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Introdnction.

The fact that some problems of classical mechanics are solved in terms of theta

functions was discovered in the 18 th eentury by Euler, who solved in this way the

equations of motion of the rigid body around the center of mass in Jaeobi functions. The

multidimensional theta functions were first applied by C. Neumann in 1859 [38] to the

problem of motion of the particle constrained on the aphere nnder the action oi

quadratic potential. The most famous mechanics system of this type is undoubtly the

Kowaleski top [18], which was in the foeus of interest in the 19 th centure.

Despite the dicovery oi numerous examples oi finite-dimensional systems

integrable in terms of multidimensional theta functions there was at that time no

general approach to solving the equation of motion of these systems. Each time the

success integration was based on finding a rather non-trivial change of variables leading

to a Jacobi inversion problem. After Kowalewski the most important results in this

direction were 0btained by Kötter [42], [44], [47].

We solve the equations of motion of classical tops with the help of the finite-gap

integration theory. Such an application of the modern theory to the classical problems

proves its universality. From the other aide modem theory gives a possibility of

obtaining important new results even for the classieal tops (particularly for the

Kowalewski top [2]). The formulae for the solutions obtained here are considerably

simpler than the classical ones.

The theory of the finite-gap integration for the finite-dimensional systems is

based on the representation of the equation of motion in the Lax form:

~ L('\) + [L('\),A('\)] = 0 .

When the Lax representation is found, all the machinery of the finite-gap integration
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theory may be used. At the same time the construction of the Lax representation for the

concrete system is a transcendental problem, solved however, now for all famous tops

studied in classical papers. The recent results in this direction are the various Lax pairs

for the Kowalewski top [48], [49], [40] ~ One of them found by Reymann and

Semenov-Tian-Shansky is used by us for the integration of the equation of motion.

It shöuld be mentioned that there now exists a direct approach to solving

integrable systems with two degrees of freedom. This approach was devised by Adler

and van Moerbere et al. [21]. It is based on the study of singularities of the solutions

and goes back to fundamental ideas *) of the Kowalewski paper [18]. With the help of

the direct approach, the geometry of algebraic curves and Abeiian tori ansing in various

problems of classica1 mechanics, was investigated [21], [22], [23], [31], [49], [50],

where imPQrtant isomorphisms were found. The advantage of the direct approach is that

it starts directly from the equations of motion without apriori knowledge of the Lax

representation. However, the theta functional formulae were not derived in this way.

The IQ.ain instrument used in constructing the general solution of the problem is

the Baker-Akhiezer function. 1t is interesting that in some cases the Baker-Akhiezer

function itself appea.rs to be very useful for the description of dynamics. The motion in

the laboratory frame is described in this way (Sect. 9).

It is worth mentioning also that the Lax representations for all classical systems

considered here has nontrivial reduction groups. This in turn leads to the fact that the

associated spectral curves represent complicated coverings and that the Baker-Akhiezer

functions have specific analytic properties. And as a final result we have a more

complicated integration procedure.

We restriet oUIse!ves to the tops investigated in the 19 th century and do not

*) The idea·of finding of the integrable cases b'y analyzing the singularities of the solutions
apparently was first proposed by Weierstrass L19].
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discuss the numerous examples of integrable systems in classical mechanics found

recently with the help of the inverse transform method. A good survey of these modern

reaults can be found in [28], [29], [52].

The ptesent paper is a translation of the improved version of author's preprint [1]

and is supposed to be a chapter of the joint book Belokoles, Bobenko, Enolskii, Its,

Matveev 11 Aigebraic Geometrical Approach to Nonlinear Integrable Equations".

1. The Lax Equation and Analytic Properties of the

Baker-Akhiezer Function

The analytic properties of the Baker-Akhiezer functions are deducible from the

corresponding Lax representations

~ L(A) + [L(A),A(A)] = 0 .

Let

(1.1)

be the diagonal form of the matrix L, where jJ is the eigenvalue matrix. 1t satisfies the

equation

(1.2)

and, as a corollary, it does not depend on t since the RHS of (1.) has a zero diagonal

part.
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The Baker-Akhiezer function is an eigenfunction of the operator L

(1.3)

Here L is an (NxN) matrix and 1/1 is an N-dimensional vector. The eigenvalues of L

do not depend on t. Therefore, the characteristic polynomial

det(L(~)-#) = 0 (1.4)

is also independent of t . It defines a spectral curve X. The suitably normalized

;-function 1s an analytic function on the Riemann surface of the spectral curve (1.4).

Let us consider the simplest, but simultaneously the most general example where

L and A are the rational functions of A, and there are no reductions. 1t is evident

that X is the N-sheeted covering of the ~-plane. So we have N values #l, ... ,j.LN

(every value is counted according to its multiplicity), corresponding to every A.

Respectively, we have N eigenvectors ,} = f/;{A,#i) of the matrix L.

Let us consider the function

2 1 N 2(det t) = (det(, ,...,,)) . (1.5)

It is a single-valued function of ~ with the divisor of the poles of degree 2K, where K

is the degree of the divisor of the poles of , on X. The degree of the divisor of zeroes

of function (1.5) is equal to the sum of all branch numbers E lIi . By equating these

degrees and taking into account the Riemann-Hurwitz formula we get

2K = E 11· = 2g-2+2N ,
1
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where g is the genus of X . Finally we see that f/J has the divisor of the poles of the

degree

K = g+N-1 .

Differentiating (1.3) by t, we see that the Baker-Akhiezer function satisfies the

equation

which in turn gives

Here a(;\,t) is some scalar function, which can be eliminated by the suitable

renonnalization of 1/1. We see that f/J has essential singularities at the poles of A .

Finally we see that the Baker-Akhiezer function is a solution of the system

1t is an analytic function on X I having the divisor of poles independent of t and the

essential singularities at the poles of A .

Let us mention that the various possible reductions of L-A pairs lead to

symmetry of the spectral curves and to the specificity of properties of l1-functions.

Below we consider L-A pairs with reductions.
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2. Integrable Systems

The Kirchhoff equations are important in classical mechanics and hydrodynamics:

• . OH i 'OHP= [p,w] I M = [M,w] + [p,w] , J = 7M:' u = -op:- . (2.1)
1 1

Here, [,] denotes the vector product in R3 . As was remarked in [6] equations (2.1)

are Hamilton's equations of motion

I = ,{H,f}, I = ft

with respect to the following Poisson brackets:

i,j,k = 1,2,3, E123 = 1 .

(2.2)

(2.3)

The Poisson brackets (2.3) are, in fact, the Lie-Poisson bracket for the Lie algebra e(3)

of the motion group E(3) of the Euclidean space. Notice that

2 ~ 2
f1 = P = l Pi '

i

(2.4)

are trivial integrals of motion (Casimir functions) for the Poisson bracket (2.3). Thus we

have a four-dimensional phase space. For the corresponding system to be completely

integrable, it is sufficient to possess one additional (besides the Hamiltonian) integral of

motion K.
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The rotation of a rigid body about a fixed point ia described by (2.1). In tms case

the orthogonal frame ia attached to the body and coincides with the axes of the inertia

ellipsoid. The origin is chosen to be at the fixed point. The Hamiltonian is

Here M is the angular momentum of the body, p ia the unit gravitational field vector,

-1 -1 -1
the constan~ vector (r l' r 2' r 3) indicates the center of mass and 11 ' 12 ,13 are the

main moments of inertia of the body.

The f9110wing cases are integrable:

2(1.) The Euler case: r = 0, K = M .

(2.) The Lagrange case: 11 = 12, r1 = r2 = 0, K = M3 .

(3.) The Kowalewski case: 11 = 12 = 13/2, r 3 =0 .

(4.) The Goryachev-Chaplygin case: 11 = 12 =13/4, r 3 = 0 .

and the constant ~ vanishes, Le. pM = 0 . In the last case we have the integrable

Hamiltonian system on only one integral level. The formulae for the additional integrals

K for the Kowalewski and the Goryachev-Chaplygin cases are presented in the Sects. 3,

4.

We remark that in all integrable cases presented above K is a polynomial of M

and p. In the paper [7] it was shown that there are no additional cases of integrability

if K ia a meromorphic function of M and p.

For the quadratic Hamiltonians

1 .
H = ?r \' (a..M.M. + 2b..M.p. + c..p.p.)

L. L IJ 1 J IJ 1 J IJ 1 J

equations (2.1) coincide with the Kirchhof! equations of the motion of a rigid body in an

ideal incompressible liquid being at rest at infinity. The orthogonal frame is attached to
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the body and is chosen so that the inertia tensor is diagonal. In tms case M and p are

respectively the complete angular momentum and the complete impulse of the

body-liquid system. The non-trivial integrable cases of Clebsch [8] and Steklov. [9]

are known and are the only tases with the quadratic additional integral K , the

corresponding expressions for which are presented in Seets. 7, 8.

We also consider the Euler equations on the Lie algebra SO(4) , which have

interesting applications in hydrodynamies. The Lie algebra SO(4) ia isomorphie to the

direct sum of two copies of SO(3) . In the following we shall always use the

isomorphism SO(4) = 80(3) + 80(3) . The Euler equations with the Hamiltonian

H = l \ (a. .S.S.+2b..S.T. + c..T.T.) t a·· = a .. , c.. = c·· (2.6)
~ L lJ 1 J lJ J 1 lJ 1 J lJ J1 lJ J1

ij

and the Lie-Poisson bracket

are as follows

Here A, B, C denote the matrices of the coefficients of the Hamiltonian (2.6).

Two trivial integrals

2 \ 2 2 \ 2
gl=S =L Si,g2=T =LTi

i

(2.8)

show that as in the e(3) case, we have four-dimensional orbits. The additional integral
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of motion K exists in the integrable cases of Manakov [10] and Steklov [11] 1

These are the only cases with quadratic K. Recently another case of integrability with

quadratic H and quartic K was found [16, 17].

Another classical problem, integrable in terms of two-dimensional theta functions,

is the Neumann system. The equations of motion are

(2.9)

1t describes the motion of a particle restricted to the unit sphere under the quadratic

potential

U(S) = ~ 1: Ii S~
i

Below we construct theta functional formulae for all systems mentioned above

except the Lagrange top (the Euler and the Lagrange tops are easily solved in elliptic

functions and are investigated in detail).

3. Kowalcwsk:i Top

In here celebrated paper [18] published in 1889, Kowalewski found a new and

highly nontrivial integrable case of the motion of a heavy rigid body abour a fixed point,

1 The Euler equations on SO(4) of special type (special A, B, C ) describe the motion of
a rigid body with an ellipsoidal cavity filled with liquid. A fami~ of integrable cases of
such systems depending on 3 parameters was found by Steklov L12]. When the problem of
finding integrable Euler equations on SO(4) was investigated later, these same integrable
cases were found [13, 14, 151. The number of arbitrary parameters increased to 6. We
shall call this case a second Steklov case.
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completing the list of integrable tops. Two previous known integrable cases are Euler's

top in whic~ the stationary point coincides with the center of mass, and Lagrange's top

which is axially symmetric. The third case discovered by Kowalewski is rather bizarre:

the moments of inertia have a fixed ratio 2: 2 : 1 , ans the center of mass lies in the

equatorial plane of the top.

In this section we follow the paper [2], where calculations omitted here are

. presented.

3.1 Kowalewski,'s Paper

The starting point of Kowalewski's work was her observation that Euler's and

Lagrange's tops are solved in terms of Jacobi functions. Therefore, here initial idea was

to try to solve the equations of motion of a general heavy rigid body about a fixed point

in terms of Abellan functions. However, WeierstraBs pointed out that a general solution

of this form does not exist in the general case and may be possible only for some

particular geometries of the top [19]. ThuB Kowalewski started her search of the tops of

this type.

She considered the equations of motion for the general top (2.5)

M = [M,IM] + [p,r] , p= [p,IM] ,

(3.1)

IM = (11M1, 12M2, 13,M3), r = (r1,r2,r3)

and substituted the series

m. n.
1 1

Mi = t o + ... I Pi = (t-t
O
)2 + ... (3.2)
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in the neighbourhood of the singul.arity point (ta E () into the equations (3.1). The

question was: for what tops series (3.2) is there a general solution of equations (3.1) (Le.

which tops series have a sufficient number of independent constants).

In her paper Kowalewski obtained three remarkable results. First she proved (with

same gaps which were filled in later, see comments in [20]) that the only tops with the

property that the general solution is gjven by meromorphic functions of the complex

time variable are Euler's and Lagrange's tops and a new top with Hamiltonian

(3.3)

She also found the additional integral

(3.4)

for the top (3.3) which now carries her name. Finally, using a non-trivial change of

variables) Kowalewski reduced the equatioos of motion to the Jacobi inversion problem

for the hyperelliptic curve (Kowalewski curve) of genus 2 2

2 2 K 2 K 2
JS = ((~-H) - 4)(~(('\-H) + (1 - T)) - (pM) ) . (3.5)

KowalewskiJs paper became very popular, especially the first part which attracted

attention and was widely discussed (see comments in [20]). At the same time the

extremely technical part, devoted to explicit integration of the top, remained, for a long

time, oo1y a sequence of well-guessed substitutions and calculations. The relationship

2 Here and below, with 00 loss of generality, we shall assume in the sequel that p2 = 1 .
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among the three problems considered by Kowalewski was also unclear. This was recently

clarifiedin [21,22,23].

3.2 The Lax Pair for the Kowalewski Top

Let us consider the Kowalewski gyrostat (KG). This is a system with the

Hamiltonian

Theorem 1. The Kowalewski gyrostat, defined by the Hamiltonian (3.4) is

(3.4)

completely integrable and admits a Lax representation dL/dt + [L,A] = 0 given by

0 p- O -P3 -7 0 M 0

i -P 0 P3 0 +i 0 7 0 -M
L=:r + +

0 -P3 0 -P M+ 0 -2M3-r -2 A
+

P3 0 p- O 0 -M 2A 2M 3 +r

(3.7)

2M 3 +r 0 M 0

i 0 -2M3-r 0 -M
A=2' +

M+ 0 -2M3-r -2 A

0 -M 2A 2M 3 +r

These matrices obey the symmetry'relations
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L(-A) ="LP)", ,,= diag(l,-l,l,-l) = [~3 U:] ,

We recall the definition of the Pauli matrices O'i :

[01] [0 -i ] [1 0]
0'1 = 10 ,0'2 = i 0 ,0'3 = 0-1 ..

(3.8)

(3.9)

The invariants of the matrix L(~) are integrals of the motion in involution H,

f1 = p2 = 1 , ~ = (pM)2 and

This integral is an extension of the integral (3.4) found by Kowalewski and was

discussed in [24, 25] . The Lax pair (3.7) as well as broader generalizations of the

Kowalewski top and the corresponding Lax pairs are obtained by Reyman and

Semenov-Tian-Shanski [2].

3.3 The Spectral Curve

Let UB now turn to the original Kowalewski top where ; = 0 . We shall consider

complex equations of motion. Lax equations are linearizable on the Jacobian of the
A

spectral curve X defined by the equation

(3.10)
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The characteristic equation (3.10) for the Lax matrix of the KT takes the form

#4 - 2d1(,\2)#2 + ~(,\2) = 0 ,

d1(z) = z-1 - 2H + 2z ,

~(z) = z-2 +4 [(Mp)2 -H)]z-1 +K .

The symmetries (3.8, 9) give rose to two commuting involutions TI' T 2 on X

(3.11)

which in turn induce the coverings X ----+ X and X ----+ E, given by a change of

variables z = ,\2 and y = #2 . So the curves X and E are defined by the equations

(3.12)

and

The covering X ----+ X is unramified and thus is determined by a cyde .:t

(mod 2) on X: a loop 7 on X lifts to a closed loop on X i,f and only if (7, .:I) = 0

(mod 2) ,where (7, .:I) is the intersection number. To put it another way, the

function ~ = {Z acquires a factor (-1) (7, .:I) upon a circuit of 7.

For later UBe, we must have a eloser look at the covering X ----+ E . The elliptic

curve E is a tWo-ßheated. cover of the Z-plane. There are two points CD:!: at .

"infinity" where z has simple poles, and one point 0 where z has a double zero. The
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function y has a simple pole at m+ ' a simple zero at m , a double pole at 0, and

hence two other simple zeros at same points PI' P2 . The branch points of the function

j.l = {Y on E are therefore m+' m_ , P l' P2 . Thus X is obtained by glueing

together t wo copies of E along suitable cuts [m+,m~ and [P1,P2] .

We choose the cut [m+,m_l such that the function A = {Z becomes unramified

on E\ [m+,m_ 1 (notice that m± are the only branch points of {Z).
A

The c.urve X may be thought of as the Riemann surface of the function A = {Z

on X. One can always choose a ca.nonical basis in BI(X,ll) so that

where ?r: (j.l,z) ----.. (-j.l,z) , and also ~ = $ (mod 2) (see Fig. 1).
A

We may now identify X with two copies of X glued together along

~: X= X{I) U$ X(2) . It is natural to choose the contour $ such that 1r $= -$

(the minus sign denotes reversed orientation). The involution Tl acts on X by

permuting the sheets X(i) .

The final thing we need is the behaviour of j.l near the points of X where A = CD

or ,,= 0 . These are the points mii ) and Oii) on the sheets c(i). If we arrange the

points m(i) onto a 4-tuple (00(1) 00(2) lD (1) 00 (2)) the 4 bamches of IL near
::I: _' _' +' + ' r-

A = m can be combined into a row-vector

j.l(A) N (O,O,2A,-2A) + 0(1) (3.13)

In a similar way, with respect to the ordering (O~I), Oi2), Oi1), O~2)) (trus particular

ordering ia convenient for the calculations in Sect. 3.7), we have

j.l{A) N -E A-1{1,-1,1,-1) (3.14)
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near ~ = 0 ,with E = :t: 1 depending on the loeation of ~. It is always possible to

choose $ such that E = 1 .

3.4 Analyticity Properties o/the Baker-Akhiezer Function

The Baker-Akhiezer function, defined as a solution of the linear system

L(~(P))~P) = Jl(P),(P) ,~ ,(P) = A(~(P))~P) (3.15)

has certain analyticity properties as a vector-valued function on X. We can also

require f/J to be symmetrie with respect to the first of the involutions (3.11)

(3.16)

'"

This enables us to regard t/J as a double-valued function on the curve X = XI T 1 '

which makes all ealeulations much simpler.

Let us now state the analyticity properties of tP.

1. ,is meromorphic on X except at ~ = 00 and ,exp(-tJlI2) is meromorphic on

X except at ..\ = 0 .

2. The divisor 0/ poles 0/ r/J I denoted by IA ,has degree 8 and is time independent.

3. ,satisfies the symmetry condition (3.16).

The divisor IA is not, however, completely determined by these conditions. If f
'" '"

is a meromorphic function on X and (f) ~ IA on X, then t/J can be replaced by fp.

Using this freedom, we can fix two points of IA'" to be oo~1) and oo~2) . Then !iJ is
. '"

the puB-back to X of a divisor IAU 00+ on X, and deg 91= 3 .

The behaviour of , near ..\ = (D cau be reformulated in a more convenient
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matrix form. Let '(~) be ihe 4)(4 matrix whose j -th column is the value of f/J on

the jih sheei of X---+ {~} near A = m (the ordering of sheets corresponds to the

ordering of points over A = (I) , described in Sect. 3.3). We can then write t(~) as

(the facior --i in the lasi eniry of (3.17) ia iaken for notaiional convenience). Denoting

we have from (3.15, 17, 13)

(3.18)

(3.19)

The symmetry condition (3.16) takes the form (notice that Tl permutes the sheets):

which gives the symmetry relations for t and S :

Combined With (3.18) this implies that t(t) has the form
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1 1

1 -1

1 -i

-i 1

We can set c = 1 . The relation (3.19) yields differential equations for qi(t) :

so that

(3.20)
t t

ql (t) = a exp(i IM3dt) , q2(t) = ßexp(-i IM3dt)

In a similar way, arranging the 4 eigenvectors 16(Oii)) into a 4)(4 matrix W(O)

according to the ordering of the points Oii) described in Sect. 3.3, we have

and using (3.14, 15), we find

r'"3 0 ] 1L_1 = -E ;(0) Lo 0"3.- (0)

(3.21)

(3.22)

The strategy of our further computations will be as follows. Using the symmetry

property (3.16) of t/J, we reformulate the problem entirely in terms of the curve X: the

functions '1' '3' A'2' A,4 are single-valued functions on X. The properties of ?/J
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stated above allow us to write explicit formulae for '3' '4 ' which in turn serve to

compute the coefficients S.. of S for i,j = 3,4 . From (3.18) we have the relation
lJ

(3.23)

which by (3.20) yileds expressions for ql' q2 . After that we can write down the

remaining components '1' tP2 . To determine the constant factors that occur in these

formulae J we must use the second symmetry relation (3.9). Combining it with (3.18), we

come down to the Prym condition for the divisor 9J and determine the

Baker-Akhiezer function completely. Finally to derive the evolution of p{t) we use

(3.22).

3.5 Explicit Formulae for the Baker-Akhiezer Function

We now begin to implement the programme outlined above. First of all we have to

introduce certain Abelian differentials.

Let dO be a normalized Abelian differential of the second kind 00 X with a pole

at CD+ such that

p

O(P) = f dO = A + 0(,\-1) as P --+ m+

(recall that there is a well-defined branch of ..\ on X\,$ j its sign ia specified by

requiring that jJ N 2..\ at (1)+). Let us deoote by



-20-

the b-period vector of dO.

Let dOg be a normalized Abelian differential of the third kind which has simple

poles at CD+ and CD_ with residues 1 and -1, respectively. We choose a path t from

m+ to m_ and normalize dn3 by the condition f dn3 = 0 where the cycles aj are
a.
J

supposed not to intersect t.. 1t ia easily checked that dOg is the pullback to X of a

differential on E given by

*with some Constant q, so that 7r d03 = d03 (7r{z,J.') = (z,-J.')) . We put

and fix the constant of integration by the eondition

Og(P)
e = A + 0(1) aB P -----. CD+ .

o (P) JP
We s~all need the values of the multivalued functiona O(P), e g , w at the

points CD: and O±. For that purpoBe we shall specify the choice of the path t joining

CD+ and CD_ coinciding with the cut [CD+,CD-.J (see Fig. 1), Le., (a) its projection to E

passes through 0 and ia symmetrie with respect to 0 E E , (b) the eycle t-7rt is

homologous to ~, (c) t. does not intersect the ramification contour ~.

Since the periods of dO, d03, w1 and w3 over a2 are all zero, the multi-valued

.. °3(P) JP' .analytlc funcbons O(P), e , w1,3 have slngle-valued -branches In a
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CD+

neighbourhood of the contour t U ~t . Also we set f Wj = 0 .

Standard calculations [2] show that

n (P) 2
O(CD~ = 0, e 3 = - i- + 0(1) as P ---+ CD

where r and a are defined as follows:

n3(p)
In particular we see that e changes sign when analytically continued along b2 .

P -
Let D be a vector in {3 such that the divisor of O(f W + D) on X coincides

CD+

with the divisor 9J introduced above.

Theorem 2. The Bakher-Akhiezer function ~P ,t) is given by

P
_ ~ w+Vt+D)O[~] (D+R) O(P)t

~1 - ql P e-
O(f W+D)O[~](Vt+D+R)

P
_ O[~]( [ w+Vt+D) o[t-](D+R) O(P)t

1/J2 - q2 P e
O(f w+D)E1(Vt+D+R)
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p
_ O[ f] (I w+Vt +D+R) 0 (D) O(P)t+03(P)'3 - P e

O(f w+D) 0 [E] (Vt +D+R)

p
.~ w+Vt+D+R) O(D) O(P)t+03(P)'4 = -l pe, (3.24)

O{f w+D)O(Vt+D+R)

where

[0°0]R = (r,O,r), E = 0 1 ° .
p

The proof is a straightforward corollary of the analytical properties of O{f W),

O(P), 03{P) displayed above and oi the Baker-Akhiezer function described in Sect.

3.4. Reca.ll that now we do not take into account the second symmetry relation (3.9).

The expressions (3.24) for '3 and '4 enable us to calculate M3(t) .

Lemma 3.

M --i 8 log~(Vt+D+R)
3- 7Jt t+D+R) .

Proof. From (3.23) we get
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p p_.[4- 0(.0)( 0V +D+R} _& Hf 0]

-., eLCHf D+) Hf+D+R) IP=lD+ '

where k = ,,-1 is a loeal parameter at P = m+ . The derivative 8/ Bk may be

replaeed by 8/8t due to the uaua! reciprocity law for dO and w.

The integrand in (3.20) turns out to be an exact derivative and thus we get

(3.25)

where the eonstants of integration Q, ß are still to be determined.

3.6 The Prym Condition

It is now time to take into aceount the seeond symmetry condition (3.9), whieh is

best done in the resultant formulae for the solutions. Substituting (3.24, 25) into (3.18),

we have the coefficients 01 LO :

(L) =-2iS =-2iß~t+De~bD+R)o24 23 f Vt+D+R )
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aß = ia2.f1Qj 2 0Ft+0+2R) = ia2 #(0) 2 (J~ (Vt+0+2R) .
. O(D+R) O(Vt +D) O(D+R) O[ f] (V t +D)

For this equality to hold identically, the theta functions depending on t must cance!

out:

B(Vt+D+2R) = c tJ(Vt+D)

* *with some constant c. Since '" V = -V, '" R = Rand, moreover,

*8(-u) = 9(u) = 0( '" u) ,

this implies

*D = P-R, '" P = -p .

These relations give

-Aa~ ß_ia~a - 11[EJTPJ , - r 11[EJTPJ ,

M _2ia~fvt+p-R) M -2iA ~Vt+P-R)
+ - 8 f Vt+P) , - - a Vt+P) ,

where the constant A is still to be determined.

3.7 The Poisson Vector
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Still t~ be calculated ia the Poisaon vector p(t) , using (3.22); recall that

pi + p~ + p~ = 1 . In view of (3.21), we can write 1(0) as

where

.9t = a 9(P-R) )(

o
8(J +w-rVt+P-R) ]

o '
-8[1:] (J +w+Vt+P-R)

(3.26)

( ) . () n (0 )
Ta verify t~eBe formulae we recall that f/Jj(O±1 ) = (-l)J~j(O:!:2 ) and e 3 ± = ± a .

Also, it can eaaHy be shawn that

(3.27)
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*This and the relation O(u) = 0(-r u) imply

Therefore (3.22) can be written as

with

-1

[
.A u3A u1] -1 1 [ viw- ,W =~ 1

u 1.A (J3 (J 1A u1 (J 1 A- u3

(3.28)

(we have assumed that € = 1 in (3.22), [see (3.14)]). After simple calculations we find

where the S. are defined by
J

By equating the matrix coefficients (L-1)32 = (L-1)14 ' we finally get !J.2 = 1 and

M -~(S +'S) M -H!llY!m(S 'S)+ -11[fJTVf+PJ 1 I 2' - -~ 1--1 2 I
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We can now SUDl Up our calculations.

Theorem 4. The general solution 0/ the equations 0/ motion /or the Kowalewski top

is given by

M = 2ia~ fVt+P-R)
+ f Yi+P)

M - 2"a ~Vt+P-R)
_ - 1 Vt+P)

where

PLYt_+P), AB
P+ = 27l[€J"TVt+PJ AD+BC

-2~ CD
p-- ~AD+BC

BG-AD
P3 = AD+BC J

o 0
A = O{f - w+Vt+P) , B = O{f +W+Vt+P) I

00+ 00+

(3.29)
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3.8 The Geometry ofthe LioutJille Tori

The remaining indeterminacy in (3.29) für the.dynamical variables (the change of

sign ~ --+ -~ or the permutation 0+ +----+ 0_ ) reflects the freedom in reconstructing

the Lax matrix (3.7) from the algebraic data. It is easily verified that this freedom

amounts to conjugation L --+ ULU-1 by a matrix U of the form

U = diag(l,l,-l,-l) .

Trus is equivalent to a renormalization of the Baker-Akhiezer function 1/1 ---+ U f/; and

induces a symmetry of the Kowalewski top:

M --+ BM, p --+ -Bp, B = diag(-l,-I,I) . (3.30)

Clearly, (3.30) leaves the Hamiltonian invariant but changes the sign of f2 = (pM) .

Recall that only the square (pM)2 is a spectral invariant.

We may summarlze the situation as follows.

Theorem 5. If (pM) *0 , the eommon level surfaee o/the speetral invariants B,

K, (pM)2 eonsists of two eomponents (LiouviUe tori) eaeh of whieh is an affine part 0/

an Abelian variety isomorphie to PrymrX. These components are peTmuted by the

transformation (3.30).

If (pM) = 0 , the curve E degenerates into a rational curve which is a

/
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two-sheeted cover of the z-plane. The curve X ia given by the equation

2 2 2 2 K(p -dl (z)) = 4(z - 2Hz + 1 + H - T)

and has genus 2. In the variables u = V'1 jJZX, x =~p2 -~) it takes on the usua!

hyperelliptic form

2 2 K 2 Ku =x(x +2Hx+T)(x +2Hx+T-·1).

Notice that it is different from the Kowalewski curve (3.5) with (pM) = 0 . The fact

that there are various hyperelliptic curves associated with the Kowalewski top which are

different from the classical Kowalewski curve was pointed out in [22]. The motion of

the top linearizes on the Jacobians of these curves which are isogeneous to one another.

Für (pM) = 0 the mapping of the Liouville torus to Jac X becomes an

unramified .two-sheeted covering. The corresponding theta functinal formulae are

presented in [2].

3.9 Reduction 0/ Two-Dimensional Theta Fu.nctions

Since the Kowalewski flow on Jac X is parallel to the Prym variety of the

covering X ----i E , it s desirable to express the dynamics entirely in terms of the theta

functions related to this Prym variety. The Prymian has polarization (2,1) and its

period matrix is [51]

Ib2( 1111+1113) ]

Ib2
1112
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Let ~ BO be the periof of E

We write the Prym vectors V and P entering in (3.29), and C defined by (3.27) as

and denote

Then we have the following expressions for the theta functions occurring in (3.29)
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Remark. Adding to W aperiod of the form

does not change the solutions (3.29). This shows that the mapping of the Liouville torus

to Prym X is one-to-one, as was already mentioned in Theorem 5.
1r

4. The Goryachev-Chaplygin Top

Now the system under consideration is a special case of the motion of a heavy rigid

body with a fixed point, discovered by Goryaehev and Chaplygin in 1900 [26]. 1t

represents a symmetrie top with the principal moments of inertia satisfying

111 : 1'21 : 1i1 = 1 : 1 : 1/4 and the centre of masslocated in t"he equatorial plane. The

Hamilto~an of the Goryachev-Chaplygin top (GCT) is given by

(4.1)

where M i~ the angular momentum and p is the field strength vector in the moving

frame (Sect. 2).

The system (4.1) admits an extra integral of motion provided that the Casimir

function i2 (2.1) for the Poisson brackets (2.3) vanishes

(4.2)
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A more general system described by

is called the Goryachev-Chaplygin gyrostat (GCG). It is also integrable if (Mp) = 0

[27] . We mention also two papers where GCT is studied in a different way. In [30] the

R-matrix technique is used to solve both the classical and the quantum problems. In

[31] the geometry of the complexified Liouville tori for GCT is thoroughly studied

using the general technique developed in [21]. In particular,a dose connection is

established"in [31] between GCT and the periodie Toda lattice with three particles.

Here we follow the paper [3]. Let us note that (compared with [3]) similar but

slightly more complicated fonnulae for these solutions were obtained in [45].

4.1 The Lax Pair for the Goryachev-Chaplygin Top

There is an interesting connection between GCT and the Kowalewski top (KT) on

the Lax representation level.

An important observation of [3] is that, by removing the first column and the

first lOW of the Lax matrix (3.7) we get a Lax matrix for GCG. Clearly, we get

2 P3
-M!; r +

L = i
P3 4 P+

(4.3)- r -2M3-!; -2 ~-:r-

p
2·-M T+2~ 2M 3 + '3';
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Put

2 0 -M-3M 3-~'7 +

A =i 0 2 -2 ~ (4.4)-2M3-!'7

-M 2~ 2M3+ 4
~'7

The the Lax equation is equivalent to the Hamiltonian equation with the Hamiltonian

(4.1), provided that the constraint (4.2) is satisfied.

For future use we introduce the notation

for the coefficients of the Lax matrix (4.3).

The Lax representation with a spectral parameter for GCT and GCG permits us to

apply the powerful machinery of algebraic geometry to solve the equations of motion. In

the following we shall conaider only the first case, i.e., put '7 . O. Formulae for the

general case may be easily obtained in quite the same way.

4.2 The Spectral Curve

Let X denote the spectral curve given by the equation det(L(~)-JlI) = 0 . The

symmetry relation

(4.5)
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gives rise to an involution on X

...
lt is natural to conisder the quotient curve X = XI T given by

where H =~Mi + M~ + 4M~) - 2Pl is the Hamiltonian and

G = M3(M~ + M~) + 2M l P3 is the Goryachev--chaplygin integral. It is equivalent to

the Chaplygin curve [26]

2Note that we always assume (Mp) = 0, p = 1 .
...

The spectral curve X is a three---fiheeted covering of the A-plane A and also is a
..

double cover of X = XI T

(A,#) X __2:_l_-----t, X=XIT (#,z)

3:1 1 13: 1

(A) A 2:1 I ( (z)

A

We denote the point of X with A = 0 and tl = CD in the following way:

tl=o 01
#=0 tl=co· I

#=0co

Oll -1 II
jJ N -2tljJ N -tl CD

OIII -1 III
jJ N 2),#N). CD
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X is a three--sheeted covering of the z-plane. We denote the points with z = ° and

z = m by °1, 02 ,and m1, m2 ' in such a way that 02' Q)2 are the branch points of the

covering X ----i ( 3 z . This covering is unramified at 01' 001 and jl(OI) = jl(m1) = °.
The function A = {Z is double-valued on X and changes sign when analytically

continued along a closed path which interseets a certain contour $. Here $ is a

contour connecting the points 01 and 0)1 and determin~ by the covering .X ----i X .
A

Glueing two copies of X along $, we obtain X. The condition

jll'J -2,\

uniquely fixes :t and the branch of A .

-1jll'J -A

4.3 Analyticity Properties 0/ fhe Baker-Akhiezer Function

Dur main goal is to construct explicitly the Baker-Akhiezer function

1b(P) = (,1' 162,163)T which is analytic on X and satisfies

(4.6)

We mayassume that , satisfies the symmetry relation (4.5)

tl{TP) = [-1 1 -J tl{P), P EX. (4.7)

Hence, the component '2 may be regarded as a single-valued function on X, while

'1 and '3 are double-valued on X and change sign when analytically coninued along
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a closed path intersecting ~. We may &Saume that ;i are defined on X\~ and

satisfy the sym~etry relation

(4.8)

for P belanging to the cut ~. In other words, ;1' '3 acquire a factor (-1)<1, $>

upon a circuit of 1. Here <1, $> is the intersection number.

Let us define a matrix-valued function

where pI, plI, plII are the inverse images of A with respect to the mapping

X ----+ A . We mark them so that

pI,II,III --+ CD1,II,ill

pI,II,III --+ OI,rr,rn

A ----+ CD J

A ----+ 0

hold. The function t( A) is defined on the domain U = U0 UU(J) which is a union of

two simply connected domains with the points A =0 and ,\ = CD "respectively. These
...

domains also da not contain the branch points of the covering X ----+ A and are

invariant with respect to the involution A ----+ -A .

The reduction (4.7) can be rewritten in terms of t :

(4.9)
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To understand this, it is necessary to note that TOll = Dill, Tm
II = m

IIT, T01 = 01,

I I
Tm =m .

According to (4.6,8) it ia natural to determine the asymptotics of t(~) at

A ----+ m and J ----+ 0 aB

[

J-1 ]
. t = T

O

1 1

J --+

Then the reduction (4.8) gives

The coeffi~ent8 of L(J) = L_1J-1 + LO+ L1A are related to the matrices t, S, T in

these expansions by

(4.10)
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LI = 2~ [0 -1 1] .-1 I

which gives

In th~ usual way all these analytical properties can be refonnulated for the vector

function , on X.

With a suitable normlaisation, the Baker-Akhiezer function has the following

properties which characterize it completely.

(1.) 1J is analytic on X\.t, satisfies the symmetry relations (4.8) on .t and is

meromorphic on X\m2 .

(2.) In the neighbourhood of the points 01' 001' 002, f/J has the foUowing asymptotic

behaviour:

qA+O(A-1)

tP N 0(1)

o(A-1)

for P --+ 001 I
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(3.) The divisor olpoles 01 t/J [A = P1+P2 has degree 2 and does not depend on

t .

(4.) The n07malization constant q above satisfies the differential equation

qt/q = -3iM3 ; hence,

The Baker-Akhiezer function , with these poperties satisfies (4.6), where L and

A are almost the Lax matrices for GCT, with only the condition

(4.11)

not being automatically fulfilled. (This last condition will be imposed in tbe last stage of

the computation. As we sball s~, it amounts to a suitable choice of the integration

constant a. )

1t ie useful to present the expressions (4.10) in more detail
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4.4 Constroction o/the Baker-Akhiezer Function

To write down explicit formulae for the function '1' '2 and '3' we must define

a number of standard objects on X. Let n3{p), &(P) and n{p) be the normalized

Abelian integrals of the third and the second kind, respectively, which are uniquely

specified by' their behaviour in the neighbourhoods of the points (Dl' 002, O2

P
. n

3
{p)

e&{P) n{p)e

001 a A2+O{I) f (4.13)

002 A+b+0{A-1) dA-1+O{A-2) -2A+0{A-1)

O2 CA+0{A-2) e 0(1) .

Let us denote

(4.14)

There are same useful relations between the different constants in (4.13) and

(4.14). Comparing the singularities, we get

(4.15)

which implies 3R + 2& =0 modulo the periods. Let us choose the paths [002,02],

[001,002] such that an exact equality holdsj Le.,

3R + 2& =0 . (4.16)
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Also, using (4.15) we get

e~(P) - cl (1- 3b + ) P- Ir"" ----+ (D2 '

n
where b is the constant term in the expansion of e 3 at (D2 (4.13). Using the general

properties of Abelian integrals we obtain

f = 3b I cl = ae . (4.17)

P
Choose D E Jac X such that the divisor of zeros of O(J w+ D) on X is

precisely ~,the divisor introduced in the definition of 1/J above. We are now in a

position to write down the explicit fonnulae for ,.

Theo~ 6. The function fJ is given by the foUowing formulae:

p
~ w+Vt+D- IR) 9(D+ 3R)

t\ = hp 2" 2" exp(O(P)t+03(P)+&(P)-ft)

O(J w+D) 9(Vt+D+R)

PS w+ 9(D)'2 = P exp(O(P)t)
O(J w+D) 9(Vt +D)

P
.~ w+Vt+D+R) 9(D)

'3 = .:... jp exp(O(P)t + 03(P))

O(J w+D) 9 (Vt+D+R)

(4.18)
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The expression for the function '1 can also be written in a different form,

(4.19)

P
. ~ w+Vt+D-R) /}(D+ 3R)

cp(P) =b~p ~ exp(O(P)t-03(P)-ft)

/}(f w+D) /}(Vt+D+ }R)

4.5 Formulae for Dynamical Variables

Substituting asymptotics of t'2' '3 at m2 into (4.22), we obtain

iM - _ 1 J 10 ~Vt+D+R) _ b
3 - ~ (9f g Vt+D)

3/2
. q - a exp(3bt) [ ~Vt+D+R) ]- Vt+D)

., fP 1
where we have used the form w=2'l V + ... of the Abel transform near 002 .

Now we must satisfy the last condition of (4.11). To obtain the expressions for

(L-1)12 and (L-1)21' we use (4.18,19), respectively. We get

~2(02) c 1 ft 8(Vt+D+R) O(Vt+D+}R)O(D)

(L-1)21 = -1{J(02}Q = -äij" e 02 (Vt+D) /}(D+}R)

Trus implies that
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To compute P:l: we also use both (4.18,19) for ;,

Finally, taking into account (4.16, 17), we obtain the following theorem:

Theorem 7. The general solution 0/ the GCT is given by the /ollowing formulae:

1 1/2
. 8(Vt+D-~R) [ ~Vt+D+R}]

M+ = 21ye O(Vt+D)Vt+D)

. 3 1/2
. tJ(Vt+D+"2'"R) [ ~Vt+D} ]

M_ = -21{e O(Vt+D+R)Vt+D+R)

i J ~V .M3 = ~ -m-1ogVt+D) + bl

P _ c O(Vt+D-R) O{Vt+D+R)
+ - 02(Vt+D)

P = c tJ(Vt+D+2R) 0 (Vt+D)
- 02(Vt+D+R)

c O(Vt+D+~R)
Ps --re: (o/vt+m 9 (V .

(4.20)
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The square roots in (4.20) are quite unusual. Their presence is predicted by

Painleve analysis of the equations of motion, which shows that the leading powere of

singularities in t are half integers [31]. The sign change of the square root in (4.20)

leads to the transformation MI --+ -MI' M2 --+ -M2 t P3 --+ -P3 preserving the

equations of motion.

The paths [002,0)1] t [0)2'02] are already fixed (4.16). Constants &, c and e

are defined by the integrals upon these very paths.

5. Integration of the Lax RePresentations with the Spectral

Parameter on Elliptic eurve. XYZ Landau-Lifshitz Equation

All other tops considered below possess the Lax representations with the spectral

parameter varying on elliptic curve. In tbis section we describe the integration process in

this case, using the papers [4, 32]. The Lax representations of all examples considered

below are of the matrix dimension 2 )( 2 . The general theory for an arbitrary matrix

case ia constructed in [33].

We use the uniformization of the spectral parameter suggested in [34]

I () d P:t; () cnfu:t;wl(u) = sn(u,k)' w2 u = sn u, ,w3 U = sn u, '

Here sn, co, do are the Jacobi elliptic functions of the module k. The variable u
'"

varies on the torus E which is a parallelogram with the lattice 4K, 4iK I (here K is
'"

the complete elliptic integral of the module k). Let UB denote E the "quarter" of E -

the torus with the lattice 2K, 2iK I •
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The general form of the Lax representation with the spectral parameter on elliptic

curve in the case of 2 )( 2 matrix dimenaion ia as follows:

3 N Ns
L(u) = I 1: 1: L~,k(t)f~(u-us)O" a (5.1)

a=ls=lk=l

3 N NB

A(u) = I I I A~,k(t)f~(u-us)O"a
a=ls=lk=l

k = 2n+2

] n (u) k = 2n+1 .

The functions f~(u) have a pole of the k-th order at the point u=O and satisfy

the important reduction

(5.2)

The functions f~(u-us) generalize the function l/(~-~s) to the elliptic case.

The matrices L(u), A(u) (5.1) oOOy the symmetry relations (5.2). This implies

that the spectral curve X

Jl2 = det L(u) (5.3)
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ia a two-sheeted covering of the torus E. Let us chOO8e the canonical basis of cycles in

the natural ,way. It is shown in Fig. 2. The projections of the cycles al' b1 on E form

the canonical basis of cycles of E corresponding to the shifts on 2iK I and 2K

respectively.

Let us define also the necessary Prym differentials (for details see [51], [32]}

Denote

the differentials odd with respect to the involution r: (Jl,u) ---i (-JL,u) . These

differentaisl differ !rom the canonical Prym differentials by the normalization. Their

period matrix

rf.· = f dv.
IJ b. 1

J

i,j = 1, ... ,n

is simply relate with the canonical period matrix TI of the Prym variety Prym X
"..

1/2 1/2TT=[ dn[ rJ2 .. (5.4)

It is this matrix which defines the corresponding theta function we use below.

Let us denote ut, uj = ?rUt the poins of X with projections X ----t E equal to

u· .
1

The normalized Prym integrals of the second kind O(P)

,/dO = -dO, f dO = 0
a·
J

j = 1, ... ,n
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are determined by the asymptotic8 at the poles

N

O(P) = :I: "taB k(U-lls)-k + 0(1) J P --I U: .,
k

Bere a
8

k are constants. We denote,

j = 1,... ,n

the b-period vector.

Theorem 8. The Baker-Akhiezer function corresponding to the Lax pair (5.1) is

given by

(5.5)

The complete proof of this theorem ia given in the paper [4]. Bere we only remark
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that the Baker-Akhiezer function (5.5) satisfies the reduction corresponding to (5.2).

Indeed, for the analytical continuation along the cycles a1 and b1 we have

where m(P) is the following function:

In the neighbourhood of the point u
B

the matrix function of u E E

ia well-deffned. Here u:i: are the two preimages of the point u with respect to the

:i: ±
projection X~ E . They are uniquely determined by the conditions u --J U s

when u --J uB. Let UB also consider the diagonal matrix

p= [Jj(U+) ]
Jj(U)

As usual, the following equalities are valid:

...
L~=tjJ, tt=At.

Substitution of the asymptoticB of i and Jj near Us

(5.6)
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,. -N
fJ = tu3(u-us) s + ...

in (5.6) determines Ls ,k and As ,k . In particular, for the first coefficients we havea a

t = [As Ba] ,
s C D

s s
(5.7)

2 s,N 2
t = 1: (La s) .

a

-1 1 1: s ,Ns 1 1: s ,Nst u3t = -- A u =". Lu.. s s a
8

N Q Q (.. a a
, S Q Q

Calculating t s· and reducing As' Bs' C
S

' Ds by common multipliers we see that
s,NsLQ are given by the expressions (5.7), where
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Here the projection of the integration path in rs on E should be homologically

equivalent to zero. The elliptical integral u = Jdu calculated along the path of ES

should be equal to

u+JP S du = us-P0 (mod 4K, 4iK')

o

modulo period lattice of the "big" torus E.

The solutions presented above may be considered as the finite-gap solutions of

integrable non-linear equations with the Lax representations With elliptic spectral

parameter. To construct such an equation, we should introduce a new variable x with

respect to which the Baker-Akhiezer function satisfies the similar equation t x = Hf .

Here B(u) is the matrix elliptic function of the same structure as A(u) , i.e., the

reductions (5.2) are valid for B(u) also. The compatibility condition

gives the non-linear integrable equation.

The additional condition that t/J is the eigenfunction of some matrix L(u) means

that , is an analytic function on X which is tWD--fiheeted covering of E . All

finite-gap solutions are obtained by the choice of all possible L{u) or, equivalently, of

all possible tWD--fiheeted coverings of E.

The most important example of an equation of this kind is the completely
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anisotropie (XYZ) Landau-Lifshitz equation

Here the square braekets denote the vector product and IS - the vector with the

coordinates (11S1' 12S2' 13S3) . This equation deseribes the non-linear waves in

ferromagnetics. The zero curvature representation for it was found in 1979 by Sklyanin

and Borovik [34]:

B(u) = -ip 1: SaW a(u)u a
a=1

The eorresponding v-funetion has the following singularity at u = 0 ~

Fin~~we obtain the following:

(5.8)

Theorem 9 [4]. The finite-gap solutions ofthe Landau-Lifshitz equation are

given by
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CD-AB . CD+AB AD+BC
SI = AD-BC' 82 = -i An=BC' 83 = AD-Be

A= 9{Vx+Yt+Dlm

C = 8{Vx+Yt+D+&lm

B = 6{Vx+Yt+D+rlm

D = 9{Vx+Yt+D+r+Alm

Here all the parameters are determined bll an arbitrary Riemann sur/ace X which is a
. .

two -sheeted cover of E . The vectors V and Y are the b -period vectors of the

nonnlaized Prym differentials 0/ the second kind

±
u-tQ

The integral r is equal to

and the path 0/ integration should be fixed in such a way that for an eUiptic integral the

equality r- du:: 0 (mod 4K, 4iK ') holds.
0+

6. Curves of Lower Genera. The Ewer Case and the Nenmann System

For the curves of small genera (n =1,2) the formulae of the previous section can
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be simplified. For this purpose we use the well-known addition formula for theta

functions

IJ(zllmlJ(z21m = L e[g}Zl+Z212me[g](ZC-Z212m I

6E!lln/2y'
n

where the SUffi is taken over all n-dimensional vectors 6 with the coordinates 0, ~ .

For n = 1 we have

(6.1)

z = 2Vt + 2D + 2f
S
+ rs .

Here and below in this section we use the notation e[:~] (x) = e[:~] (x 12m . For

n = 2 the formulae are more complicated
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(6.2)

Let us now consider the Euler top and the Neumann system, which have the

simplest elliptic L-A pairs. The L-A pair for the equations of motion of the Euler

top

is aB folIows:

L = -ip l Mawa{u)ua

a

The spectral curve is given by the equation (5.3) and corresponds to the case n = 1 .

The solutions are given by the expressionB (6.1), where t = 1 and n--t :!:: 2ip2u-2 ,

:!::
u--tO .

The solutions of the Landau-Lifshitz equation independent of t are the solutions

of the Neumann system [37]
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Stt + IS = A(t)S , (6.3)

It was solved by C. Neumann [38] with the help of the separation of variables method.

The equation (6.3) was considered in connection with the finite-gap potentials

[39, 40, 41]. In particular, the generalization of the system (6.3) to a higher dimension

case was solved. The L-A pair for the system (6.3) is equal to

A = -ip 1: SQwa(u)ua
a

The function det L(u) is even and has a pole of the fourth order at the point u = 0 .

Therefore, the spectral curve corresponds to the case n = 2 , and possesses an involution

TU = -u . We denote by u = P1,P2,ql,Q2 the branch points of the covering X -J E .

The Prym differentials are odd with respect to the involution

*
T V = -1/ .

Für the vector r we have

r =J1/ = -J1/ = -r +J1/ ~ r = [~J I

t Tt a2

since rt = t-a2 (Fig. 2). The one-half of theta constants 8[:~ (r 12m in (6.2)

becomes equal to zero. Finally we obtain the following formulae:
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L) rIO1,.. I t}Tr\ L) rIO1
s --I- [11] [11]

(J 11(z 12m (J 11
L) r001,.. I t}Tr\ L) r0 01

S =-i2 [11] [1 1](J 11 (zI2m(J 11
L) r0 01,.. I t}TT\ L) r001

83= [1 1] [1 1] ,
(J 11 (z 12m (J 11

where () [:~] = () [:~] (0 12m,

z=2Vt+D, Vn = [ dO, 0-1 'f ipu-1, U-IO:l: .

n

The Prym differentials 2111' 2112 in this case are the holomorphie differentials of

the Riemann surface XI rT of the genus 2. The involution r is a hyperelliptie

involution of XI 1fT with 0, K, iK I , K+iK I , P=Pl=P2' q=ql=-q2 being the fixed

points of r. It is easy to see that 2111, 2112 are normalized, so the matrix 2IT ia

exactly the period matrix of XI 1fT.

7. Manakov and Clebsch Casea

1t was remarked in the paper [37] that the one-phase solutions (depending on the

combination x+vt) of the Landau-Lifshitz equation and of the asymmetrie ciral
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O(3)-field equation are the solutionB of the Clebsch and Manakov eases of integrability

respeetively. In this way the Lax representation for these tops eome !rom known zero

eurvature representation for the Landau-Lifshitz equation (5.8) and asymmetrie ciral

O(3)-field equation [35].

The Manakov Gase. The Lax representation ia as followa:

LM(u) = L{SaWa(u-,,) + Tawa(U+")} ua/2i ,
a

(7.1)

A
M
{ 1) = ~ S W (U-IC)U /2i ,L Q Q a

The Lax equation (LI) with the matrices (7.1) deseribes the Hamiltonian system with

the Poisson bracket (2.7) and the Hamiltonian

(7.2)

We see that the speetral curve corresponds to n = 2 . The general solution of the

Manakov case is given by (6.2):
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9[i a](zO+2Vt)9[i a] (r+o)+IJ[ja] (zO+2Vt)O[ja](r+o)
S = f S---------------------

a a 9 [m] (zO+ 2V t ) IJ [m] ( r + 0 ) + IJ [ n] (z 0+ 2V t ) 9 [n] (r+ 6)

IJ[ i a] (zO +2Vt) IJ [i a] (r-o) +O[ja] (zO +2Vt) lJ[ja] (r-o)
T=€T--------------------

a a lJ[m] (zO+2Vt )9[m] (r-6)+O [n] (zO+2Vt) O[n] (r-8)

[m]=n~J. [n]=n~],

Here Sand T are constants (2.8) and the normalized abelian integral n is

determined by the asymptotics

J I [ c2 cl ] ::I::dO--+±21 S - 2+-+'" J U--+K,
(u-x) u-x

The Clebsch Gase. The Lax representation is as folIows:
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(7.3)

It is a Hamiltonian system with the Poisson bracket (2.3) and the Hamiltonian

(7.4)

The formulae for solutions are obtained by the isomorphism [5, 36] of this case

and the Manakov case:

www
Pa = W a(x)(S a-Ta) J Ma = 1w

2
3 (x) (8 a+T a) J

a

Direct integration of the L-A pair (7.3) by the technique of Sect. 5 yields the formulae
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0-

(6.2) for Pa' where t = P (2.4), r =f v and vector V is determined by the
0+

normalized integral with the singularity

J
! [d2 d2 M d! J :I::

dO--+:I:"21 3 P+, ~--P+'" ,u--+O .
U U P u

These latest formulae were obtained by Kötter [42] (see also [9]) for d2 = 0 . The

expressions for Mo obtained in this way are more complicated and we do not present

them here.

Remark. Adding to Vt aperiod vector of the form

[6 ~ ITI [~ ~JJmJ ' N,M E 71
2 (7.5)

does not change the solutions. Let us normalize the period matrix (7.5) changing a basis

In (2 . We obtain that the period lattice ia given by the normalized matrix

(7.6)

where II and TI are connected by (5.4). The matrix (7.6) is exactly the period matrix

of the Prym variety Prym (X). It shows that the mapping of the Liouville torus to
1r

Prym
1r

(X) is one-to-one. This fact was established in [34, 32].

Remark. All integrable cases considered in the present and next sections depend

on 6 arbitrary parameters. We obtain additional parameters adding the Casimir

functions f1, f2J gl' g2 to Hamiltonians (7.2,4). FurthermoreJ the bracket (2.3) is
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invariant with respect to the transformation Pa --+ ap Q (for all a together), which

changes a Hamiltonian. We also remark that for any integral K of the Clebsch top (as

well aB of the first Steklov case of integrability [see below])

is an integral of motion. Therefore, the transformation Ja --+ Ja+4 (for all a

together) preserves integrability. Combined with the transformation p --+ apa a

mentioned above it guarantees integrability of the Clebsch and 1· ftt Steklov cases with

arbitrary Ja'

8. Steklov Cases

The integrable Steklov case of motion of rigid body in liquid was solved by Kötter

[44] . In bis paper he used implicitly the Lax representation with an elliptic spectral

parameter [28]. Various modifications of the Lax pairs for the Steklov cases were

suggested in [45], [46], [5].

The Second Steklov Gase. It P08SesSes the following Lax representation:

(8.1)
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The Lax equation (1.1) with the matrices (8.1) describes the Hamiltonian system with

the Poisson bracket (2.7) and the Hamiltonian

The L-A pair satisfies the reduction

L(-u) = -L(u) , A(-u) = A(u) (8.2)

Note that the factor E/i (iu = -u) is a rational curve. The matrix L J multiplied by

w1w2w3(u)

becomes a function on E/i. So the Steklov cases (see also the first Steklov case below)

po8SesSes the Lax representations with a rational spectral parameter.

The 8pectral curve X (5.3) corresponds to n = 3 of Sect. 5. It also has an



-63-

involution

T : (J',U) --+ (-J',-U) ,

which is a corollary of (8.2). This involution has two fixed JXlints 0+ and 0- with

u=O (Fig. 3). The factor XI T is a curve of genus 2. The involution Ir changing the

sheets of the covering X --+ E is the hyperelliptic involution of XI T • Its fixed points

are P1' Ql' P2' K, iK' , K+iK' .

We shall specify the parameters determining the Baker-Akhiezer function to

satisfy the reduction

~TP) = ~P) .

For the L-A pair of the ;-function, satisfyjng (8.3) the reduction (8.2) is

automatically fulfilled.

One can always choose a canonical basis of cycles such that (Fig. 3)

The Prym differentails v = (v1,v2,v3)T (Sect. 5) satisfy the equality

(8.3)

The asymptotics at the singul&rity points of J' and of the normalized abelian integral of

the second kind n, determining the velocity vector V , are as follows:



IL--+::I: T
,- 4i( u-Je)

Hence, the equality

holds. For the b-periods we have
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T
n--+ ::I: c2 21( U-IC)

*T dn = dn

::I:
P --+ Je

::I:
P --+ -IC .

TTTT=TT [aßß] [v1
]_ ~ TI = ß; 0 , V = v2 .

V -TV ß ~u ; v2

(8.4)

Let us fix the fixed point of T as the starting point in all integrals Po = 0+ or 0-.

The symm.e~ryof the period matrix gives

9(Tx Im = 8(xlm .

It, in turn, yields

TP TP

O(I II+Vt+Dlm=O(T<I v+Vt+D)lm=

o 0



-65-

p

0([ v+ Vt + Dirn

o

if the vector D is also symmetrie

D=TD. (8.5)

Thus we obtain that (8.3) is equivalent to (8.5).

The even part of Prym (X) with respect to T ia a two-dimensional Abelian
".

torus. We see that the flow Vt is restricted to this torus. It is, therefore, natural to

present solutions in terms of the two-dimensional theta functions. For this purpose we

use the reduction technique of theta functions [32]. Let us malte a substitution of the

theta function's summation variable

1

m = N(n+o) , N = [ ~ -~] .

Here n E 71
3

, 0 = (01'°2,°3) = {(O,O,O), (O,1/2,l/2)} . The matrix NT TT N

consists of two blocks

Hence, the following equality ia valid:
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It, in turn, gives the representation of the 3-dimensional theta function in terms of

2-dimensional and I-mmensional theta functions:

(8.6)

The structures (8.4,5) of the vectors V and D prove that the I-mmensional theta

functions in (8.6) are constants.

The First Steklov Gase. The corresponding L-A pair and the Hamiltonian are as

follows:

~) {
www J WWW}U

A 2 = \ 2p 1 2 3 {w2+J _ ll)+M 1 2 3 a ( )l a W 2 a W '2T'wa =wa u)
a a
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(8.7)

The formulae for solutions can be easily obtained using the isomorphism [5] of

thiB case with the second Steklov case:

P - Sa - 0'

Direct integration of the L-A pair (8.7) yields the same formula for Pa'

Remark. Adding to vt = (vl'v2)Tt aperiod vector of the form

[10I 20 2 ß ] [N] E 712o 1 2ß 1+6 M J N,M (8.8)

does not ch~ge the solutions. Since 2v1, v2+v3 are the normlaized holomorphic

differentials of the Riemann surface XI T , the matrix (8.8) is the period matrix of

XI T . It shows that the mapping of the Liouville torus to JaC(XI T) is one-to-one.

This fact was established in another way in [21].

9. Complete Description of the Motion in the Rest Frame

Up to now we have described the motion of tops in the moving frame attached to

the body. Hut for a complete description of the rotation it ia necessary to describe it in
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the rest frame.

It is convenient to use the isomorphism of an algebra of vectors in 1R3 with a

vector multiplicaton and an algebra of traceless 2)( 2 matrices with a commutation

operation

(9.1)

[X )( Y] t--l---tl [X,Y] .

Everywhere below X means the matrix (9.1). The coordinates X and X' of vector in

the moving and the rest frames, respectively are connected by the transformation

X=GX / G-1

with some 2 )( 2 matrix G. Dur aim is to determine this connection matrix.

(9.2)

The equations oI motion oI a heavy rigid body about a fixed point in the moving

frame attached to the body are as folIows:

Here L = ~ L U /2i and L are the constant coordinates of the center of mass in thea a a

moving frame with an origin at the fixed point. Comparing (2.1) with (9.3) we get

GG
- 1 __,OH ua

t - Lm;1"2T
aal

(9.4)
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We also fix the third &xis of the rest frame, a.8suming it to be the gravity vector.

Combined with (9.2) it gives

(9.5)

An arbitrary solution of (9.4) satisfying (9.5) may differ by a constant diagonal gauge

factor

G--+GC, [C,u3] =0. (9.6)

The remaining freedom (9.6) corresponds to the so far unspecified two axes of the rest

frame.

The motion of the rigid body in liquid is described in a similar way. In this case

the vectors

n = 8H/8M J
Q' a

are the angular and translation velocities of the rigid body in the moving frame attached

to the body [9]. As above, for the heavy tops the rotation of the fixed frame to the

moving frame is determined by the matrix G satisfying (9.4): Let us choose the third

&xis of the rest frame coinciding with the impulse p (it is constant). Then for G we

have

(9.7)
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The remaining freedom in G is the same aB for the heavy tops (9.6).

The velocity of translation movement in the rest frame v' . (vi, V2' v3) is

equal to

\ I -1 \ -1 \ OB
L vau Q = G L va(J'aG = G L 71P (J' Q G

aa a a

To find G(t) we still have to solve the linear differemtial equation (9.4). It turns

out, however, that the Baker-Akhiezer functions contain more information than the

Euler-Poisson equations themselves and allows us to find G(t) without solving (904).

The Kowalewski Top.

Let us consider the equation 9t = At at ~ = 0 . Observe that A(~ = 0)

decomposes into two 2)( 2 blocks, which essentially coincide with the angular velocity.

In particular, the matrix

satisfies

From (3.26) we find
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o

o

-bte

, 0
where :!: b = J T dO and vi is given by (3.26) [see (3.28)]

ID+

It is easily checked that the time evolution of the Poisson vector p is given by

So reducing f{J by the constant right factor, we have



-72-

where bO= const .

By inverting, we also obtain the evolution of the top in the rest frame. For

example, the motion of the symmetry &xis of the top in the rest frame is given by

where L' are the coordinates of the unit vector directed along the axis of the top.a

For the Clebsch and Steklov cases we restrict ourselves to the case dU = 0 , Le.,

H = H1 far both systems.

The Glebsch Gase.

Substituting the asymptotics

into the eql,lations

we obtain

2i ~ ~-1 _ [\ Q~-l]
t - L paU a' .

(9.8)
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From these formulae we get

(9.9)

The equalities (9.8,9) show that G{t) satisfying (9.4,7) can be easily obtained

using ~ wlth the help of multiplication by the right factor

(we consider the case B = BI ). FinaIly, we have

bt+b

[
O{Vt+D ITI) O(Vt+D+r IIT) ] [e 0 ]

G - -bt-b
O{Vt+D+A Im O{Vt+D+r+A Im e 0'

(9.10)

Remark. We ignored this fact, hut in reality the constructed t-function satisfies

the equation Wt = At/J + a{A,t)t/J (Sect. 1), since it was determined up to a scalar factor

depending on t . Nevertheless the connection (9.2) of the hases with (9.8) is valid since

(9.2) is invariant with respect to this multiplication.

The Steklov Gase.

The analogoUB expressions for the Steklov case are as folIows:
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2illt t-
1

= -2 [E Paua,Q~-l] + E PQua(J-Ja) =

= ~Ma-JoPa)uQ + E PalIa(J -~)
P

The final result in this case ia given by the same fonnula (9.10) as for the Clebsch case.

The difference is that in the Steklov case the theta functions in (9.10) are 3--dimensional

(Sect. 8) and the constant b ia determined by the slightly different expression
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Shows a plane model of the elliptic curve E. The cyeles a., b. are depieted
. 1 1

. relative to the representation of X as a tWo--ilheeted cover of E: continuous .

lines show parts of the cycles on the upper sheet while dotted lines show their

. parts on the lower sheet.
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