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Introduction

Let G be a locully compact group. The set of all

equivalence classes of irreducible unitary representations
A A

of G is denoted by G. The set G is ealled the unitary

dualof G and it earries a natural topology (see [5]).

Let F be a loeal non-archimedean field. In this

paper we eonsider properties of the representation theory

of GL(n,F)-groups related to the topology of the unitary

dual of GL(n,F). The main results of this paper are:

classifieation of all isolated points modulo unramified

eharaeters in AGL(n,F) , deseription of composition factor

of ends of complementary series representations and

description of AGL(n,F) as (abstract) topologieal spaee.

For reductive groups over loeal fie~ds the unitary

dual as topologieal spaee has been determined as this author

knows for the following groups: SL{2,~) by J.M.G. Fell in

[ 6] (1961 ), SL (2 , JR )
v

by D. Milieic in [11] (1971), uni-

versal eovering group of SL(2,ffi) by H. Kraljevic and
v

D. Milieic in [10] (1972), universal eovering group of

SU(n,l) by H. Kraljevic in "[9] (1973) and SL(2,k) where

k is non-archimedean by this author in [17] (1982).

The unitary dual AGL(n,F) as the set is parametrized

in [19]. The results we need in our study of the topology of

the unitary dual are eontained in [6],[12] and [18].
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Now we shall describe more detailed the content of

this paper.

In the first section we collect the basic

definitions and results related to the topology of the

unitary duals of reducitve groups over loeal non-archi-

medean fields. In this section we introduce the nation
A

of isolated point in G modulo unramified characters.

Let UU(G) be the group of all unitary unramified characters
A A

of G. For TI E G the set UU(G)n c G is always closed

and connected. Therefore each open and closed subset of G

containing TI cantains also UU(G)TI . Therefore we define
A

TI E G to be isolated modulo unramified characters if
A

UU(G)TI is an open subset of G. If G has no non-trivial
!

split toruses in the center (for example if G is semi-

simple), then this nation is equal.to the standard notion

of isolated point (or isolated representation) in G.

·The second section deals with the basic topological

properties of
A

GL(n,F) .

In the third section we introduce the notation related

to the non-unitary dual of GL(n,F) and recall of the main

results of Bernstein and Zelevinsky from [3] and [22]. We

recall of Langlands and Zelevinsky classifications.

In the fourth section we recall of the parametrisation

of
A

GL(n,F) obtained in [19]. Set

Irru = U
n~O

AGL(n,F)
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uIrr as topologiealspace with the

topology of the disjoint union. Let DU be the set

of all classes of square integrable representations

in Irru . We attached in [19] to each 6 E DU and

each natural nurnber n an .irreducible unitary

representation

u(o,n)

and to 0 < a < 1/2 we attached a cornplementary series

representation

n(u(o,n) ,n).

Now each ~ E Irru is in a unique way para601ically

induced by a tensor product of representations u(6,n)'s

and n(u(6,n) ,u)'s (see [19] or the fourth section 'of

this paper).

In the fifth section we classify all isolated.points modulo

unrarnified characters in GL(n,F)A. Let CU be the set

of öll classes of cuspidal representations in uD . Then

to each p E CU and each natural number m by the

J.N. Bernstein description of DU we can attach a square

integrable representation Ci (p ,m) (see the fourth section).

Now we can describe the isolated points module unrarnified

characters: TI E Irru is isolated modulo the unrarnified

characters if and only if TI = u(8(p,rn) ,n) for some

p,rn,n with m * 2 and n * 2.
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The composition scries of ends of complementary

series 11(u(ö,n) ,a) are described in the sixth section.

We prove that the end of complementary ser ies 11 (u (eS (p, m) , Ci.)

has exactly two different irreducible subquotients, each

one has multiplicity one and one of them is parabolically

induced by

u(6(p,m) ,n+1) 0 u(8(p,m) ,n- 1)

while the other one is parabolically induced by

u(6(p,m+ 1) ,n) ~ u(o(p,m- 1) ,n).

We expect that we have the similar situation in the case

of archimedean fields (see [20] and also [16]).

In the seventh section we give a description of

GL(n,F) A (or IrrU
). as abstract topologiealspace.

J.N. Bernstein proved that the parabolically induced

representation of GL(n,F) by an irreducible unitary

representation of Levi subgroups of a parabolic subgroup

of GL(n,F), is irreducible. Roughly speaking, by the

Bernstein result the topology of GL(n,F)A is locally

described by the obvious topology on the Langlands para-

meters except at the ends of complernentary series where

we know what is happening by the previous section. Prom

this realization of GL(n,F)A we can conclude that

A
GL(n,F) are all homeomorphic, for fixed n and different

Fis.
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In this paper the field of complex numbers is denoted

by cr and the subring of real anes is denoted by ~.

The subring of the rational integers is dcnoted by ~ and

the subset of the non-negative ones is denoted by Z~. The

subset of positive ones is denoted by N.

The basic ideas of the topology of unitary dual
v

I learned from D. Milicic. Discussions with H. Kraljevic

helped a lot to improve my understanding of this

topological spaces. I use this ocassion to express my

thankfulness to the both of them.

I am gratefull to Max-Planck-Institut für Mathematik

for hospitality during the academic year 1984/85 and

for excellent working conditions according to which

the results of this paper were obtained.
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1. Basic facts about topology of the dualspace of a

reductive group over Iocal non-archimedean ficld

Let G be a locally compact group. The set of

all equivalence classes of irreducible unitary represen­
1\

tat ions of G is denoted by G .

We fix a left Haar measure on G. Let CO(G) be

the convolution algebra of all compactly supported

continuous complex-va 1 ued functions on G. For each uni tary

representation (TI , H
TI

) of G and f E Co (G) set

TI (f ) :; J f (g ) TI (g) dg •
G

Let 11 f 11 TI be the operator norm of n(f), and let

1I f 11 be the suppremum of all 11 f 11 when TI goes
TI

over all unitary representations of G. The completion of

Co{G) with respect .tc norm 11 11 is denoted by C*(G)

and called the C*-algebra of G. Clearly C*(G) is

C*-algebra. If TI is a unitary representation of G then

TI lifts in a natural way to the representation of the

C*-algebra C*(G).

Let Prim C*(G) be the set of kerneIs of irreducible

non-zero representations of the algebra C*(G) on vector

spaces. For T c Prim C*(G) set

Cf. (T) = {I E. Prim C* (G); n J CI} •
JET

Now Cf. is the closure operator for so-called Jacobson
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topology on Prim C*(G).

There is a canonical surjection

1\

G ~ Prim C*(G),

lf ~ ker TI •

1\

We supply G with the weakest topology so that the

above surjection 15 continuous.

1\

The set G supplied with the above topology is

called the dual space of G.

In the rest of this paragraph, G will denote the

set of all rational points of a connected reducitve group

defined over a non-archimedean loeal field.

The group G is totally disconnected. There exist

a countable basis of neighborhoods of identity, consisting

of open and compact subgroups of G.

The subalgebra of all locally constant functions in

C (G)
c

is denoted by H(G)
co

or C (G). Let K be an open
c

compact subgroup of G. The subalgebra of all functions in

H(G) constant on double K-classes in G is denoteö by

H(G,K) .

For
I\.

( TI , H ) € G set
TI

co
H = n(H(G))H . Now

TI TI

co
H

TI
is

G-invariant and poss~s5es aG-invariant inner product.

Für each
co

vEH
TI

the stabilizer of v in G is open,



-)-

0nd fo~ each open compact subgroup K in G K-invariants

in
(I)

1I are finite-dimensional. Thus the represen­
1T

tation
00 00

( 1f , H )
11

1s srnooth and admissible(here

This representation of G is algebraically irreducible

and possesses aG-invariant inner product (which is unique

w 00

up to a constant). The mapping (TI,H) ~ (TI ,H) is a
TI TI

/I,

bijection from G onta the set cf all equivalence classes

of irreducible smooth admissible representations of G

which possesses G-invariant inner product. When there is no

possibility of confusion we shall not make difference between

an irreducible unitary representation (TI,H) of G, its

class in G and its smooth part
00 00

(TI ,H ).
TI

The set of all equivalence classes of irreducible smooth

admissible representations will be denoted by G. An

irreducible smooth admissible representation (TI,V) will

can be identified with the set cf

be said unitarizable if
/I,

inner product. Now G

V possesses an G - invariant

......
all unitarizable classes in G.

By [1 ] G is a lim'inal group, or in other terminology,

G is CCR group. It means that TI(C*(G)) consists of com-
/I,

pact operators for TI E G

Since G is liminal, the canonical mapping

1\

G --7 Prim C*(G)

is b~jection and thus it is homeomorphism ([5), 4.4.1.). Points
/I, /I,

in Gare closed ([5] , 4.4.1.). The topology of G has a
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countable basis of open sets since C*(G) is separable

([5] , 3.3.4.).

1\

Let T c G . Since G has the topology with countable

basis, Ci T is just the set of all limits of convergent
1\

sequences in G.

Let X,Y be two topological spaces with countable basis

of open sets and f:X -? Y mapping. One can see directly

that f is continuous if and only if for each convergent

sequence (x ) in X and each limit x of (x ), (f(x »n n n

converges to f (x) . Similarly, continuity cf f is

equivalent to the following property: if (xn ) is a

convergent squence in X and x a limit of (x ), then
n

there exist a subsequence

converges to f(x).

(x ) of
nk

(x )
n

so that (f (x )
n k

For a fixed open cornpact subgroup K of G, the

function

1\

on G is bounded ([1] , Theorem 1).

For an admissible srnooth representation (TI,V) of G

we shall denote by

the function

(TT,H )
11

e
Tl

its character. For fixed

o (f)
Tl

fE.H(G),

A V
on G is bounded. It rneans that C*(G) is by D. Milicic
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C~algebra with bounded trace ([12]). Therefore, we
v A

have D. Milicic description of the topology of G.

Let H(G)* be the space of all linear forms on
A

H(G) supplied with the weak topology. Let X c G. Set

X* = {0 ; (TI,H ) EX}. We denote by CR. X (resp Ci x*)TI TI
A

the closure of X (resp X*) in G (resp. H(G)*). By

D. Mili~ic results in [12], (TI,H ) E Cl(x)TI if and

only if there exist ~ E Cl(x*), a discrete closed subset
1\

s of G and positive integers E S so that

e + L
TI oES

n o
eTI lP.

Note that in H(G)* , a sequence (~n) converges

to lP if and only if (lPn(f)) converges to lP(f) in

a: for any fEH (G). For Y ~ H (G) *, Cl (Y) consists of

all limits of all convergent sequences contained in Y.

Let °G be the group of all 9 E G so that I X(g) IF = 1

for all F-rational characters of G. Here I 'F denotes

the normalized absolute value on F.

A continuous homomorphism X from G into o:X will

be called character of G. If the image of X is contained

in T = {zE<I:i I z I = 1 } , then X will be called unitary

character of G. If X is trivial on °G then X will be

called unramified character of G.

The group of all unramified characters of G will be

denoted by U(G) and U(G) is endowed with the topology
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of uniform convergence over compacts. The subgroup of

all unitary characters in U(G) is denoted by UU(G).

The group G/OG is free abelian of finite rank. If

n = rank (G/OG) then U(G) is isomorphie to (a:x) n

and UU(G) to ('1[') n .

The groups U(G) and UU(G) aet on G in the

natural way. Also UU(G)
1\

acts on G.

Let P be'a parabolie subgroup of G, and let

P = MN be Levi deeomposition of P. If 0 is a smooth

representation of M, then Ind (olp,G) will denote the

induced representation of G fram P by o. The induction

we consider' is normalized.

1\

Let (TI) be a convergent sequence in G. Then by
n

Theorem 5.6. of [18] there exist a parabolie subgroup

P ; MN of G, an irreducible cuspidal representation 0

of M, a convergentsequence (Xn ) of unramifie9 characters

of so that. TI
n

is a subquotient of Ind(x o!p,G)
n

for n ~ n a and each limit of (TIn) is a composition factor

of Ind ((lim X )olp,G). Therefore, the set cf limits is
n n

finite and its cardinal nurnber is bounded by the order

of the Weyl group of G.

The above discussion on convergent sequences implies
v

that the set S in the D. Milicic description of the
A

topology cf G must be finite.
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We shall note now few facts about convergence of

seguences.

A

Let (TIn) be a convergent seguence in G. The
v

D. Milicic description of the topology implies that

there exist a subsequence

converges in H(G)*

of (TI )
n

such that

lim
k

I
A

aEG

n Go a

where n a are non-negative integers, different from
A

zero only for finitely many a E G •

A
Let (TI) be a sequence in G and suppose that there

n

exist a subsequence

H(G)*. Then (TI )
n

(TI ) so that lim G
n k TInk

is not convergent sequence.

= 0 in

Let
A

(TI) be a sequence in G. Suppose that
n

(8 ) converges in H(G)* to a non-zero element. Suppose
TIn

,......
that there exist a finite set S c G and positive integers

n , a E S so that
a

1im 8 ;:;; L n 8
TI a an n aES

A
Then ( TI ) is convergent , S c G and S is the set of

n

all limits of ( TI ) ([12])
n

For a parabolic subgroup P = MN of G and

irreducib1e smooth cuspidal representation a of M

we shall denote by G(a) the set of all irreducible
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subquotients of Ind (xolp,G) when X runs over U(M).

Set

1\ 1\

G(o) = G(o) n G

By [18]
/

, sets
1\
G(o) define a partition of

1\

G and
A

they are open and closed subsets of G. Also sets G(o)

define a partition of G.

Suppose that P. = M.N. , i = 1,2 , are two associated
111

parabolies and

Then

0. , i = 1,2 , associated representations.
1

Let P = MN be a parabolic subgroup in G and let

01'02 be irreducible cuspidal representations of M.

If G(01) = G(02) then there exist an element w from

the Weyl group of G norrnalizing M so that

where
-1

wo, (m) = 01 (wrnw ) (see [18])

On the set of all irreducible cuspidal representations

we define an equivalence relation by T ...... 0 if and only if

U(G)T = U(G)o . The equivalence class of 1 will be

denoted by [1].

Let P = MN be a parabolic subgroup of G and °
a smooth admissible representation of M. The formula for
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the character of the induced representation in [4]

implies that

U(M) ----+ H(G)*

is continuous (see also Lemma 2.1. of [17]).

Let P = MN be a parabo1ic subgroup of G. Suppose

that (0) is a sequence of admissible representations
n

of M and 0 an admissible representation of M such

that 1im G = e in H(M)* . By [4] there exist a
n 0 0n

linear mapping

A : H(G) ~ H(M)

so that

G1nd(O Ip,G)
"n

= G 0 A ,
o

n

Therefore

G = G 0 A·Ind(oIP,G) 0

1im G1nd(o Ip,G) = G1nd(olp,G)
n n

Let 0 be an irreducib1e cuspidal representation of

M where P =: MN . is a parabolic subgroup of G. By Theorem 3. 1

of [18] the set of all X E U(M) so that Ind (xolp,G)

contains a unitarizable subquotient,is a compact subset of

U (M) •
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"is a sequence in G(o). Then

TI is a subquotient of some Ind (X olp,G). Now we cann n

take a subsequence (TIn so that (Xn ) converges.
k k

Using Lemma 3.5 and previous considerations we obtain

that (TIn) contains a convergent subsequence.

......,
For an admissible representation TI of G, TI will

denote the contragradient representation of TI ,and TI

will denote the Herrnitian conjugate of TI. Set
+

TI = TI ,

Then +
TI is called the Hermitian conjugate-of TI. Let 0

be an irreducible cuspidal representation of M where

P = MN is a parabolic subgroup of G. Since each irreducible

cuspidal representation can be twisted by an unrarnified

character to a unitarizable"representation, we have that

«;(0»+ = G(o).

"Let 0 E G . By the description of the topology

"of G we have directly that

x , )0 Xa

"-----)J- G

is continuous. Since UU(G} is connected set, UU(G)o

is also connected set. We shall now show that UU(G)a is

"also a closed subset of G. Let TI E Cl(UU(G)a). Then there

exist a sequence (TI) in UU(G)o converging to TI.
n

Set TI = X 0n n
with Xn E UU(G). Since UU(G) is compact,

we can find a convergent subsequence (X ) of (X)
n nk
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Set X ;:: lim Xn
. Now (X 0) converges to 11 , and

k k nk
also XO is the only limit of (Xn

0) . Thus XO = TI

k
and TI E UU(G)o. This proves that UU(G)o is closed.

" "If 0 E G and U c G is an open and closed subset

containing o then it must contain uU (G)o.

A
1.1. Definition: Let 0 E G • We say that 0 is isolated

in G modulo the unrarnified characters if UU(G)o is

open set.
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2. Basic facts about the topology of the dual space

of GL(n,F).

Let F be a non-arehimedean loeal field. We put

G = GL(n,F). Let Alg G be the eategory of all smooth
n n

representations of G
n

of finite length. Let o. E G
1 n.

1

i = 1,2 and let P be the standard maximal eompaet

subgroup whose Levi faetor is naturally isomorphie to

G x G • The representation of G indueed, fram P
n, n 2 n 1 +n 2

by 0
1

f;) O
2

is denoted by 0
1

x O 2 • The induetion i 5

normalized.

Let R be the Grothendieck group of Alg G . Set
n n

R = e
n2:0

R
n

The induction functor

(T ,0) +->- T x 0 , Alg G x Alg G ~ Alg G
n m m+n

induees the structure of a graded associative commutative

algebra on R. The graduation will be denoted by

Irr = U
nr:O

Irru = U
n,=O

G
n

A

G
n

We supply Irru with the topology of disjoint union. We

consider Irr as the subset of R. In fact, Irr is a
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tl-basis of R.

Let C(G) be the subset of all classes of cuspidal
n

representations in Irr. Set

C = U

n~'

C(G )
n

where

C
~

u
= C n Irr

= C u (C ~ C) U (C e- C ~ C) u ...

C ~ ••• ~ C = {P1 ~ P2~· •• 0 Pn\ J
J

n-times

p.fC}
1

,.....
If p. E G , then P1 ~ ... 0 Pn

is considered to be
1 m·1

in G x x G
m1 m

n

For a set X,M(X) will denote the set of all finite
•

multisets in X . It is the union of all Xn , n :;;:: 0 ,

derived by the action of symmetrie group S acting by
n

n.
permutation of coordinates. For x. E X 1 i = , ,2 , we

1
,

consider (x
1

,x
2

) E
n,+n2

." This induces the structureX

of semigroup on M(X). This semigroup will be denoted

additively.

We have a natural projection

K:C --;,... M(C)
o

given by
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be a standard parabolie subgroup of G
n

Then Levi faetor M is ismorphie to some produet

G x ••• x
n.

1.

where n 1 + ••• + nk == n. Now an irreducible euspidal

representation of M is isomorphie to

where p. E C (G ) •
. 1. n.

1.

We have also

U(M) ;: U(G ) x ••• x U(G ) •
TI 1 n k

Let 0 == P1 ~ ... ~ Pk E C
0

• Then 0 is a euspidal

representation of a parabolie subgroup of suitable

Sinee n is eornpletely determined by 0 I we put

G
n

G(0) == G (0)
n

1\

G (0)
1\

== G (0)
n

Let cEM(C) I e*ß . Choose o E C so that c(o) == c.
o

....., 1\

Sinee d(a) -and G(o) do not depend on such choice of

o we set

G(c) == G(o)

1\ 1\
G(c) == G(a)

Let cl~ be the set of all equivalence classes of

the eigenvalence relation in C. There is the
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projection map

tP : C -> C l~

This map lifts to the map

Let y E cl~. Choose cEM(C) so that $ (c) == y • Now
,....,.
G(c) does not depend on e, but only on y . Thus we

define

G(y) ~ G(e)

Let y E M(Cl ........ ). Choose (P
1

, ••• ,Pm) E M(C) so that

$((P 1 , ••• ,Pm)) ~ y. We define gry to be gr P1 + ... +gr Pm·

From the first section one obtains directly

2.1. ~roposition: (i) The disjoint union of all

G(y), y E M(C!,....,.)

equals to Irr.

(ii) The disjoint union of all

1\

G(y) , yEM(Cl....)

equals to
u

Irr .

(iii) Let n 2: 1. The disjoint union of all

1\

. G(y), y EM(CI,....,.)

with gr y == n equals to
1\

G
n
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Note that the inclusion CU ~ Cinduces the

bijection

and thus the bijection

Let

say that

y = (y" ••• , Yn) , 6 = (6" ... , 6rn ) E M(C 1""). We

y and 6 are disjoint if y. * 6. for all
1. J

, ~ i $ n and ,:;; j $ rn.

For c, dEM (C) we say that are disjoint if" 4> (c)

and 4>(d) are disjoint. For p,aE C we say that areo

disjoint if K(p) and K(O) are disjoint.

By Corollary 8.2. of [2]

closed subset of R.

u, Irr is rnultiplicatively

2.2 Proposition (i) The rnultiplication of R defines

the structure of topological semigroup on Irru

(ii) If c"c2 EM(C) then

(iii) If c" c 2 E M (C) are not connected then

1\ A
is a homeomorphism of G (c,) x G (c 2 )
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Proof: The statement (ii) is a direct consequence of the

exactness of the induction functor. Since Irru
is a

disjoint union of
1\
G '5

n
it is enough to show that

(T ,0) t->--

1\ A
G xG ->­m n

1 x 0

1 2is continuous. Suppose that «1,,1.»,
1. 1. l.

(1
1

,1
2 ). Then (1~), converges to 1

j
1. 1.

t
converges to

for j = 1,2.

Now we can pass to a subseguence to that

lim 0. =
i 1~

1.

I
p

where n
j

. ~ 1 for j = 1 , 2 . Now
1 J

1im 0 I 1 2 02 = n n
i 1 Pl P2 Pl x P 2T.X 1. P1 ,P21. 1.

. 1 2 . 1
Sl.nce n ln2'=

1 1

This proves (i).

1 2
( 1. x T . ). converge s to

1. 1. 1.

1 2
T x 1

Let cl' c 2 E M (C). Suppose that cl and c 2 are

not connected. Then ana10gicallyas in Proposition 1.5.2.

of [23] we obtain that

(T,O) ---> T x 0 ,

1s a bijection. Denote this bijection by ~. Thus the
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rcstriction

is an injection. Now we shall show that it is also
A

a surjection. Let pE G(C
1

+c 2 ). There exists

Pi EG(c i } so that p = P1 x P2 . Since p is unitarizable

we have

We noticed that p: E G(c.). Thus
1. 1.

Corollary 8.2. of [2J implies that

+
p. = p . i = 1,2. Now

1. 1.
A

p. E G(c.}. Thus
1. 1.

A A
'i':G(c

1
} x G(c 2 ) ~

is a bijection. We shall show now that
-1

'i' is continuous.

o 1 2
T.XT.

1. 1.

1 2 1 2Suppose that T .x T . converges to T x T in
1. J.

j j 1\
T 1 ,T E G(c

j
) . Passing to a subsequence

we can suppose that e . , j = 1,2, are convergent. Now
T~

J.
converges and we put

lim 0 ::: Ln 0
i. 1 2 o 0T.XT.

l. J.

We know that n
1 2 * O. Set

T XT

1 im 0 = I ·i 0
T~

n
i 0 0

J.

Then

L n 0 = I 1 2 0n no 0 T P .TxP
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Now the fact that q/ is a bijection and the linear

independence of the characters implies

Thus

that

converges to

is continuous.

1 2
n 1 n 2:1-' O.

T T
T

j
, j = 1,2. This proves

Let CE Cl ...... and n E ~ • We de fine
+

1\

= G«c,c, ... ,c)).

L I )

n-times

1\ 1\
For n = 0 we set G(C,O) = GO

The set of all functions from cl ...... to ~+ with

finite support will be denoted by M*(CI ...... ). Note that

M*(cl ...... ) is in natural bijection with M(C! ...... ).

Now the previous proposition implies:

2.3. Proposition: (i) The disjoint union of all

1\

r--T G(c,f(c»
fEM* (c I......)

is horneomorphic to uIrr .

(ii) Let n ~ 1. The dis joint union of all

1\

r--T G(c,f(c»
fEM*(CI ...... )

with

I f(c)grc
cEcl ......

is homeomorphic to

= n

1\

G
n
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2.4. Proposi tion: Let n ~': 1. The set

C (G ) 1n "-J

is countable infinite.

Proof: Retall that

A
C(G ) [ :: (C(G ) n G ) I ::n "-J n n "-J

1\

:: {uu (G ) p; p E C (G ) n G }
n n n

1\
Since U

n
(G ) P I P E C (G ) n Gare j ust

n n n

1\
G (p). and these

n
1\

are open and closed subsets of Gn I we have that C (G ) In ......
A

is countable since G has a countable basis of open sets.
n

It rernains to show that C (G ) I is infinite.n "-J

Note first that C (G ) * ~ . (see for example [7]).
n

Let P E C(G )
n

and let be the central character

of P . Let T be the maximal eompaet subgroup in pX .
Reeall that the center Z (G ) of G is isomorphie to

n n

FX and thus we identify Z{G ) with pX .
TI

Suppose that o E U(G )p. Then obviously
n

Now the family

A

[w{X 0 det)o][T;x E p

is infinite since
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n A
X I X E T

is infinite. Otherwise there exist an exponent rn so

rn A rn
that X = 1 for all X E T what implies that x = 1

A
1\ A

for all x E T ;: T. This is impossible since F is a

field and T is infinite.

The above considerations irnply

infinite.

that C (G ) 1
n

js

For X E U(G 1 ) = u(FX)

(X 0 det)n also XTI.

f"oj

and TI E Gn we shall denote

Very often we shall identify U(G,) = U(px) with

U(G) by the identification X~ X 0 det.
n
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3. Parametrizations cf the non-unitary dual of GL(n,F)

Let m E N. Set

v (g ) = Idet (g) Ip

where Ip is the norrnalized absolute value on F.

For p E C and n E N set

Ld n] (P) = {v- (n-1 ) /2 +i p; 0 ~ i ~ n - 1} .

The set ß[n] (p) is called a segment in C. The set of all

segments in C is denoted by S(C).

If ß =ß [n] (p) E S (C), then we denote

ß - = {\I- (n-1 ) /2+ i p 0 $ i S n - 2}

ß = {v- (n-1 ) /2+ i p; 1 S i S n - 1}

Let a = (6
1

' • • • , 6m) E M (S (C) ) • Set

a = ( 6~ , ••• , 6~ )

Consider 6. c C as multisets in C in a natural way. Then
1.

we define

s upp a = 6
1

+ ••• + 6rn E M (C)

The number rn iso called the cardinal nurnber of a.

Für 6= {p,vp, ••• ,vIDp} E S(C) set

. t ( 6 ) = .( {p } ,.{ \I p } , • • • , { vmp }) E M (S (C) )
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i ::: 1, 2 , are

said to be linked if 6
1

U 6 2 is again a segment and

If ~, and 6 2
are linked, then there exists Cl E m

so that P2
::: vap . If 0- > 0 then we say that 6 11

precedes 6 2
and we write

Let a::: (6" ••• ,6m) E M(S(C». Suppose that

are linked (' ~ i < j ~ m). If we set

6. and Ö.
1. J

b::: (6" •.. ,6. ,,6. uö. t 6. " ••• ,6. ,,6. nIJ..,f:... 1 /).)
~- ~ J ~+ J- 1. J J+, ••• , m

then we write b --I a . For a, ,a2 E M(S (C» we \\rri te

a, < a 2 if there exist b, ,b2 , ... ,bk E M(S(C», k ~ 2, so that

For a E CI: and IJ. = Ld n] (p) E S (C) set

Für a = (IJ." ••• ,6
m

) E M(S(C}} set

a a a
\} a = (\) IJ."..., \} Ö

m
).

Let !J. = {p, vp, ••• , vmp} E: S (C). Then the representation

has the unique irreducible subrepresentation which is denoted
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by Z (6) , and the unigue irreducible quotient which

is denoted by L(ß).

Let a = (ß
1

, ... ,6n ) E M(S(C)). We can choose an

order on the segments satisfying

ß.-76.=> i>j
1 J

Up to an isornorphisrn, representations

r;(a) x ••• x Z(ß )
n

A (a) = L ( !J 1) x ••• x L ( 6
n

)

are uniquely deterrnined by a. The representation s(a) has

a unique irreducible subrepresentation which is denoted by

Z(a) , and A(a) has a unique irreducible quotient which

is denoted by L(a).

Now a ~ Z(a) , M(S(C)) ~ Irr is a bijection and

this is Zelevinsky classification of Irr ([22]). The rnapping

is aversion of Langlands classification of Irr ([14]).

The rnapping

Z (a) ~> L (a), a E M ( S ( C) )

extends uniquely to an additive rnapping of R which will be

denoted by

t:R ----+- R.
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Let lf t: Irr. Choose a,b E M (S (C)) so that

TI = L(a) = Z(b).

Then supp a = supp band we define

supp TI = supp a = supp b.

Let D be the set of all essentially square

integrable representations in Irr. Set u uD = D n Irr .

Let d = (6 1 , ... ,on) EM(D). Now we can write

ai u u u
6. = v 6 . where a. E: lR and 6, E D . Af ter a
111 1

suitable permutation we can suppose that

The representation

has the unique irreducible quotient which will be

denoted by L(d) . The mapping

d ~ L(d) , M(D) ~ Irr

is a bijection and this is aversion of Langlands

classification.

The following lemma is obvious.

3.1. Lemma: If a E ~ and a E M(S(C)) then
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a . a'
v Z(a) = Z(v a)

a av L(a) = L(V a)

The above lemma implies

for TI E Irr.

Let R be the set of all possible n,TI, + •••+ nkTIk+

with kEN , n i E Z+ and TI. E Irr. For an additive mapping
~

lP on R we say that it is positive if

xER =:> lP(x) €R
+ +

Let x E R+ . We say that x contains TI E Irr if

x - TI E R . We say that x contains TI with multiplcity
+

one if

and x - 2TI ~ R
+

If x eontains TI we shall also say that TI is a

eomposition faetor of x.

Now we shall reeall of the derivatives of representations

in a way that is eonvenient for our purposes.

S inee .R is a polynornial ring over all Z (ld

n E S(C) , there exist a unique ring rnorphisrn V of R

so that

V(Z(ß». = Z(ß) + Z(ß
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For x E R, V(x) will be called the derivative of x.

Let

V(x) = I y.
i,=O ~

where y. ER .• If v(x) - 0 then 0 is called the
~ ~

thenVlx) :f 0highest derivative of y. is
1

0
called the highest derivative of x if y. * 0 and

~O

y j = 0 for j < i
O

• The highest derivative of x will

be denoted by Vh(x). Now we list the most important

properties of V (see [3] and [22]) •

(i) V is a ring morphisrn of R determined by

V(Z(ld) = Z(Ld + Z(Ll ), Ll E S(C).

( ii) For TI E Irr V(TI) = TI + x where

gr x < gr TI.

This implies that V is an automorphism.

(iii) The operator V is positive.

(iv) For ß E S(C) we have

V(L(ß» = L(ß) + L( ß) + L( ß) + ••• + L(~) •

(v) The highest derivative of an irreducible represen-

tation is an irreducible representation. Moreover

for aEM(S(C» •
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is a multiplicative mapping.

3.2. Lemma: Let 6
1

,ß 2 E S(C).

( i) If ß
1

and 6 2 are not linked, then

(ii) If ß 1 and 6
2

are linked, then

Proof: By Propol?ition A.4 of [19] L(6,) XL(62) contains

L«ß,,6 2 )) with multiplicity one. If ß, and ß 2 are

not linked then L(ß,) XL(ß2) is irreducible by Theorem 9.7.

of [22]. This implies (i).

Suppose that 6 1 and 6 2 are linked. Then

L(ß 1 ) xL(6 2 ) ::: Z(t(,6,)) x Z(t(62 )) contains Z(t(,6,) +t(,62))

with multiplicity one by Proposition 8.4. of [22]. Now

If we show that L (6,) x L (6 2 ) can have only one cornposi tion

factor except L(6, U 6 2 ) x L(ß, n ( 2 ) , then (ii) will be proved.
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We can supposc that

A ~ {q q+1 r }
u 2 v P/V p, ••• ,v P

where P/q,rEN, q ~P +1 and p<r . Let TI be a cornposition

factor of L(Ö,) XL(~2) different from

Then Vh(TI) is a composition factor of

The property (v) of the operator V irnplies that vrp

can not be in the support of Vh(n). Therefore

is a composition factor of

~ p } { p } { q-' r }L ( { P I V P, • •• , v p ) + L ( v p , • • • , v p ) +. • • +L (v p ,".. , v p ) ~

~ Z( ({p}, {vp}, ... , {vpp})) + ••• + Z(( {vq - 1 p}, ..• , {vrp})).

Now Z ( ({vip}, ... I {vrp}»), 0 $. i < q - 1 , can not be the highest

derivative because the multiplicity of

should be 2 in that case. Thus

q-lv p in supp TI
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q-l r
Z(( { v p } , • • • , {v p}))

equa1s Vh (11). Reca 11

Since the support and the highest derivative completely

determine the representation, we have proved (ii).
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4. Unitary dual of GL(n,F)

For 0 E Irr: and Cl E. lR set

Put

a(n,d) (p)

f or n, d € N, p E C

= ( (n - 1 ) / 2 A [ ] (p) ( n - 1 ) / 2 - 1 I, [ ] (p)
V L:I n,v (..;. n , ...

..• ,v-(n-1)/2 .Mn] (P»)

I

(
s ) = L( (n-1)/2 s (n-1)/2-1 s -(n-1)/2 s )U u,n v u,v u, ... ,v u

for 15 E D , n E:. N i

ö(p,m) = L(Ll[m] (p)

for p E C , rn E.N •

In [19] we have proved the following:

4.1. Theorem: (i) Set

B = {u(ö,n) iTI (u(ö,n) ,cd; 8 E DU , n E N , 0 < Ci. < 1/2} .

If 01, ••. ,ornEB, then
u°1 x ••• x Dm E Irr . If Tl E Irru ,

then there exist

so that-

T 1 ' • • • , T
k

E B unique up to apermutation

TI =II x... x lk

(ii) L(a(n,d) (p» = Z(a(d,n) (p» = u(8(p,d) ,n)
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5. lsolated represcntations

In this section we shall classify isolated representations

module unramified characters. We prove:

5.1. Theorem: The set

I = {u(6(p,n),m)

= {Z(a(n,m) (p))

pE CU , n, m E N , n * 2 , m * 2} =

pEC
U

, n,mtN, n*2, m*2}

= L(a(n,m) (p)); pE: CU ,n,m E N , n*2, m:t:2}

is the set of all isolated points module unramified characters

in uIrr .

Proof: Let TI be an isolated point modulo unramified characters.

First we shall show that TI is not unitarily induced i.e.

that there do not exists

TI = T x 0 •

U
T I 0 E: Irr , gr T, gr 0" 2: 1 , so that

To prove that suppose TI = T x 0 with U
T ,oE. Irr

1\ 1\

gr T " gr 0 ~ 1. Let 0 E: Gm I T E Gn . Now the rnapping

x Ho- T x (Xo)

u
Irr .

is continuous. Since is connected and

TI = T x 0

we have

is isolated module unrarnified characters ,
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(* ) {T x ( X0) ; X E UU (F X )} c {J.1 (T y. 0); U ( Uu (pX) }

Let

Then

5 Upp 1 = (T 1 ' • .• , 1 t) and 5 Upp 0 = (0 1 , ... , os) •

s upp (J.1 T x ]..I 0 ) = (~1 1 '···' ~ T t ' lJ 0 1 ' • • • , ~ 0 s ) .

Now (*) implies that for each X E UU(Fx ) there exist

J.1(X) EUu(Fx ) so that

SUPp (lx (XO)) = SUpp (~TX 1l0) •

Thus there exist 1 $ i :;: t or 1 $ j ~ s so that

or

for X in some infinite family X ~ UU(Fx ). Considering

the central characters one sees directly that

{1J(X)i XE X}

i5 a finite set. This implies that

{XOi XE X}

is a finite set. This is a contradiction.

We can conclude no w from Theorem t!. 1. tha t either

Tl = u(o,n)

I
I.

l

or TI = 7T(U,Ö) ,eta) o < et o < 1 /2 •
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Now we 511011 show that the second possibi1ity can

not happen. Simi1arly as above we can see that

{ TI (u ( 6 , 00 ) .. , Ci )

is a connected set. Thus

o < 0. < 1/2}

{n(u(6,n) ,0.) '; 0 < 0. < 1/2} ==

{( (6) ) X E Uu (Fx ) }C TI XU ,n ,0.0 ;

Considering the support we can obtain in the same way

as above that this is not posstble.

Thus TI = Z(a(2,d) (p»

Now we shall see that n:f2. Note that Z(a(z,d)(P») is i_n

the closure of the cornplernentary series

{n (Z (a (1,d)(P) ,cd o < 0: < 1 /2}

which is a connected set. In the same way as before we

get

{n(Z(a(1 ,d) (p» ,0.); 0 < Ci < 1/2} ~

f {xZ(a(2,d) (p») XE UU(Fx )} •

Thus Z(a(2,d) (p)) can not be isolated modulo the unrarnified

characters.

In the same way we obtain that L(a(2,d)(P) = Z(a(d,2) (p)

can not be isolated modulo the unramified characters.
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We have proved that each isolated point modulo thc

unramified characters is contained in I. In the rest of

the proof we shall show that each TI € I is isolated. This

will prove the theorem.

Let TI E I i . e • TI == Z (a (n , d) (p)) , n 4: 2 and d * 2 •

Suppose that TI is not isolated modulo the unramified

characters. Then there exists a sequence

converging to TI such that

TI m (/.- {X11 ; X € Uu (F
X

) }

( TI )
m

in uIrr

for all

(eh )
TI

m

TI
m

m • Passing to a subsequence, we can suppose that

is convergent sequence. Let

Since the decornposition of uIrr "into G (c) , c E M (C I,.,) ,

passing to a subsequence we can suppose that

mp.
1.

p and mo . .- p
J..

for all m E: N

Passing to a subsequence we can suppose that

Pm == P

k~ := k.
l. J..

d~ == d
i~

.......m k.k. :::
~ ~

d'ffi .......
::: d.i ~
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for all m and that

m{a, }
.1. m

are convergent sequences. Let

lim rnp. = r·.1. .1.m

lim
mo. = o·.1. .1.m

lim m
Q',. = Q', •

.1. l.m

By the first section, the set of all limits of

equals to

( 11 )
m

p

n
i=1

( p . )
.1.Z(a(k.,d.) ) x

.1. .1. n
i=1

O .
l.

where Q.
.1.

is a composition factor of
( (f . )

TI ( Z (a (k . ,cl . ) .1.), a . ) •
.1..1. .1.

Note that o. are unitarizable. If
.1.

p + q > 1

then Theorem 4.1. together with the above considerations

irnplies that (TI )
m

is not converging to 11 since TI is

not unitarily induced.

Now we have two possibilities. First suppose that

m
m m (P1)

TIm = Z(a(k 1 ,d,) )

This sequence has only one limit which is
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Thu s k 1 = n, d , = d , p, == p • S ine e

that

mp ~ p, we have

TI m

TI *

what is a eontradietion. Thus

Now the set of all limits ef (TIm) eguals to the set ef

all eomposition faeters ef

If 0 S u, < '/2, then it is elear that

~ _ (0,)
TI(Z(a(k"d 1) ,al)

frem Theorem 4.'. Thus a, == 1/2

faeter of

i.e. TI is a eomposition

First we have that

faeter ef

0 1 == P i.e. TI is a composition

~ '"X (p)
n(Z(a(k 1 ,o1) ),1/2).

This implies that

supp a(n,.d) (p) == suop (v- 1/ 2a(k CI) (p) + \~/2a(k Cl) (p))
... - l' 1 l' 1 •



-38~

We shall show that the last relation is not possible.

Since

supp a(r,s) (p) = supp a(s,r) (p) ,,

we can suppose that

set supp a(n,d) (p)

n S d and k
1

;;: d
1

,. Consider the rnulti­

as the function frorn C to Z+ . If

(supp a(n,d) (p)) (0) * 0

then 0 E {va p ; a E [ (n + d) /2 + Z']} •

Let 0::: vO'.p, CL E [(n + d)/2 +Z] . Direct cornputation

gives:

( p) 0:
(supp a(n,d) ) (v p) ::

o

o.+(n+d)/2

n

cx~-(n+d)/2

1-(n+d)/2S2S(n-d)/2

(n-d)/2SCL~(d-n)/2

-0:+(n+d)/2 (d-n)/2SaS-1+(n+d)/2

-0 (n+d) /2So.

Set a = v- 1 / 2a(k"d
1

) (p) + v1 / 2a(k"d
1

) (p) • Now

we have

(supp a) (0) * 0

only when 0 E {vo.p ; 0: E [(k
1

+d
1

+ 1 )/2 + x]} •

Let o::=v C1 p, a E [(k
1

+ <1 1 + 1)/2 + Z] • We have
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o

1

Ci. :;: - (k + d ) /2 - 1/21 1

0: = - (]{' +d
1
)/2 + 1/21

a. ::; - (l{' +d,)/2 + 3/21

---------------------

Direct comparison with supp a(n,d) (p) gives

-(n+d)/2::: -(i{1 +(
1
)/2 - 1/2 ==;> n+d=k

1
+d1 +1 •

Since

(d -(k 1+d,)/2+3/2
(supp a(n,d) ~ ) (v p) :::

-(n+d)/2+2
= (supp a(n,d) (p» (v p) ::: 2 *

3 ( ) ( -(k,+dl)/2+3/2)* :::: supp a v

It remains to show that the case

possible. We have

k ::: 1
1

is not

::: supp a(2,d,) (p) •

The formula for supp a(n,d) (p) implies that supp a(n,d) (p)

deterrnines uniquely a (n, d) (p) witp n ~ d. Thus

a(2,d,) (p) ::: a(n,d) (p) irnplies n::: 2. This is impossible
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since

Z(a(n,d) (P)) E I

This finishes the proof of the theorem.
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6. Ends of complementary series

The purpose of this section is to prove:

6.1. Theorem: Let n,d E: N, p E: CU • Then we have in R:

(i)

+ Z(a(n,d + 1) (p» x Z(a(n,d- 1) (p»

( i i ) v 1 / 2 L ( a( n , d) (p) ) x V - 1 / 2 L (a (n , d) (p» ==

+ L(a(n,d+ 1} (p» x L(a(n,d- 1) (p»

(iii) v 1 / 2 U(6(p,d} ,n) x v- 1 / 2u(6(p,d) ,n) =

== u(o (p,d),n + 1) x u(o (p,d) ,n - 1) +

+ U ( 6 .( p , d + 1) , n) x u ( 6 ( p , d - 1 ) , n )

In the above theorem we take for p , q E: Z +

Z (a(p,q) (p» == L(a(p,q) (p» == u(8 (p,p) ,q) == Z (ß) == L(ß)

if P == 0 or q == O.

By Theorem 4.1. it is enough to prove only the first

statement.

't
First we have the following simple

.....--... --.---.-- -_......_--~
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6.2. Lerruna: Let

i i
a i == ( 6 -1 ' • • • , 6k .) E M (S (C) ) ,

1

i == 1,2,3,4. S~ppose that + a
2

and that there

don0 texist b E 1'1 ( S (C) so t hat b < a 4 •

(i) If Z (a
3

) is a composition factor of Z (a
1

) x Z (a
2

)

then

(ii) If L(a
3

) is a composition factor of L(a
1

) x L(a
2

)

then

Proof: If Z (a
3

) is a compositiori factor of Z (a
1

) x Z (a
2

) ,

then Z (a 3) is a composition factor of S (a
1

) x z:;; (a 2 ) what

is equal to l;(a
1

+ a
2

} in R. Thus

by Proposition 7.7 of [22]. The definition of the order on

M(S(C» implies that

Again the definition of ~ implies

This proves (i).
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Using Remark in 5.3. of [14] and Theorem 5.1.

of [14] we prove (ii) in the same way as (i).

6.3. Lemma: Let

a
1

= (6" ••• , 6m) E M ( 5 (C)) .,

a
2

= (6 " ••• ,6) EM(S(C))m+ n

Suppose that

Then the number of all composi tion factors of Z (a 1) x Z (a 2 )

is equal to the number of all composition factors of

Proof: First we observe that there exists p E C so

that

for all , $ i ~ n. If a ~ a, + a
2

then the cardinal number

of a is n. Therefore the highest derivatives of all

composition factors of Z(.6,) x Z(6
2

) have the same

graduation and they are composition·factors of

Since the highest derivative of an irreducible represen-

tation is irreducible, we have the lemma.

Now we go to

-.. ..-. ... --:-"
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Proof of Theorem 6.1. By Proposition 8.4. of [22]

we have that

Z(v 1 / 2a(n,d) (p) + v- 1 / 2a(n,d) (p)) ::

:: Z(a(n+ 1,d) (p) + a(n-1,d) (p)) ::

= Z(a(n+ 1,d) (p) y. Z(a(n-1,d) (p))

is a eomposition faetor of

v 1 /2 Z (a (n,d) (p)) x v -1 /2 z (a (n,d) (p))

with the multiplieity one.

Sinee

v 1 / 2 z(a(n,d) (p») x \J-l/2 z (a(n,d) (p}) =

Proposition A.4. of [19] implies in the same way that.
L(a(d + 1,n} (p}) x L(a(d - l,n} (p»

is a eornposition faetor with the rnultiplieity one. Sinee

L(a(d+ 1,n) (p}) x L(a(d-1,n} (p») =

:: Z(a(n,d+ 1) (p}) x Z(a(n,d- 1} (p})

~or the proof of Theorem 6.1. it is enough to show that the

representation

\J1/2 Z (a(n,d} (p}) x v- 1 / 2z(a(n,d) (p»
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has at most two different composition factors.

Suppose that we have shown it in the case n = d.

Now we shall show how this case irnplies the general case.

Note that

(*) 1/2 1/2 (p) -1/2 (p)
v Vh(v Z(a(n,d) ) x v Z(a(n,d) ):::

.::: V 1 / 2 Z (a (n , d - 1 ) (p)) x V - 1 / 2 Z (a (n , d - 1) (p) )

Since we suppose that

has at most two different composition factors, the fact

that the highest derivative of Tl E Irr is irreducible

and (*) implies that

v1 /2 z (a (n,d) (p)) x v-1 /2 z (a (n,d) (p))

has at most two different composition factors when

d :s n. The case of d > n is a consequence of the forrnula

(*) and Lemma 6.3.

It rernains to consider the case of d = n. Let Tl

be a cornposition factor of

v 1 / 2 z(a(n,n) (p)) x v- 1 / 2 z(a(n,n) (p) •

We shall show that Tl rnust be either

Z(a(n+ l,n) (p» x Z(a(n-l,n) (p»

or
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Z (a (n , n + 1) (fl» >: Z (a (n , n - 1) ((J) )

and this will prove the theorem.

Since TI is a composition factor of the end of

complementary series, we know that TI is unitarizable.

By Theorem 4.1. we can write

TI = (Pi) \ (-3-.- (Pj) \
Z(a(n. ,d.) )) x I I TI (Z(a(n'.,d'.) ) ,0..))

1 1 j=1 ] ] J

where n. ,d. ,n~ ,d~ E N, p. ,pt. E CU and 0< a.< 1/2.
1 1 J J 1 J J

The fact that

SUpp TI = sUPP (v 1 / 2a(n,n) (p) + v- 1 / 2a(n,n) (p»)

implies that

TI = T~
i=1

( p . )
1Z(a(n.,d.) )

1 1

and again the equality of supports implies p.=p i.e.
1

TI = Tl-
i=1

Z(a(n. ,d.) (p»
1 ·1

Let us consider more carefully the equality of

supports:

=
i=1

(p)
supp (a(n.,d.) )

1 1
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Note that the left hand side is supported in {vCiP;O'. E (1/2 + Z)}.

Thus all n. + d. are odd numbers. Now the formula for the
~ ~

support of a(n,d) (p) in the proof of Theorem 5.1. gives

(supp (a (n. , d . ) (p) ) ) (v
1 /2 p) =

1 1

and also

= min {n.,d.}
1 1

Thus

(supp (v 1 / 2a(n,n) (p) + v- 1 / 2a(n,n) (p») (v
1 / 2

p) =

= 2n - 1

(i)

p

Imin

i::::1

{n. , d.} = 2n - 1 .
~ ~

By (i) of Lemma 6.2. we have

(ii)

p

2n - 1 $ L
i=1

n. ~ 2n
1.

Note that

TI :::: n
i=1

z(a(n.,d.)(P» =
~ ~

( p )
L(a(d. ,n.) )

1. 1.
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is a eomposition faetor of

v 1 / 2 z(a(n,n) (p)) x v- 1 / 2 z(a(n,n) ((1)) =

= v 1/ 2L(a(n,n) (p)) x v- 1/ 2L(a(n,n) (p))

d. ~ 2n.
1.

(iii)

Now (ii) of Lemma 6.2. implies

p

2n - 1 S L
i=l

S inee a (r , r) (p) is supported in

we have that n. * d. for all i. We shall show that
1. 1.

(iv) for 1 ~ i ~ P .

To show this suppose

In. - d.1 > 1
1. ~

Let us suppose that n. > d . . Then n. - d. > 1
1. 1 1. 1.

and

! n. ~ n. + L min {n.,d.} =
j=l ] 1

j*i ] ]

= n. - d. + 1 min {n.,d.} > 1 + 2n - 1 = 2n
1. 1. j=l J J

This contradiets to (ii).

The case of d. > n
1. i

ean be ehecked analogously.
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n-1/2
\l P is in the support of

a > n - 1/2 is not in the support~and

Let

a
'J P with

n-1/2v p be in the support of
( p)

a(n
1

,d 1 ) ~ Now

we know that

= n + 1 •

By (iv) we have

Repeating the previous step we ebtain that

and also that p = 2~

Now we have four possibilities for TI

Z(a(n,n + 1) (p)) x Z(a(n -1 ,n) (p)),

Z(a(n+l,n)(P)) xZ(a(n,n-1)(P)),

( ) ( ) ~
Z(a(n,n + 1) P ) x Z(a(n,n -1) p ),

Z(a(n+1,n)(P)) xZ(a(n-1,n)(P)).

Since the first two possibilities do not satisfy either

(ii) er (iii) we have that TI rnust be either

z(a(n,n+l)(P)) xz(a(n,n-l)(P))

. .,.-.- _. .. - ... .... - ... - _...... --.- --_. - ....
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or

Z(a(n + 1,n).(P» x Z(a(n - 1,n) (p»

This proves the theorem.

6.4. Remark: In the proof of (ii) Lemma 6.2. we have

used one result which is equivalent to the fact that

t:R ---7 R is multiplicative, i.e. a ring rnorphism.

It was announced that J.N. Bernstein have proved it.

The written proof of that fact known to this author does

not exist.

Let us denote by R p ' for p E C , the subgroup of R

generated by all TI E Irr with

asupp TI E M({v P , a ElZ}).

Then t(R) eR. Let t p be the restriction of t
p P

t:R ----7- R.
P P P

For the proof of the multiplicativity of t it. is enough

to prove the multiplicativity of t
P

for all p •

,
J.L. Waldspurger proved in [21] the result equivalent

to the multiplicativity of

representations p E C.

t , for great number of
p

The proof of (i1) of Lemma 6.2. which is not using

the multiplicativity of t, one can obtain using Lemma 3.2.
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and the factorisation of intertwining operators

obtained by F. Shahidi in [15].

At the rest of this section

(T,O) ~ TXO, Alg G XAlg G --?Jo- Alg Gn m m+n

will denote the induction functor.

6.5 Proposi tion: Let n,d E N,p E. Cu. There exists an exact

sequence of representations

o~ Z (a(n + l,d) (p) x Z(a(n- l,d) (p»

--;;.. v l / 2 z(a(n,d) (p»x.;1/2 z (a(n,d) (p»

This sequence does not split.

Proof: We prove the proposition by induction with respect

to d. For d = 1 we know that

\.l 1 / 2 Z (a (n , 1 ) (p) ) Xv-1 / 2 Z ( a (n , 1) (p» = \l 1 /2 L (~ [ n] (p) ) xv-1 / 2 L (il[ n J(0) )

has a unique irreducible quotient (properties of the Langlands

classification). This quotient is

L(a(2,d) (p» = Z(a(d,2) (p».
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Now Theorem 6.1 implies the proposition for d ~ 1.

Suppose that we have proved the statement of thc proposition

for same d. Consider the ease of d; 1.

For T E Alg G , J.N. Bernstein and A.V. Zelevinskym

defined in 4.3 of [3] derivatives 1 (k) E Alg Gm- k
, k ~ D,l, ••• ,m.

Reeall that T(k) is ealled"the highest derivative if

(k) (i)
1 * 0 and T ~ 0 for k < i $ m.

Let T. E Alg G and let o. be the highest
1 m. 1

1.
derivatives of T. (i~ 1,2). By Corollary 4.14.,(e) of [3],

1

the highest derivative of Tl x 1 2 is isomorphie to 01 x 02 .

h1e know that TI ~ v 1 / 2 Z(a(n,d+ 1) (p) )xv- 1 / 2 z(a(n,d+l) (p))

has two faetors with multipleity one (Theorem 6.1.). Suppose

that TI is a eompletely reducib~e representation. Sinee the

highest derivative of an irreducible representation is

irredueible, we get that the highest derivative

• Z (a (n,d) (p)) x v -1 Z (a (n,d) (p)) of TI has composition series

of maximal length 2. Since v 1 / 2 (z(a(n,d) (p)) x \J-1 Z (a(n,d) (p)))

~ \) 1 / 2Z (a (~ , d )" (p)) x ~)-1 / 2 Z (a (n , d) (p) ), t heinduct i ve ass ump t ion

implies that the highest derivative ef TI is not completely

reducible. From the ether side, the cornplete redueibility of

TI implies the cornplete reducibility cf the highest derivative

cf TI. This is a eontradietion. This proves that TI 'is not

cornpletely redueible.

New the fact that Z (a (n,d+2) (p») x Z (a (n,d) (p) is a

quotient of TI we obtain in a similar way from the
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inductive assumption using the exactness of the functors

which enter in the definition of derivatives (lB],

Proposition 3.2.).

Considering contragradients one obtains

6.6. Corollary: There exists an exact sequence

o~ Z (a (n,d+1) (p)) x Z (a (n,d-1) (p))

v- 1 (2 z (a (n,d) (p)) x \) 1 /2 z (a (n,d) (p))

Z(a(n+1,d) (p)) x Z(a(n-1,d) (p)) ~ o.

This sequence does not split.



7. The topology of the unitary dual of GL(n,F).

Let X be a Hausdorff topological space possessing

a countable basis of open sets. For n f N let

the permutation group of n~elements which acts on

by the permutation of coordinates. On Xn we have the

natural product topology. We supply the quotient space

xn/S· with the finest topology so that the canonical
n

projection

is continuous. Then An is also open mapping. One can

directly obtain that (A (x.). , X.E: X
n , converges to

n 1. 1. 1.

n
A (X), x E. X , if and only if there exists a sequence

n

(0 .) E S so that ( 0 . x .) .
1. n 1.1.1.

We supply

converges to x in xn .

M(X) = U
n~O

with the topology of the disjoint union.

Let

B = {Z (a (n , d) (p) ) , TI ( Z (a, ( n, d) (p) ) , Ci )

and

d E N P E cun, , o < Ci < 1/2}

B* = {Z(a(n,d) (p» ,n(Z(a(n,d) (p» ,a);

n, d E B , P E Cu, 0 :i a :;;; 1/2} •
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We consider B c B* c R.

The set CU is the disjoint union of

uU (px) r , p E: Cu.

On UU(Fx)p we consider the unique topology so that

is open and continuous mapping. Note that there is a finite

subgroup X of UU(Fx
) so that we have bijection

which is also homeomorphism. We supply CU with the topology

of the disjoint union of the sets UU(Fx)p. From the first

section we obtain that (Pn) converges to p if and only

if eonverges to

We consider

eh ·p

x = (N x N. x Cu) u rlJ x N x CU x [0, 1/2] )

with the topology of disjo~nt union. The mapping

<.P X -> B* ,

(n,d,p) ~ Z (a(n,d) (p)) ,

(n,d,p,a) ~ n(Z(a(n,d) (p» ,a),

is a bijeetion. We supply B* with the unique topology

so that <.P is a homeomorphism.
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For 0 E B* let cant 0 be the set of all

cornposition factors of o. Note that

con t (TI ( Z (a (n , d) p) , 1 /2) =

= {Z(a(n + l,d) (p)) x Z(a(n-l,d) (P))

Z(a(n,d+ 1) (p)) x Z(a(n,d-l) (p))}.

and in all other cases

cont (0) = {o} •

Far rn = (°
1

, ••• ,on) E M(B*) set

cant In = {T 1 x ••• x T n

By Theorem 4.1. the mapping

T. E cant o.}
). ).

e : M(B) -;>

is a bijection.

7 • 1 . Theorem: Let X c Irru Then the closure of X.
in Irr

u
is the union of all

cont m

when In goe5 through the closure of e- 1x in M (B*) •

Proof: Let Cl. X be the closure of X and

y = U cent In

rnECI e- 1x
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Now the first section implies

Y c Cf X .

Suppose Tl E Cl x. Then Tl is a limit of some sequenee

(Tl ) in x. In the same way as in the proof of Theorem 5. 1 .n

subsequence that -1 inwe can pass to a so o (Tl) eonvergesn

M (B*) •
-1 Now cont m equals to the setLet m ::: lim 0 (TI).

n n

of all limits of
-1

Thus Tl E Y • Therefore,(0 (n )).
n

Y ::: Cl X ,

and this finishes the proof.

We have one direct eonsequenee of Theorem 7.1. and

Proposition 2.4.

F are Ioeal non-archimedean7.2. Corollary: If E and

A
fields, then GL(n,E) and

A
GL(n,F) are homeomorphie.

7.3. Remark: By Proposition 2.3.

to

uIrr is homeomorphic

A
G(c,f(c) )

Thus for the topology of
A

G
n

it is sufficient to know

A

G(p,n) p E CL..... , nEN.

A
First we note that G(p,n) are horneomorphic for all

p E cl. Thus we define.....

"G(n)
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1\

to be G(n,n).

Now it could be interesting to find geometrie
1\

realisation of topological spaees G(n) .

"One sees directly that G(1) is homeomorphic

to the eircle.

Let X be theMöbious strip. Take two eopies of

X and identify corresponding interior points of these

two copies of X. Let X be the topological sp~ee

1\

obtained in this way. Then G(2)
,-v

is homeomorphic to X.

1\

We expect also that G (n) for n > 2 have some

reasonable geometrie description.
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