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1. Introduction and main result

The theorem of Bbzout can be seen as a landmark in algebraic
geometry and it has been extensively applied.It has taken more
than three centuries of hard work by some of the foremost mathe-
maticians to master Bézout's theorem.,This theorem has been exten-
ded to intersections with arbitrary excess (see,e.g.,[}],[}2,1ﬁj
[5],[9]).Another possible direction might be to state a converse
of Bézout's theorem.It is not immediately clear how such a state-
ment should look.,Using the new multiplicity of [3] for improper
intergsections we will prove a converse of Bézout's theorem (see
coroliary-1).The aim of this paper is to prove the following

gtatement.

Theorem: Let k be an algebraically closed field of arbitrary cha-
racteristic.lLet X,Y be pure dimensional projective subschemes of

r 8
‘giysay X:é:{ X; and I:};q Yj where dim X = dim X,,

dim ¥ = dim Yj for 1€£igr and 1< j< s.Let Tij 2. 0 be the inte~
ger such that (XiL/Yj)red is contained in an (n—rij)-plane but

not lying in an (n-rij-1)-p1ane.00nsider the following

conditions:
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(i) deg X<deg Y = ;§E::; ‘E?X,Y;C)°deg C

ceXinY
dimC=dimX n Y
(1i) deg Xedeg Y Z-_ Fx,Y;C)edeg C
ceiny
dimC=dimX m Y

(iii) rij is independent of i and j,and the excess dimension

e :=dimXnY - (dim X + dim ¥ - n) = Ty

(iv) deg X+deg ¥ = :EE:::j j(X,Y;C)edeg C
ceink
dimC=dimX n Y
Then we have
(8) (1) (11)=> (141) =5 (iv)
(b) The implications (iii)==> (ii),and (iv)=>>(iii) are not
true in general even in the case that X and Y are arithmetically

Cohen-lacaulay and Xn Y is pure dimensjonal,

This statement yields a converse of Bfzout's theorem.

Corollary 1(A converse of Bézout's theorem):With the same notations

as in the theorem,assume that there is an integer rij = 0,Then
the following conditions are equivalent:

(1) deg X-deg Y = ;25:::l 'SQX,Y;C)°deg C

CeinmX
AimC=dimXnY

(ii) € = O

Remark: 1.0ur example 2 of § 5 shows that we cannot replace the
intersection number ETX,Y,;C) in (i) of corollary 1 by the inter—
section multiplicity as presented in [{] which is the same multi-
plicity defined in [ﬁa] oThis coincidence of both intersection
multiplicities follows from the magnificent thesis of L.van Gastjel[i]
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0f course,if one condition of the corollary holds then
3}X,X;C)=1(X,I;C),where i(X,Y;C) is given by Weil's i-symbol
[1f] defined for proper intersections.

2. An application of corollary 1 is the following:We assume (i)
of corollary 1 for an improper intersection,that is,e > o.Then
the reduced scheme of every pair of components of X and Y is
contained in a hyperplane (see example 1 of § 5).Suppose that X
. and Y are arithmetically Cohen-Macaulay then we get stronger re-
sults of this application (see,e.g.,proposition 3 of § 4).We
therefore study in § 4 the particular situation when X and Y are

locally or arithmetically Cohen-Macaulay schemes.

2. Notations and preliminary resuits

Before proving the theorem we must prove several preliminary re-
sults.First we want to recall the definition of the intersection
numbers EYX,Y;C) and j(X,Y¥;C).Let X,Y be pure dimensional sub-
schemes of P with defining ideals I(X) and I(Y) in

K[X yeeesX ]=:R .We introduce & second copy k[yo,...,ynj=:R of

y
R, and denote by I(Y)' the ideal in R_ corresponding to I(Y).Ve

y
consider the polynomial ring R:=k£xo,...,xn,yo,...,yn;]and the
¥ ]
ideal ¢ = (xo-yo,...,zh-yn)'R.Furthermore,we introduce new inde-
pendent variables u; o over k where i,m=o,1,...,n.Let'E be the. .
?

algebraic closure of k(uoo,o..,ugb).Put N

R := E[ko,...,xn,yo,.;;,yn] and 1 :=£§;_ ui,ﬁ(xmfym) in R
for i=040e0,ne

Let C be an isolated component of XnY with defining prime ideal

I(C) of Krull-dimersion j £ Krull-dim XnY.We want to construct
two well-defined primary ideals belonging to (I(C)+g)-§ such that
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j(X,¥;C) and ?(X,Y;C) are given by the Length of these primary
ideals,resp.We set J :=Krull-dim of I(X)+I(Y)' in R,and
d:=Krull-dim of I(X)+I(Y) in R .Take the linear forms 10,.0.,

lﬁ‘-d-‘l and put
(I(X)*R + I(¥)'*R)_4 := I(X)-R + I(¥)'-R, and

(I(X)-R + I(¥)'~R), := 1R + U((I(X)-R + L(¥)'-R)_;)

for any r=0,..., d -d-1,where U(...) is the intersection of all
highest dimensional primary ideals belonging to the ideal (...).
Furthermore,we put

&, := U((I(X)+R + I(Y)"ﬁ)i‘-d-a ),and if j< d

8y 1= intersection of all primary ideals belonging to
U(g‘s—‘l + l_é_"-d+s-—2'§) such that __c__-ﬁ is not contained in their
agsociated primes for all s=1,...,d-].Following [_1‘2,15] we define
J(X,Y;C) := length of (854 + 1p -j-1‘R)(I(C)+_g)°§'

Following [3] we define

s -

J(X,Y;C) := length of (-@-‘d-j + E_'R)(I(C)-l-c)-_}i'

In particular,if j=d,then we have

j(X,¥;C) = length of ((I(X)*R + I(!)'°§)n---e)(I(C)-i-c)*ﬁ' »and

T(x,450) = length of ((I(X)'E + I(X)'-R)y_o + & B)1(0)uc)eT »

%here e is the excess dimension of X and Y,that is,

e:=dim XnY -(dim X + dim ¥ - n).Moreover,for every isolated
component C of Xn ¥ we put

1(ZX,Y;C):= length of (Rx/I(X)-l-I(Y))I(C).

‘Let us collect some properties of these intersection numbers

(see [:3] ,proposition 3.8).
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Lemma 1: Let C be an isolated component of XnY.Then we have
(1) TxG0< min £3(x,15:0),1(2,550
(ii) If_gx’c and .QY,C are Cohen-Macaulay then

J(x,1;6) = 1(Z,¥;0). .

(ii1) If e(C):=dimC + n - dimX - dimY = o then

C3(x,Y;0) = §(X,Y;0) = i(X,Y;C) ,where i(X,Y;C) is defined by
Weil's i-symbol.,

Proof: Assertion (i) follows from the definition of the inter-
section numbers.(ii) follows from [1],lemma 3,and we get (iii)
from [15],q.e.d.,

Moreover,we need the main result of [3] which is a key result
in proving our theorem,

Lemma 2: Let X,Y be irreducible and reduced subschemes of'gn.

Agssume that XV Y is not contained in a hyperplane then we have
deg X+deg ¥ > >  3(X,Y;C)-deg C + e,

where the sum is taken over all irreducible components C of XnY

and e is the excess dimension,that is,e=dim X Y-dim X&dim Y+n,.

We will also apply a certain bilinear property of the inter-~
section algorithm in the join comnstruction as developed in Sect.2.
This property was first stated by R.Achilles and L.van Gastel.The’
work of L.van Gastel (see,e.g.,[?,?])shows the usefulness of this
bilinearity.Before stating this result we need some notations.

Let X,Y be pure dimensional subschemes of_Ei.The intersection
algorithm as presented in [ﬁ2,15] gives also a collection of sub-
varieties C € XnY in f% counted with multiplicities j(X,Y;C)
such that '

deg X+deg ¥ = ;§zjj(A,Y;C)-deg C (1)
C
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fle shall denote here this collection of subvarieties by g(X,Y).
When there is no possibility of confusion we will denoteg(X,Y)
simply by @ Z e note that every irreducible component C of Xpn ¥

14
belongs to g Let ¥ irr
ponents,and let ,Zﬁh be the set of all components C of XY with

be the set of 8l1ll these irreducible com-

dim C = dim X»n Y. .Hence we have

€ c £ <t

h
We now state a theorem of additivity and a reduction theorem

needed for the proof of the theorem.

Lemma 3: Let X,Y be pure dimensional subschemes of }:ﬁ with defi-
ning ideals I(X) and I(Y) in k[xo,...,xn].We consider primary
decompositions of I(X) and I(Y),say I(X)=q1 Ness Nq, where q; is

p4-primery,and I(Y):g.{ Nl eee N Q) Where Sa! is _P;'.l-primary.We set
8

r .
=0 x, ana v ={J Y, where X; is defined by q;,and Y. is
i1 1 j=1 9 i - J

given by 9_5 for i=1,eee,ryand j=1,...,9,resp,.ile define reduced
and irreducible subschemes Vi and W j defined by the prime ideals

p;»1<isr,and p!,15 J§s,7esp.,that 18, (X ) 540=V; and

li := length of 94 for i=1,...,r , and
mj := length of gj for j=lyesey8e
Then we have

r s
@ Fan =U U G,
- i=1 =
(ii) For every C g X,Y) we get
r.
;l(xafc)_f-‘“-1 2 1i0my §(Vy,0550)

where we set j(Vi,Wj;C) = o if C ¢ f(vi,\'fj).
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Proof: (i) follows from the intersection algorithm in the join
construction by considering the radical of the corresponding
ideals.There are different arguments in proving (ii).For example,
L.van Gastel [ 6,7 ] described geometrically and partly generalized

the intersection theory of [12,15].Hence the assertion (ii) is |
clear from the definition of the algorithm (see [B],remark 4,4),q.e.4.

3« Proof of the theorem
Before embarking on the proof of the theorem we need a suitable
deepening of investigations on the new inmtersection number?’(X,Y;C)°

This gives us the second key result in proving the theorem.
8

Lemma 4: Let X=!u/ Xi and Y= L/ Yj be pure dimensional sub-
‘ = j=1

schemes of‘gi.Let C be an element of the collection ?g(X,Y).
If j(X,Y;C) = EYX,Y;C) then we have

(2) Eered’yred;c) = §(Zpeqr¥reqs )

(o) ;J((Xi)red,(I dpeasC) = 3((X;)peqs (¥4)peqsC) for all

i=1,000,r and j=1,0.0,5.

Proof: There is not loss of generality in assuming that

C € é?(xi,zj).Consider the above intersection algorithm in the
join construction.Let Q,Q' and Qij be the primary ideals defining

the intersection numbers j(X,Y;C),j(X Y C) and

red’ red?

j((Xi)féd,(Yj)red;c);resp.Since

I(X) + I(E)' € T(X)pgq + 1Y) '10q € T(Xy)poq + (L) g

the intersection algorithm provides Q€ Q'c Qij.The assumption

red -

J(X,¥;C) = EYX oL ;C) gives ¢ € Q with respect the localization

at the prime ideal P belonging to the primary ideals Q,Q' and Qij'
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Therefore ¢ &Q' E-Qij at this localization.This property shows

the asgertions of iemma 4 , q.e.d.

Proving the implications (1)<=> (ii)=> (iii) of the theorem we

need the following iemma,

Lemma 5:With *he same notations as in the theorem,assume the con-
dition (ii).Then we obtain the condition (i) of the theorem.More-
over,we get the foilowing properties:

(a) G(x,Y) = & (x,¥),and §(X,¥;C) = F(X,¥;C) for ali elements

C of ¢ (X,Y).

(b) dim XN Y = dim Xiran for all i=1,...,T and j=1,0..,8.

(c) _‘§(xi,yj) = £,(x;,¥;) for all i end j.

Moreover,let vy and Wj be the embedding of (Xi) and (Ij)

red red?

resp, in PP TFij then we have

(d)_g(vi,wj) =jfh<vi,wj> , and ';]'(vi,wj;c) = j(vi,'.vj;‘c) for all
C e .‘gcvi,wj)' and for all i=1,...,T and j=1,...,8.

Proof: Consider

_\- ~~
= _ j(X,¥;C)-deg C > :EE:; j(X,Y;C)+deg C, by lemma 1,(i)
Ce &y ce &

> deg X+deg ¥ , by assumption of lemma 5

= 2 §(X,Y;C)edeg C , by (1) of § 3
Ce @

Z j(X,Y;C)-deg C since &, € ?.
>CeBy, ’ ~h

This shows condition (i) and (a).Appiying lemma 3,(i) we get (b)
and (c).There is a 1-1 correspondence between the elements of
2§(X1,Yj)= %k(zi)red’(yj)red) and of ?f(vi,wj).ﬁence we also have
the first assertion of (d).The second one follows from lemma 4,(b)
and the intersection algorithm, g.e.d.
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Proof of the theorem: Lemma 5 shows (i)&>(ii),

(ii) => (iii):Consider the following excess dimensions:

e(Z,Y) := dim XnY - dim X - dim ¥ + n,

e(Ki,Yj) := dim Xin Yj - dim X - dim Yj <+ n,

Lemma 5,(b) shows that e(X,Y) = e(Xi,Yj) for 2ll i=1,.,.,r and
j=1,.es,8.Hence we get e(X,Y):e(XZi,Yj)=e(‘i’i,ii'urj)+:|:'i;i ,Where

. g
Vi and Wj are the embeddings of (Xi)red and (Yj)red »TCD in
2 ,and e(vi,Wj)=d.1m Vin ‘Hj - dim V; - dim Wj + (n—rij).

Cleim: e(Vi,Wj )'—'0 for all i=1,...,I‘ and 331,000’50

Proof of the claim:We fix vy and Wj for arbitrary 1€ i<r and

1% j<s.¥e then obtain:

Ce g (Vi,‘f ) 3(V j,C) deg C = deg Vicdeg ‘rlj ,by lemma 5,(d)

and the statement (1) of § 3,

> Z .'J(Vl, j,C)'deg C + e(Vi,‘Nj)

s Dy lemma 2
(V w )

- irr

= v j(v ,.‘J ;C)rdeg C + e(V ,2W.) ,by lemma 5,(d).
Ce & (Vy,05) J

Hence we get e(Vi,Wj)=ooThis shows our claim,

The claim now provides rij=e(1,‘£) for all i=14040,T and
J=1,0e0,9.This completes the proof of (ii)=>(iii).
(1ii) ==>(i¥): Since e(X,‘:C):rj_;i for all i,j we get:

e(X,Y) =2 e(Ki,Yj) = e(vi,Wj) + e(%,Y),
that is,e(Vi,Wj)=o.Therefore Vin \‘Jj is a proper intersection in
"¢ for all i=1,...,r and 3=1,...,8.Hence we have Weil's inter-
section multiplicities 1(Vy,W3C) Zor all C€ iﬁh(vi,wj)z ré(vi,wj).

Using some notations of lemma 3 we therefore obtain:
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r 8
deg X+deg ¥ = (Z_ deg X. )'(Z deg Y.)
' =1 S J

T
=L 7 li-mj-deg(xi)redrdeg(‘fj)red

= Z Z 110 mj-'deg Viv deg W,

J
=2 = 1i'mj[

i(V,,W.;C) deg C | ,by Bézout's
€ fh(vi’wj) 1073 ] ’

theorem in En-e and the above properties, -
=2 >y ;—g 3Ky ) pgr (¥3) g3 @) vaeg ©
i3] red? " j’red’ 4
Ce --((Xi)red’(zj)red)
by the intersection algorithm with the schemes of E7,

= Z j(X,¥3C)-éeg C ,by lemma 3,
C&-g(X,Y) 11, ) ’

This shows the implication (iii) => (iv).

The examples 2 and 3 of Sect.5 show that the implications
(iv) == (iii) and (iii)»(ii) ,resp. are not true i:zéeneral.']lhis
completes the proof of the theorem,g.e.d.

4. The Cohen-¥acaulay case

In this section we study the particular situation when X and Y
are locally or arithmetically Cohen-Macaulay schemes,
We first recall that

deg XnY = Z length( )edeg C.
dimC=4imXm Y
Therefore the following proposition 1 follows immediately from

the theorem and lemma 1,(ii).



-11 =

Proposition 1: In addition to the hypothesis of corollary 1,

assume that the local rings O and Cy ¢ @re Cohen-llacaulay
~%,C ~Y,C

for all irreducible ccmponents C of XnY with dim C = dim Xn¥Y> o0,
Then the following conditions are equivalent:

(1) deg X-deg Y deg Xn Y

(ii) deg X-deg ¥ = deg XnY

(iii) e = o

This proposition yields an extended version of the corollary

gtated in the intreocduction of [3].

We now assume that X and Y are arithmetically Cohen-Macaulay,
that is,the defining ideals I(X) and I(Y) are perfect.In this
case we will get another description of the excess dimension
e=dimXn Y-(dimX+dimY-n).We will reach this desired result by a
suitable deepening of the approach as presented in Erﬂ.ln this
connection I am grateful for insigkhtful comments made by students
and coworkers attending my lectures on intersection theéry given
in 1988/89 at the University of Halle.Before stating our results,
we give some general observations and collect some known re-
sults that we need,We will consider the intersection algorithm
in the join construction for r2 2 subschemes X;,.s0,X. °f-£i
(see also Cjé],and for a wealth of background material see F,
Gaeta Cﬁ])o | '

Let Xq,0..,5X, (ré:2) be pure dimensional subschemes of P2 de-

=k
fined by homogeneous ideals I(X;),...,I(X.) in k[xo,...,xn]=:Ro.

We intrecduce r éopies Rizzk[xio,...,xin],1§;iﬁgr,of R0 and denote
by I} the ideal in R; correspornding to I(Xi),15'i§:r.ﬁe put

N:=r(n+1)-1 , R::k[xij with 1€ igr,ogig n:_l and ¢ := the diago-
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nal ideal in R generated by £x1j-xij with 251 r,os_js_'n}.
Let J(X1,..,,Xr) be the join-variety defined by (11'+...+I£,)-R
in _Pﬁ.ﬂloreover,we introduce new independent variables ukij over

the ground field,og kgm:=(r-1)*(n+1)-1,1€ isr and ogjgn.
Let k be the algebraic closure of k(ukij with ogkgm,1Sis T,
oXjgn).We put

R := ‘E[xij‘with lsisr,osignf

We then introduce so called gemeric linear forms 10,...,1m:

Note that ciR = (lo,...,lm)-f{,and we recaltl that m=(r-1)- (n+1)-1.

Let fﬂl denote the i-th graded part of a homogeneous ideal I.
We put dimk[ﬂi =: V(i,I).Then we will prove the following result,

Proposition 2: Let KiseoesX hT2 2,be arithmetically Cohen-Macaulay

schenes 'of _.gﬁ.ﬂ.ssume that
r

deg(X M oo an)é I deg(X;) then we get for the excess dimension
i=1

Ir
e i= din(XyA +eenXy) - 2 din(X;) + (r-1)-n :
i=1

e = aim [(T4 + oo + I1)*R N R, .
Proof: We set J:=Ii+...+I%.We have V(1,(J,1 ,00s,1 __)*R) =
V(1, (3,1 pe0eyly o 4 )*R) + VO, (0 )R - V(1,(3,1 ,e00,l o 4)<R
N (A__)-R).Since V(1,(3,1 ,0ee,l o > Ea(y )R =

V(0,(dy1gseensly o 4)°R ¢ (1,_.)R) = o we obtain

V(?,(J,lo,g..,lm_e)-ﬁ) = V(1,J*R) +m - e + 1,
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On the other hand,the assumptions of Proposition 2 yields:
V(1,032 peeesl R) = V(1,(J+e)-R).

This important fact follows by analyzing the intersection algo-
rithm in the joiﬁ construction (see Hiifssatz 3 and Folgerum 4
of [ﬁi}).ﬁence we get

V(1,(3,1 5000yl _ )oR) = V(1,d*R) + V(1,c*R) = V(1,J°E n c-R) =

V(1,J°R) + (m+1) - V(1,3°Bn gfﬁ).Therefore we have
e = V(1,J°R » <_:__'§) = V(1,J°R n c+R).

This shows Proposition 2 , ¢ e,d.

Proposition 2 does provide interesting applications.For example,
the foitlowing corollary describes a certzin converse of the main

result of [ﬁi}o

Coroliary 2: Let X1,...,Xr,ra:2,be arithmetically Cohen-Macauliay

schemes of.£§ such that
r

—

deg (X4 7N eeen X) 2 i_l1 deg(X;).

Then the following conditions are equivalent:

(1) e = o

(ii) dimk[J-R.n g;RJ1 =0

hyperplane for all i=1,.e4,T0

Proof: The equivalence of (i) and (ii) follows from Proposition 2,
We note that the equivalence of (ii) and (iii) is always true

for pure dimensional subschemes X1,.=.,Xr of'gn.This follows by

analyzing the proof of Hilfssatz 4 of [ﬁ{], qeeodo

Loreover,we get the following result in case that the excess

dimension e(X,Y) # o:
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Proposition 3: Let X and Y be arithmetically Cohen-kacaulay

schemes of‘zn.Let e be the excess dimension of X and Y,that is,
e=dim XnY -dim X—=dim ¥ 4n 2 o,Then the following conditions
are equivaienté
(1) deg X+deg Y = deg XnY
(ii) XU Y is contained in an {n-e)-plane but not iging in an
(n-e-1)-plane.
rroofi: (i) => (ii):Proposition 2 shows that
e = dimk[b-R r:g;R:h.It is not difficult to see that for two
arbitrary subschemes X and Y we always have:

aim (3R n ¢ R], = aim [100) 2 1002, .
This asgertion follows again by analyzing the proof of Hilfssatz 4
of [11] in case of two subschemes.,Hence we obtain (ii).
(ii) => (1):We thus have e=dimk[i(X) N I(YJJ1.Let V and W be the

embedding of X and Y,resp, in.gP"e.Then V and W are agein arith-
metically Cohen-Macaulay schemes of gn—e.Moreover,we obtain for
the excess dimrensicn of V and W,say e(V,W):

e(VyW) = dim VnW - (dim V + dim W - (n-e)) = dim XnY¥ - (dim X

+ dim ¥ ~ (n~e))= e ~ e = o,that is,Vn W is a proper intersection
in FP7%,Therefore we have deg V-deg W = deg Va W since V and W

are arithmetically Cohen-~Macaulay,This provides our assertion

(1) , qee.ds

This Proposition 3 improves an important result of [1{](see
Corollary 3 of [1{]).However,it is not clear (to me) what the
analogue of Proposition 3 should be when we consider the inter—
gsection of r>» 2 sutschemes of PP.Perhaps we should then replace
condition(ii) of Prcposition 3 by the statement
e = dimkihvﬁ N 2_331,
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5. Examples and open problems
We discuss in conclusion some examples and open questions,
The first example shows that the hypothesis in the theorem and

proposition 1 that (KiLIYj) is not contained in a hyperplane

red
cannot he replaced by the weaker one that (Xi u'Yj) is not 1lying

in a hyperpliane,

Ezample 1:Let X,Y be curves in Py with defining ideals

I(X) = (xi,x?,xox1,xox3-x1x2) and I(Y) = (x1,;3),resp.Then X
and Y are irreducible,and XnY is given by the intersecticn point,
say C: X,=E1=X3=0 counted with multiplicity EQX,Y;C) = 2 by lem~
ma 1,(ii).Hence we get
2 = deg X+deg ¥ = J(X,¥;C)edeg C = deg XnY but e = 1,
Note that (Xk/Y)rga is lying in the hyperplane x,=o.
liorecver,this example alsc shows that the statement of corollary 2
replaced "Cohen-lacaulay" by "Buchsbaum" is wrong (seeE1i],Theo;
rem I1I.3.2,(iii) for the Buchsbaum property of X),

Analyzing the proof of the theorem we want to state the follo-
wing question asked first by L.van Gastel[:BJ.

Problem 1: Let X,Y be pure dimensional subschemes of‘?i.Under

which circumstances is the following implicetion true:

deg Xedeg Y = Z— j(X,¥;C)+deg C :>
ce & ..(X,Y)

dim XnY¥ = dim X + dim ¥ = n ?

The following example shows that this is not true in general,
loreover,example 2 also shows that the implication (iv)=>(iii)
of the theorem is not true in general,

Example 2 (see also Lﬁj,remark 4,7,(3) on p.65):Let X be an
arithmetically Coben-llacaulay reduced and irreducible curve cof

td

y o BY coning we obtain in EP

degree d>1 and ¥ a disjoint line in
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an intersection with excess dimension e=1 of X' and Y',suppor-
ted by the vertex,say C.It follows from the intersection algo-
rithm that j(X',Y';C) = deg X'= d,that is,deg X'vdeg Y' =
J(X',¥";C)edeg C but e=1.
This example and the theorem with corollary 1 yield the impor-
tance of the new intersection multiplicity 3(X,Y;C).It also
proves the assertion in the remark stated after corollary 1.
The following example 3 now shows that the implication
(iii):ﬁ§>(iv) of the theorem is not true in general even in the
case that X and ¥ are arithmetically Cohen-liacaulay and XY is
pure dimensional,

Example 3: Let X and Y be the curves °f,§£ with the following

defining ideals in k[xo,...,XBJ: I(X) = (xo,x1)/7(x1,x2),1(x2,x3)

and I(Y) = (x1,§y).Then we have: X and Y are arithmetically Cohen-
¥acaulay such that rij=1 for all i=1,2,3 and j=1,

I(X) + I(Y) = (xo,x1,x3)n (x1,x2,x3),that is,Xn Y has precisely
two intersection points,say C4 given by Xo=%=X4=0 and Cy given

by x1=x2=x3=o.Hence the excess dimension e=1,that is,the condi-
tion (iii) holds.Lemma 1,{(ii) gives for the multiplicities
3(x,¥304)=3(X,¥;C,)=1.Hence condition (ii) is mot true.We note that
condition (iv) of the theorem is indeed true since j(X,Y;C1)£1

and j(X,¥;C,)=2,Fhis follows from the criterion for intersection
miltiplicity one of [[].

Remark: It is not difficult to see that lemma 3,(ii) is not true
in general for the new intersection multiplicity'SYX,Y;C).This is
the deeplying reason that condition (iii) does not imply condi-
tion (ii) of the theorem.

lMoreover,we want to pose the following problem.

Problem 2: Would Kirby's arguments of [ﬁ]yield similar resultsfbfﬁﬂe

in this paper ?
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0f course,there are further interesting problems concerning

Bézout's theorem,see,e,g., [7], [14], [‘l 5] , [1 6].
Finally,we note that a quite different inverting of Bézout's

theorem in the plane is discussed by E.D.Davis (see,e.g.,[%]).
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