cohen-Macaulay then

--' .
j(X,Y;C) = l(X,Y;C) •.

(1ii) If e(C):=dimC + n - dimX - dimY = 0 then
r'J

j(X,Y;C) = j(X,YiC) = i(X,Y;C) ,where i(X,YiC) 16 defined by

Weilte i-symbol.

Proof: Assertion (i) follows from the definition cf the inter

section nwnbers.(ii) follows fram [1],lemma 3,and we get (iii)

fram 05],q.e.d.

Moreover,we need the main result of [3] which 18 a key result

in proving our theorem.

Lemma 2: Let X,Y be irreducib1e and reduced subschemes of ~.

Assume that Xvy 18 not contained in a hyperplane then we have

deg X·deg Y ~ ~ j(x,Y;C)-deg C + e,

where the suro 1s taken over all. irreducible components C of XI') Y

and e 1s the excess dimension,that is,e=dim XI1Y-dim X.dim Y+n.

We will also apply a certain bilinear property of the inter

section algorithm in the join construction as developed in Sect.2.

This property was first stated by R.Achilles and L.van Gastel.The

work cf L.van Gastel (see,e.g.,[6,7])shows the usefulness cf this

bilinearity.Before etating this result we need some notations.

Let X,Y be pure dimensional subschemes cf ~.The intersection

algorithm as presented in [12,15] gives also a collection of sub

varieties C C XI'IY in ~ cotmted with mult1plicities j(X,Y;C)

such that

deg X-deg Y =~ j (A,Y;C)-deg C
C

(1 )
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We shall denote here tbis collection cf subvarieties by ~(X,Y).

When there is no possibility cf confusien we will denote ~(X,Y)

Simpiy by ~ ;,Ve note that every irreducible component C of Xn Y

belangs to .r .Let -.~irr be the set ef all these irreducible com

ponents,and let -~h be the set of all components C of XI1Y with

dim. C = dim Xn Y.Hence we have

-~h C _ffirr C _71•
We now state a theorem of additivity and a reduction theorem

needed for the proof cf the theorem.

Lemma 3: Let X,Y be pure dimensional subschemes of~ with defi

Ding ideals I(X) and I(Y) in k[xo, ••• ,~1.we cODßider primary

decompositions cf leX) and I(Y) ,say leX)=:!., (l ••• l1~r where ~i 18

i1-primary ,and I(Y )=~11l ••• Il~ where .sj 1s.pj-primary .We set
r s

X = U Xi and Y = U Y. where Xi i5 defined by ~,and y. is
i=' j=l J - J

g1ven by ~j for i=1, ••• ,r,and j=1, ••• ,s,resp o We define reduced

and irreducible subschemes Vi and Wj defined by the prime ideals

] i ' 1~ i ~ r, and :2j ,1~ j ~ s , ~esp 0 , that 18, (Xi ) r~d::=Vi end

(Y.) d:=W .•We set
J re J

11 -- length of .9:i for 1=1 , ••• , r , and..-
m. -- length cf ~ far j=t, ••• ,so

J
..-

Then we have
r s

(i) ~(X.Y) =i~ ~ ~(Vl'Wj).

(ii) For every C E ~(X,y) we get
r s

j(X,Y;C) = ~ L li'n1.1j(V.,WJ";C) ,
i=1 j=1 J ~

where we set j(Vi,'Nj;C) = 0 1f C ,j ~(Vi,Wj).
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Praof: (1) follows from the intersection algorithm in the join

construction by considering the radical of the corresponding

ideals.There are different arguments in proving (ii).For example,

L.van Gastel [6,7] described geometrically and partly generalized

the intersection theory of [12,1S]oHence the assertion (ii) is

clear from the definition of the algorithm (see [6],remark 4.4),q.e.d,

3. Proof cf the theorem

Before embarking on the proof cf the theorem we need a suitable

""deepening of invest1gations on the new iQtersection number j(X,Y;C)o

This gives us the second key result in proving the theorem.
r s

Lemma II Let x= U Xi and Y= U Y. be pure dimensional sub-
I 1=1 j=1 J

schemes cf ~.Let C be an element of the collection ~(X,y).
f"'oJ

If j(X,Y;C) = j(X,Y;C) then we have
--"

(a) j(Xred'Yred;C) = j(Xred'Yred;C)

l=l, ••• ,r and j=1,o •• ,s.

Froof: There 18 not lass of generality in assuming that

C € ~(x.,Y.) .Consider the above intersection algon thm in the
- J. J

join construction.Let Q,Q' and Q.ij be the primary ideals defining

the intersection numbers j(X,Y;C),j(Xred'Yred;C) and

j«X1)r~d'(Yj)red;C),resp.Since

leX) + I(Y)' f; I(X}red + l(Y)' red E I(Xi )red + I(Y j )' red

the intersection algori thm provides Q ~ Q' ~ Qij.The assumption
,.....,

jtX,Y;C) = j(X ,Y ;e) gives ~ ~ Q with respect the localization

at the prime ideal P belonging to the primary ideals Q,Q' and Qij-
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Therefore ~ SQ' C Qij at this localization.This property shows

the assertions of iemma 4 , q.e.d.

Proving the implications (1)( >- (ii)' ~ (iii) of the theorem we

need the following iemma.

Lemma 5~With ~~1e same notations as in the theorem,assume the con

dition (ii).Then we obtain the condition (i) of the theorem.More-

over,we get the fOilowing properties:

(a) ~(X,Y) = ~(X,y),and j(X,Y;C) = j(X,Y;C) for all elements

C of ~ (X,Y).

(b) dim XI) Y = dim Xin Yj for all i=t, ••• ,r and j=l,o •• ,s.

(c) ~ (X. ,Y.) = ~h(Xi'Y') for all i end j •
.- 1. J -- J

Moreover,~et Vi and Wj be the embedding of (Xi)red end (Xj)red'

resp. in pn-rij then we heve

(d) _g"(Vi'Wj) = rh (Vi'Wj) , and j (Vi' 1'1 j ; C) = j (Vi'Wj öG) for all

C E .~(Vi,Ylj) and for all i=l, ••• ,r and j=l, ••• ,s.

Proof: Consider

:> j(X,Y;C)'deg C ~= j(x,Y;C).deg C by lemma 1,(1)
C c:: ~h C e ~ J

~ deg X.deg Y , by assumptian of lemma 5

= ~ j(X,Y;C)·deg C , by (1) of § 3
CE: ~

~ L: j(X,Y;C)·deg C , since rh ~ ~.
::;0-- Ce 'tP

.- h

This shows condition (i) and (a).Applying leID!Il3 3,(i) we get (b)

and (c).There is a 1-1 correspondence between the elements of

~(Xi'Yj)= ~«Xi)red'(Yj)red) and of ~(Vi'Wj).lience we also have

the first assertion cf (d).The second one follows fram lemma 4,(b)

and the intersection algorithm, qoe.d.



- 9 -

Fraof of the theorem: Lemma 5 shows (i)~ ~(ii)o

(ii) ~> (iii):.Consider the follcwing excess dimensions:

e (X , Y) :. = dim X n Y - dirn X - dim Y + n,

e (Xi'Yj) : = dim Xi " Yj - dim Xi - dim Yj + n.

Lemma 5,(b) shows that e(X,Y) = e(xi,Y j ) for all 1=1, ••• ,r and

j=1, ••• ,s.Hence we get e(x,Y)=e(Xi'Yj)=e(Vi'Wj)+rij ,where

I
Vi and Wj are the embeddings cf (Xi)red and (Yj)red ,r~. in

n-ri "
l. J ,and e(Vi,Wj)=dim Vi"Vi j - dim Vi - dim Vl j + (n-rij ).

Claim: e(Vi,wj)=o for al~ 1=1, ••• ,r and j=1, ••• ,s.

Proof cf the claim:We fix Vi and Wj for arbitrary 1~ i~r and

1 :$ j .~ s.We then obtain:.

~ j(v.•Wj;C)-deg C = deg Vi'deg Wj .by lemma 5.(d)
C (i ~h(Vi,Wj) ~

and the statement (1) of § 3,

~~ ;l(V.•Wj;C)-deg C + e(vi.wj ) .by lemma 2
C t: _ irr'<V1 ' VI j ) :L

>= ~ j(Vi,W.;C)-deg C + e(Vl,W.) ,by lemma 5,ed).
C c:- -h(V" W. ) J J

~ J

Renee we get e(vi,Wj)=OoThis shows our claim.

The claim now provides rij=e(X,Y) for all i=1,o •• ,r and

j=1,o.o,s.This completes the proof cf (ii) =;>(111).

(li1) 5"(1V): Sillee e(X,Y)=rij for all i,j we get:

e(X,Y) ~ e(xi,Y j ) = e(Vi,Vl j ) + e(X,Y),

that is,e(Vi,Wj)=o.Therefore Vin Wj 1s a proper intersect10n in

pn-e for all i=1, ••• ,r and j=1, ••• ,s.Hence we have Weil's inter--
section multiplicities ievi'Wj;C) for a11 CE ~h(Vi.Wj)= ?f'evi.wj ).

Using some notations cf lemma 3 we therefore obtain:
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r 8

deg X.-deg Y = (L.deg Xi){L deg Yj )
1=1 j =1

lill mo "' deg V.~' deg W0

J ~ J

=~ ~ 1 ... m.[ 2=- i(V1 ,W
J

o ;C)-deg cJ ,by ~zout's
L- ~ J C E ~ (V Wo)

-h i' J

theorem in pn-e and the abovc properties,·-
=L~ li'ml ;>~ j((~)red'(Yj)red;C)·degC].

C E __ «Xi )red' (Y j )red)

by the intersection algorithm with the schemes of pn,-
= ~ j(X,YjC)·ceg C ,by lemma 3.

C E- !f(X,Y)

This shows the implication (li1) -t> (iv) 0

The examples 2 and 3 of Sect.5 show that the implications

(iv)~ (ii1.) and (iii~(ii) ,resp. are not true ~enera1.ThiS

completes the proof of the theorem,qoeod o

40 'The Cohen-Macaulay case

In this section we study the particular situation when X and Y

are locally or arithmetically Cohen-Macaulay schemes.

We first recall that

deg X" Y = length(Qx y c)·deg C.
C~XI'IY . I? ,

dimC=dimX,. Y

Therefore the following proposition 1 follows immediately from

the theorem and lemma 1,(11)0
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Proposition 1: In addition to the hypothesis cf corollary 1,

assume that the loeal ringsJ?x,c and sY,C are Cahen-~acaulay

far all irreducible ccmponents C cf XI1 Y wi th dim C = dim X" y~ 00

Then the following conditions are equivalent:

(i) deg X· deg Y~ deg XI1 Y

(li) deg X·deg Y = deg Xn Y

(iii) e = 0

This proposition yields an extended version of the cerollary

stated in the introduction cf [3].

We now assume that X and Y are arithmetieally Cohen-Macaulay,

that is,the defining ideals I(X) end I(Y) are perfectoIn this

ease we will get another description cf the excess dimension

e=dimXn Y-(dimX+dimY-n).We will reach tbis desired result by a

suitable deepening of the approach as presented in [11JoIn this

conneetion I am grateful far insightful comments made by students

end coworkers attending my lectures on intersection theory given

in 1988/89 at the University of Halle.Before stating our results,

we give some general observations and collect same known re

sults that we need.We will consider the intersection algorithm

in the join construction far r~ 2 subschemes X1 , ••• ,Xr of~

(see also [lo],and for a wealth cf background material see F.

Gaeta [5] ) 0

Let X1 , 0 •• ,Xr (r~ 2) be pure dimensional subschemes of ~ de

finea by ho~ogeneoUß ideals I(X1), •• 0,I(Xr ) in k[xo, ••• ,~]=:Ro.

We introduce r copies Ri:=k[xio, ••• ,xin],1~ i~r,of Re end denote

by 1i the ideal in Ri corresponding to l(Xi ), 1~ i~ r.We put

N:=r(n+1)-1 , R:=k[xij with 1,~i~r,o~j~nJ and c := the diago-
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nal ideal in R generated by !X1j-Xij w1th 2.~i~r,o~j~nJ.

Let J(X1 , •• o,Xr ) be the join-variety defined by (I1+ •• e+I~).R

in~.~oreover,we introduce new independent variables ~ij ovar

the ground field,o~k~m:=(r-1)" (n+1 )-1 , 1~ i:S' r and o~j~ n.

Let k be the algebraic closure ef k(ukij with esk~m,1~i.:s'r,

o:S j ~ n) .We put

R := k[Xij'With 1~i~r,o~j~ri]o

We then introduce so called generic linear forms lo, ••• ,lm:

lk:=~
2~i~r

o~ j~n

U k · . (Xl .-xi ·) for k=o, ••• ,m in Ro
~J J J

Note that ~.R = (lo, ••• ,lm)eR,and we recall that m=(r-1)o(n+1)-1.

Let [rJ i denote the i-th graded part of a homogeneaus ideal I.

We put dimk[r]i =~ V(i,I).Then we will prove the following result.

Pronosition ~: Let X1, ••• ,Xr,r~2,be arithmetically Cohen-Macaulay

schemes ·of ~.Assum.e that
r

deg(X," • e. "Xr)~ TI deg(Xi ) then we get far the excess dimension
1=1

r

e := dim(X1 " ••• /J Xr ) - L dim(Xi ) + (r-1)· n :
1=1

e = dimk [(11 + 0.. + I~)" R 11 s:rJ1 •

Eroof: We set J:=I1+ •••+I~.We have V(1,(J,lo, ••• ,lm_e)·R) =

V( 1 , (J ,1
0

' '••• , Im_e-1 ) .. R) + V(1 , (lm_e ) •'R) - V(1 , (J ,10 ' • 0 • , Im_e-1 ) •R

n (3xn_e)~R) .Since V(1, (J ,1
0

, •• 0 ,lm-e-1 )"R" (lm_e)" R) ==



- 13 -

On the other hand,the assumptions of Proposition 2 yields:

V(1,(J,log ••• ,lm_e}R) = V(1,(J~)~R).

This important fact fo~lows by analyzing the intersection algo

rithm in the join construction (see Hi~fssatz 3 and FOlge~4

cf [11]) .Hence we get

V(1,(J,lo, ••• ,lm_e)·R) = V(1,J-R) + V(1,~·R) - V(1,J-R" ~R) =

V(1,J"R) + (m+1) - V(l ,J"R 11 ,2."R) .Therefore we have

e = V(1 ,J·R IJ ~R) = V(1 ,J·R n ~.. R).

This shows Proposition 2 , ~ e,d.

Proposition 2 does provide interesting applications.For example,

the fo~lowing corollary describes a certain conve~se cf the main

result cf [11J 0

r

deg (X1 I) .0. 11 Xr ) -3- lT deg(Xi ).
i=1

Corollary 2: Let X1,o •• ,Xr,r~2,be arithmetically Cahen-Macaulay

schemes of ~ such that

Then the following conditions are equivalent:

(1) e = 0

(ii) dimk[J·R f) E-rRJ1 = 0

(ii1) Xi LI (X 1 11 ••• nXi _1 fJ Xi +1 1) ••• 12 Xr ) 18 not lying in a

hyperplane for all i=1, ••• ,ro

Praof: The equivalence of (i) end (li) follows from Proposition 2.

We note that the ectuivalence of (ii) and (iii) is aJ.ways t:ru.e

far pure dimensional subschemes X1 ,.o.,Xr af ~.This follows by

analyzing the proof cf Hilfssatz 4 of [11J, q.e.d.

Moreover,we get the following result in CBse that the excess

dimension e(X,Y) # 0:
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Proposition 3: Let X and Y be arithmetically Cohen~~acaulay

schemes of ~.Let e be the excess dimension of·X end Y,that is,

e=dim Xl11 -dirn X--:·dim Y +n ~ o.Then the follovling conditions

are equivalent:

(1) deg X·deg Y = deg XI) Y

(ii) X U Y ia contained in an {n-e)-plane but not läting in an

(n-e-1)-plane •

.k'rooi: (1) ~'> (ii) :Proposition 2. shows that

e = dimk[J· R 11.Q... RJ1 .It is not difficult to see that for two

arbitrary subsehemes X and Y we always have:

d~[JvR " .2. R]1 = dimk[I(X) " I(YU1 •

This assertion follows again by analyzing the proof of Hilfssatz 4

of [11] in ease of two subsche~es.Hence we obtain (ii)o

(ii) S> (i) :We thus have e=dimk[I(X) n I(Y)]1.Let V and Vi be the

embedding cf X and YJresp. in ~-e.Then V end Ware agein arith

metically Cohen-Maeaulay schemes of pn-e.Uoreover,we obtain for
~

the exeess direensicn of V end W,say e(V,W):

e (V,VI) = dim V f1 TU (dirn V + dim W - (n-e» = dim X t1 Y - (dim X

+ dim Y - (n-e»= e - e = opthat is,V~ W1s a proper intersection

in ~-e.Therefore Vle have deg V· deg W = deg Vn VI sinee V end W......
are arithmetically Cohen~aCäulay.Thisprovides our assertion

(1) , q.eod o

This Proposition 3 improves an important result of [1iJe see

CorollarJ 3 of [11J ).However,it 15 not clear (to me) what the

analogue cf Proposition 3 should be when we consider the inter

section cf r~2 subschemes cf pn.Perhaps we should then replace

conditio~(ii) of Proposition 3 by the statement

e = dimk[J ,. R 11 s.. RJ1 0
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5. Examples and open problems

We discuss in conclusion same examples and open questions o

The fmrst example shows that the hypothesis in the theorem and

proposi tion 1 that (Xi VY j )red i8 not contained in a h:iperplane

cannot be replaced by the weaker one that (Xi v Yj ) i8 not ly1ng

in a hyperplane.

Example 1 :Let X,Y be curves 1n.!~ with defining ideals

2 2I(X) = (xo,x1,xox1,xox3-x1x2.) and 1(Y) = (xl~~3),resPoThen X

and Y are irreducible,and X~Y is given by the 1nterse:t.~~n point,
,...,

say C: x o=x1=x3=o counted with multiplicity j(X,Y;C) = 2. by lem-

ma 1,(ii).Hence we get
,....,

2. '= deg X· deg Y =j (X, Y; C)' deg C = deg X11 Y but e = 1.

Note that (XVY)reä. 18 lying in the hyperplane x1=o.

Moreover,this example also shows that the statement of corollary 2

replaced "Cohen-rrIacaulay" by "Buchsbaumtt 1s wrang (see[13],Theo.

rem lII.3 0 2,(iii) for the Buchsbaum property cf X).

Analyzing the proof of the theorem we want to state the follo

wing q~estion asked first by L. van Gastel [ 8).

Problem 1: Let X,Y be pure dimensional subschemes of~.under

which circumstances is the following implication true:

deg X.deg Y = L j(X,Y;C)·deg C . ~
C C ~irr(X,y)

dim Xn Y = dim X + dim Y - n '2

The following example shows that this 18 not true 1n general.

Moreover,example 2 also shows that the implication (iv)- ~(iii)

of the theorem 18 not true in general.

Examnle 2 (see also [7],remark 4.7,(3) on p.65):Let X be an

arithmetically Cohen-Macaulay reduced and irreducible C~/e cf

degree d> 1 and Y a disjoint line in ..~~.BY coning we obtain in ~5
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an intersection with ezcess dimension e=1 cf Xr and yr,suppor

ted by the vertex,sa~ C.lt follows from the intersection algo

rithm that j(X',Y'jC) = deg X'= d,that is,deg X'-deg l' =

j(X',Y'iC)odeg C but e=1.

This example and the theorem with corollary 1 yield the impor-
,....,

tance of the new intersection multiplicity j(X,Y;C).It also

proves the assertion in the remark stated after corollary 1.

The following example J now shows that the implication

(iii) ~(iv) of the theorem i8 not true in general even in the

ease tha t X and Y are ari tlunetically Cohen-Llacaulay and X17 Y i8

pure dimensional.

Example 3: Let X end Y be the curves of l~ with the following

defining ideals in k[xo ' ••• ,x3]: I (X) = (xo ,x1 ) /} (x1 ,z2) 11 (x2 ,x3 )

and I(Y) = (x1,~~).Then we have: X and Y are arithmetically Cohen

Macaulay such that r ij =1 for all 1=1,2,3 and j=1 o

l(X) + I(Y) = (xo ,x1 ,x3)1l (x"x2 ,x3),that is,Xt1Y has precisely

two intersection point8,say C1 given by xo=x,=x3=o end C2 given

by x 1=x2=x3=o.Hence the excess dimension e=1,that is,the condi

tion (iii) holdsoLemma 1,(11) gives for the multiplic1t1es.- ~
j(X,YjC1 )=j(X,YjC2 )=1.Hence condition (li) Is not true.We note that

condition (iv) cf the theorem 18 indeed true since j(X,Y;C, )~1,

and j(X,Y;C2 )=2.fhis follows fram the criterion for intersection

, multiplicity one af [1]0

Remark~ It 18 not difficult to see that lemma 3,(11) 1s not true
,.....,

in general for the new intersection multiplicity j(X,Y;C).This 18

the deeplying reason thet condition (iii) daes not imply condi

tion (ii) of the theorem.

Moreover,we want to pose the following problem.

Problem 2: Wou.Ld K1rby' s arguments of [9]yield similar results 1:tJ:tf...61e

in this paper ?
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üf course,there are further intere.sting problems concerning

Bezout t s theorem, see, e ~g. , [7], [14] , [15J ' [16J.
Finally,we' note that a quite different inverting of B~zout's

theorem in the plane is discussed by E.D.Davis (see,e.g.,[2~).
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