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Introduction

Let G be a locally compact group. The set of all
equivalence classes of irreducible unitary representations
A A
of G 1is denoted by G . The set G 1is called the unitary

dual of G and it carries a natural topology (see [5]).

Let F Dbe a local non-archimedean field. In this
paper we consider properties of the representation theory
of GL(n,F)-groups related to the topology of the unitary
dual of GL(n,F). The main results of this paper are:
classification of all isolated points modulo unramified
characters in GL(n,F)A, description of composition factor
of ends of complementary series representations and

description of GL(n,F)A as (abstract) topological space.

For reductive groups over local fields the unitary
dual as topological space has been determined as this author
knows for the foilowing groups: SL(2,C) by J.M.G. Fell in
[6] (1961), SL(2,R) by D. Miliéié in [11] (1971}, uni-
versal covering group of SL(2,R) by H. KraljeviC and
D. Miliéié in [10] (1972), universal covering group of
SU(n,1) by H. Kraljevi& in [9] (1973) and SL(2,k) where

k is non-archimedean by this author in [17] (1982).

The unitary dual GL(n,F)" as the set is parametrized
in [19]. The results we need in our study of the topology of

the unitary dual are contained in [6],{12] and [18].
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Now we shall describe more detailed the content of

this papex.

In the first section we collect the basic
definitions and results related to the topology of the
unitary duals of reducitve groups over local non-archi-
medean fields. In this section we introduce the notion
of isolated point in a modulo unramified characters.
Let UY(G) be the group of all unitary unramified characters
of G. For m € G the set st (G)m = 3 is always closed
and connected. Therefore each open and closed subset of G
containing T contains also UY(G)n . Therefore we define
m € e to be 1isolated modulo unramified characters if
v%(G)n is an open subset of 8. If G has no non-trivial
Eplit toruses in the center (for example if G is semi-
simple), then this notion is equal to the standard notion
of isolated point {(or isolated representation) in 8.

‘The second section deals with the basic topological

properties of GL(n,F)A.

In the third section we introduce the notation related
to the non-unitary dual of GL(n,F) and recall of the main
results of Bernstein and Zelevinsky from [3] and [22]. We

recall of Langlands and Zelevinsky classifications.

In the fourth section we recall of the parametrisation

of GL(n,F)A obtained in [19]. Set

IrrY = U GL(n,F)A .
nz0
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We consider Irr" as topological space with the

u

topology of the disjoint union. Let D be the set

of all classes of square integrable representations

u u

in Irr We attached in {19] to each & € D and
each natural number n an irreducible unitary

representation
u{é,n)

and to 0 < a < 1/2 we attached a complementary series

representation
n(u(é,n),a).

Now each m € Irr¥ is in a unique way parabolically
induced by a tensor product of representations wu(d,n)'s
and T7(u(é,n),a)'s (see [19] or the fourth section of

this paper).

In the fifth section we classify all isolated points modulo
unramified characters in GL(n,F)A. Let CY be the set
of ail classes of cuspidal representations in pY. Then
to each p € cY and each natural number m by the
J.N. Bernstein aescription of DY we can attach a square
integrable representation d&{(p,m) (see the fourth section).
Now we can describe the isolated points modulo unramified
characters: = € Irr" is isolated modulo the unramified

characters if and only if = = u(§(p,m),n) for some

p,m,n with m+*+2 and n# 2.
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The composition scries of ends of complementary
series w{ul(dé,n),a) are described in the sixth section.
We prove that the end of complementary series n(u(é(p,m),u)
has exactly two different irreducible subquotients, each
one has multiplicity one and one of them is parabolically

induced by
u(é(p,m) ,n+1) @ u(d({p,m),n- 1)

while the other one is parabolically induced by
ul(é(p,m+ 1) ,n) ® u(d{p,m-1},n).

We expect that we have the similar situation in the case

of archimedean fields (see [20] and also [16]).

In the seventh section we give a description of
GL(n,F)" (or Irru). as abstract topolegical space.
J.N. Bernstein proved that the parabolically induced
representation of GL(n,F) by an irreducible unitary
representation of Levi subgroups of a parabolic subgroup
of GL(n,F), is irreducible. Roughly speaking, by the
Bernstein result the topology of GL(n,F)A is locally
described by the obvious topology on the Langlands para-
meters except at the ends of complementary series where
we know what is happening by the previous section. From
this realization of GL(n,F)A we can conclude that
GL(n,F)A are all homeomorphic, for fixed n and different

F's.
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1n this paper the field of complex numbers is denoted
by € and the subring of real ones is denoted by ®R.
The subring of the rational integers is denoted by R and
the subset of the non-negative ones is denoted by X . The

subset of positive ones is denoted by N.

The basic ideas of the topology of unitary dual
I learned from D. Mili;ié. Discussions with H. Kraljevict
helped a lot to improve my understanding of this
topological spaces. I use this ocassion to express my

thankfulness to the both of them.

I am gratefull to Max-Planck-Institut fir Mathematik
for hospitality during the academic year 1984/85 and
for excellent working conditions according to which

the results of this paper were obtained.



1. Basic facts about topology of the dual space of a

Ay

reductive group over local non-archimedean field

Let G be a locally compact group. The set of
all equivalence classes of irreducible unitary represen-

A
tations of G 1is denoted by G

We fix a left Haar measure on G. Let CO(G) be
the convolution algebra of all compactly supported
continuous complex-valued functions on G. For each unitary

representation (n,Hn) of G and f¢ CO(G) set

n(f) = [ f{g)n(g)dg.
G
Let IIfII?T be the operator norm cf w(f), and let
il £fIl be the suppremum of all HfllTr when 7 goes

over all unitary representations of G. The completion of
Cy(G) with respect to norm |l |l is denoted by C*(G)
and called the C*-algebra of G. Clearly C*(G) 1is
C*-algebra. If 7 1is a unitary representation of G then
m lifts in a natural way to the representation of the

C*-algebra C*(G).

Let Prim C*(G) be the set of kernels of irreducible
non-zero representations of the algebra C*(G) on vector
spaces. For T < Prim C*(G) set

CL(T) = {I €Prim C*(G); N J c I}
JET

Now C£ is the closure operator for so-called Jacobson



topology on Prim C*(G).

There is a canonical surjection

A
G —> Prim C*(G),

I ker 7

A
We supply G with the weakest topology so that the
above surjection is continuous.

A
The set G supplied with the above topology is

called the dual space of G.

In the rest of this paragraph, G will denote the
set of all rational points of a connected reducitve group

defined over a non-archimedean local field.

The group G 1is totally disconnected. There exist
a countable basis of neighborhoods of identity, consisting

of open and compact subgroups of G.

The subalgebra of all locally constant functions in
CC(G) is denoted by HI(G) or CZ(G). Let K be an open
compact subgroup of G. The subalgebra of all functions in
H(G) constant on double K-classes in G 1s denoted by
H(G,K).

For (n,Hﬂ)t:G set Hﬂ = n(H(G))H1T . Now H1T is

G-invariant and possesses a G-invariant inner product.

For each vEZH: the stabilizer of v in G 1is open,



and for each open compact subgroup K in G K-invariants
(H:) in H: are finite-dimensional. Thus the represen-
tation (nw,H:) is smooth and admissible(here 1 (g) =n(g)|H:).
This representation of G 1is algebraically irreducible

and possesses a G-invariant inner product (which is unique

up to a constant). The mapping (ﬂ,Hn] — (nw,H:) is a
bijection from e onto the set of all egquivalence classes

of irreducible smooth admissible representations of G

which possesses G-invariant inner product. When there is no
possibility of confusion we shall not make difference between
an irreducible unitary representation (n,H) of G, its
class in 8 and its smooth part (nw,H:).

The set of all equivalence classes of irreducible smooth
admissible representations will be denoted by a. An
irreducible smooth admissible representation (m,V) will
be said unitarizable if V possesses an G — invariant

A

inner product. Now G <can be identified with the set of

all unitarizable classes in G .

By [1] G is aliminal group, or in other terminology,

G 1is CCR group. It means that n(C*(G)) consists of com-

A
pact operators for = € G

Since G is liminal, the canonical mapping

A
G —> Prim C*(G)

is bijection and thus it is homeomorphism ([5), 4.4.1.). Points
A A
in G are closed ([5] , 4.4.1.). The topology of G has a



countable basis of open sets since C*{(G} 1is separable

([5) , 3.3.4.).

Let T < 8 . Since G has the topology with countable
basis, C&€ T is just the set of all limits of convergent
seguences in 8.

Let X,Y be two topological spaces with countable basis
of open sets and f:X — Y mapping. One can see directly
that £ is continuous if and only if for each convergent
sequence (xn) in X and each limit x of (xn), (f(xn))
converges to f(x). Similarly, continuity of £ is
eguivalent to the following property: if (xn) is a
convergent squence in X and x a limit of (xn), then
there exist a subseguence (xnk) of (xn) so that (f(xnk)
converges to f(x).

For a fixed open compact subgroup K of G , the

function

. . K
(ﬂ,Hﬂ) > dlmmn(H(G,K)Hn) = d:.ranTT
A
on G is bounded ([1] , Theorem 1).
For an admissible smooth representation (w,V) of G
we shall denote by OTT its character. For fixed £ € H(G),

the function

(m,H_ ) +— 0O _(f)

A v
on G is bounded. It means that C*(G) is by D. Milici¢



Ctalgebra with bounded trace ((12])). Therefore, we
A

v
have D. Milici€ description of the topology of G.

Let H(G)* be the space of all linear forms on

A
H(G) supplied with the weak topology. Let X < G. Set

X* = {Oﬂ:(ﬂ,Hﬂ)E X}. We denote by CL X (resp CL X*)
A
the closure of X (resp X*) in G (resp. H(G)*). By

D. Mili¢ié results in [12], (n,H ) € CL(X) if and
only if there exist ¢ € CL(X*}), a discrete closed subset

A
S of G and positive integers n,.o € S so that

O_ + Z n 0 = g
To4€g O T
Note that in H(G)* , a sequence (wn) converges
to ¢ if and only if (wn(f)) converges to ¢(f) in

C for any f€H(G). For Y < H(G)*, CL(Y) consists of

all limits of all convergent segquences contained in Y.

Let 0G be the group of all g€G so that Ix(g)|F= 1

for all F-rational characters of G. Here IlF denotes

the normalized absolute value on F.

A continuous homomorphism x from G into c* will
be called character of G. If the image of ¥ 1is contained
in T = {z€C€; |zl = 1} , then ¥ will be called unitary

0

character of G. If ¥ is trivial on G then Yy will be

called unramified character of G.

The group of all unramified characters of G will be

denoted by U(G) and U(G) is endowed with the topology



of uniform convergence over compacts. The subgroup of
all unitary characters in U{(G} is denoted by uY(G) .
The group G/OG is free abelian of finite rank. If

n = rank (G/OG) then U(G) is isomorphic to (e*) "

and UY(G) to (m)".

The groups U(G) and UY(G) act on G in the

Fa¥
natural way. Also Uu(G) acts on G

Let P be a parabolic subgroup of G, and let
P = MN be Levi decomposition of P. If o is a smooth
representation of M, then Ind (¢|P,G) will denote the
induced representation of G from P by o. Thé induction

we consider is normalized.

Let (ﬂn) be a convergent sequence in 8. Then by
Theorem 5.6. of [18] tﬁere exist a parabolic subgroup
P = MN of G, an irreducible cuspidal represeﬁtation o]
of M , a convergent sequence (x,) of unrémified characters
of M, nyz1 sothat m  is a subquotient of Ind(xnolP,G)
for nE:hO and each limit of (nn) is a composition factor
of 1Ind ((l%m Xn)0|P,G)..Therefore, the set of limits is

finite and its cardinal number is bounded by the order

of the Weyl group of G.

The above discussion on convergent sequences implies
v
that the set S in the D. Milicit description of the

A
topology of G must be finite.



We shall note now few facts about convergence of

seqguences.,

A
Let (nn) be a convergent sequence in G. The

. \"
D. Milicit¢ description of the topology implies that

there exist a subsequence (ﬂn ) of (ﬂn) such that
k
O converges in H(G)* and
Ny
lim O, = n_ 0
k nk A G O
cEG

where n, are non-negative integers, different from
at
zero only for finitely many o € G .

A
Let (ﬂn) be a sequence in G and suppose that there

exist a subsequence (nn ) so that lim © = 0 4in

k Tny
H(G})*. Then (ﬁn) is not convergent sequence.

A
Let (ﬂn) be a sequence in G. Suppose that

(OTI } converges in H({G)* to a non-zero element. Suppose
n
that there exist a finite set 5 c G and positive integers
n. .0 € S so that
lim 0 = Y n 0O
n n otS
. A x
Then ({m_) is convergent , S € G and S5 is the set of

all limits of (ﬂn) ([(121) .

For a parabolic subgroup P = MN of G and

irreducible smooth cuspidal representation ¢ of M

~

we shall denote by G(o) the set of all irreducible



subquotients of 1nd (yxo|P,G) when x runs over U(M).
Set

A ~ I
G(o) = G(o) NG

Vs A A
By [18]) , sets G(o) define a partition of G and

A ~
they are open and closed subsets of G. Also sets G(o)

~

define a partition of G.

Suppose that Pi = MiNi , 1 =1,2 , are two associated
parabolics and 05« i=1,2 , associated representations.

Then

Let P = MN be a parabolic subgroup in G and let

0,10, be irreducible cuspidal representations of M.

.
If 5(01) = 5(02) then there exist an element w from

the Weyl group of G normalizing M so that
WO 4 € U(M)02

where wo, (m) = 01(w1nw-1) (see [18]) .

1

On the set of all irreducible cuspidal representations
we define an equivalence relation by t1~0 1f and only if
U(G)T = U(G)o . The equivalence class of 1 will be

denoted by [T].

Let P = MN be a parabolic subgroup of G and o

a smooth admissible representation of M. The formula for



the character of the induced representation in [4]

implies that

X 6Ind(xolPG)

UM} —> H{G)*
is continuous (see also Lemma 2.1. of [17]).

Let P = MN be a parabolic subgroup of G. Suppose
that (on) is a sequence of admissible representations
of M and ¢ an admissible representation of M such
that l%m Oo = O0 in H(M)* . By [4] there exist a
linear mapping

A : H(G}) —> H(M)

so that
o = @ o A,
Ind(qn|P,G) o,
= o
OInd(0|P,G) 0, ° A
Therefore
l;m GInd(cn|P,G) - OInd(o|P,G) y

Let ¢ be an irreducible cuspidal representation of
‘M where P= MN - is aparabolic subgroup of G. By Theorem 3.1
of [18] the set of all x € U(M) so that Ind (xo|P,G)
contains a unitarizable subquotient, is a compact subset of

U (M) .
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A
Suppose that (nn) is a sequence in G{(o). Then
n, is a subguotient of some Ind (xno|P,G). Now we can
take a subsequence (ﬂn }  so that (xn ) converges.
' k k

Using Lemma 3.5 and previous considerations we obtain

that (ﬂn) contains a convergent subsequence.

For an admissible representation w of G , T owill
denote the contragradient representation of = , and 7
will denote the Hermitian conjugate of =n . Set @ =
Then 7' is called the Hermitian conjugate of 1 . Let o
be an irreducible cuspidal representation of M where
P = MN 1s a parabolic subgroup of G. Since each irreducible
cuspidal representation can be twisted by an unramified

character to a unitarizable representation, we have that

E(o))" = (o).

A
Let o € G . By the description of the topology

A
of G we have directly that

X = X0
A
v (G) —— G
is continuous. Since U"(G) is connected set, u?(G) o
is also connected set. We shall now show that Uu(G)o is
A :
also a closed subset of G . Let 7 € C£(Uu(G)0). Then there
exist a sequence (nn) in UY(G)o converging to T .

Set T = X0 with Xn € Uu(G). Since Uu(G) is compact,

we can find a convergent subsequence (xn ) of (xn)
k
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Set y = lim ¥ . Now (y_ o) converges to = , and
ko Py Pk
also xo0 1is the only limit of {xn o) . Thus XO = 1
k
and 7 € UY(G)o. This proves that uY(G)o is closed.

A A
If o€ G and U c G 1is an open and closed subset

containing ¢ then it must contain uv(G)o.

A
1.1. Definition: Let o0 € G . We say that ¢ is isolated

A
in G modulo the unramified characters if Uu(G)o is

open set.
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2. Basic facts about the topology of the dual space

of GL{(n,F).

Let F be a non-archimedean local field. We put
G, = GL(n,F). Let Alg G, be the category of all smooth
representations of G of finite length. Let o, € G,

i

i =1,2 and let P be the standard maximal compact
subgroup whose Levi factor is naturally isomorphic to
G xG_ . The representation of G induced from P
n, n, n,+n,
by 0,®0, is denoted by Gq X 0y The induction is

normalized.

Let R be the Grothendieck group of Alg G, . Set

The induction functor

{(t,0) +> 1x0 , Alg Gn><A1g G, - Alg G in

induces the structure of a graded associative commutative
algebra on R. The graduation will be denoted by

gr:R — Z+. Set

We supply IrrY with the topology of disjoint union. We

consider Irr as the subset of R. In fact, Irr 1is a
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Z~basis of R

Let C(Gn) be the subset of all classes of cuspidal

representations in Irr. Set

cC= U C(G) ,
nz1 n
cY = cniIrr?,
Ca =CU(Ce C) U(C®@Ca®C)U...
where
Ceo ... ® C = {p1® Pr®e.. ® D i piELC} .
n-times

If p. € G , then Py ® ... ® D is considered to be

in G X ...X Gm
1 n
For a set X,M{(X) will denote the set of all finite

multisets in X . It is the union of alli x" , nz20 ,

derived by the action of symmetric group Sn acting by

n,

permutation of coordinates. For Xy €X' ,i=1,2, we

n.+n .
consider (x1,x2) € X 172 . This induces the structure
of semigroup on M(X). This semigroup will be denoted

additively.
We have a natural projection
K:C_ ~—> M(C)
®

given by

Py ® ... ® D — (p1,...,pn).
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et P be a standard parabolic subgroup of Gn

Then Levi factor M is ismorphic to some product

where ng + ... * n=n. Now an irreducible cuspidal

representation of M is isomorphic to

010...6()

where p, € C(Gn ) .
i

We have also
U(M) = U(Gn } X...x U(Gn ) .
1 k
Let 05 P ® ... @ pk € C0 . Then ¢ 1is a cuspidal
representation of a parabolic subgroup of suitable Gn .

Since n 1is completely determined by o , we put

8(0) = an(c') ’
A A
G(o) = Gn(o)

Let cé€& M(C) , c§=¢ . Choose ¢ € C0 so that c¢l(g) = c.
~ A
Since G{c) and G(o) do not depend on such choice of

0 we set

E(C) 6(0) r

1

é(o) .

A
G(c)

Let C|_ be the set of all equivalence classes of

the eigenvalence relation ~ in C. There is the



projection map

w : C > ClN
This map lifts to the map

¢ : M(C) — M(C]| )

Let Yy € C|_. Choose c€M(C) so that d(c) =y . Now
a(c) does not depend on ¢, but only on Yy . Thus we

define
E(y) = G(c)

Let y € M(C|[ ). Choose (p;,...,o ) €M(C) so that

¢((p1....,om)) =Y . We define gry to be gr oyt ... v grop .

From the first section one obtains directly

2.1. Proposition: (i) The disjoint union of all

G(Y), vy € M(C|)
equals to Irr.
(ii) The disjoint union of all
A
G(y) , yEM(C| )
u
equals to Irr .
(iii) Let n2 1. The disjoint union of all

A
G(y), y €M(C|)

A

with gr y= n equals to G,
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Note that the inclusion cY &> C induces the

bijection

(%] ) = (c|)

and thus the bijection
u
M(CT| ) &> M(CIN) .

Let vy = (Y1,...,Yn),6= (61,...,6m)€M(C|~). We
say that y and ¢ are disjoint if Y; # Gj for all

1£i2n and 1 £3j sm.

For c¢,d€ M(C) we say that are disjoint if" ¢ (c)
and ¢(d) are disjoint. For p,0€EC_ we say that are

disjoint if «k(p) and «k{c) are disjoint.

By Corollary 8.2. of [2] , IrrY is multiplicatively

closed subset of R.

2.2 Proposition (i) The multiplication of R defines

the structure of topological semigroup on Irr"

(1i) Iif CqrC € M(C) then

2

A A A
G(c.])x G(c2) = G(c1 + c,)

2
(iii) If c1,c2€ M(C) are not connected then

(t,0) > 1 xo0

A A A
is a homeomorphism of G(c1)x G(c2) onto G(c1+-cz).
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Proof: The statement (ii) is a direct consequence of the
exactness of the induction functor. Since Irr" is a

A
disjoint union of Gn's it is enough to show that
(t,0) t—> T * ©

A A A
Gm><G —> G

n m+n
1 .2 °
is continuous. Suppose that ((Ti,Ti))i converges to
(T1,T2). Then (Tg)i converges to 1d  for jo=1,2.

Now we can pass to a subsequence to that

1imo . = Y nlo
i 1 o PP
1
where njj 21 for 3 =1,2 Now-
T
. 12
lim © = 3 n_n? 0
P L1 .2 Pq Py Pa%X P
i
Tix Ty p1,p2 1 72 M1 2
Since n11n222 1, (T? XT?). converges to 11 X12
B i i'i

This proves (i).

Let c,,Cc, € M(C). Suppose that ¢ and c, are

1772 1
not connected. Then analogicallyas in Proposition 1.5.2.

of [23] we obtain that

(t,¢) —> T *x 0 ,

§(c1) xatcz) —> a(c1 + C,)

2

is a bijection. Denote this bijection by V¥ . Thus the
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restriction

~ ~ ~

‘PI:G(c_l) %Gle,) = Glcy + o)

2

is an injection. Now we shall show that it is also

A
a surjection. Let p € G(c1 +cC There exists

2)°
pi_EE(ci) so that p=p, * p, . Since p is unitarizable

_ % _ +X +
p—p1 02-01 02 .

We noticed that p; € E(ci). Thus p;= Py v i=1,2. Now
FaY

Corollary 8.2. of [2] implies that Py € G(Ci)' Thus

A A A
?:G(c1) xG(cz) —> G(c1 + 02)

is a bijection. We shall show now that ¥ | is continuous.

2

Suppose that TlXT. converges to 11 X T in

2
1
A
-II

]
we can suppose that 0 5 3 = 1,2, are convergent. Now
T=

A .
G(c1 + c2), where 13,17 € G(c.) . Passing to a subseguence

0 1 2 converges and Ywe put

T,.XT),
i

lim © = )n O

i T1x72 : o
i
We know that n + 0. Set
1.2
T XT

lim © . =) n- 0_ .
; g
i oq

Then
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Now the fact that ¥ is a bijection and the linear

independence of the characters implies n1 n2

1 12

Thus (Tg) converges to 77 + J = 1,2. This proves

+ 0.

-1 .
that VY is continuous.

Let c¢ C|~ and ne z+ . We define
A
G(c,m) = G((c,c,...,c)).
L T J
n-times

A A
For n =0 we set G(C,0) = GO

The set of all functions from C|_ to Z, with
finite support will be denoted by M*(C| ). Note that

M*(C| ) is in natural bijection with MI(C| ).
Now the previous proposition implies:

2.3, Proposition: (i) The disjoint union of all

e(c,f(c))
fEM* (C| )

is homeomorphic to Irr? .
(ii) Let nz2 1. The disjoint union of all

Gle,£(c))
feEM* (C] )

with
! flclgrec =n .

cec|

A
is homeomorphic to Gn

- ———
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2.4. Proposition: Let n21. The set

C(G )|
is countable infinite.
Proof: Ré&rall that
A
CiG )| = (Cl6) nG | =
u A
= {U (Gn)p; p € C(Gn) nGn}

A A
Since Un(G J)o ,p € C(G ) NG are just G_(p)- and these
n n n n
A
are open and closed subsets of Gn , we have that C(Gn)|~

A
is countable since Gn has a countable basis of open sets.

It remains to show that C(Gn)l~ is infinite.
Note first that C(Gn)¢ ¢ (see for example [7]}.

Let p € C(Gn) and let wp be the central character
of p . Let T be the maximal compact subgroup in o
Recall that the center Z(Gn) of G, is isomorphic to

F* and thus we identify Z(Gn) with F* .

Suppose that ¢ € U(Gn)p. Then obviously

woly = wly
Now the family
A
[w(x o det)U]IT;x € F

is infinite since
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is infinite. Otherwise there exist an exponent m so

A
that xm = 1 for all x € T what implies that x" =1

>

A A
for all x€ T=T. This is impossible since F is a

field and T 1is infinite.

The above considerations imply  that C(Gn)] is
infinite.
For 1y € U(G1) = U(EX) and 7 € En we shall denote

(x o det)m also ym.

Very often we shall identify U(G,) = U(F") with

U(Gn) by the identification Y = ¥ ¢ det.
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3. Parametrizations of the non-unitary dual of GL(n,F)

Let mEN. Set
vi(g) = |det (g)lF

where is the normalized absclute value on F.

e
For p € C and n€EN set

A[n](p) = {v_(n—1)/2+i p; 05ign-1}

The set A[n](p) is called a segment in C. The set of all

segments in C is denoted by S(C).

If A =A[n](p) € S(C), then we denote

pT =y ITN2¥E e hcicn - 2)
- y = /2%3 0 G cicn - 1)

A= |

Let a = (Ayreeesb ) EM(S(C)). Set

o
n

(A1,...,Am) .

Consider A, c C as multisets in C 1in a natural way. Then

we define
supp a = A1+ ee. * AmEEM(C)
The number m 1is called the cardinal number of a.
For A={p,vp,...,vV"p} € S(C) set

t(a) = -(‘{O}r{\)p};---;{\)mp}) € M(5(C)) '
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Two segments Ai= b{ni](pi) i=1,2 , are

said to be linked if A1LJA2 is again a segment and

If A1 and Az are linked, then there exists « € IR
so that Py =vap1 . If & > 0 then we say that A1

precedes A2 and we write

Let a = (A1,...,Am)E M(S(C)). Suppose that b, and Aj
are linked (12i<jsm). If we set

iR 1,&.(1& I
- 1

i+1f.¢. j

b= (Byaevesby gody Udy,d

then we write b — a . For a1,a2€.M(S(C)) we write

a,<a, if there exist b1,b2,...,bkEiM(S(C)), k22, so that

a,; = b1 — b2 — ... — bk = a, .

For o € € and A= A[n](p)e 5{C) set

o
voa A[n](v e)

For a = (A1,...,Am)EZM(S(C)) set
a_ a o
va = (v A1,...,v Am).

Let A ={p,vp,...,vmp} € S(C). Then the representation

p x vp x...x v

has the unique irreducible subrepresentation which is denoted

e -

i e 2 I

A

)
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by 2Z(4) , and the unique irreducible quotient which

is denoted by L(4).

Let a = (A1,...,An)€ M(S(C)). We can choose an

order on the segments satisfying

b, —> A, => i>]
1 J

Up to an isomorphism, representations

gla) = 2(ay) x...x 2(a)

X (a) L(A1) XX L(An)

are uniquely determined by a. The representation ¢(a) has
a unique irreducible subrepresentation which is denoted by
2(a} , and X(a) has a unique irreducible gquotient which

is denoted by L(a).

Now a b 2(a) , M(S(C)) b~ 1Irr is a bijection and
this is Zelevinsky classification of Irr ([22}). The mapping

is a version of Langlands classification of Irr ([14]).
The mapping
Z(a) > L(a), a€M(S(C))

extends uniquely to an additive mapping of R which will be

denoted by

t:R —> R .



Let 1w € Irr. Choose a,b€& M(S(C)) so that
m = L{a) = Z(b).
Then supp a = supp b and’we define
supp T = supp a = supp b.

Let D be the set of all essentially square

integrable representations in Irr. Set pY = pniIrc”.

Let 4 = (61,...,5n)(EM(D). Now we can write

eI
§.=v lG? where o, € IR and 69
i i i

i € Du . After a

suitable permutation we can suppose that
>
a.lucxzz...Zan
The representation

A(d) = &.x ...x §

has the unique irreducible quotient which will be

denoted by L(d) . The mapping
d > L(d) , M(D) —> Irr

is a bijection and this is a version of Langlands

classification.
The following lemma is obvious.

3.1. Lemma: If o € & and o € M(S{C)) then
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vaZ(af

il

z(via)

vPL(a) = L(v®a) .

The above lemma implies

1

t (v )y = WHt(n))
for T € Irr.

Let R, be the set of all possible n,m, toeedn Ty
with k€N , niEZ+ and Ty € Irr. For an additive mapping

¢ on R we say that it is positive if

X €R+. == @(x) € R+

Let x€R, . We say that x contains m€Irr if
Xx - m€&€R_ . We say that x contains 1n with multiplcity

one if
X = T € R+ and x - 27n1 ¢ R+ .

If x contains w we shall also say that w 1is a

composition factor of x.

Now we shall recall of the derivatives of representations

in a way that is convenient for our purposes.

Since R 1is a polynomial ring over all Z(4a) ,
A € S{(C) , there exist a unique ring morphism 0 of R

so that

D(Z(A)). = Z(A) + 2(a7) .
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For x€R, D(x) will be called the derivative of X.

Let

D(x) = ) ¥y

where yiEZRi. If D(x) = 0 then 0 is called the

highest derivative of x. If Dix) £ 0 then Yi is
0
called the highest derivative of x if y; # 0 and
-0

y. =0 for j<i The highest derivative of x will

J 0°
be denoted by Dh(x). Now we list the most important

properties of D (see [3] and [22])
(1) D is a ring morphism of R determined by
D(Z(A)) = Z(A) + 2Z(A ), A € S(C).

(ii) For 1 € Irr D(r) = 1 + x where
gr x <gr 7.
This implies that ¥ is an automorphism.
(iii) The operator D is positive.
(iv) For A € S(C) we have
D(L(A)) = L(A) + L(8) + L( A) + ... + L(§)
(v) The highest derivative of an irreducible represen-

tation is an irreducible representation. Moreover

Dh{Z(a)) = Z(a")

for a€M(s(C))
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Note that Dh:R - R is a multiplicative mapping.

3.2, Lemma: Let A, ,A, € S(C).

1772

(i) If A1 and A2 are not linked, then

L(b,) ¥ T(by) = L((4y,8,)).

(ii) If 'A1 and A2 are linked, then

L(A1)><L(A2) = L((A1,A2)) + L((A1U A2, A, nAz)).

Proof: By Proposition A.4 of [19] L(4,) xL(A,) contains
L((A1,A2)) with multiplicity one. If A1 and 4, are
not linked then L(A1) XL(Az) is irreducible by Theorem 9.7.

of [22]. This implies (i).

Suppose that A and b, are linked. Then

]
L(Aaq) xL(A,) = Z(t(4,)) ¥ 2(t(s,)) contains 2Z(t(a,) +t(a,))

with multiplicity one by Proposition 8.4. of [22]. Now

Z(E(B)) + t(8,)) = Z(E(AUL,) + t(b,N8,)) =

z(t(ﬁ1 U Az)) x Z(t(A.l n A2)) =

L(A1 U Az) x L(A1 n A2) =

L((A1LJA A, N A2)) .

271

If we show that L(A1)x L(AZ) can have only one composition

factor except L(A1LJA2)X L(A1I1A2) , then (ii) will be proved.

- e - A rma e e - - . PR
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We can suppose that

=g
H

1 {p,vp,....vPp)
A, = {vqp,vq+1p,...,vrp}

where p,q,r€K, g $p +1 and p<r . Let n be a composition

factor of L(A1)x L(Az) different from
L(A1LJAZ)X L(A1r1A2).

Then Dh(n) is a composition factor of

D(L(A1)x L(Az)) - D(L(A1U Az)x L(A1ﬂ Az)) =
= L(A1)+ L{( A1)+ ...+ L(g)) x (L(A2)+ L( 52)+ e HLIEY)
—(L(A1U A2)+ L( (&1u Az))+ R L(G))(L(A1I1A2)+ . HL(E)) .

The property (v) of the operator 7 implies that vip
' can not be in the support of D, (n). Therefore Dh(n)

is a composition factor of

(L(&,) +(L(_A1)+ ce.+ L)) x L(W) -

(LA, 0A,)+ ...+ L(#)) xL(F) =

I

L({p,vp,...,VPp}) + L({vp,...,vpp})+...+L({vq-1p"" ,vrp}) =

20({p), {vp}, v (VPP # ons 2V 0}, ..., (V50 ))).

Now 2Z(({vp),...,{v o}, 0 £i<g-1, can not be the highest
derivative because the multiplicity of v3 'p in supp

should be 2 in that case. Thus
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2((v3 10y, L, (Ve

equals Dh(n). Recall supp 1 = supp (A1,A2) .
Since the support and the highest derivative completely

determine the representation, we have proved (ii).
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4. Unitary dvual of GL(n,F)

fror ¢ € Irr and o € IR set

T(o,a) = (voo) x (vVia)t = (v%o) x (v %)

Put

a(n,a) Pl = (o2 o) =y 2=, o)

Ly (/2 0 ()

for n,deEN, p € C ;

u(é,n) = L(v(n“1)/26’\)(n-1)/2-16’..-’v-(n—1)/26)

for 6€ED , neN ;
5(o,m) = Lislm] Py
for peEC , meEN .

In [19])] we have proved the following:

4.1, Theorem: (1) Set

B = {u(é,n);n(u(d,n),a); 6 € DY, neEN, 0<a<1/2)

If 0 s.-.40 €B, then o, %... xomEIrru. If 7 € IrrY,

1

then there exist TqreeerT €B unique up to a permutation

so that

T=Ts Xeao X T
' k

(i) L(a(n,d) Py = z(a(a,n ') = u(s(p,a),n)
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5. Isolated representations

In this section we shall classify isolated representations

modulo unramified characters. We prove:
5.1. Theorem: The set

= {u(é(p,n),m) ;pEC"1 , n,mEN , n+42 , m*2} =

H

{Z(a(n.m)(p)) ; peCY , n,meEN, n+2, m42)

It

L(a(n,m)(p)); pECL1 ,n,MEN, n+2 , m%*2}

is the set of all isolated points moduloc unramified characters

. u
in Irr .

Proof: Let 7 be an isolated point modulo unramified characters.
First we shall show that 1 is not unitarily induced i.e.

that there do not exists T,GEIIrru , gr 1T, grcz1 , so that
T =T X 0 .

To prove that suppose w=71 x ¢ with 1,0 ¢ Irr"

A A
grt,groz21. Let 0 € G , T € Gn . Now the mapping

X > 1 % ()x0)
v (F%) suu(Gn) —  Irr"

is continuous. Since Uu(Gn) is connected and

MT=T X @ is isolated modulo unramified characters ,
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(*) {v % (xo)ix€ UF")} < {p(t7o0); ue t(F")) .

Let supp 1 = (11,...,1 ) and suppo = (01,...,0 ).

t s

Then

n

supp (1 x (x0)) (T1,...,Tt ,xo1,...,xos) '

n

supp (p1 * uo) (u11,...,uTt,uo1,...,uos)

X

Now (*) implies that for each y € U (F*) there exist

uiy) € u(F®) so that

n

supp {1 x {y0o)) supp (pT x po)
Thus there exist 12ist or 15£3jss so that
T, ® u(x)Ti or T, = u(x)oj

for ¥ in some infinite family X c u" (F*). considering

the central characters one sees directly that
btx): xe x)

is a finite set. This implies that
{xo; x€ X}

is a finite set. This is a contradiction.

We can conclude ncw from Theorem 4.1. that either

=
I}

u(é,n)

< 1/2 .

or b ﬂ(u,ﬁ),ao) , 0 < a
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Now we shall show that the second possibility can

not happen. Similarly as above we can see that
{n(ulé,«)ya) ; 0 < a < 1/2}

is a qonnected set. Thus
{n(u(d,ﬁ),a) 3 0 <o < 1/2} <
c {ﬂ(xu(S,n),ao): X € s (FY ) .

Considering the support we can obtain in the same way

as above that this is not possible.

Thus n o= z2(a(2,d) P}y .

Now we shall see that n# 2. Note that Z(a(z,d)(p)) is in

the closure of the complementary series
(p) )
{n(z(a(1,8)""),a) ; 0 < a < 1/2}

which is a connected set. In the same way as before we

get

(p)

{m(z(a(1,4d) ),a); 0 < o < 1/2} &

¢ {xz(a(2,d) Py ; yeur(FN))

Thus Z(a(2,d)(p)) can not be isolated modulo the unramified
characters.
In the same way we obtain that L(a(2,d)(p)) = Z(a(d,z)(p))

can not be isolated module the unramified characters.



-35-

We have proved that each isolated point modulo the
unramified characters is contained in I. In the rest of
the proof we shall show that each =n € I is isolated. This

will prove the theorem.

(p)

Let H.E I i.e. m = Z{a(n,d) ) ,, n+¥2 and d=*2.

Suppose that @ is not isolated modulo the unramified

) . u

characters. Then there exists a seguence (nm in Irr

converging to 1w such that

U ¢ {yn;¥x e v (r) 1 ,

for all m . Passing to a subsequence, we can suppose that

(chﬂ ) is convergent seguence. Let
m

Pin m .m (p?) dim ~m ~m(0T) m
L [ I:I Z(a(ki,di) )}X[ I:I N(Z(a(ki.di) ):ai)} .

A
Since the decomposition of Irr"  into G(c) ,cEZM(CIN),

passing to a subsequence we can suppose that

m
Pj o) and oy o}

for all m&EN, andﬂSiSpm ’ 1Sj5qm .

Passing to a subsequence we can suppose that

P, = P
m _

ki =Xk
m =

di di
KT o= X,
L 1
~m _ ~
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for all m and that
m m m
{o3), 7 {oi}m and  {aj}

are convergent sequences. Let

, m _
lim Py = Py

m i
m

lim o, = .
i Oi

m

. m _

lim oy T ooy

m

By the first section, the set of all limits of (nm)
eqguals to

P (pi) g

i=1 =1

)
)lai) .

(o

where oy is a composition factor of n(Z(a(fi,ai) *

Note that oi are unitarizable. If

p+a>1

then Theorem 4.1. together with the above considerations
implies that (nm) is not converging to 1w since @ is

not unitarily induced.

Now we have two possibilities. First suppose that

m .m (DT)
m = Z(a(k,,d)) ) .
m 1771

This sequence has only one limit which is

-— ~— P . v e e R e e ee A L g e o ——
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m € U2 (F%) z(a(n,d) ?))

what is a contradiction. Thus

N (OT) n
me = n(zta(k1,’c'i1) b iay)

Now the set of all limits of (nm) eguals to the set of

all composition factors of

. (o,)
m(z(a(®,,d,) 1 yog)

If 0 5&1 <1/2, then it is clear that
~ ~ (04)
m o* n{z{alk,,d;) r0q)
from Theorem 4.1. Thus o, = 1/2 i.e. 7© 1is a composition

1
factor of

(g,)

m(z(alky.d) ), 1/2)

First we have that 7, p i.e. 1m is a composition

factor of
iz (a®,,d,) Py, 1/2).

This implies that

supp a(n,d)(p)=:sunp (v-1/2a(§1,31)(p) + J/za(§1,a1)(p)) .

o
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We shall show that the last relation is not possible.
Since
supp a(r,s)(p) = supp a(s,r)(p) "

we can suppose that nsd and E1 SEH . Consider the multi-

set supp a(n,d)(p) as the function from C to z, . if
{supp a(n,d)(p))(o) £ 0
then ce{vp;a€l(n+d)/2+ 21}

Let 0==vap, a € {(n+d)/2+2] . Direct computation

gives:
0 as-(n+d}/2
a+{n+d) /2 1-(n+d} /2525 (n-48) /2

(p)

(supp a(n,d) ‘?’y (%) = In (n-d) /25as(d-n)/2

—a+({n+d)/2 (d-n)/25as-1+(n+d)/2

0 (n+d) /2%a

Set a = v_1/2a(§1,31)(p) + v1i2a(ﬁ1,31)(p) . Now

we have
(supp a) (o) #0
only when o€ {v% ;a €[(E1'+31-+1 )/2 + 2]}

Let o=v%, o € [(E’1 + 31 + 1)/2 + E] . We have

Cw Aty W o wimm ae Meb w e w - - -——— e
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in the case k. >1

(0 a € —(?1-+H1)/2 - 1/2

1 a = -(i1-+51)/2 + 1/2

{supp a)(vap) =4 3 o = —(§1-+31)/2 + 3/2
S RS

Direct comparison with supp a(n,d)(p) gives

-(n+d)/2 = -(Ei’., +31)/2 -1/2 = n+d=iz1 +d 1
Since
-(k,+d,)/2+3/2
(supp a(n,d) Phy(y 17 p} =
(p) ~({n+d) /242
= (supp a(n,d) ) (v p) = 2 %
+ 3 = (supp a) (v- Fq78))/2¢3/2
It remains to show that the case k, = 1 1is not

1

possible. We have

supp (v—1/2a(1,51)(p) + v1/2a(1'g1)(o)) _

= supp a(2,§1)(p)

(p) (p)

The formula for supp a(n,qd) implies that supp a(n,d)
determines uniquely a(n,d)(p) with n £d. Thus

a(2,51)(p) = a(n,d)(p) implies n = 2. This is impossible
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since

(P)

Z{a(n,d) ) €1

This finishes the proof of the theorem.
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6. Ends of complementary series

The purpose of this section is to prove:
6.1. Theorem: Let n,d€EN, p¢€ cY . Then we have in R:

(i) v 25am,a ) v 25Gam,a P -

(p) ()

= Z{a(n+ 1,4) ) x Z(a(n-1,4) ) +

+ 2(a(n,d+ 1) P xzam,a-1n P

1) v 2uana ) v 2ham,a) 1)) -

(p)

= Liatn+1,4) Py xL(atn-1,a) ) +

+ Lia(n,a+ 1) P xLa(n,a- 1) )

1i1) v 726 (0,d) ,n x v 2u(5(p,d) ,n) =
= u(s(p,d),n+ 1) x u(é({p,d),n-1) +
+ u{d{p,d+1),n) xu(sd(p,d-1),n)

In the above theorem we take for p,q€Z

)(p))

z(alp,q = Lialp,q) ?') = w(s(p,p),q) = 2(8) = L(F)

if p=0 or g = 0.

By Theorem 4.1. it is enough to prove only the first
statement.

|
First we have the following simple
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6.2. Lemma: Let

_ i i
a; = (A1, ,Aki)E M(s(C)),
i=1,2,3,4. Suppose that a4s a, + a, and that there
do not exist be€M(s(C)) so that b<a, .
(1) If Z(a3) is a composition factor of Z(a1)x Z(az)
then
< <
k4, k3- k1 + k2 .
(ii) If L(a3) is a composition factor of L(a1)x L(a2)
then
k4$k3$k1 + k2
Proof: If Z(a3) is a composition factor of Z(a,) x z(a,),

then Z(aj) is a composition factor of £(a1)x C(az) what

is equal to z;(a1 + a2) in R. Thus

a3$ a1 + a2

by Proposition 7.7 of [22]. The definition of the order on

M(S(C)) implies that

.<.a3.$a¢.|+a2 .

84
Again the definition of £ implies

Sky,sk, otk

,k4 3 1 2 7

This proves (i).

- — _— ———y —-— - . - - - e . -
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Using Remark in 5.3. of [14] and Theorem 5.1.

of {14) we prove (ii) in the same way as {(i).
6.3. Lemma: Let
a, = (ﬂ1,...,ﬂm)EEM(S(C)) "

a, = (A

2 .,An)EZM(S(C)) .

m+1’°"°

Suppose that
< 4 1 <
Airjaj* g , 1£i,j<n .

Then the number of all composition factors of Z(a1)x Z(az)
is equal to the number of all composition factors of

z(a ) Z(az}.

Proof: First we observe that there exists p € C so

that
Ay € {(vpsa€m)

for all 1£is£n. If aga,+a then the cardinal number

1 2
~of a 1is n. Therefore the highest derivatives of all
composition factors of Z(A.l)x z(A,) have the same

graduation and they are composition- factors of
Dh(Z(A1)x 2(b,)) = Z(A1)x Z(Az) .

Since the highest derivative of an irreducible represen-

tation is irreducible, we have the lemma.

Now we go to

s e —— . m—rh ¢ mmeem e i m———— - - . - e = - - - e -
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Proof of Theorem 6.1. By Proposition 8.4. of [22]

we have that
z2(v%am,q) P v 24n,a) P

z(a(n+ 1,d8) P « am-1,a)?y -

{p)

1}

2(atn+ 1,d) Py xz@@am-1,a '°)

is a composition factor of
v1/2Z(a(n,d)(p)) x v_1/22(a(n,d)(p))
with the multiplicity one.

Since

v1/ (p)

22(atn,d) Py x v " 25(a(m,a) P -

- v 20 a@,m P x v 20,0 ),
Proposition A.4. of [ﬁ9] implies in the same way that
Lia(d+ 1,n Py x1n(a(a-1,n °)

is a composition factor with the multiplicity one. Since

(p) (p)

L(a(d+ 1,n) ) x L{a(d - 1,n) ) =
- z2(a(n,d+ 1) Py xz2(an,a- 1Py ,

for the proof of Theorem 6.1. it is enough to show that the

representation

v 22am,a) Py x v 1230 m,a) o))
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has at most two different composition factors.

Suppose that we have shown it in the case n = 4.
Now we shall show how this case implies the general case.

Note that

(*) v1/2Dh(v (p)

1/2

Z(a(n,d)(p))x v_1/22(a(n,d) ) =

=2 @m,a- 1P v 2@ m,a- 1) )

Since we suppose that
|

Z(a(n,n } % v 2Z(a(n,n) )

has at most two different composition factors, the fact
that the highest derivative of 7€ Irr 1is irreducible

and (*) implies that
v1/2Z(a(n,d)(p))x v_1/zz(a(n,d)(p))

has at most two different composition factors when
d En. The case of d>n 1is a consequence of the formula

(*) and Lemma 6.3.

It remains to consider the case of d = n. Let =

be a composition factor of
V22 @ mn,m P x v 25 m,n P .

We shall show that w must be either

(p) (p)

Z{a{n+ 1,n) )

) x 2{a(n-1,n)

or
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(n)

Z(a(n,n4—1)(p))>:Z(a(n,n-1) )

and this will prove the theorem.

Since mn 1is a composition factor of the end of
complementary series, we know that =7 1s unitarizable.

By Theorem 4.1. we can write

(65) (ot}
. 'ET g THT Vogry \

i j=1 ]

1 [} 1 u .
where ni,di,nj,deEN, pi,ij C and 0« aj< 1/2.

The fact that

/2 ) -1/2

supp T = supp (vT a(n,n)(p + v a(n.n)(p))

implies that

(P.)
n o= TET Z(a(n,,d,) *)
i=1 ol

"
o
(8
©

and again the egquality of supports implies 0y
o= T ztatm,.a (P
i=1 '

Let us consider more carefully the equality of

supports:

/2a(n'n)(p) -1/2a(n'n)(p)) -

]
supp (v + vV

= E supp (a(ni,di)(p))
i=1
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Note that the left hand side is supported in {(vV¥pia€ (1/2+2)).

Thus all ni + di are odd numbers. Now the formula for the

{p)

support of af(n,d) in the proof of Theorem 5.1. gives

/2p

(supp (a(n;,a,) Py ) =

= min {ni,di}

and also
(supp (v1/2a(n,n)(p) + v-1/2a(n,n)(p)))(v1/zp) =
= 2n - 1
Thus
P
(1) ] min {n;,d;} = 2n -1
i=1

By (i) of Lemma 6.2. we have

p

(ii) 2n - 1 s ) n, s 2n
. i
i=1

Note that
v =TT 2latngd ) -

(p)
L(a(di,ni) )

'—‘
1]
-

;

c e e Lt e R v v s e - A e cw -
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is a composition factor of

L1772 (p), 1/2 ) (0))

Z(a(n,n) x v Z{a(n,n
=v1/2L(a(n,n)(p)) X v-1/2L(a(n,n)(p))
Now (ii) of Lemma 6.2. implies
P
(iii) 2n-15 Y 4, s 2n.
i=1

Since a(r,r)(m

is supported in
{\Jap ; 0 EX}
we have that nia\:di for all i . We shall show that

(iv) In, - 4d,| =1 for 1<isp

Let us suppose that ni.>di . Then n, - d. >1 and

E nozng o+ ) min {n,,d.} =

=n; - di + .E min {nj,dj} > 1 + 2n - 1 = 2n
j=1
This contradicts to (ii).

The case of di >n . can be checked analogously.
i
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n-1/2
P

The representation v is in the support of

v1/2a(n,n)

(p) v-1/2 (p)

+ a{(n,n)

and v%p with o >n - 1/2 4is not in the support.

Let vn_1/2p be in the support of a(n1,d1)(p) . Now

we know that
max {n11d1} =n + 1
By (iv) we have
{nq,a;} = {n,n + 1} .
Repeating the previous step we obtain that
{n,,d,} = {n,n - 1},
and also that p = 2.
Now we have four possibilities for 7 :

Z(a(n,n-+1)(p)) xZ(a(n-1,n)(p)),

(p)) {(p)

Z(a(n + 1,n) x2(a(n,n-1) ),

Z(a(n,n-+1)(p)) xZ(a(n,n-1)(p)),

z(a(n+1,n) Py xz(atn-1,n Py,

Since the first two possibilities do not satisfy either

{ii) or (iii) we have that m must be either

Z(a(n,n-+1)(p)) xz(a(n,n-1)(p))
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or

Za(n+1,n). Py xz2¢a(n-1,n Py .

This proves the theorem.

6.4. Remark: In the proof of (ii) Lemma 6.2. we have
used one result which is equivalent to the fact that
t:R—> R is multiplicative, i.e. a ring morphism,

It was announced that J.N. Bernstein have proved it.

The written proof of that fact known to this author does

not exist.

Let us denote by Rp , for p € C , the subgroup of R

generated by all w € Irr with
supp ™ € M({v%p , a€Z}).

Then t(Rp) < Rp . Let tp be the restriction of t
tp:Rp — Rp

For the proof of the multiplicativity of t it is enough

to prove the multiplicativity of tp for all op .

J.L. Waldspurger proved in [21] the result equivalént
to the multiplicativity of tp , for great number of

representations p € C.

The proof of (ii) of Lemma 6.2. which is not using

the multiplicativity of t , one can obtain using Lemma 3.2.
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and the factorisation of intertwining operators

obtained by F. Shahidi in [15].

At the rest of this section

(1,0) — 1%0, Alg Gn>iAlg G, — Alg Ghsn

will denote the induction functor.

6.5 Proposition: Let n,d(ZN,p(iCu. There exists an exact

sequence of representations

(p)

0 —> z(a(n+1,d) P xzan-1,8 ) —

1/2

— v 25 m,a) P2 am,a) Py —

—> z(a(n,da+1) ®Yyxz(am,a-1 ©

) — 0 .

This seguence does not split.

Proof: We prove the proposition by induction with respect

to d. For d = 1 we know that

0172202 m,1) P %o 220 m, 1) ©)) = v 20 (a1 Py xu 1 2L ain3 )

has a unique irreducible guotient (properties of the Langlands

classification). This guotient is

Lia(z,a) ®)) = z(at@,2) P,

- —— - . -, e e = . v e — 4~ - - e mee - . R . .. -
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Now Theorem 6.1 implies the proposition for 4 = 1.
Suppose that we have proved the statement of the proposition

for some d. Consider the case of 4 + 1.

For 1 € Alg Gm , J.N. Bernstein and A.V. Zelevinsky

defined in 4.3 of [3] derivatives T(k) € Alg Gm—k’ k=0,1,...,m.
Recall that T(k) is called the highest derivative if
X w0 ana %) 20 for k<isgm.

Let 1, € Alg € and let o, be the highest

1
derivatives Of T. (i= 1'2) - By CorOllary 4. 14.’ (C) Of [3] 7
1

the highest derivative of Ty X T, is isomorphic to o, X 0,

We know that n==v1/22(a(n,d+ 1)(p))xv_1/2z(a(n,d+1)(p))
has two factors with multiplcity one (Theorem 6.1.). Suppose
that 7 is acompletely reducible representation. Since the
highest derivative of an irreducible fepresentation is
irreducible, we get that the highest derivative
Z(a(n,d)(p))x v-1z(a(n,d)(p)) of m has composition series
of maximal length 2. Since v1/2(z(a(n,d)(p))x v-1Z(a(n,d)(p)))

\)1/2Z(a(n,d)(p)) X\)-1/2 (O)

Z(a(n,d) ), the inductive assumption
implies that the highest derivative of w is not completely
reducible. From the other side, the complete reducibility of
n  implies the complete reducibility of the highest derivative
of 7. This is a contradiction. This proves that 7 is not

completely reducible.

Now the fact that Zz(a(n,d+2) ?')xzta(n,a)®)) is a

quotient of 1 we obtain in a similar way from the



inductive assumption using the exactness of the functors

which enter in the definition of derivatives ({B],

Proposition 3.2.).

Considering contragradients one obtains

6.6. Corollary: There exists an exact seguence

0 —»> z{a(n,d+1) ®)) x z(a(n,a-1) ‘°

) ——>

s v 2% @ m,a Py x V%5 m,a) Py

> z(a(n+1,d) ")) x z(atn-1,4) PY) — 0.

This sequence does not split.



7. The topology of the unitary dual of GL(n,F).

Let X be a Hausdorff topological space possessing

a countable basis of open sets. For né€N let Sn be

the permutation group of n-elements which acts on x"

by the permutation of coordinates. On x®  we have the
natural product topology. We supply the quotient space
Xn/Sn' with the finest topology so that the canonical

projection

A X" = Xn/Sn

is continuous. Then An is also open mapping. One can
directly obtain that (An(xi))i ’ xiE X" , converges to
An(X), x € x° , if and only if there exists a sequence

. n
(oi) esn so that (oixi)i converges to x in X,

We supply

M(X) = u  x%/s

nz0 n

with the topology of the disjoint union.
Let
B = {Z(a(n,d)(p)).'n('z(a‘(n:d)(p)),a) ;
n,deN, pect , 0 < a < 1/2}

and

(p) (p)

B* = {z(a(n,d) ).m(Z(a(n,d) ) ,a);

n,deER,pec”, 0 s as 1/2} .



We consider B < B* < R,
The set CY is the disjoint union of
uM(Fyp, pe Y
Oon Uu(Fx)p we consider the unique topology so that
X b oxo . UNEN) - UR(FR)p

is open and continuous mapping. Note that there is a finite

subgroup X of UU(FX) so that we have bijection
vt (FY /x — M EN D

which is also homeomorphism. We supply c" with the topology
of the disjoint union of the sets Uu(Fx)p. From the first
section we obtain that (pn) converges to p if and only

if c¢h converges to ch. . .
Dn p
We consider

X = (NxNxcY) u@mxExcyx[0,1/2])
with the topology of disjoint union. The mapping

o :+ X —> B* ,

(p)
(n,d,p) > Z{a(n,d) ) .

(n,d,0,0) > 7(z(ain,d Py ,a),

is a bijection. We supply B* with the unique topology

so that ¢ is a homeomorphism.



For o€ B* 1let cont o

composition factors of o

be the set of all

Note that

cont (n(Z(a(n,d)”),1/2) =

= {Z(a(n-+1,d}(p))x Z(a(n-1,d)

(P)

)

f

2(atn,d+ 1) Py v z2(a(mn,a-1) Py,

and in all other cases

cont (o) = {o}

For m = (01,...,0n)E M{(B*} set

cont m = {11 X .

Xx T 3 1. €Econt o.}
n i i

By Theorem 4.1. the mapping

©: M(B) - Irru

is a bijection.

7.17. Theorem: Let

X c Irru. Then

7 (011"‘101.1)

in Irr_u is the union of all

cont m

when m goes through the closure of 0

Proof: Let CZX Dbe the closure of X

Y = u cont m

meCe o~ 1x

1

>

X

and

in

g

the closure of X

M(B*}).
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Now the first section implies
Yy o C£ X .

Suppose m € C£L X. Then 1 is a limit of some sequence
(nn) in X. In the same way as in the proof of Theorem 5.1.

we can pass to a subseguence so that 0_1(nn) converges in

M(B*). Let m = lim 0O

n
of all limits of (9-1(ﬂn)). Thus 7w € Y. Therefore,

(wn). Now cont m equals to the set

Y = £ X,

and this finishes the proof.
We have one direct consequence of Theorem 7.1. and
Proposition 2.4.

7.2. Corollary: If E and F are local non-archimedean

fields, then GL(n,E)A and GL(n,F)A are homeomorphic.

7.3. Remark: By Proposition 2.3. IrrY is homeomorphic

to

TT Glc,flc)) .

fEM* (C|~)
A
Thus for the topology of Gn it is sufficient to know
A
G(p,n) , p €C|_, ne€EwN .

A
First we note that G(p,n) are homeomorphic for all

p €C|_ . Thus we define

A
G(n)



Ial
to be G{p,n).

Now it could be interesting to find geometric

’ A
realisation of topological spaces G(n)

A
One sees directly that G(1) 1is homeomorphic

to the circle.

Let X be theMobbious strip. Take two copies of
X and identify corresponding interior points of these
two copies of X. Let X be the topological space
obtained in this way. Then 6(2) is homeombrphic to X .

Ial
We expect also that G(n) for n>2 have some

reasonable geometric description.
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