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A converse of Bezout's theorem

By

Wolfgang Vogel

1. Introduction and main result

The theorem of B~zout can be seen as a landmark in algebraic

geometry end it has been extensively app~ied.lt has taken more

than three centuries of hard work by some of the foremost mathe­

maticians to master B~zoUt'8 theorem.This theorem has been exten­

ded to intersections with arbitrary excess (see,e.g. ,[4J, Q.2, 15J

[6J,[9J).Another possible direction might be to state a converse

ef B~zeut's theorem.lt 18 not immediately clear how such a state­

cent should look.Using the Dew multiplicity of [3J for improper

intersections we will prove a converse of B~zoUt'8 theorem (see

corollary~1).The aim cf this paper 18 to prove the fOllowing

statement.

Theorem: Let k be an algebraically closed field cf arbitrary cha­

racteristic.Let X,Y be pure dimensional projective subschemes cf
r 8

~,say X=i~ Xi and Y=j~ Yj where dim X = dim Xi'

dimY=dimY.
J

ger such that

for 1~ 1~ r and 1~ j~ s.Let r .. ~ 0 be the inte­
:LJ

(Xi lIY j )red i8 contained in an (n-rij )-plane but

not lying in an (n-rij -1)-plane.consider the following

conditions:



(i) deg X-deg Y =

- 2 -

L ,....,
j(X,Y;C)odeg C

C~X"y

dimC=dimX n Y

(1i) deg Xodeg Y~ _> _
C.=XnY

dimC=dimX" Y

""'"j(X,Y;C)·deg C

(li1) r ij 1s independent of i and j,and the excess dimension

e :.= dim Xn Y - (dirn X + dim Y - n) = r ij

(iv) deg X·deg Y =

Then we have

c=.XI')Y
dimC=dimX n Y

j(X,Y;C).deg C

(a) (i)<tf~(ii)~(i11) =7 (iv)

(b) The implications (li1) ~ (ii) ,and (iv) ·e..../ (111) are not

true in general even in the case that X and Y are arithmetically

Cohen-Macaulay and XnY is pure dimensionsl o

This statement yields a converse of ~zout's theorem o

Corollary 1(A converse cf Bezout's theorem):With the same notations

8S in the theorem,asaume that there ia an integer r ij = o.Then

the following conditioDß are equivalent:

C:XnY
dimC=dimX fJ Y

(1) deg X-deg Y = > ,-...,
j (X,Y; 0)0 deg C

(ii) e = o.

Remark: 1.Our example 2 of § 5 shows that we cannot replace the
,...."

intersection number j(X,Y,;C) in (i) of corollary 1 by the inter-

section multiplicity as presented in [4] which 18 the same multi­

plicity defined in [12] oThis coincidence of both intersection

mult1plicities follows from the magnificent thesis of L.van Gastjel[1]
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Of course,if one condition cf the corolla~ holds then
-J

j(X,YjC)=i(X,Y;C),where i(X,Y;C) is given by Weilts i-symbol

[17J defined for proper intersections o

2. An application cf corollary 1 i8 the following:We assume (i)

cf corollary 1 rar an improper intersection,that is,e> o.Then

the reduced scheme of every pair of components of X end Y 1s

contained in a hyperplane (see example 1 of § S).Suppose that X

and Y are arithmetically Cohen-Macaulay then we get stronger re­

sults of this application (see,e.g.,proposition 3 of § 4).We

therefore study in § 4 the particular situation when X end Y are

locally or arithmetically Cohen-Macaulay schemes.

2.. Notations and preliminary results

Before proving the theorem we must prove several prelimin~ry re­

sults.First we want to recall the definition cf the intersection
".......

numbers j(X,Y;C) and j(X,Y;C).Let X,Y be pure dimensional sub-

schemes cf Ia~ with defining ideals I (X) and I (Y) in

k[xo, ••• ,~J=:Rx.We introduce a second copy k[Yo ' ••• 'Yn1=:Ry of

Rx "and denote by I(Y)' the ideal in Ry corresponding- to I(Y).We

consider the polynomial ring R:=k[Xo, ••••xn,Yo' ••• ,YnJand the
L.i

ideal ~ = (xo-Yo' ••• ':Ih-Yn)·R.Furthermore,we introduce new inde-

-pendent variables ui,m over k where i,m=o,1, ••• ,n.Let k be the" "

algebraic closure of k(Uoo·o •• ,~).Put n

R := k[Xo ' ••• ,Xn,Yo, •••·,Yn ] and 1 i :=2:. ui,oi(xm-Ym) in R
m=o

for i=o,o.o,n.

Let C be an isolated component of X" Y with defiDing prime ideal

l(e) of Krull-dimer:sion j ~ Krull-dim XnYoWe want to construct

tWQ well-defined primary ideals belonging to (I(C)+g)-ä such that
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-j(X,Y;C) and j(X,Y;C) are given by the length cf these primary

ideals,resp.We set J" :=Kru11-dim cf I(X)+I(Y)t in R,and-
d:=Kru1l-dim of I(X)+I(Y) in Rx.Take ~he linear forms lo,.oe,

Ijf-d_1 and put

(I(X)·R + I(y)t.R)_1 := I(X)·R + I(Y)t.R, and

(I(X)-R + I(y), ..R)r := lr llR + U«I(X)-R + I(Y)'.R)r_')

for any r=o, ••• , er-d-1, where ti ( ••• ) is the intersection of all-
bighest dimensional primary ideals belonging to the ideal (o~.).

Furthermore,we put

~o := U«I(X).R + I(Y) '.R).i'-d-~ ),and if j< d

a := intersection of all primary ideals belonging to-s

U(~s_l + lcr_d+S_L-Ir) such that ~·R 16 not contained in their

associated primes for all s=1, ••• ,d-j.Following [12,15J we define

j (X,Yj C) := length of V:d-j + I/_j_1· R) (I(C )+Q)o R.

Following DJ we define
rv
j(X,Y;C) := length .of (~d-j + E.:R)(I(C)+c)-R-

In particular,if j=d,then we have

j(X,YjC) = length of «I(X).R + I(Y)'.R)n-e)(I(C)+~).R ,and

j(X,y; C) = length of «1(X)· R + I(Y)'. R)n_e + E.,oR) (I(C)-I:S).R '

where e 18 the excess dimension of X and Y,that is,

e:=d1m XI1 Y -(dim X + dim Y - n) .Moreover,for everJ isolated

component C of X" Y we put

l(X,Y;C):= length of (Hx/I(X)+I(Y»I(C)-

·Let us collect same properties cf these interaection numbers

(see [3J ,proposition 308).
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Lemma. 1: Let C be an isolated component of X n Y.Then we heve

(i) ji(X,y;C)~ min fj(XtY~C),l(X,Y;C)f.

(ii) If _9x,c and .Qy ,e are Cohen-Macaulay then

--' .
j(X,Y;C) = l(X,Y;C) •.

(1ii) If e(C):=dimC + n - dimX - dimY = 0 then
r'J

j(X,Y;C) = j(X,YiC) = i(X,Y;C) ,where i(X,YiC) 16 defined by

Weilte i-symbol.

Proof: Assertion (i) follows from the definition cf the inter­

section nwnbers.(ii) follows fram [1],lemma 3,and we get (iii)

fram 05],q.e.d.

Moreover,we need the main result of [3] which 18 a key result

in proving our theorem.

Lemma 2: Let X,Y be irreducib1e and reduced subschemes of ~.

Assume that Xvy 18 not contained in a hyperplane then we have

deg X·deg Y ~ ~ j(x,Y;C)-deg C + e,

where the suro 1s taken over all. irreducible components C of XI') Y

and e 1s the excess dimension,that is,e=dim XI1Y-dim X.dim Y+n.

We will also apply a certain bilinear property of the inter­

section algorithm in the join construction as developed in Sect.2.

This property was first stated by R.Achilles and L.van Gastel.The

work cf L.van Gastel (see,e.g.,[6,7])shows the usefulness cf this

bilinearity.Before etating this result we need some notations.

Let X,Y be pure dimensional subschemes cf ~.The intersection

algorithm as presented in [12,15] gives also a collection of sub­

varieties C C XI'IY in ~ cotmted with mult1plicities j(X,Y;C)

such that

deg X-deg Y =~ j (A,Y;C)-deg C
C

(1 )
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We shall denote here tbis collection cf subvarieties by ~(X,Y).

When there is no possibility cf confusien we will denote ~(X,Y)

Simpiy by ~ ;,Ve note that every irreducible component C of Xn Y

belangs to .r .Let -.~irr be the set ef all these irreducible com­

ponents,and let -~h be the set of all components C of XI1Y with

dim. C = dim Xn Y.Hence we have

-~h C _ffirr C _71•
We now state a theorem of additivity and a reduction theorem

needed for the proof cf the theorem.

Lemma 3: Let X,Y be pure dimensional subschemes of~ with defi­

Ding ideals I(X) and I(Y) in k[xo, ••• ,~1.we cODßider primary

decompositions cf leX) and I(Y) ,say leX)=:!., (l ••• l1~r where ~i 18

i1-primary ,and I(Y )=~11l ••• Il~ where .sj 1s.pj-primary .We set
r s

X = U Xi and Y = U Y. where Xi i5 defined by ~,and y. is
i=' j=l J - J

g1ven by ~j for i=1, ••• ,r,and j=1, ••• ,s,resp o We define reduced

and irreducible subschemes Vi and Wj defined by the prime ideals

] i ' 1~ i ~ r, and :2j ,1~ j ~ s , ~esp 0 , that 18, (Xi ) r~d::=Vi end

(Y.) d:=W .•We set
J re J

11 -- length of .9:i for 1=1 , ••• , r , and..-
m. -- length cf ~ far j=t, ••• ,so

J
..-

Then we have
r s

(i) ~(X.Y) =i~ ~ ~(Vl'Wj).

(ii) For every C E ~(X,y) we get
r s

j(X,Y;C) = ~ L li'n1.1j(V.,WJ";C) ,
i=1 j=1 J ~

where we set j(Vi,'Nj;C) = 0 1f C ,j ~(Vi,Wj).
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Praof: (1) follows from the intersection algorithm in the join

construction by considering the radical of the corresponding

ideals.There are different arguments in proving (ii).For example,

L.van Gastel [6,7] described geometrically and partly generalized

the intersection theory of [12,1S]oHence the assertion (ii) is

clear from the definition of the algorithm (see [6],remark 4.4),q.e.d,

3. Proof cf the theorem

Before embarking on the proof cf the theorem we need a suitable

""deepening of invest1gations on the new iQtersection number j(X,Y;C)o

This gives us the second key result in proving the theorem.
r s

Lemma II Let x= U Xi and Y= U Y. be pure dimensional sub-
I 1=1 j=1 J

schemes cf ~.Let C be an element of the collection ~(X,y).
f"'oJ

If j(X,Y;C) = j(X,Y;C) then we have
--"

(a) j(Xred'Yred;C) = j(Xred'Yred;C)

l=l, ••• ,r and j=1,o •• ,s.

Froof: There 18 not lass of generality in assuming that

C € ~(x.,Y.) .Consider the above intersection algon thm in the
- J. J

join construction.Let Q,Q' and Q.ij be the primary ideals defining

the intersection numbers j(X,Y;C),j(Xred'Yred;C) and

j«X1)r~d'(Yj)red;C),resp.Since

leX) + I(Y)' f; I(X}red + l(Y)' red E I(Xi )red + I(Y j )' red

the intersection algori thm provides Q ~ Q' ~ Qij.The assumption
,.....,

jtX,Y;C) = j(X ,Y ;e) gives ~ ~ Q with respect the localization

at the prime ideal P belonging to the primary ideals Q,Q' and Qij-
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Therefore ~ SQ' C Qij at this localization.This property shows

the assertions of iemma 4 , q.e.d.

Proving the implications (1)( >- (ii)' ~ (iii) of the theorem we

need the following iemma.

Lemma 5~With ~~1e same notations as in the theorem,assume the con­

dition (ii).Then we obtain the condition (i) of the theorem.More-

over,we get the fOilowing properties:

(a) ~(X,Y) = ~(X,y),and j(X,Y;C) = j(X,Y;C) for all elements

C of ~ (X,Y).

(b) dim XI) Y = dim Xin Yj for all i=t, ••• ,r and j=l,o •• ,s.

(c) ~ (X. ,Y.) = ~h(Xi'Y') for all i end j •
.- 1. J -- J

Moreover,~et Vi and Wj be the embedding of (Xi)red end (Xj)red'

resp. in pn-rij then we heve

(d) _g"(Vi'Wj) = rh (Vi'Wj) , and j (Vi' 1'1 j ; C) = j (Vi'Wj öG) for all

C E .~(Vi,Ylj) and for all i=l, ••• ,r and j=l, ••• ,s.

Proof: Consider

:> j(X,Y;C)'deg C ~= j(x,Y;C).deg C by lemma 1,(1)
C c:: ~h C e ~ J

~ deg X.deg Y , by assumptian of lemma 5

= ~ j(X,Y;C)·deg C , by (1) of § 3
CE: ~

~ L: j(X,Y;C)·deg C , since rh ~ ~.
::;0-- Ce 'tP

.- h

This shows condition (i) and (a).Applying leID!Il3 3,(i) we get (b)

and (c).There is a 1-1 correspondence between the elements of

~(Xi'Yj)= ~«Xi)red'(Yj)red) and of ~(Vi'Wj).lience we also have

the first assertion cf (d).The second one follows fram lemma 4,(b)

and the intersection algorithm, qoe.d.
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Fraof of the theorem: Lemma 5 shows (i)~ ~(ii)o

(ii) ~> (iii):.Consider the follcwing excess dimensions:

e (X , Y) :. = dim X n Y - dirn X - dim Y + n,

e (Xi'Yj) : = dim Xi " Yj - dim Xi - dim Yj + n.

Lemma 5,(b) shows that e(X,Y) = e(xi,Y j ) for all 1=1, ••• ,r and

j=1, ••• ,s.Hence we get e(x,Y)=e(Xi'Yj)=e(Vi'Wj)+rij ,where

I
Vi and Wj are the embeddings cf (Xi)red and (Yj)red ,r~. in

n-ri "
l. J ,and e(Vi,Wj)=dim Vi"Vi j - dim Vi - dim Vl j + (n-rij ).

Claim: e(Vi,wj)=o for al~ 1=1, ••• ,r and j=1, ••• ,s.

Proof cf the claim:We fix Vi and Wj for arbitrary 1~ i~r and

1 :$ j .~ s.We then obtain:.

~ j(v.•Wj;C)-deg C = deg Vi'deg Wj .by lemma 5.(d)
C (i ~h(Vi,Wj) ~

and the statement (1) of § 3,

~~ ;l(V.•Wj;C)-deg C + e(vi.wj ) .by lemma 2
C t: _ irr'<V1 ' VI j ) :L

>= ~ j(Vi,W.;C)-deg C + e(Vl,W.) ,by lemma 5,ed).
C c:- -h(V" W. ) J J

~ J

Renee we get e(vi,Wj)=OoThis shows our claim.

The claim now provides rij=e(X,Y) for all i=1,o •• ,r and

j=1,o.o,s.This completes the proof cf (ii) =;>(111).

(li1) 5"(1V): Sillee e(X,Y)=rij for all i,j we get:

e(X,Y) ~ e(xi,Y j ) = e(Vi,Vl j ) + e(X,Y),

that is,e(Vi,Wj)=o.Therefore Vin Wj 1s a proper intersect10n in

pn-e for all i=1, ••• ,r and j=1, ••• ,s.Hence we have Weil's inter--
section multiplicities ievi'Wj;C) for a11 CE ~h(Vi.Wj)= ?f'evi.wj ).

Using some notations cf lemma 3 we therefore obtain:
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r 8

deg X.-deg Y = (L.deg Xi){L deg Yj )
1=1 j =1

lill mo "' deg V.~' deg W0

J ~ J

=~ ~ 1 ... m.[ 2=- i(V1 ,W
J

o ;C)-deg cJ ,by ~zout's
L- ~ J C E ~ (V Wo)

-h i' J

theorem in pn-e and the abovc properties,·-
=L~ li'ml ;>~ j((~)red'(Yj)red;C)·degC].

C E __ «Xi )red' (Y j )red)

by the intersection algorithm with the schemes of pn,-
= ~ j(X,YjC)·ceg C ,by lemma 3.

C E- !f(X,Y)

This shows the implication (li1) -t> (iv) 0

The examples 2 and 3 of Sect.5 show that the implications

(iv)~ (ii1.) and (iii~(ii) ,resp. are not true ~enera1.ThiS

completes the proof of the theorem,qoeod o

40 'The Cohen-Macaulay case

In this section we study the particular situation when X and Y

are locally or arithmetically Cohen-Macaulay schemes.

We first recall that

deg X" Y = length(Qx y c)·deg C.
C~XI'IY . I? ,

dimC=dimX,. Y

Therefore the following proposition 1 follows immediately from

the theorem and lemma 1,(11)0
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Proposition 1: In addition to the hypothesis cf corollary 1,

assume that the loeal ringsJ?x,c and sY,C are Cahen-~acaulay

far all irreducible ccmponents C cf XI1 Y wi th dim C = dim X" y~ 00

Then the following conditions are equivalent:

(i) deg X· deg Y~ deg XI1 Y

(li) deg X·deg Y = deg Xn Y

(iii) e = 0

This proposition yields an extended version of the cerollary

stated in the introduction cf [3].

We now assume that X and Y are arithmetieally Cohen-Macaulay,

that is,the defining ideals I(X) end I(Y) are perfectoIn this

ease we will get another description cf the excess dimension

e=dimXn Y-(dimX+dimY-n).We will reach tbis desired result by a

suitable deepening of the approach as presented in [11JoIn this

conneetion I am grateful far insightful comments made by students

end coworkers attending my lectures on intersection theory given

in 1988/89 at the University of Halle.Before stating our results,

we give some general observations and collect same known re­

sults that we need.We will consider the intersection algorithm

in the join construction far r~ 2 subschemes X1 , ••• ,Xr of~

(see also [lo],and for a wealth cf background material see F.

Gaeta [5] ) 0

Let X1 , 0 •• ,Xr (r~ 2) be pure dimensional subschemes of ~ de­

finea by ho~ogeneoUß ideals I(X1), •• 0,I(Xr ) in k[xo, ••• ,~]=:Ro.

We introduce r copies Ri:=k[xio, ••• ,xin],1~ i~r,of Re end denote

by 1i the ideal in Ri corresponding to l(Xi ), 1~ i~ r.We put

N:=r(n+1)-1 , R:=k[xij with 1,~i~r,o~j~nJ and c := the diago-
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nal ideal in R generated by !X1j-Xij w1th 2.~i~r,o~j~nJ.

Let J(X1 , •• o,Xr ) be the join-variety defined by (I1+ •• e+I~).R

in~.~oreover,we introduce new independent variables ~ij ovar

the ground field,o~k~m:=(r-1)" (n+1 )-1 , 1~ i:S' r and o~j~ n.

Let k be the algebraic closure ef k(ukij with esk~m,1~i.:s'r,

o:S j ~ n) .We put

R := k[Xij'With 1~i~r,o~j~ri]o

We then introduce so called generic linear forms lo, ••• ,lm:

lk:=~
2~i~r

o~ j~n

U k · . (Xl .-xi ·) for k=o, ••• ,m in Ro
~J J J

Note that ~.R = (lo, ••• ,lm)eR,and we recall that m=(r-1)o(n+1)-1.

Let [rJ i denote the i-th graded part of a homogeneaus ideal I.

We put dimk[r]i =~ V(i,I).Then we will prove the following result.

Pronosition ~: Let X1, ••• ,Xr,r~2,be arithmetically Cohen-Macaulay

schemes ·of ~.Assum.e that
r

deg(X," • e. "Xr)~ TI deg(Xi ) then we get far the excess dimension
1=1

r

e := dim(X1 " ••• /J Xr ) - L dim(Xi ) + (r-1)· n :
1=1

e = dimk [(11 + 0.. + I~)" R 11 s:rJ1 •

Eroof: We set J:=I1+ •••+I~.We have V(1,(J,lo, ••• ,lm_e)·R) =

V( 1 , (J ,1
0

' '••• , Im_e-1 ) .. R) + V(1 , (lm_e ) •'R) - V(1 , (J ,10 ' • 0 • , Im_e-1 ) •R

n (3xn_e)~R) .Since V(1, (J ,1
0

, •• 0 ,lm-e-1 )"R" (lm_e)" R) ==
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On the other hand,the assumptions of Proposition 2 yields:

V(1,(J,log ••• ,lm_e}R) = V(1,(J~)~R).

This important fact fo~lows by analyzing the intersection algo­

rithm in the join construction (see Hi~fssatz 3 and FOlge~4

cf [11]) .Hence we get

V(1,(J,lo, ••• ,lm_e)·R) = V(1,J-R) + V(1,~·R) - V(1,J-R" ~R) =

V(1,J"R) + (m+1) - V(l ,J"R 11 ,2."R) .Therefore we have

e = V(1 ,J·R IJ ~R) = V(1 ,J·R n ~.. R).

This shows Proposition 2 , ~ e,d.

Proposition 2 does provide interesting applications.For example,

the fo~lowing corollary describes a certain conve~se cf the main

result cf [11J 0

r

deg (X1 I) .0. 11 Xr ) -3- lT deg(Xi ).
i=1

Corollary 2: Let X1,o •• ,Xr,r~2,be arithmetically Cahen-Macaulay

schemes of ~ such that

Then the following conditions are equivalent:

(1) e = 0

(ii) dimk[J·R f) E-rRJ1 = 0

(ii1) Xi LI (X 1 11 ••• nXi _1 fJ Xi +1 1) ••• 12 Xr ) 18 not lying in a

hyperplane for all i=1, ••• ,ro

Praof: The equivalence of (i) end (li) follows from Proposition 2.

We note that the ectuivalence of (ii) and (iii) is aJ.ways t:ru.e

far pure dimensional subschemes X1 ,.o.,Xr af ~.This follows by

analyzing the proof cf Hilfssatz 4 of [11J, q.e.d.

Moreover,we get the following result in CBse that the excess

dimension e(X,Y) # 0:
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Proposition 3: Let X and Y be arithmetically Cohen~~acaulay

schemes of ~.Let e be the excess dimension of·X end Y,that is,

e=dim Xl11 -dirn X--:·dim Y +n ~ o.Then the follovling conditions

are equivalent:

(1) deg X·deg Y = deg XI) Y

(ii) X U Y ia contained in an {n-e)-plane but not läting in an

(n-e-1)-plane •

.k'rooi: (1) ~'> (ii) :Proposition 2. shows that

e = dimk[J· R 11.Q... RJ1 .It is not difficult to see that for two

arbitrary subsehemes X and Y we always have:

d~[JvR " .2. R]1 = dimk[I(X) " I(YU1 •

This assertion follows again by analyzing the proof of Hilfssatz 4

of [11] in ease of two subsche~es.Hence we obtain (ii)o

(ii) S> (i) :We thus have e=dimk[I(X) n I(Y)]1.Let V and Vi be the

embedding cf X and YJresp. in ~-e.Then V end Ware agein arith­

metically Cohen-Maeaulay schemes of pn-e.Uoreover,we obtain for
~

the exeess direensicn of V end W,say e(V,W):

e (V,VI) = dim V f1 TU (dirn V + dim W - (n-e» = dim X t1 Y - (dim X

+ dim Y - (n-e»= e - e = opthat is,V~ W1s a proper intersection

in ~-e.Therefore Vle have deg V· deg W = deg Vn VI sinee V end W......
are arithmetically Cohen~aCäulay.Thisprovides our assertion

(1) , q.eod o

This Proposition 3 improves an important result of [1iJe see

CorollarJ 3 of [11J ).However,it 15 not clear (to me) what the

analogue cf Proposition 3 should be when we consider the inter­

section cf r~2 subschemes cf pn.Perhaps we should then replace

conditio~(ii) of Proposition 3 by the statement

e = dimk[J ,. R 11 s.. RJ1 0



- 15 -

5. Examples and open problems

We discuss in conclusion same examples and open questions o

The fmrst example shows that the hypothesis in the theorem and

proposi tion 1 that (Xi VY j )red i8 not contained in a h:iperplane

cannot be replaced by the weaker one that (Xi v Yj ) i8 not ly1ng

in a hyperplane.

Example 1 :Let X,Y be curves 1n.!~ with defining ideals

2 2I(X) = (xo,x1,xox1,xox3-x1x2.) and 1(Y) = (xl~~3),resPoThen X

and Y are irreducible,and X~Y is given by the 1nterse:t.~~n point,
,...,

say C: x o=x1=x3=o counted with multiplicity j(X,Y;C) = 2. by lem-

ma 1,(ii).Hence we get
,....,

2. '= deg X· deg Y =j (X, Y; C)' deg C = deg X11 Y but e = 1.

Note that (XVY)reä. 18 lying in the hyperplane x1=o.

Moreover,this example also shows that the statement of corollary 2

replaced "Cohen-rrIacaulay" by "Buchsbaumtt 1s wrang (see[13],Theo.­

rem lII.3 0 2,(iii) for the Buchsbaum property cf X).

Analyzing the proof of the theorem we want to state the follo­

wing q~estion asked first by L. van Gastel [ 8).

Problem 1: Let X,Y be pure dimensional subschemes of~.under

which circumstances is the following implication true:

deg X.deg Y = L j(X,Y;C)·deg C . ~
C C ~irr(X,y)

dim Xn Y = dim X + dim Y - n '2

The following example shows that this 18 not true 1n general.

Moreover,example 2 also shows that the implication (iv)- ~(iii)

of the theorem 18 not true in general.

Examnle 2 (see also [7],remark 4.7,(3) on p.65):Let X be an

arithmetically Cohen-Macaulay reduced and irreducible C~/e cf

degree d> 1 and Y a disjoint line in ..~~.BY coning we obtain in ~5
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an intersection with ezcess dimension e=1 cf Xr and yr,suppor­

ted by the vertex,sa~ C.lt follows from the intersection algo­

rithm that j(X',Y'jC) = deg X'= d,that is,deg X'-deg l' =

j(X',Y'iC)odeg C but e=1.

This example and the theorem with corollary 1 yield the impor-
,....,

tance of the new intersection multiplicity j(X,Y;C).It also

proves the assertion in the remark stated after corollary 1.

The following example J now shows that the implication

(iii) ~(iv) of the theorem i8 not true in general even in the

ease tha t X and Y are ari tlunetically Cohen-Llacaulay and X17 Y i8

pure dimensional.

Example 3: Let X end Y be the curves of l~ with the following

defining ideals in k[xo ' ••• ,x3]: I (X) = (xo ,x1 ) /} (x1 ,z2) 11 (x2 ,x3 )

and I(Y) = (x1,~~).Then we have: X and Y are arithmetically Cohen­

Macaulay such that r ij =1 for all 1=1,2,3 and j=1 o

l(X) + I(Y) = (xo ,x1 ,x3)1l (x"x2 ,x3),that is,Xt1Y has precisely

two intersection point8,say C1 given by xo=x,=x3=o end C2 given

by x 1=x2=x3=o.Hence the excess dimension e=1,that is,the condi­

tion (iii) holdsoLemma 1,(11) gives for the multiplic1t1es.- ~
j(X,YjC1 )=j(X,YjC2 )=1.Hence condition (li) Is not true.We note that

condition (iv) cf the theorem 18 indeed true since j(X,Y;C, )~1,

and j(X,Y;C2 )=2.fhis follows fram the criterion for intersection

, multiplicity one af [1]0

Remark~ It 18 not difficult to see that lemma 3,(11) 1s not true
,.....,

in general for the new intersection multiplicity j(X,Y;C).This 18

the deeplying reason thet condition (iii) daes not imply condi­

tion (ii) of the theorem.

Moreover,we want to pose the following problem.

Problem 2: Wou.Ld K1rby' s arguments of [9]yield similar results 1:tJ:tf...61e

in this paper ?
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üf course,there are further intere.sting problems concerning

Bezout t s theorem, see, e ~g. , [7], [14] , [15J ' [16J.
Finally,we' note that a quite different inverting of B~zout's

theorem in the plane is discussed by E.D.Davis (see,e.g.,[2~).
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