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Introduction.

The fact that some problems of classical mechanics are solved in terms of theta
functions was discovered in the 18 th century by Euler, who solved in this way the
equations of motion of the rigid body around the center of mass in Jacobi functions. The
multidimensional theta functions were first applied by C. Neumann in 1859 [38] to the
problem of motion of the particle constrained on the sphere under the action of
quadratic pbtential. The most famous mechanics system of this type is undoubtly the
Kowaleski top [18], which was in the focus of interest in the 19 th centure.

Despite the dicovery of numerous examples of finite—dimensional systems
integrable in terms of multidimensional theta functions there was at that time no
general approach to solving the equation of motion of these systems. Each time the
success integration was based on finding a rather non—trivial change of variables leading
to a Jacobi inversion problem. After Kowalewski the most important results in this
direction were obtained by Kotter [42], [44], [47].

We solve the equations of motion of classical tops with the help of the finite—gap
integration theory. Such an application of the modern theory to the classical problems
proves its universality. From the other side modern theory gives a possibility of
obtaining ixhporta.nt new results even for the classical tops (particularly for the
Kowalewski top [2]). The formulae for the solutions obtained here are considerably
simpler than the classical ones.

The theory of the finite—gap integration for the finite—dimensional systems is

based on the representation of the equation of motion in the Lax form:
GO + [L),AW] =0 .

When the Lax representation is found, all the machinery of the finite—gap integration
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theory may be used. At the same time the construction of the Lax representation for the
concrete system is a transcendental problem, solved however, now for all famous tops
studied in classical papers. The recent results in this direction are the various Lax pairs

~ for the Kowalewski top [48], [49], [40]. One of them found by Reymann and
Semenov~—Tian—Shansky is used by us for the integration of the equation of motion.

It should be mentioned that there now exists a direct approach to solving
integrable systems with two degrees of freedom. This approach was devised by Adler
and van Moerbere et al. [21]. It is based on the study of singularities of the solutions
and goes back to fundamental ideas ") of the Kowalewski paper [18]. With the help of
the direct approach, the geometry of algebraic curves and Abelian tori arising in various
problems of classical mechanics, was investigated [21], [22], [23], [31], [49], [50],
where important isomorphisms were found. The advantage of the direct approach is that
it starts directly from the equations of motion without a priori knowledge of the Lax
representation. However, the theta functional formulae were not derived in this way.

The main instrument used in constructing the general solution of the problem is
the Baker—Akhiezer function. It is interesting that in some cases the Baker—Akhiezer
function itself appears to be very useful for the description of dynamics. The motion in
the laboratory frame is described in this way (Sect. 9).

It is worth mentioning also that the Lax representations for all classical systems
considered here has nontrivial reduction groups. This in turn leads to the fact that the
associated spectral curves represent complicated coverings and that the Baker—Akhiezer
functions have specific analytic properties. And as a final result we have a more
complicated integration procedure.

We restrict ourselves to the tops investigated in the 19 th century and do not

*
) The idea of finding of the integrable cases by analyzing the singularities of the solutions
apparently was first proposed by Weierstrass [19].
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discuss the numerous examples of integrable systems in classical mechanics found
recently with the help of the inverse transform method. A good survey of these modern
results can be found in [28], [29], [52].

The present paper is a translation of the improved version of author’s preprint [1]
and is supposed to be a chapter of the joint book Belokoles, Bobenko, Enolskii, Its,
Matveev "Algebraic Geometrical Approach to Nonlinear Integrable Equations".

1. The Lax Equation and Analytic Properties of the
Baker—Akhiezer Function |

The analytic properties of the Baker—Akhiezer functions are deducible from the

corresponding Lax representations
d L)+ [LA)AMW] =0 . (1.1)
Let
L=9p¥ ]

be the diagonal form of the matrix L , where ,u is the eigenvalue matrix. It satisfies the

equation

po= [ AN + ¥ Ty ] (1.2)

and, as a corollary, it does not depend on t since the RHS of (1.) has a zero diagonal

part.
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The Baker—Akhiezer function is an eigenfunction of the operator L

Ly=puy . (1.3)

Here L is an (NxN) matrix and ¢ is an N—dimensional vector. The eigenvalues of L

do not depend on t . Therefore, the characteristic polynomial
det(L{A)—u) = 0 (1.4)

is also independent of t . It defines a spectral curve X . The suitably normalized
¢~function is an analytic function on the Riemann surface of the spectral curve (1.4).
Let us consider the simplest, but simultaneously the most general example where
L and A are the rational functions of A , and there are no reductions. It is evident
that X is the N—sheeted covering of the A—plane. So we have N values .. u"
(every value is counted according to its multiplicity), corresponding to every A .

Respectively, we have N eigenvectors ¢ = ¢(A,pi) of the matrix L.

Let us consider the function
2 1 N2
(det 9)% = (det(g,....8M)? . (1.5)
It is a single—valued function of A with the divisor of the poles of degree 2K , where K
is the degree of the divisor of the poles of ¢ on X . The degree of the divisor of zeroes

of function (1.5) is equal to the sum of all branch numbers ¥ v, . By equating these

degrees and taking into account the Riemann—Hurwitz formula we get

2K =X v, = 25242N ,
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where g is the genus of X . Finally we see that ¢ has the divisor of the poles of the

degree
K=g+N-1.

Differentiating (1.3) by t, we see that the Baker—Akhiezer function satisfies the

equation

(L-p)($-A¥) = 0,

which in turn gives

¢t = A¢ + a(’\’t)¢ .

Here a(A,t) is some scalar function, which can be eliminated by the suitable
renormalization of ¢ . We see that ¢ has essential singularities at the poles of A .

Finally we see that the Baker—Akhiezer function is a solution of the system

Ly =, ¥,=A¢.

It is an analytic function on X , having the divisor of poles independent of t and the
essential singularities at the poles of A .

Let us mention that the various possible reductions of L—A pairs lead to
symmetry of the spectral curves and to the specificity of properties of ¢—functions.

Below we consider L—A pairs with reductions.
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2. Integrable Systems
The Kirchhof[ equations are important in classical mechanics and hydrodynamics:

b= [pol, M= [Mul+[p0], o = J5, v =55 . (2.1)
1 1

Here, [,] denotes the vector product in R® . As was remarked in [6] equations (2.1)

are Hamilton’s equations of motion

t={mf}, t=1 (2.2)

with respecf to the following Poisson brackets:

BLik=123, €qq=1.
The Poisson brackets (2.3) are, in fact, the Lie—Poisson bracket for the Lie algebra e(3)

of the motion group E(3) of the Euclidean space. Notice that

2_v.2 _ -
fl=P —Zpi: f2—PM"ZPiMi (2.4)
1 1

are trivial integrals of motion (Casimir functions) for the Poisson bracket (2.3). Thus we
have a four—dimensional phase space. For the corresponding system to be completely
integrable, it is sufficient to possess one additional (besides the Hamiltonian) integral of

motion K.



I

The rotation of a rigid body about a fixed point is described by (2.1). In this case
the orthogonal frame is attached to the body and coincides with the axes of the inertia
ellipsoid. The origin is chosen to be at the fixed point. The Hamiltonian is

1 a2 2 2
H = p(I, M7 + I,M5 + I,M3) + T p; + Topy + T'gpg - (2.5)

Here M is the angular momentum of the body, p is the unit gravitational field vector,
the constant vector (I‘l, Iy, T'5) indicates the center of mass and IIl, 151, Igl are the
" main mome-nts of inertia of the body.

The following cases are integrable:
(1.) The Euler case: I' =0, K = M2,
(2.) The Lagrange case: I, =1,, I'; =T, =0, K=M,.

(3.) The Kowalewski case: I; =1, =14/2, T3 =0.

1
(4.) The Goryachev—Chaplygin case: I, =1, =1,/4, T3 =0.
and the constant £2 vanishes, i.e. pM = 0. In the last case we have the integrable
Hamiltonian system on only one integral level. The formulae for the additional integrals
K for the Kowalewski and the Goryachev—Chaplygin cases are presented in the Sects. 3,
4.

We remark that in all integrable cases presented above K is a polynomial of M
and p.In the paper [7] it was shown that there are no additional cases of integrability

if K is a meromorphic function of M and p.

For the quadratic Hamiltonians

_1

equations (2.1) coincide with the Kirchhoff equations of the motion of a rigid body in an

ideal incompressible liquid being at rest at infinity. The orthogonal frame is attached to
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the body and is chosen so that the inertia tensor is diagonal. In this case M and p are
respectively the complete angular momentum and the complete impulse of the
body—liquid system. The non—trivial integrable cases of Clebsch [8] and Steklov. [9]

- are known and are the only cases with the quadratic additional integral K , the
corresponding expressions for which are presented in Sects. 7, 8.

We also consider the Euler equations on the Lie algebra SO(4) , which have
interesting applications in hydrodynamics. The Lie algebra SO(4) is isomorphic to the
direct sum of two copies of SO(3) . In the following we shall always use the
isomorphism SO(4) = SO(3) + SO(3) . The Euler equations with the Hamiltonian

¢ = (2.6)

_1
H= ?Z 5SS 2b ST + ¢ IT), 3 =a
1)

and the Lie—Poisson bracket
are as follows
§ = [S,AS+BTT] , T = [T,BS+CT]

Here A, B, C denote the matrices of the coefficients of the Hamiltonian (2.6).

Two trivial integrals
2 s?, gy =T=)1° (2.8)
i? ©2 i ’

show that as in the e(3) case, we have four—dimensional orbits. The additional integral



—9—

of motion K exists in the integrable cases of Manakov [10] and Steklov [11] 1
These are the only cases with quadratic K . Recently another .case of integrability with
quadratic H and quartic K was found [16, 17].

Another classical problem, integrable in terms of two—dimensional theta functions,

is the Neumann system. The equations of motion are

[S,,+1S,8] =0, I= diag(IL,,I,), s*=1 . (2.9)

It describes the motion of a particle restricted to the unit sphere under the quadratic

potential
1 2
i

Below we construct theta functional formulae for all systems mentioned above
except the Lagrange top (the Euler and the Lagrange tops are easily solved in elliptic

functions and are investigated in detail).
3. Kowalewski Top

In here celebrated paper [18] published in 1889, Kowalewski found a new and

highly nontrivial integrable case of the motion of a heavy rigid body abour a fixed point,

! The Euler equations on SO(4) of special type (special A, B, C ) describe the motion of
a rigid body with an ellipsoidal cavity filled with liquid. A family of integrable cases of
such systems depending on 3 parameters was found by Steklov [12]. When the problem of
finding integrable Euler equations on SO(4) was investigated later, these same integrable
cases were found [13, 14, 15]. The number of arbitrary parameters increased to 6. We
shall call this case a second Steklov case.
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completing ‘the list of integrable tops. Two previous known integrable cases are Euler’s
top in which the stationary point coincides with the center of mass, and Lagrange’s top
which is axially symmetric. The third case discovered by Kowalewski is rather bizarre:
the moments of inertia have a fixed ratio 2:2: 1, ans the center of mass lies in the
equatorial plane of the top. |

In this section we follow the paper [2], where calculations omitted here are

. presented.
3.1 Kowalewski’s Paper

The starting point of Kowalewski’s work was her observation that Euler’s and
Lagrange'’s fops are solved in terms of Jacobi functions. Therefore, here initial idea was
to try to solve the equations of motion of a general heavy rigid body about a fixed point
in terms of Abelian functions. However, Weierstrass pointed out that a general solution
of this form does not exist in the general case and may be possible only for some
particular geometries of the top [19]. Thus Kowalewski started her search of the tops of
this type.

She considered the equations of motion for the general top (2.5)

M= [MIM] + [p], p= [pIM],

(3.1)
IM = (I,M;, LM,, I, M,) , T = (T;,T,,T5)
- and substituted the series



—11 —

in the neighbourhood of the singularity point (1:0 € €) into the equations (3.1). The
question was: for what tops series (3.2) is there a general solution of equations (3.1) (i.e.
which tops series have a sufficient number of independent constants).

In her paper Kowalewski obtained three remarkable results. First she proved (with
some gaps which were filled in later, see comments in [20]) that the only tops with the
property that the general solution is given by meromorphic functions of the complex

time variable are Euler’s and Lagrange’s tops and a new top with Hamiltonian

1 /342 2 2
She also found the additional integral
2 32 2 2
K = (M]-M5+2p,)" + 4(M;M,+p,) (3.4)

for the top (3.3) which now carries her name. Finally, using a non—trivial change of
variables, Kowalewski reduced the equations of motion to the Jacobi inversion problem

for the hyperelliptic curve (Kowalewski curve) of genus 2 2
2
W = (-8 - POO-B? + - ) - M) . (3)

Kowalewski’s paper became very popular, especially the first part which attracted
attention and was widely discussed (see comments in [20]). At the same time the
extremely technical part, devoted to explicit integration of the top, remained, for a long

time, only a sequence of well—guessed substitutions and calculations. The relationship

2 Here and below, with no loss of generality, we shall assume in the sequel that p2 =1.
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among the three problems considered by Kowalewski was also unclear. This was recently
clarified in [21, 22, 23].

3.2 The Laz Pair for the Kowalewski Top

Let us consider the Kowalewski gyrostat (KG). This is a system with the

Hamiltonian

12 o w2 4 one?
H =5 (M} + Mj + 2Mj + 29M,) = p, . (3.4)
Theorem 1. The Kowalewski gyrostat, defined by the Hamiltonian (3.4) is

completely integrable and edmits a Laz representation dL/dt + [L,A] =0 given by

[0 p_ 0 -p, ] -7 0 M_ 0
L=t|P4 O P3 O |4y O 7 O M
0 Py 0 Py M+ 0 —2M3-7 —22
( Pg 0 p_ 0 | 0 -M_ 22 2M,+7
(3.7)
(2M,+7 0 M_ 0
a=i| 0 Mgy o -, |
M, 0 —2M,—y —22
Lo M_ 20 Mg+

p:|:=p]_iip2’ Mi"_"Ml:l:le .

These matrices obey the symmetry relations
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g, 0
L(_") = ’IL(A)U y M= djag(l,—l,l,—l) = [ 03 0-3 ] ’ (38)

()T = - [32 02] L()) [32 a:] . (3.9)

We recall the definition of the Pauli matrices ;"

01 0 -i 10
"1=[1 o]"’2= [i o] » I3 = [0-1]"

The invariants of the matrix L(A) are integrals of the motion in involution H ,

2 2

2 .2 2 4 2 2, 2r2
1= M +2p))" + 4(M;M, + py)° — 49((Mg+7)(M{+M3) + 2Mp,) .

K=(M
This integral is an extension of the integral (3.4) found by Kowalewski and was
discussed in [24, 25]. The Lax pair (3.7) as well as broader generalizations of the
Kowalewski top and the corresponding Lax pairs are obtained by Reyman and

Semenov—Tian—Shanski [2].
3.3 The Spectral Curve
Let us now turn to the original Kowalewski top where 4 = 0. We shall consider
complex equations of motion. Lax equations are linearizable on the Jacobian of the

spectral curve X defined by the equation

det(L(A)—p) = 0 . (3.10)
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The characteristic equation (3.10) for the Lax matrix of the KT takes the form

ut -2, 008 + 4,0 =0,
dy(z) = 71— 2H + 22 ,
dyfz) = 272 + 4[(Mp)> —H)]z L + K .

The symmetries (3.8, 9) give rose to two commuting involutions 7,, 7, on X

Tl(’\)l‘) = (—/\,,U») ’ 72(":#) = (A)_o“) ) (3'11)

which in turn induce the coverings X — X and X — E, given by a change of
variables z = /\2 and y = u2 . So the curves X and E are defined by the equations

ut =24, () + dyfz) = 0 (3.12)

and
2 :
y©—2d,(z)y + dy(z) =0 .

The covering 5( —— X is unramified and thus is determined by a cycle .¢
(mod 2) on X:aloop 7 on X lifts to a closed loop on X if and only if (7, .5!) =0
(mod 2) , where (7, .i’) is the intersection number. To put it another way, the

function A = 4z acquires a factor (—1)<7’ ’2’)

upon a circuit of 7.
For later use, we must have a closer look at the covering X — E . The elliptic
curve E is a two—sheated cover of the Z—plane. There are two points o at

"infinity" where z has simple poles, and one point 0 where z has a double zero. The
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function y has a simple pole at o 408 simple zero at w_, a double pole at 0, and
hence two other simple zeros at some points Pl’ P2 . The branch points of the function

u= 4y on E are therefore o y Py, Py . Thus X is obtained by glueing

W
+0 O
together two copies of E along suitable cuts [o +,m_] and [P,P,] .
We choose the cut [o +,m_] such that the function A = 4/z becomes unramified
on E\[o +,m_] (notice that o, are the only branch points of 'z ).
The curve X may be thought of as the Riemann surface of the function A = /z

on X . One can always choose a canonical basis in HI(X,ZZ) so that

ma) =-ag, Ty ==by, My =2y, 7by =D,y ,

where «: (,2) — (—p,2) , and also 3y =& (mod 2) (see Fig. 1).

We may now identify X with two copies of X glued together along
z:x=x1) U _i,x(z) - It is natural to choose the contour % such that 7 #=-%
(the minus sign denotes reversed orientation). The involution 7, actson X by
permuting the sheets X(i) .

The final thing we need is the behaviour of 4 near the points of 5( where A = o
or A =0 . These are the points m&i) and Oii) on the sheets C(i) . If we arrange the
points mii) onto a 4—tuple (m_(_l), mﬁz), cn_f_l), mi2)) , the 4 barnches of u near

A = o can be combined into a row—vector
u#(A) ~ (0,0,2X,—24) + o(1) . _ (3.13)

In a similar way, with respect to the ordering (OEI), 0_5_2), Oil), O£2)) (this particular

ordering is convenient for the calculations in Sect. 3.7), we have

p(X) ~ —eX7H(1,-1,1,-1) (3.14)
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near A =0, with € =% 1 depending on the location of .Z. It is always possible to
choose .¥ such that e=1.

3.4 Analyticity Properties of the Baker—Akhiezer Function

The Baker—Akhiezer function, defined as a solution of the linear system

L(A(P))#(P) = u(P)¥(P) ,% #(P) = A(A(P))#(P) (3.15)

has certain analyticity properties as a vector—valued function on X . We can also

require ¢ to be symmetric with respect to the first of the involutions (3.11)

#(,P) = n¥(P) . (3.16)

This enables us to regard ¢ as a double—valued function on the curve X = 5(/ T
which makes all calculations much simpler.
Let us now state the analyticity properties of ¢ .
1. ¢ i3 meromorphic on X except st A = w and ¢ exp(—tu/2) is meromorphic on
5( exceptat A =0.
2. The divisor of poles of ¢, denoted by QA , has degree 8 and is time independent.
3. ¢ satisfies the symmetry condition (3.16).
The divisor .@A is not, however, completely determined by these conditions. If
is a meromorphic function on X and (f) £ 2 on X ,then ¥ can be replaced by fy .
Using this freedom, we can fix two points of QA to be m_g_l) and m_$_2) .Then & is
the pull—balck to 5( of a divisor PU ®, on X,and deg ¥=3.

The behaviour of ¢ near A = o can be reformulated in a more convenient
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matrix form. Let ¥(A) be the 4x4 matrix whose j th

the jth sheet of X — {A} near A = o (the ordering of sheets corresponds to the

column is the value of ¢ on
ordering of points over A = o, described in Sect. 3.3). We can then write ¥(A) as
¥(At) = (8452714 . )diag(1,1,0e? —ixe ™Y (3.17)
(the factor —i in the last entry of (3.17) is taken for notational conveni.ence). Denoting
L(A) = L_j A 4L+ L,h, A(A) = Ag+A)

we have from (3.15, 17, 13)

a0 078l 1 _ regl
L, =28 [0 03]@ , Ly= [¢7L,] (3.18)
(00751 & & sl rag-l

A, _6[0 03]@ , Ay=8 8 [se71A ] . (3.19)

The symmetry condition (3.16) takes the form (notice that 7, permutes the sheets):

o= Jeit ]

which gives the symmetry relations for & and S:

5 03]6[01 "z]=°’ ® 03]5[01 02] =5

- Combined with (3.18) this implies that $(t) has the form
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1 1
1 -1

B(t)=c diag(ql(t),q2(t),1,1) 1 -i
-i 1

We can set ¢ = 1. The relation (3.19) yields differential equations for qi(t) :

dg; dgg .
T =iM3q;, g =My,

8o that

(3.20)
¢

t
ay(t) = @ exp(i [ Mydt) , ay(t) = Bexp( [ Myat) .

In a similar way, arranging the 4 eigenvectors y‘;(Oil)) into a 4x4 matrix ¥(0)

according to the ordering of the points 09) described in Sect. 3.3, we have

0 0 o
[;3 ]w(o) ["1 01] = ¥(0) (3.21)
and using (3.14, 15), we find
_ 304,
L, =-—¢ i’(O)[g 03]1' (0) . (3.22)

The strategy of our further computations will be as follows. Using the symmetry
property (3.16) of ¢, we reformulate the problem entirely in terms of the curve X : the

functions ¥ ;63, A¥qy, AY, are single—valued functions on X . The properties of ¢
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stated above allow us to write explicit formulae for ¢3, ¢4 , which in turn serve to
compute the coefficients §; j of § for i,j=3,4. From (3.18) we have the relation
which by (3.20) yileds expressions for 4y, Q, - After that we can write down the
remaining components ¢1, ¢2 . To determine the constant factors that occur in these
formulae, we must use the second symmetry relation (3.9). Combining it with (3.18), we
come down to the Prym condition for the divisor & and determine the

Baker—Akhiezer function completely. Finally to derive the evolution of p(t) we use

(3.22).
3.5 Ezplicit Formulae for the Baker—Akhiezer Function

We now begin to implement the programme outlined above. First of all we have to
introduce certain Abelian differentials.
Let d? be a normalized Abelian differential of the second kind on X with a pole

at o + such that

P

a(p) =Jdﬂ= A+00a7h) as P—io,

(recall that there is a well—defined branch of A on X\ .¢; its sign is specified by
requiring that z~ 22 at o N )- Let us denote by

V=(V},VyVy), V= fbjdﬂ
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the b—period vector of df}.
Let dﬂ3 be a normalized Abelian differential of the third kind which has simple

poles at o, and o_ with residues 1 and —1, respectively. We choose a path £ from

+
to _ and normalize dfl; by the condition J dfl, =0 where the cycles a; are
a.

J
supposed not to intersect £ . It is easily checked that dn3 is the pullback to X ofa

2+

differential on E given by

-1
dﬂ3 _ !1+gz )dz
y—a,1z
*
with some constant q, so that = dﬂ3 = dﬂ3 (x(z,) = (2z,—)) . We put

P
,(P) =J' an,
and fix the constant of integration by the condition

05(P)
e =2+ 0(1) as P—-»m_l_.

N,(P) P
We shall need the values of the multivalued functions }(P), e 3 , J w at the
points o, and O . For that purpose we shall specify the choice of the path £ joining

o, and o_ coinciding with the cut [w +,m__] (see Fig. 1), i.e., (a) its projection to E

+
passes through 0 and is symmetric with respect to 0 € E , (b) the cycle £—x¢ is

homologous to a, , (¢) £ does not intersect the ramification contour 7.

Since the periods of df}, dﬂs, wy and wy OVer a, are all zero, the multi—valued

2,(P) J,P

analytic functions ¥P), e w) 4 have single—valued branches in a
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®

+
neighbourhood of the contour £ U xf . Also we set J Wy = 0.

Standard calculations [2] show that

®
J w= J w = (r,7,~-T), J Ay = =i
®, b2

L
ﬂ(cn_):O,e3 =—-§—+0(1)38P——H‘.D_,

where r and a are defined as follows:

3

In particular we see that e changes sign when analytically continued a.long b2

Let D bea vectorin € such that the divisor of G(J w+ D) on X coincides
+
with the divisor & introduced above.

Theorem 2. The Bakher—Akhiezer function #(P,t) is given by

j w+VI+D) 0[] (DHR) qipy,

¢'1 =q
e(J w+D) 6 [ €] (Vi+D+R)

P
o[e] (J w+V1+4D) 0TI (D+R) qipy,

Yo =9
9(,[ w+D)B(Vt+D+R)
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o[ €] (Jpwvwmn) 8(D) P)t+0y(P)
3 = €

P
a(J w+D) 6[ €] (Vt+D+R)

9(J'Pw+Vt+D+R) 6(D) Q(P)t+0y(P)
¢4 =- e

- . (3.24)
a(J w+D) 8 (Vt+D+R)

where

The proof is a straightforward corollary of the analytical properties of B(IP w),
(P), 03(P) displayed above and of the Baker—Akhiezer function described in Sect.
3.4. Recall that now we do not take into account the second symmetry relation (3.9).

The expressions (3.24) for ¢, and ¢, enable us to calculate Ma(t) .

Lemma 3.

_ .0 el (VLt+D+R
Ms—‘lmmgm[v]t‘ivm‘)‘—l-

Proof. From (3.23) we get

Mg = pim  A(¥y(P) = 9(P)) =
+
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N [gk- 9[6](Jpw+Vt+D+R) & H(JPaH-Vt+D+R)]
= - 7 ,
B[e](JPw+Vt+D+R) G(J w+Vt+D+R) |P=mJr

where k = 2™ is a local parameter at P = o, . The derivative 4/dk may be

+
replaced by 8/t due to the usual reciprocity law for d? and w.

The integrand in (3.20) turns out to be an exact derivative and thus we get

g Vi+D+R #(Vt+D+R
a1(t) =« gLyDrRy q2(t)=ﬂv{?r(vf—+5¢m’ (3.25)

where the constants of integration a, 8 are still to be determined.
3.6 The Prym Condition

It is now time to take into account the second symmetry condition (3.9), which is
best done in the resultant formulae for the solutions. Substituting (3.24, 25) into (3.18),

we have the coefficients of LO :

_ oe _ o 8(Vt+D) 0[] (D4R
(Lo)y3 = 2813 = 20 D

_ oiq -1 _ 2 2 @(Vi+D+2R) (D
(Lolgg = 283195 = 7 & RYLFDIR) I (DT

.2 @le](Vt+D) 8] e] (D+R
~20 gre[Vie D+

2
o -1 ___2a" #[e](Vt+D+2R) 4(D
‘(Lo)31-21541q1 =~ 'FH‘{V—D_R‘)%IL]%D_He DT <](DFR) -

The relation (3.9) implies (Lg);q = —(Lg)ger (Lglog = —(Lg)g; » which gives

(Lplgg = —2i8y3 =
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2 6(D) 26(Vi+D+2R) _ . 2 f(D) 0[6](Vt+D+2R)
9(D+R)*6(Vt+D)  O(D+R)“#[e](Vt+D)

af =ia

For this equality to hold identically, the theta functions depending on t must cancel

out:
6(Vt+D+2R) = ¢ §(Vt+D)

* *

with some constant ¢ . Since » V=-V, » R = R and, moreover,
x

6(—u) = &u) = & u) ,

this implies
*
D=P-R, rP=-P

These relations give

.. 9(P-R la.ﬂ P-R

=88 Brerthy A= B Rte(hy ¢
21a0 e| (Vi4+P-R Vit+P-R

P‘H‘E‘VWP‘)‘I M_ —““Aagfvmf)—l

where the constant A is still to be determined.

3.7 The Potsson Vector
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Still to be calculated is the Poisson vector p(t) , using (3.22); recall that
2 4 p2 +p2=1.1nviewof (3.21), we can write ¥(0) as

Pq + Po + Pg =
5(0) = 3[./{ 03"‘01] 2
2 03301
where
= disg g1y Py TOTETIVERPY ~ FTEVERPY AV
% =a 6(P-R) x
0 0 0
djag[e(o_)t | 00, ) | 00, | A(0_) e ]
,O(Jo_w+P—R) 49([0+ w+P-R a(f)* w+P-R) 9(J'O‘w+P—R)
0 0
L [G(J “w+Vi+P-R) a(J' t 4Vt +P—R) ]
o[e] (Jo_w+Vt+P-R) ore] ([*Forviapn)y
0 -0
[o[e] (J “otVi+P) -0l ([ twtVitP) 030)
— 0 - *
G(J “w+Vt+P) 9(J0+w+Vt +P)
2y(0,)

To verify these formulae we recall that ¢j(0£1)) = (—l)jgbj(Og:z) ) and e

Also, it can easily be shown that

*y=iRtC, rC=-C 3.27
=g , *C= . (3.27)
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This and the relation §(u) = ﬂ(—r*u) imply
B=0,4 . (3.28)

Therefore (3.22) can be written as
3071
L, =-2W [: Jw
with

V1 03./60
W =

1 -1 _1
s

: ]
-1
01./6 0301.401 —al..é 0103

(we have assumed that ¢ =1 in (3.22), [see (3.14)]). After simple calculations we find

L -

-1=

S,0,4S,0 S.,0.0
1717%272 3731 ] !—1 ,
S30173 510175909

where the Sj are defined by
1

ESjaj = ./{a3¢{—

By equating the matrix coefficients (L_,;)q, = (L_;);, , we finally get A2 =1 and

_ 6(Vt+P . _0le] (Vt+P .
M+‘P{T]TV%TP7(51+’32)’ M_=3tviy (5,-35,)
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We can now sum up our calculations.

Theorem 4. The general solution of the equations of motion for the Kowalewski top

is given by
— o 8] €] (Vi+P-R
My=2a FH'E‘VWF)J
o B(VE+P-R
M--zla?;%vm’)—l
_ .8 0l e] (Vt+P
Ma—‘*vfmgm[v%‘&ﬂ—l
8(Vt+P). AB
P, =2 Gre]{VErP] ADIBC (3.29)
_ o B[] (Vt+P) CD
P_= t+ ADFBC
_ BC—AD
P3 = ADFBC °
where

. [0 0 o]’ L L

0_ 0,
A= a(J w+Vt+P), B= 0(J w+Vt+P) ,
@® o
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C = 0[e] (J':—w+w+p) . D= 6[e] (J':+w+w+p) .

3.8 The Geometry of the Liouville Tori

The remaining indeterminacy in (3.29) for the dynamical variables (the change of
sign A — —A or the permutation 0 4 0_ ) reflects the freedom in reconstructing
the Lax matrix (3.7) from the algebraic data. It is easily verified that this freedom

amounts to conjugation L — uLy? by a matrix U of the form
U = diag(1,1,-1,-1) .

This is equivalent to a renormalization of the Baker—Akhiezer function $ — Uy and

induces a symmetry of the Kowalewski top:
M — BM, p — —Bp, B = diag(-1,-1,1) . (3.30)

Clearly, (3.30) leaves the Hamiltonian invariant but changes the sign of f, = (pM) .
Recall that only the square (pM)2 is a spectral invariant.

We may summarize the situation as follows.

Theorem 5. If (pM) # 0, the common level surface of the spectral invariants H,
K, (pM)2 consists of two components (Liouville tori) each of which is an affine part of
an Abelian variety isomorphic to Prym X. These components are permuted by the

transformation (3.30).

If (pM) =0, the curve E degenerates into a rational curve which is a
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two—sheeted cover of the z—plane. The curve X is given by the equation

(42— ())% = 4(a> - 2Hz + 1 + B2 - K
and has genus 2. In the variables u = /2 uzx, x = %(p2 - %) it takes on the usual
hyperelliptic form

u?= x(x2 + 2Hx + %—)(x2 + 2Hx + I71(-—1 ) .

Notice that it is different from the Kowalewski curve (3.5) with (pM) = 0. The fact
that there are various hyperelliptic curves associated with the Kowalewski top which are
different from the classical Kowalewski curve was pointed out in [22]. The motion of
the top linearizes on the Jacobians of these curves which are isogeneous to one another.
For (-pM) = 0 the mapping of the Liouville torus to Jac X becomes an
unramified two—sheeted covering. The corresponding theta functinal formulae are

presented in [2].
3.9 Reduction of Two—Dimensional Theta Functions

Since the Kowalewski flow on Jac X is parallel to the Prym variety of the
covering X — E , it s desirable to express the dynamics entirely in terms of the theta
functions related to this Prym variety. The Prymian has polarization (2,1) and its
period matrix is [51]

2 | b, (or+es) Jbz(”1+”3)

T =
2J w J’ w
b1 2 b2 2
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Let %BO be the periof of E
By = Jbl("’l_ 3) -

We write the Prym vectors V and P entering in (3.29), and C defined by (3.27) as

Vl V

1. P 49 4
('2_: V2, '2_)) P= ('2_1 P2, '2_): C= ('2": C2, '2")
and denote
w = (v t4p;, Vot+p,), €= (c),¢) -

Then we have the following expressions for the theta functions occurring in (3.29)
1
ovi+?) = 05 8] w1 T8 [3] 018y) + o[} 8] wiTI0[}] 01y

ovirp—R) = (8 8] w1 TT 0[] ox B + a[ ](w|mo[g] (2r]B,) |
0(Vt+P+'J:*w) oo ] oweetTnO[0] e 1) + o4 8| cesel D08 e 13
+

e[e]in+P)=a[8 ) wimma[S] 018y + o[3 ¢ wiTm0[E] €018y |

O[] (Vt+P-R) = a[ ](w|mo[](2r|30)+ a[ ](w|ma[](zr|30) ,
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a[e](Vt+P+J:*w)= o[g fl’] (w=l=c|'|_|')0|:g:| (r|BO)+¢[3 ‘1’] (w¢c|mo[(1]] (r|By) -

Remark. Adding to W a period of the form
20 M 2
(o 2T (R) wwer

does not change the solutions (3.29). This shows that the mapping of the Liouville torus

to Prym 7r}'C is one—to—one, as was already mentioned in Theorem 5.

4. The Goryachev—Chaplygin Top

Now the system under consideration is a special case of the motion of a heavy rigid
body with a fixed point, discovered by Goryachev and Chaplygin in 1900 [26]. It
represents a symmetric top with the principal moments of inertia satisfying
IIl : IEI : Igl =1:1:1/4 and the centre of mass located in the equatorial plane. The

Hamiltonian of the Goryachev—Chaplygin top (GCT) is given by
H=g(M2 +Mj +4M2) —2p, , (4.1)

where M is the angular momentum and p is the field strength vector in the moving
| frame (Sect. 2).
The system (4.1) admits an extra integral of motion provided that the Casimir
function f, (2.1)for the Poisson brackets (2.3) vanishes
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A more general system described by

H = g(M} + M2 + 4M3 + 49M,) - 2§1

is called the Goryachev—Chaplygin gyrostat (GCG). It is also integrable if (Mp) =0
[27] . We mention also two papers where GCT is studied in a different way. In [30] the
R—matrix technique is used to solve both the classical and the quantum problems. In
. [31] the geometry of the complexified Liouville tori for GCT is thoroughiy studied
using the general technique developed in [21]. In particular,a close connection is
established in [31] between GCT and the periodic Toda lattice with three particles.

Here we follow the paper [3]. Let us note that (compared with [3]) similar but

slightly more complicated formulae for these solutions were obtained in [45].
4.1 The Laz Pair for the Goryacheu—Chaplﬁgin Top

There i8 an interesting connection between GCT and the Kowalewski top (KT) on
the Lax representation level.
An important observation of [3] is that, by removing the first column and the

- first row of the Lax matrix (3.7) we get a Lax matrix for GCG. Clearly, we get

" Ps 3
37 X My
P P
L=i|- 2 -2Mg37 -2a—1F (4.3)
P_ .
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Put

- 2 -
. 2 '
A=i 0 2Mg-37 =21 | . (4.4)
4
M 20 2Mgt+ 37|

The the Lax equation is equivalent to the Hamiltonian equation with the Hamiltonian
(4.1), provided that the constraint (4.2) is satisfied.

For future use we introduce the notation
L=L 2l +L,+L,A
—1 0 1

for the coefficients of the Lax matrix (4.3).

The Lax representation with a spectral parameter for GCT and GCG permits us to
apply the powerful machinery of algebraic geometry to solve the equations of motion. In
the following we shall consider only the first case, i.e., put 7 = 0. Formulae for the

general case may be easily obtained in quite the same way.
4.2 The Spectral Curve

Let X denote the spectral curve given by the equation det(L(A)—ul) = 0. The

* symmetry relation

L(=A)=| 1 L) | 1 (4.5)
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gives rise to an involution on X

T: ("sﬂ) — (_’\1/-‘) .

It is natural to conisder the quotient curve X = X/7 given by

#3+,u(2H—4z—%)—2iG=0 Cg=2%

g + 4M§) —2p, is the Hamiltonian and

where H = 3(M2 + M
G= M3(Mf + Mg) + 2M1p3 is the Goryachev—Chaplygin integral. It is equivalent to

the Chaplygin curve [26]

+2Hu—-2iG

2 3
vy =

2 1642, y = Bzp—pS—2Hu+2iG .

2

Note that we always assume (Mp) =0, p“=1.

The spectral curve X is a three—sheeted covering of the A—plane A and also is a

double cover of X = 5(/ T

2:1

~ X=5(/1' (p,2)

1 3:1

y € (z)

(A,m)
3:1
2:1

- — 4>

(4)

We denote the point of X with A=0 and A = o in the following way:

A=0 of 4= d=w of  u=
ol pN—A_l ol uv =2
o ,u.NA_l oL L2 .
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X is a three—sheeted covering of the z—plane. We denote the points with z =0 and

z=w© by 0y,0,, and ®, D in such a way that 02, @y are the branch points of the

covering X — € 3 z . This covering i8 unramified at 0;, o, and x(0;) = p(w;) =0.
The function A = 4z is double—valued on X and changes sign when analytically

continued along a closed path which intersects a certain contour . Here .7 isa

~ contour con}lecting the points 0y and o, and determined by the covering X —X.

Glueing two copies of X along £, we obtain X . The condition
p~ =2 g b~ 1 0,
uniquely fixes .¢ and the branch of A .
4.3 Analyticity Properties of the Baker— Akhiezer Function

Our main goal is to construct explicitly the Baker—Akhiezer function

#(P) = (¢1,¢2,¢3)T which is analytic on X and satisfies
Lp=up, #=Ap. (4.6)

We may assume that ¢ satisfies the symmetry relation (4.5)

-1
#(7P) = 1 #P), PEX. (4.7)
-1

Hence, the component gﬁz may be regarded as a single—valued function on X, while

¥, and ¢, aredouble—valued on X and change sign when analytically coninued along



a closed path intersecting .#. We may assume that ¢, are defined on X\ .Z and

satisfy the symmetry relation

$T(P) = (-1)'¥; (P) (4.8)
for P belonging to the cut .7. In other words, #,, ¢5 acquire a factor (—1)<7’ £>
upon a circuit of 7. Here <19,.#> is the intersection number.

Let us define a matrix—valued function

¥(3) = (4D, y(elh), wp')

IT LIII

where PI, P, P are the inverse images of A with respect to the mapping

X —— A . We mark them so that

pLILII SLILII

A—o ,

pLILII 111,111

—_— 0 A—0

hold. The function ¥(A) is defined on the domain U =U, U U_ which is a union of
two simply connected domains with the points A =0 and A = o respectively. These
domains also do not contain the branch points of the covering X — A and are
invariant with respect to the involution A — =} . |

The reduction (4.7) can be rewritten in terms of ¥ :

¥(-A) = 1 ¥ o1 . (4.9)
= 10
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To understand this, it is necessary to note that ol = Om, TmH = mIH TOI = OI,
I_ 1

T = O .

According to (4.6,8) it is natural to determine the asymptotics of ¥(A) at

A— o and A — 0 as

1 A
= (a+S27N)| M 1,
e2/\t 1
A— o
A_l
¥=T 1
A— 0 1
Then the reduction (4.8) gives
[(—1 ] 1 1
1 S -1 =8 01|,
| =y -1 10
(-1 ] -1 1
1 T 1 =T 01
i -1 1 10

The coefficients of L(A) = L_lA—l + Ly + LA arerelated to the matrices ¢, 5, T in
these é.xpansions by

0 0
L,=-T| 1 T, Ly=-2(s¢h,| o1
1 4o
(4.10)



which gives

In the usual way all these analytical properties can be reformulated for the vector

function % on X.

With a suitable normlaisation, the Baker—Akhiezer function has the foﬂowing

properties which characterize it completely.

(1.) 9 is analytic on X\ &, satisfies the symmetry relations (4.8) on & andis

meromorphic on X\, .

(2.) In the neighbourhood of the points 0, @, o, ¥ has the following asymptotic

behaviour:
o(x7hy
¥~ | 0(1) for P —0;
o(x7})
QA+0(a7h)
¥~ 0(1) for P—o,

0o(27 1
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0
g || 1] +007")| exp(-2at) for P— o, .

-i

(3.) The divisor of polesof ¢ D = P1+P2 has degree 2 and does not depend on

(4.) The normalization constant q above satisfies the differential equation

qt/q = —3iM3 : hence,

{
q = a exp(-3i J M, dt) .

The Baker—Akhiezer function ¢ with these poperties satisfies (4.6), where L and

A are almost the Lax matrices for GCT, with only the condition

(L_1)12 = _(L_1)21 (4.11)

not being automatically fulfilled. (This last condition will be imposed in the last stage of
the computation. As we shall see, it amounts to a suitable choice of the integration
constant a .)

It i8 useful to present the expressions (4.10) in more detail

T,,T
12 22731
T he=—1—>» Lyl = - ; (4.12)
1/12 99 1/21 T11T32 'I‘31T12
TooT T

22711

Py =lq— —T T P_=ip .
+ 317127711732 Too
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4.4 Construction of the Baker~Akhiezer Function

To write down explicit formulae for the function ¢1, 162 and ¢3 , we must define
a number of standard objects on X . Let ﬂs(P), A(P) and f}P) be the normalized
Abelian integrals of the third and the second kind, respectively, which are uniquely
specified by their behaviour in the neighbourhoods of the points ), @, Oy

- Q4(P)
e o eA(P) (P)
o, a A240(1) f (4.13)
oy  Ab+0(7) A o9 —2A+0(271)
0, cA+0(A7?) e 0(1) .
Let us denote
R=Jdﬂ3,A=JdA,V=Jdn. (4.14)
b b b

There are some useful relations between the different constants in (4.13) and

(4.14). Comparing the singularities, we get

305(P) 2a(p)

Wu=e , (4.15)

which implies 3R + 2A =0 modulo the periods. Let us choose the paths [m2,02] ,
[ml’m2] such that an exact equality holds; i.e.,

3R+2A=0 . (4.16)
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Also, using (4.15) we get

AP _d_3b, ) P o, ,

0
where b is the constant term in the expansion of e 3 at @, (4.13). Using the general

properties of Abelian integrals we obtain

f=3b, d=ae . (4.17)

P
Choose D € Jac X such that the divisor of zeros of &(J w+ D) on X is
precisely &, the divisor introduced in the definition of ¢ above. We are now in a

position to write down the explicit formulae for ¢ .

Theorem 6. The function ¢ is given by the following formulae:

J’P i 3
#(| wt+Vi+D- 5R) #(D+ 5R)

“’1:%

. exp(f(P)-+15(P)+4(P)—ft)
a(J' w+D) O(Vt+D+R)

P
o(J w+Vi+D) 6(D)

¥o=—7 exp(QY(P)t) (4.18)
e(J w+D) O(Vi+D)
9(J'P Vi+D+R) 6(D)
. w+Vi+D+
%o =" exp(P)t + Ny(P)) .

P
a(J w+D) 6 (Vi+D+R)
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The ezpression for the function ¢1 can also be written in o different form,

¢1(P) = q(¢(P) -iﬂo(mg)ﬂl';;(P)) )
(4.19)

w+Vi+D-R) 6(D+ 3R)

P
oy =0 X

exp(A(P)t—(P)—t) .
0(J w+D) 6(Vt+D+ 3R)

4.5 Formulae for Dynamical Variables

Substituting asymptotics of ¢, ¥ at m,y into (4.22), we obtain

: 3/2
q = a exp(3bt) [ 0 VEID-*-R ] ,

A : P
where we have used the form J W= 3121' V + ... of the Abel transform near @ -
Now we must satisfy the last condition of (4.11). To obtain the expressions for

(L_3)1p and (L_;),; , we use (4.18,19), respectively. We get

10D o 6(Vt+D+3R ) ( Vi+D)H(D+3R)

T ip=-%,m)= "% 9 6% (Vt+D+R) 8(D)

0o 90 o1 g AVEEDAR) O(VEADRIAD)
= — =—==¢
=121~ " p{0,)a — aq 8% (Vt+D) 0(D+13;R)

This implies that
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21 6% (D) .
€ (D+'2'R)

. To compute p, we also use both (4.18,19) for ¢,

$y(0y) #y(0,)
p_=lW: p+=¢(m2)a('0;)_ .

Finally, taking into account (4.16, 17), we obtain the following theorem :

Theorem 7. The general solution of the GCT is given by the following formulae:

1 1/2
- HVHD-3R) [ gviyD4R
M, = 2 gy | AVED)

. 3 1/2
M_ = ~2VE greDTR] | AVEsDT

_iéd g{Vt+D+R! .

_ _ 6(Vt+D-R) 6(Vt+D+R)
p,=¢ 4.20
+ 9°(Vt+D) (4.20)

_ . B(Vi+D+2R) 6(Vi+D)

P
6% (Vt+D+R)

6(Vi+D+3R )
[6(Vt+D) 6 (Vt+D+R)] /2

C
P3="JEE
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The square roots in (4.20) are quite unusual. Their presence is predicte;i by
Painlevé analysis of the equations of motion, which shows that the leading powers of
singularities in t are half integers [31]. The sign change of the square root in (4.20)
leads to the transformation M, —-M,, M2 — —M2 » Pg— —Pg preserving the
 equations of motion.

The paths [wy,m;], [@,,0,] are already fixed (4.16). Constants a, ¢ and e

are defined by the integrals upon these very paths.

5. Integration of the Lax R.eBresentations with the Spectral
Parameter on Elliptic Curve. XYZ Landau—Lifgshitz Equation

All other tops considered below possess the Lax representations with the spectral
parameter varying on elliptic curve. In this section we describe the integration process in
this case, using the papers [4, 32]. The Lax representations of all examples considered
below are of the matrix dimension 2 x 2. The general theory for an arbitrary matrix
case is constructed in [33].

We use the uniformization of the spectral parameter suggested in {34]

_ 1 _ dn(uk _cn(uk
Wl(u) ~ snf{u,k)’ W2(u) - sniu,E" w3(u) - sn,u,E‘ ’
2 2 a2

Here sn, cn, dn are the Jacobi elliptic functions of the module k . The variable u
varies on the torus E which is a parallelogram with the lattice 4K, 4iK’ (here K is
the complete elliptic integral of the module k ). Let us denote E the "quarter" of E -
. the torus with the lattice 2K, 2iK’ .
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The general form of the Lax representation with the spectral parameter on elliptic

curve in the case of 2 x 2 matrix dimension is as follows:

3 N N -
L= ) Y Y LYS)fg(u-u)o, (5.1)
a=1s=1k=1
3 N N,
Aw =Y ¥ Y atkuttu-u)o,
a=1s=1 k=1
) 2,.2,.2
W WoW WitWot+W, 40
123 [ L2 3](11) k = 2042
a
K
f2(u) =4
a w%+w§+w§ n

The functions fi(u) have a pole of the k—th order at the point u=0 and satisfy

the importa:nt reduction

k k
f a(u+2K)o oS a3f a(u)aa% ,
(5.2)

K, L owrv. - fk
f(ut2iK Yo =01 (u)o o .
The functions fﬁ(u—us) generalize the function 1/(A—As) to the elliptic case.

The matrices L(u), A(u) (5.1) obey the symmetry relations (5.2). This implies
that the spectral curve X

p2 = det L(u) | (5.3)
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is a two—sheeted covering of the torus E . Let us choose the canonical basis of cycles in
_ the natural way. It is shown in Fig. 2. The projections of the cycles P b1 on E form
the canonical basis of cycles of E corresponding to the shifts on 2iK’ and 2K
respectively.

Let us define also the necessary Prym differentials (for details see [51], [32]}

Denote
v, = Yu +u ), ¥v;=w i=2,.,1
1-7( 1" n4+1/ "1 % o

the differentials odd with respect to the involution = : (z,u) — (—g,u) . These
differentais] differ from the canonical Prym differentials by the normalization. Their

period matrix

Tl—i.i = J’b.dui i,j=1,..n
J

is gimply relate with the canonical period matrix II of the Prym variety Prym 1rx

m= [ Jn (") (54

It is this matrix which defines the corresponding theta function we use below.

+ +

Let us denote ug, H

u; = mu; the poins of X with projections X — E equal to

The normalized Prym integrals of the second kind Q(P)

7 df = —dn, J dn =0 i=1,.n
a.
j
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are determined by the asymptotics at the poles

N
(P) == zsaﬁ’k(u—-ua)_k +01), P—> u:
k

Here agy are constants. We denote
Vj = J'b.dn j = 1,...,n
J
~ the b—period vector.

Theorem 8. The Baker—Akhiezer function corresponding to the Laz pair (5.1) is
gqiven by

P
0(JPOV+V1; +D|TD

P
$ exp(JP at)
0

1~ P
B(JP0v+D ITT)

P
exp(f dflt) (5.5)

- P
o[p v+DITT) Fo

p
o(JP v+VE4D+A | TT)
_ P

¥y

v=(vyvy), A= 7i(10,..,0) = J'alu, DeC" .

The complete proof of this theorem is given in the paper [4]. Here we only remark
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that the Baker—Akhiezer function (5.5) satisfies the reduction corresponding to (5.2).
Indeed, for the analytical continuation along the cycles a, and b, we have

My #P) = 039(P), M, HP)= o, 4P)m(P)

where m(P) is the following function:

.
AJp,#+01TT)

m(P) = —p .
0(JPOV+D+A in

In the neighbourhood of the point u, the matrix function of u € E

(u) = (#(u™), ()

is well—defined. Here u™ are the two preimages of the point u with respect to the
projection X — E . They are uniquely determined by the conditions uF — u::

when u—— u_ . Let us also consider the diagonal matrix

- [.u(u+)
# -

p(u) ]

As usual, the following equalities are valid ¢
Lé=¥u, ¥, =AV . (5.6)

Substitution of the asymptotics of ¥ and ux near ug
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Ng

¥(u) = (8,+0(v—u,))exp( ) as’k(u—us)_ktas)
k

—N 8

;t = 9.03(11—113) + ... u—iu

in (5.6) determines Lz’k and AZ’k . In particular, for the first coefficients we have

s,N CD-AB 3N C.D +A B
L. B_g 8 58 [ 78_ _p 88 88
1 ]Es]J Bsc P2 Jisns Bscs ’
s,N AD +BC A B
L —P. 85 8 8 S’ Q = S B , (57)
3 Hsrs_EsCs B Cs Ds '
N
2 _ 5,882
¢ _E(La )
a
N s,N
a1 1 8.8 1 g
~§sa3§s _asN EAa ga_FzLa Oq °
s a

Calculating Qs. and reducing As’ Bs’ Cs’ Ds by common multipliers we see that

s,N

L, 8 are given by the expressions (5.7), where

Ay = O(Vt+D+e [ TT) B, = &(Vt+D+e 41 |TT)

C, = §(Vt+D+e +4|TT) D, = B(Vt+D+e+r +A[TT) ,



Here the projection of the integration path in r, on E should be homologically
equivalent to zero. The elliptical integral u = J du calculated along the path of €
should be equal to

+

u
J' ® du=uP; (mod 4K, 4iK”)
P, 8

modulo period lattice of the "big" torus E .

The solutions presented above may be considered as the finite—gap solutions of
integrable non—linear equations with the Lax representations with elliptic spectral
parameter. To construct such an equation, we should introduce a new variable x with
respect to which the Baker—Akhiezer function satisfies the similar equation ¥ =BY.
Here B(u) is the matrix elliptic function of the same structure as A(u) ,i.e., the

reductions (5.2) are valid for B(u) also. The compatibility condition
B, —A + [B,A] =0

gives the non—linear integrable equation.

The additional condition that ¢ is the eigenfunction of some matrix L(u) means
that ¢ is an analytic function on X which is two—sheeted covering of E . All
finite—gap solutions are obtained by the choice of all possible L(u) or, equivalently, of
all possible two—sheeted coverings of E .

The most important example of an equation of this kind is the completely
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anisotropic (XYZ) Landau—Lifshitz equation
S, = [5,5..] + [S,15], S2+82+82=1
t xx Ut | 2 3 :
Here the square brackets denote the vector product and IS — the vector with the
coordinates (Ilsl, 1252, I3S3) . This equation describes the non—linear waves in

ferromagnetics. The zero curvature representation for it was found in 1979 by Sklyanin

and Borovik [34]:

B(u)=-ip ) S,w,(u),

a=1
Afu) = 2ip? ) w1:2w3 (WS,0,— ) WSS} oy, (5.8)
a a aBy a

_1 1T _]12‘11 »

The corresponding ¥—function has the following singularity at u=0:

¥(u) = (2+0(u))exp(—ipxo, ]-11- + 2i,c12ta3 lg) .
u

Finally we obtain the following:

Theorem 9 [4]. The finite—gap solutions of the Landau—Lifshitz equation are
given by
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S. = CD-AB S = CD+AB S, = AD+BC
1~ AD-BC® "2~ 7"AD—BC’ "3~ AD—BC

A= 6(Ux+Ve+D|TT) B = &(Ux+Vt+D+1|TT)
C = H(Ux+Vt+D+A|TT) D = H(Ux+Vt+D+r+A|TT) -

Here all the parameters are determined by an arbitrary Riemann surface X whichisa
two—sheeted cover of E . The vectors U and V are the b-—pér‘iod vectors of the

normlaized Prym differentials of the second kind

. |
U = Jbid“1 , 0, — Fipu 1 4+0(1))
v, =J an, 0, — 2(2ipZu24+0(1))
i bi ’ 2 ’

The integral 1 ts equal to

and the path of integration should be fized in such a way that for an elliptic integral the

equality J0+ du = 0 (mod 4K, 4iK”) holds.
0

6. Curves of Lower Genera. The Euler Case and the Neumann System

For the curves of small genera (n = 1,2) the formulae of the previous section can
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be simplified. For this purpose we use the well-known addition formula for theta

~ functions

oy TN TN = T 0|8 ayayl2TDE| 8 o2y 12T
s€51" /21"

where the sum is taken over all n~dimensional vectors § with the coordinates 0, % .

For n=1 we have

Ny, Bm (2)9[(1)] (r5) ’

R

LPNs _ 0[8] (z)am (xg) , (6.1)
ol

SNs_, f ](z)ﬂ -l(rs)
Jeel:]

z=2Vt+2D+2es+rs

Here and below in this section we use the notation 0[ ] (x) = 9[ ] (x]2TT) . For

n = 2 the formulae are more complicated
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B | (i AL O G
o193 @e[1 ] cp+elib]@efd 3] x)
o8, o8 Slwe[d lep+o[5]@eld e
T otwet ot el

Let us now consider the Euler top and the Neumann system, which have the
simplest elliptic L—A pairs. The L—A pair for the equations of motion of the Euler

top
1 T
=[M’IM] I_d‘la'g(llszﬁ ): P='2‘ 3_1! |M|=1
is as follows:

L= —ipZMawa(u)aa

a
W W, W -
A—21p22M(u)Maaa, k= 1—2—_1l
a a 31

The spectral curve is given by the equation (5.3) and corresponds to the case n=1.
The solutions are given by the expressions (6.1), where € =1 and 0 — + 2i Jo2u_2 ,
u— Oi

The solutions of the Landau—Lifshitz equation independent of t are the solutions

of the Neumann system [37]
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5, +18 = A(t)S, S=1. (6.3)

It was solved by C. Neumann [38] with the help of the separation of variables method.
The equation (6.3) was considered in connection with the finite—gap potentials

[39, 40, 41]. In particular, the geﬁera.lization of the system (6.3) to a higher dimension

case was solved. The L—A pair for the system (6.3) is equal to

o 27 V1Yo V3 ,
L——21p Zw—a(U) Sacra—-lp g Wa(U)Sﬂst 7faﬂ7aa s
a apgy

A= —-—ipESawa(u)aa .
a

The function det L(u) is even and has a pole of the fourth order at the point u=20.
Therefore, the spectral curve corresponds to the case n = 2, and possesses an involution
Tu = —u . We denote by u = P:P9yd;,99 the branch points of the covering X — E .
The Prym differentials are odd with respect to the involution

For the vector r we have

r=lu=—[ V=—r+J var= [21] ,

T aq

€
since 7€ = £—a, (Fig. 2). The one—half of theta constants B[Eﬂ (r]2TT) in (6.2)

becomes equal to zero. Finally we obtain the following formulae:
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s =—9[f11ﬂ(2|21'r)a[(1)ﬂ
| Q[H](Wma[}ﬂ
G uRE
2 o1 1] @izmne[}]]

flermmefs]
© ot tJeimelii]

z = 2Vi+D, Vn=£ dq, ﬂ—-}?ipu_l, u—-»Oi .

n

The Prym differentials 2vy, 2v, in this case are the holomorphic differentials of
the Riemann surface X/x7 of the genus 2. The involution r is a hyperelliptic
involution of X/#xr with 0, K,iK’, K+iK’, P=P;=—P,, 4=q,= —q, being the fixed
points of = . It is easy to see that 2v,, 2v, are normalized, so the matrix 2T is

exactly the period matrix of X/#7.

7. Manakov and Clebsch Cases

It was remarked in the paper [37] that the one—phase solutions (depending on the

combination x+4vt ) of the Landau—Lifshitz equation and of the asymmetric ciral
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0(3)—field equation are the solutions of the Clebsch and Manakov cases of integrability
respectively. In this way the Lax representation for these tops come from known zero
curvature representation for the Landau-Lifshitz equation (5.8) and asymmetric ciral

0(3)—field equation [35].

The Manakov Case. The Lax representation is as follows:

Ly(w) = 2 {Sawa(u—x) + Tawa(u+lc)} o,/2% ,

Apy(w) = clAl\(dl) + czAls_[z) , (7.1)
ALY =Y w (ur)o /2,

AISI?‘) = —-2 {Sa wl:iwa (uv—x)+ T awa(2fc)wa(u—n)} g,/ -

The Lax equation (1.1) with the matrices (7.1) describes the Hamiltonian system with

the Poisson bracket (2.7) and the Hamiltonian

H=cH +cH,, B =)Yw,S T ,w =w(2),
(7.2)

1 2,02 m2 W1¥Wa¥3

We see that the spectral curve corresponds to n = 2. The general solution of the

Manakov case is given by (6.2):
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6L )(zo+2Vt)0[i ] (r+68)+6[i,] (z4+2Vt)6[;,](r+6)
% 0[m](zy+2Vt)8[m] (r+6)+8[n](zy+2Vt) O [n] (1+6)

003 g1 (g #2V0) 013 ,1(-6) +013,] (50 +2V1) 013, ) (-9)
" 79" g[m] (gy+2V1)8[m] (1-8)+0 [n](z,+2Vt) 0 [n] (r~0)

61=—1, 62=—i, €3=1,

) 10 . 00 . 00
iyl =[50, figl = |38, 1ig1 = [20)
.- 111 . I : 0 1]
[Jl]= 0(]5: [.12]= 83]1 [J3]= (1}0
1= [1o] m=[1e]
K -x+
r=J v, 5=J u,z06¢22,Vi=£dn
—K+ N+ 1

Here S and T are constants (2.8) and the normalized abelian integral Q is

determined by the asymptotics

1 2 . 4 +
jdn—%iﬁs [—(11—_';‘)’2'4-“?14-...],11—4& .

The Clebsch Case. The Lax representation is as follows:

W1W2W3 g

Le(w) = 2 { Pa—w T Mawa} T?" ’

a
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Ajw) =d, A 4+ 4,8

Agl) = E Pa¥alql 2

2 2 WiWo¥3 17
O { pw (WiHd —20) + M, —} a

v, 3T (7.3)

w? ='(w%+w§+w§)/3 y I=(H,+35)/8, w =w (u) .

It is a Hamiltonian system with the Poisson bracket (2.3) and the Hamiltonian

1 2 2
H=dH +dH, , H =5) (I po+My)
(7.4)

J J5Jd
1 123 2 2
H2‘2’2[ T, p2_JaMa]

The formulae for solutions are obtained by the isomorphism [5, 36] of this case

"~ and the Maila.kov case:

Y1¥o¥3
P, =W, (x)N5,T,), M_ = v (x) (S,+T,) »

w%w§+w$w§+w§w§ - 9

Cc. =

1 2w1w2w3
¢, =d, —w> w_=w_(x)
g =dp—Widy , Wo=w,(x) .

Direct integration of the L—A pair (7.3) by the technique of Sect. 5 yields the formulae
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(6.2) for p o » Where L=p (24), r= J v and vector V is determined by the
0+

normalized integral with the singularity

d
[an—sk [ 3o+
u

"I

P—h;- 1 ] , 11--—-—»0:l=
P

Sd MD-

These latest formulae were obtained by Kotter [42] (see also [9]) for dy = 0. The
expressions for Ma obtained in this way are more complicated and we do not present

them here.

Remark. Adding to Vt a period vector of the form

[T (53] (3] wmen? &

_ does not change the solutions. Let us normalize the period matrix (7.5) changing a basis

in €2 . We obtain that the period lattice is given by the normalized matrix

[g(l’ | 2r[] , (7.6)

where IT and TT are connected by (5.4). The matrix (7.6) is exactly the period matrix
of the Prym variety Prym_(X) . It shows that the mapping of the Liouville torus to
Prym_(X) is one—to—one. This fact was established in [34, 32].

Remark. All integrable cases considered in the present and next sections depend
on 6 arbitrary parameters. We obtain additional parameters adding the Casimir

 functions f, f,, g, 8, to Hamiltonians (7.2,4). Furthermore, the bracket (2.3) is
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invariant with respect to the transformation P,— 2P, (for all a together), which
changes a Hamiltonian. We also remark that for any integral K of the Clebsch top (as
well as of the first Steklov case of integrability [see below])

) FK/ 6T,

a

is an integral of motion. Therefore, the transformation J a9 a+A (forall a
together) preserves integrability. Combined with the transformation P, — P,
mentioned above it guarantees integrability of the Clebsch and 1 -8t Steklov cases with

arbitrary J a

8. Steklov Cases

The integrable Steklov case of motion of rigid body in liquid was solved by Kotter
[44]. In his paper he used implicitly the Lax representation with an elliptic spectral
parameter [28]. Various modifications of the Lax pairs for the Steklov cases were

suggested in [45], [46], [5].

The Second Steklov Case. It possesses the following Lax representation:

Ly(v) = z {Sawa(u) + % Ta(wa(u—fc)+wa(u+x))} ;—‘i’- ,

Ap(w) = cAfp) + c,afd) (8.1)
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W1W2W g

a
)'2'{:

=2s,

{2)—2T { o(u—K) — ‘ a(u+lc)};-?-

The Lax equation (1.1) with the matrices (8.1) describes the Hamiltonian system with

the Poisson bracket (2.7) and the Hamiltonian

H= c1H1 + c2H2 ,

2, 12 o "1V2V¥3
=Y (w(K)S5 —2 v, (6)S,T,)

WiWa¥ 2
H, = (- -‘-v-z—ﬁ (k) T2 + 2w (K)S,T ) .
a

The L—A pair satisfies the reduction
L(—u) = -L(u) , A(-u)=A(u) .~ (8.2)

Note that the factor E/i (iu = —u) is a rational curve. The matrix L, multiplied by

w1w2w3(u)
L— W WoWaL
becomes a function on E/i . So the Steklov cases (see also the first Steklov case below)

possesses the Lax representations with a rational spectral parameter.

The spectral curve X (5.3) corresponds to n = 3 of Sect. 5. It also has an
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involution

T (#,l.l) — (—ﬂ,—ll) )

which is a éorolla.ry of (8.2). This involution has two fixed points 0% and 07 with
u=0 (Fig. 3). The factor X/ is a curve of genus 2. The involution 7 changing the
sheets of the covering X — E is the hyperelliptic involution of X/ T . Its fixed points
are py, 4q, Py, K, iK’, K+iK’ . _

We shall specify the parameters determining the Baker—Akhiezer function to

satisfy the reduction

#7P) = (P) . (8.3)

- For the L—A pair of the ¢—function, satisfying (8.3) the reduction (8.2) is
automatically fulfilled.

One can always choose a canonical basis of cycles such that (Fig. 3)
T3, = ay, rbl = by, Tdg = ag, Tb2 = b3 .

The Prym differentails » = (vl,vz,u3)T (Sect. 5) satisfy the equality

* 1
Tv=Tv, T= 01
10

The agymptotics at the singularity points of x4 and of the normalized abelian integral of

the second kind 1, determining the velocity vector V , are as follows:



S S +
p— % l— ¢ P—0
2Tu 1 ;1’2 .
+
p ’*41(?1—;;) oy iy P—x
. T T +
Hence, the équah'ty
*
r dfl = dN
holds. For the b—periods we have
a fB Y1
TTTT =TT
ITT={B7r6|, V={vy|. (8.4)
V =TV 2
B 6 v Vo
Let us fix the fixed point of 7 as the starting point in all integrals P0 =0% or 07.

The symmetry of the period matrix gives

6(Tx | TT) = 6(x|TT) -
It, in turn, yields
7P TP

9(1[ v+ VE+D|TT) = o('r(l v+ Vt +D)|TT) =
0 0
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P
9(1[ v+ Vt+D|TT)
0

if the vector D is also symmetric

Thus we obtain that (8.3) is equivalent to (8.5).

The even part of Prymr(x) with respect to 7 is a two—dimensional Abelian
torus. We see that the flow Vit is restricted to this torus. It is, therefore, natural to
present solutions in terms of the two—dimensional theta functions. For this purpose we
use the reduction technique of theta functions [32]. Let us make a substitution of the

theta function’s summation variable

1
m = N(n+6), N=[ 1-1]
11

Here n € I°, &= (6,6,,6,) = {(0,0,0), (0,1/2,1/2)} . The matrix NT TT N

consists of two blocks

T, 0

T =
NOTTN [o m

Hence, the following equality is valid:

<TTmm> + 2<x,m> = <'|T+(n1+61,n2+62),(n1+ 61yt 65)> +
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+ 2<(xy,x0+%3), (n;+6;, ny+65)>
+ <TT_(ng+63)na+64)> + 2 <xXg—Xg,0q+ 65>

It, in turn, gives the representation of the 3—dimensional theta function in terms of

2—dimensional and 1—djmen§iona1 theta functions:

x| D) = 0[5 0] () I TT 6] 8] ey TT) +

(8.6)

+ 8]0 4] (Cxyrgteg) 1 TT 6] gy T

The structures (8.4,5) of the vectors V and D prove that the 1—dimensional theta

functions in (8.6) are constants.

The First Steklov Case. The corresponding L—A pair and the Hamiltonian are as

follows:

o

J -
- 2 a 1 a
Ly(u) = 2 {pawa(W tg—)tg Mawa} 21
o 1 2 1 ¥1¥2%3 %4
A) = Al + a,af), A )2"22%_W;— 7T

2) _ Wi¥a¥3 9. . I, “’1“’2“’3

}28 wom o) |

17973
H=dH +dH,, H 22((J +2—J—)p +2J p M M )
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1.3, :
1 2 ;2 123 2
,E(J (J1+J2+J —J )pa+2—J— Mg+ I MY (8.7)

H

The formulae for solutions can be easily obtained using the isomorphism [5] of

this case with the second Steklov case:

1‘”2“’

P, =é = 5 (wi(r)-3w (k))-2T , 223 (n)
a

2
Direct integration of the L—A pair (8.7) yields the same formula for P,

Remark. Adding to vt = (vl,vz)Tt a period vector of the form

[ 1 35 355] [ﬂ] , NM €T’ (8.8)

does not change the solutions. Since 2vy, vytv, are the normlaized holomorphic
differentials of the Riemann surface X/7, the matrix (8.8) is the period matrix of
X/ . It shows that the mapping of the Liouville torus to Jac(X/7) is one—to—one.
This fact was established in another way in [21].

9. Complete Description of the Motion in the Rest Frame

Up to now we have described the motion of tops in the moving frame attached to

the body. But for a complete description of the rotation it is necessary to describe it in
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the rest frame.
It is convenient to use the isomorphism of an algebra of vectors in R® witha
vector multiplicaton and an algebra of traceless 2 x 2 matrices with a commutation

operation

ad
X = (X, Xy, Xy) —— X =Y X_5$
a

(9.1)
[XxY] — [X)Y] .

Everywhere below X means the matrix (9.1). The coordinates X and X’ of vector in

the moving and the rest frames, respectively are connected by the transformation
X =6xXx'G! (9.2)
with some 2 x 2 matrix G . Our aim is to determine this connection matrix.

The equations of motion of a heavy rigid body about a fixed point in the moving

frame attached to the body are as follows:
M, = [M,(-G,G )] +[pL], p, = [p(-G,G7V)] . (9.3)

Here L=XL o a/ 2i and L _ are the constant coordinates of the center of mass in the

moving frame with an origin at the fixed point. Comparing (2.1) with (9.3) we get

-1 _ 0H %a
G,G “‘EBM; 5t - (9.4)
a
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We also fix the third axis of the rest frame, assuming it to be the gravity vector.
Combined with (9.2) it gives

-1
Go,G " =Xpo, . (9.5)

An arbitrary solution of (9.4) satisfying (9.5) may differ by a constant diagonal gauge
factor

G—GC, [Co,] =0 . (9.6)

The remaining freedom (9.6) corresponds to the 8o far unspecified two axes of the rest
frame.
The motion of the rigid body in liquid is described in a similar way. In this case

the vectors
~ﬂ=(ﬂl,ﬂz,ﬂ3) , “a=‘9H/‘9Ma ,
.v=(V1,V2,V3) ’ ) Va= 0H/0pa

are the angular and translation velocities of the rigid body in the moving frame attached
to the body [9]. As above, for the heavy tops the rotation of the fixed frame to the
moving frame is determined by the matrix G satisfying (9.4). Let us choose the third
axis of the rest frame coinciding with the impulse p (it is constant). Then for G we

have

(9.7)



The remaining freedom in G is the same as for the heavy tops (9.6).
The velocity of translation movement in the rest frame v’ = (v, v, v3) is

equal to

zv;aa=G"12vaaaG=G_lz-g]§—aaaG .
a a

a

To find G(t) we still have to solve the linear differemtial equation (9.4). It turns
out, however, that the Baker—Akhiezer functions contain more information than the

Euler—Poisson equations themselves and allows us to find G(t) without solving (9.4).

The Kowalewski Top.
Let us consider the equation ¥, = A¥ at A =0 . Observe that A(A =0)
decomposes into two 2 x 2 blocks, which essentially coincide with the angular velocity.

In particular, the matrix

_ [ #,(0)) ¢1(o+)]
%5000 ¥4(0,)

satisfies
1 v 6H 1
0= =17 ) I Ta¥ = — 15 (My0y + Moy +2Mao3)p .
a

From (3.26) we find



HVLFP) 0
¢ = af(P-R) b+ x
1
0 8[ €] (Vt+P)
) bt X
e
0 0
A H(J w+P-R) ,
©, e—bt
0
i 0 0(J +u+P-R)
1]

+

-0
where £ b =J TdN and . is given by (3.26) [see (3.28)]
®
+

0_ 0,
e(J w+Vi+P) a(J WVt +P)
@O m

o[e](j w+Vt+P) -a[e](J w+Vt+P)

A =

It is easily checked that the time evolution of the Poisson vector p is given by

1 —1
p(t)=mposp .
So reducing ¢ by the constant right factor, we have

1 bt+b0

1 £ © —bt-b, |
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where b0 = const .
By inverting, we also obtain the evolution of the top in the rest frame. For

example, the motion of the symmetry axis of the top in the rest frame is given by

—bt-b bt+b

0 0

e €

ty — -1 —bt—
Lo, = bt+by [ £ TogA4 bt—b

€ €

0 ’

where L; are the coordinates of the unit vector directed along the axis of the top.
For the Clebsch and Steklov cases we restrict ourselves to the case dII =0,ie,

H= HI for both systems.

The Clebsch Case.

Substituting the asymptotics

¥(u) = (& + Qu + 0(u®))exp 2 2 t]

into the equations

v

LY =¥u, §t=AI

we obtain
pfbo:ﬂ'“1 = 2 Pe%a
2 Moo= [Qq’_l’ 2 Plal + IP;I\ZQE Pa%a ©-8)

N | PR |
298 =[)p,o, Q8 ] .
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From these formulae we get

X =—%{2Maaa+§-1‘;-zpasa . (9.9)

The equalities (9.8,9) show that G(t) satisfying (9.4,7) can be easily obtained

using @ with the help of multiplication by the right factor
73 pM

we consider the case H = H; ). Finally, we have
I

bt+b0

o(Vi+D|TT)  &(Vt+D+r|TT) ] [e

—bt—by|,  (9.10)
O(Vt+D+A|TT) O(Vt+D+r+A|TT)

e

0y

M1
b= II;L+2J dn .
0

Remark. We ignored this fact, but in reality the constructed ¥—function satisfies
the equation ¢, = A¢ + a(A,t)¢¥ (Sect. 1), since it was determined up to a scalar factor
depending on t . Nevertheless the connection (9.2) of the bases with (9.8) is valid since

(9.2) is invariant with respect to this multiplication.

The Steklov Case.

The analogous expressions for the Steklov case are as follows:

¥(u) = (§+Su+Qu2+0(u3)')exp [;—?— [— ﬁg t] ] )
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o

[%+§%I--+0(u)]2§,

—

b

=

p§a3§-l =%p oCa’

-1 1
[Zp,o,Q¢ ] = g%zz(Paoa“Q'Maaa)

26,81 = 2[Lp 0 Q¥ ] +Ep o (I ) =
=M o)y + 207,00 - p_léi_)
D

g
G = # exp(— 53 (3p ~EMy) .

The final result in this case is given by the same formula (9.10) as for the Clebsch case.
The difference is that in the Steklov case the theta functions in (9.10) are 3—dimensional

(Sect. 8) and the constant b is determined by the slightly different expression

0
+
1 M 1
b-———-z-i-(Jp—I;L)'i"zJO dﬂ .
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Fig 1.

Shows a plane model of the elliptic curve E . The cycles a, bi are depicted

" relative to the representation of X as a two—sheeted cover of E : continuous -

lines show parts of the cycles on the upper sheet while dotted lines show their

. parts on the lower sheet.
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