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Abstract

Sacker’s Theorem asserts that if k ∈ N,

pn ∈ (0, 2), pn+k = pn for all the n ∈ N0

then the Ricker equation xn+1 = xn exp(pn −xn), x0 = x ∈ (0,+∞) has a globally
asymptotically stable k-periodic solution {x∗

n}
+∞
n=0 and

1

k

k−1
∑

i=0

x∗
i = p∗ :=

1

k

k−1
∑

i=0

pi

I prove here that above assertions of Sacker’s theorem remain true if we replace

the condition pn ∈ (0, 2) by a weaker condition pn ∈ [0, 2]. I obtain here also an

effective estimates of the speed of convergence of arbitrary solution of the Ricker

equation to the limit periodic solution.

0. Foreword. The Ricker equation has been studied in connection with
some biological problems. In [1], R.J. Sacker studies the k-periodic Ricker
equation

xn+1 = Rpn
(xn) = xn exp(pn − xn), x0 = x ∈ (0,+∞), pn+k = pn(1)

for n ∈ N0, and proves the following theorem.
Theorem A. Assume pn ∈ (0, 2). Then the Ricker equation (1) has a

globally asymptotically stable k-periodic solution x∗
n. Moreover

1

k

k−1
∑

i=0

x∗i = p∗ :=
1

k

k−1
∑

i=0

pi.(2)

Some constants, which determine the speed of convergence of arbitrary
solution to the limit periodic solution appear in [1] as ineffective constants
thanks to the use of Borel’s Lemma. In this note I replace the Sacker’s
”Uniformity Lemma” in his proof by some direct considerations, wich allow
obtain an effective estimate of the mentioned above speed. I prove also that
after replacement the condition pn ∈ (0, 2) by more week condition pn ∈ [0, 2]

1
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all the above assertion of Sacker’s Theorem remain true. More precisely
I prove the following

Theorem 1 . Let k ∈ N,

pn ∈ [0, 2], pn+k = pn for all the n ∈ N0.

Let

A = min
n∈[0,k)∩N0

pn, B = max
n∈[0,k)∩N0

pn,(3)

p∗ :=
1

k

k−1
∑

i=0

pi.

Then the Ricker equation (1) has a globally asymptotically stable k-periodic
solution {x∗n}

+∞
n=0, and (2) holds.

Moreover, let {xn}
+∞
n=0 be a solution of the equation (1), and x0 > 0.

Let b = max(x0, exp(B−1)), a = min(x0, A, b exp(A− b)). The following
cases exhaust all the possibilities:

(a) in the case 0 < A ≤ B < 2, n ∈ N0 we have

|xn − x∗n| ≤ (λ0)
max(0,(n−3)/4) b

a
(b− a) max(|, |b− 1|, 1),(4)

with

0 < λ0 = max(e2/4 − 1, |a− 1|, exp(B − 2)) < 1;(5)

(b) in the case 0 < A < B = 2, we take

C ∈ (max(A, 1), 2), h2(C) = (C − 1)(C(exp(2 − C) − 1),

0 < λ1(C) = max(e2/4 − 1, |a− 1|, C − 1, h2(C)).(6)

Then λ1(C) < 1, and

|xn − x∗n| ≤ (λ1(C))max(0,(n−k−3)/(k+2)) b

a
(b− a)(b− 1),(7)

where n ∈ N0;
(c) in the case 0 = A ≤ B < 2 we have

|xn − x∗n| ≤ (λ2)
max(0,(n−k−2)/4) b

a
(b− a) max(|, |b− 1|, 1),(8)

where n ∈ [k − 1,+∞) ∩ N0,

0 < λ2 = max(e2/4 − 1, |a exp((−k)a) − 1|, exp(B − 2)) < 1;(9)

(d) in the case A = 0, B = 2, we take

C ∈ (1, 2), h2(C) = (C − 1)(C(exp(2 − C) − 1),
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0 < λ3(C) =(10)

max(e2/4 − 1, |a exp(−ka) − 1|, C − 1, h2(C).)

Then λ3(C) < 1, and

|xn − x∗n| ≤ (λ3(C))max(0,(n−2k−2)/(k+2)) b

a
(b− a)(b− 1),(11)

where where n ∈ [k − 1,+∞) ∩ N0;
(e) in the case A = B = 0, we have the inequality

xn <
x0

1 + nx0
(12)

(f) in the case A = B = 2, if ε ∈ (0, 1]

n ∈ [C1(x0, ε),+∞) ∩ N,

where
C1(x0, ε) = max(0, ln(1/x0), ln(1/x1))+

3 +
ln(1/ε)

ln(1/(1 − ε2/12))
,

then
|xn − 2| < ε.

The Theorem 1 is proved for the cases (a) and (b) respectively in the
sections 1 and 2, for the cases (c) and (d) – in the section 3, for the cases (e)
and (f) respectively in the sections 4 and 5.

Remark. The estimate in (4) is independent from k, but estimate in (7)
depends from k. This is an essential difference between these two estimates.

1. Proof of the Theorem 1 in the case (a) The iteration of (1) give
the equality

xn+m = Rpn
(xn) = xn exp

(

m−1
∑

i=0

(pn+i − xn+i)

)

,(13)

where m ∈ N.
Lemma 1. Let B ∈ [0,+∞), A ∈ [0, B]. Assume A ≤ p ≤ B. Let

b ∈ [exp(B − 1),+∞), a ∈ [0, min[A, b exp(A− b))], x ∈ [a, b].

Then Rp(x) := x exp(p− x) ∈ [a, b].
Proof. Since

R′
p(x) := (1 − x) exp(p− x), R′′

p(x) := (x− 2) exp(p− x),

it follows that
Rp(x) ≤ exp(B − 1) ≤ b,

Rp(x) ≥ min(Rp(a), Rp(b)) = min(a exp(A− a), b exp(A− b)) ≥ a.
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�

Let

hp(x) = (Rp(x) − 1)(x− 1).(14)

Lemma 2. If x ∈ [0, 1], C ∈ [1, 2], and p ∈ [0, 2], then

|hp(x)| ≤ max

(

e2

4
− 1, |x− 1|

)

.(15)

If C ∈ [1, 2], x ∈ [1, C] and p ∈ [0, 2], then h2(x) increases together with
increasing x ∈ [1, 2],

0 ≤ h2(x) ≤ h2(C) ≤ h2(2) = 1, 2 exp(−2) − 1 ≤(16)

|hp(x)| ≤ max

(

1 −
2

e2
, exp(p− 2)h2(C)

)

≤ max

(

1 −
2

e2
, exp(p− 2)

)

,

and, if C ∈ [1, 2), then

0 ≤ h2(C) < 1.(17)

Proof. We have

hp(x) = (x2 − x) exp(p− x) − x+ 1, h′p(x) =(18)

−(x2 − 3x+ 1) exp(p− x) − 1, h′′p(t) = (x2 − 5x+ 4) exp(p− x).

If x ∈ [0, 1], then, clearly,

u(x) := −
1

4
exp(2 − x) + 1 − x ≤(19)

−x(1 − x) exp(2 − x) + 1 − x = hp(x) ≤ 1 − x.

Further we have

u′′(t) < 0, −1 < −
exp(2)

4
+ 1 = u(0) =(20)

min(u(0), u(1)) ≤ u(x) ≤ hp(x).

The inequality (15) follows from (19) and (20). If x ∈ [1, 2], then, in view of
the equalities (18), h′′p(x) < 0 for x ∈ [1, 2]; hence

hp(x) ≥ min(hp(1), hp(2)) ≥ 2 exp(p− 2) − 1 ≥(21)

2 exp(−2) − 1, if x ∈ [1, 2].

On the other hand, in view of (18), h′p(x) decreases together with increasing
of x ∈ [1, 2], h′2(1) = e − 1, h′2(2) = 0; hence h′2(x) > 0, and h2(x) in-
creases together with increasing x ∈ (1, C), 0 ≤ h2(x) ≤ h2(C) ≤ h2(2) = 1.
Therfore, if x ∈ [1, C], then

hp(x) = exp(p− 2)h2(x) ≤ exp(p− 2)h2(C) ≤ exp(p− 2),(22)
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and, if C ∈ [1, 2), then 0 ≤ h2(C) < 1. Clearly, the inequalities (16) follow
from (21) and (22). �

Corollary 1. If x ∈ [0, 2] and p ∈ [0, 2], then

|hp(x)| ≤ 1.(23)

Proof. The inequality (23) directly follows from (15) and (16) �

Corollary 2. Let B ∈ (0, 2), A ∈ (0, B], A ≤ pn ≤ B for all the
n ∈ N0, b = exp(B − 1), a = min(A, b exp(A− b)). If x ∈ [a, 2], then

|hpn
(x)| ≤ λ0,

where λ0 have been specified in (5).
Proof. Since exp(2)/4 − 1 > 0, 84 > 0, 73 > 1 − 2 exp(−2), it follows

that the assertion of the Corollary directly follows from (15) and (16). �

Corollary 3. Let

B ∈ (1, 2], A ∈ (0, B), C ∈ (max(1, A), B), A ≤ p ≤ B

for all the n ∈ N0, b = exp(B − 1), a = min(A, b exp(A − b)). If x ∈ [a, C],
then

λ1 < 1, and |hp(x)| ≤ λ1,

where λ1 have been specified in (6).
Proof. Since exp(2)/4 − 1 > 0, 84 > 0, 73 > 1 − 2 exp(−2), it follows

that the assertion of the Corollary directly follows from (15) and (16). �

Let

gi,0(x) = x, and gi,n(x) = Rpn−1+i
(gi,n−1(x)),(24)

where i ∈ N0, n ∈ N0, and let

ai,n = min
x∈[a,b]

(gi,n(x)), bi,n = min
x∈[a,b]

(gi,n(x)),(25)

where i ∈ N0, n ∈ N0.
Clearly,

ai+k,n = ai,n, bi+k,n = bi,n, gi+k,n(x) = gi,n(x),(26)

where i ∈ N0, n ∈ N0.
Lemma 3. Let

i ∈ N0, n ∈ N0, m ∈ N0.

Then

gi,n+m(x) = gi+n,m(gi,n(x)).(27)

Proof. Clearly, if m = 0 then (27) holds. Suppose that m ∈ N, and let
the equality (27) holds for m− 1 instead of m. Then,

gi+n,m(gi,n(x)) = Rpm−1+i+n
(gi+n,m−1(gi,n(x))) =

Rpm−1+i+n
(gi,n+m−1(x)) = gi,n+m(x).
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�

Clearly,

g′i,n(x) = (1 − gi,n−1(x))
gi,n(x)

gi,n−1(x)
g′i,n−1(x))(28)

for any n ∈ N. The iteration of (28) give the equality

g′i,n(x) =
gi,n(x)

x

n−1
∏

κ=0

(1 − gi,κ(x)).(29)

for any n ∈ N0.
Lemma 4. Let

B ∈ (0, 2), A ∈ (0, B], A ≤ pn ≤ B for all the n ∈ N0.

Let b ≥ exp(B − 1), a = min(A, b exp(A − b)), a ≤ x ≤ b Let {xn}
+∞
n=0 be a

solution of the equation (1). Let further {m1, m2} ⊂ N0 and m1 < m2. Let,
finally, i ∈ N0, and

gi,n(x) ∈ [a, 2] for n ∈ [m1, m2) ∩ Z.

Then

m2
∏

n=m1

|gi,n(x) − 1| ≤ (λ0)
[(m2−m1+1)/2](30)

Proof. Let us consider the pairs

gi,m2−2κ+2(x), gm2−2κ+1(x), where; κ ∈ N, m2 − 2κ+ 1 ≥ m1,

i.e.
κ ≤ m3 := [(m2 −m1 + 1)/2] ≤ (m2 −m1 + 1)/2.

Then
m2
∏

κ=m1

|gi,n(x) − 1| =

(

m3
∏

i=1

|gi,m2−2κ+2(x) − 1||gm2−2κ+1(x) − 1|

)

×

m2−2m3
∏

n=m1

|gi,n(x) − 1|,

According to the Corollary 2 of the Lemma 2,

|gi,m2−2κ+2 − 1||gi,m2−2i+1 − 1| =

|hpi+m2−2κ+1
(gi,m2−2κ+1)| ≤ λ0

for i = 1, ..., m3 and, clearly,

m2−2m3
∏

n=m1

|gi,n(x) − 1| ≤ 1.
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Hence (30) holds. �

Lemma 5. Let are fulfilled all the conditions of the Lemma 4.
Let further i ∈ N0, n ∈ N0. Then

n
∏

κ=0

|gi,κ(x) − 1| ≤(31)

≤ (λ0)
max(0,(n−1)/4)) max(|b− 1|, 1)

Proof. If n = 0 then, clearly, (31) holds. Let n ∈ N. Let n0 = 0, if
x0 > 2 and n0 = −1 if x0 ≤ 2. Let n ∈ N and let

N(n) = {ν ∈ [0, n− 1] ∩ N : gi,ν(x) > 2}.

Let the set N(n) consists of s elements. If s > 0, then let n1, ..., ns are all
the elements in the set N(n), and let ni < nj, if 0 ≤ i < j ≤ s. Let n = ns+1.
Since gi,ν+1(x0) < 2 for any ν ∈ N(n), it follows that ni − ni−1 ≥ 2 if s ≥ 1
and i = 1, ..., s. Clearly, ns+1 − ns = n− ns ≥ n− (n− 1) = 1,

n = ns+1 = n0 +
s+1
∑

i=1

(ni − ni−1 ≥ −1 + 2s+ 1, s ≤ n/2,

Further we have

n
∏

κ=0

|gi,κ(x) − 1| =(32)





s
∏

j=0





nj+1
∏

κ=nj+1

|gi,κ(x) − 1|







×

n0
∏

κ=0

|gi,κ(x) − 1|.

If we take in the Lemma 3 m1 = nj + 1, m2 = nj+1 then we obtain the
inequality

nj+1
∏

κ=nj+1

|gi,κ(x) − 1| ≤ (λ0)
[(nj+1−nj)/2],

for j = 0, ..., s. Since [(nj+1 − nj)/2] ≥ (nj+1 − nj)/2 − 1/2, it follows that

s
∑

j=0

[(nj+1 −nj)/2] ≥ ((n−n0)− (s+1))/2 ≥ (n− 1−n0 − s)/2 ≥ (n− 2)/4.

Therefore




s
∏

j=0





nj+1
∏

i=nj+1

|xi − 1|







 ≤ (λ0)
(n−2)/4)(33)
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Clearly,

n0
∏

κ=0

|gi,κ(x) − 1| ≤ max(|x− 1|, 1) ≤ max(|b− 1|, 1)(34)

The inequality (30) follows from the inequalities (33) and (34). �

Lemma 6. Let B ∈ (0, 2), A ∈ (0, B]

A ≤ pn ≤ B for all the n ∈ N0,

b ≥ exp(B − 1), 0 < a ≤ min(A, b exp(A− b)), a ≤ x ≤ b. Let n ∈ N. Then

|g′i,n(x)| ≤ (λ0)
(max(0,(n−3)/4) b

a
max(|b− 1|, 1),(35)

where λ0 have been specified in (5)
Proof. Assertion of the Lemma follows directly from the Lemma 1,

Lemma 5 and (29).
Let

f0(x) = g0,k(x) − x.

Since, according to the Lemma 1, f0(a) ≥ 0, f0(b) ≤ 0, it follows that there
exists a x∗∗0 ∈ [a, b] such that f0(x

∗∗
0 ) = 0; let is fixed such x∗∗0 . Let {x∗n}

+∞
n=0

be a solution of the equation (1) with initial values x∗0 = x∗∗0 . This solution
is k − periodic, and, according to the Lemma 1, x∗n ∈ [a, b] for any n ∈ N0.
Clearly, xn = g0,n(x0), x

∗
n = g0,n(x∗0) for any n ∈ N0.for i = 0, ..., k − 1.

Therefore
|xn − x∗k{n/k}| = |xn − x∗n| =

|g′0,n((1 − θ)xn + θx∗n)||x− x∗0| ≤

(b− a)|g′0,n((1 − θ)xn + θx∗n)|,

where θ ∈ (0, 1). and (4) follows from (35) now. �.
The Theorem 1 in the case (a) is proved.
2. Proof of the Theorem 1 in the case (b) Let

C ∈ (max(A, 1), 2).(36)

Since h2(x) increases with increasing x ∈ [1, 2], and (16) holds, it follows that

0 ≤ h2(x) ≤ h2(C) < 1, if x ∈ [1, C].(37)

Lemma 7. Let

k ∈ N, 0 < A < B = 2, A ≤ pn ≤ B, pn+k = pn

for all the n ∈ N0. Let further

b ≥ exp(B − 1), 0 < a ≤ min(A, b exp(A− b)), x ∈ [a, b].

Let (3) and (36) hold. Then k ≥ 2 and

{m ∈ [0, k] ∩ Z : gi,n+m(x) < C} 6= ∅(38)
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for any i and n in N0.
Proof. The inequality k ≥ 2 directly follows from the relations 0 < A <

B = 2 and from (3). If (38) isn’t true, then

gi,m(x) > C(39)

for anym = 0, ..., k−1 In view of the equalities (3), there exists m ∈ [1, k]∩N

such that pi+m = A. Then

gi,m(x) = Rpi+m−1
(gi,m−1(x)) = gi,m−1(x) exp(A− gi,m−1(x)).

In view of (39) and (36), 1 < C ≤ gi,m−1(x). Since Rpi+m−1
(x) decreases

together with increasing of x ∈ [1,+∞) it follows that

gi,m(x) = gi,m−1(x) exp(A− gi,m−1(x)) ≤ C exp(A− C) < C.

So we obtain a contradiction with (39). This proves the Lemma. �

Lemma 8. Let pn ∈ [0, 2] for all the n ∈ N0 Let {xn}
+∞
n=0 be a solution

of equation (1). Let further {m1, m2} ⊂ N0 and m1 < m2. Let further

xn ∈ [a, 2] for n ∈ [m1, m2) ∩ Z.(40)

Then

m2
∏

n=m1

|xn − 1| ≤ 1.(41)

Proof. Let m = m2 + 1 −m1. If m = 1, then

m2
∏

n=m1

|xn − 1| = |xm1
− 1| ≤ 1.(42)

If m = 2, then assertion of the Lemma coincides with assertion of the Corol-
lary 1 of The Lemma 2. Let m ≥ 3 and let assertion of the Lemma is true
for all µ ∈ [1, m− 1] ∩ Z. Then it is true for µ = m− 2 ≥ 1. Therefore

m2−2
∏

n=m1

|xn − 1| ≤ 1,(43)

and, accpording to assertion of the Corollary 1 of The Lemma 2,

m2
∏

n=m2−1

|xn − 1| ≤ 1,(44)

In view of (43) and (44) assertion of the Lemma is true for µ = m. �.
Lemma 9. Let

k ∈ N, 0 < A < B = 2, A ≤ pn ≤ B, pn+k = pn

for all the n ∈ N0,

b ≥ max(exp(B − 1))], 0 < a ≤ min(A, b exp(A− b)), a ≤ x ≤ b,
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max(A, 1) < C < 2,(45)

the equalities (3) take place, x ≤ 2. and m ∈ [k + 1,+∞] ∩ N.
Then (for given i ∈ N0, n ∈ N0 and x ∈ (0, 2])
there exists ν ∈ [0, k + 1] ∩ N0 such that

ν
∏

κ=0

|1 − gi,n+κ(x)| ≤ λ1(C)) < 1,(46)

and

gi,n+ν+1(x) ≤ 2,(47)

where λ1(C) specified in (6).
Proof. In view of (38), let

m0 = {m ∈ [0, k] ∩ Z : gi,n+m(x) < C}(48)

The product
(

m0−1
∏

κ=0

|1 − gi,n+κ(x)|

)

is an empty product, if m0 = 0, and, according to the Lemma 8, this product
is not bigger, than 1, if m0 ≥ 1. Hence,

m0
∏

κ=0

|1 − gi,n+κ(x)| =(49)

|1 − gi,n+m0
(x)|×

m0−1
∏

κ=0

|1 − gi,n+κ(x)| ≤

|1 − gi,n+m0
(x)| ≤ C − 1 ≤ λ1(C).

If gi,n+m0+1(x) ≤ 2, then, we can take ν = m0 and for this ν assertion of the
Lemma is true. If gi,n+m0+1(x) > 2, then we have

m0+1
∏

κ=0

|1 − gi,n+κ(x)| =(50)

|1 − gi,n+m0
(x)||1 − gi,n+m0+1(x)|×

m0−1
∏

κ=0

|1 − gi,n+κ(x)| ≤

|1 − gi,n+m0
(x)||1 − gi,n+m0+1(x)| ≤ λ1(C),

according to the Lemma 2; further we have

gi,n+m0+2(x) = Rpi+n+m0+1
(gi,n+m0+1(x)) =

exp(pi,n+m0+1)(gi,n+m0+1(x)) exp(−gi,n+m0+1(x)) <
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exp(pi,n+m0+1)2 exp(−2) ≤ 2.

Therefore the assertion of the Lemma is true for ν = m0 + 1 in this case. �

If the conditions of the Lemma 9 are fulfilled,
then we denote by ν∼(i, n, x) the smallest number
amomg of all the ν, which satisfies the reqirements of
the aserrtion of this Lemma. Let

ν∧∧0 (x) = −1, if x ∈ [0, 2],

and
ν∧∧0 (x) = 0, if x > 2.

Then g0,ν∧∧

0
(x)+1(x) ∈ [0, 2]. According to the Lemma 9, there exists an in-

creasing sequence {ν∧(m, x)}+∞
m=0 with the following properties:

(I)
ν∧(m, x) ∈ [−1,+∞) ∩ Z for all the m ∈ N0,

(II)
ν∧(0, x) = ν∧∧0 (x),

(III)
g0,ν∧(m,x)+1(x) ∈ [0, 2] for all the m ∈ N0,

(IV)

ν∧(m, x) + 1 ≤ ν∧(m+ 1, x) ≤ ν∧(m, x) + k + 2,(51)

(V)
ν∧(m,x)
∏

κ=ν∧(m−1,x)+1

|1 − g0,κ(x)| ≤ λ1(C),

where m ∈ N and λ1(C) is specivied in (7). For example, the sequence,
produced by recurrence equation

ν∧(0, x) = ν∧∧0 (x), ν∧(m + 1, x) =

ν∼(i, n, y),

with i = n = ν∧(m, x) + 1, y = g0,ν∧(m,x)(x) has the properties (I) – (V).
Let n ∈ N0. Then, clearly, n ≥ ν∧0 (x). Let

µ = µ(n, x) = max{m ∈ N0 : n ≥ ν∧(m, x)}

Then

ν∧(µ(n, x), x) ≤ n < ν∧(µ(n, x) + 1, x) ≤ ν∧(µ(n, x), x) + k + 2,

and
0 ≤ n− ν∧(0, x)(x) ≤

ν∧(µ(n, x) + 1, x) − ν∧(0, x) =
∑

κ = 0µ(n,x)(ν∧(κ+ 1, x) − ν∧(κ, x)) ≤ (µ(n, x) + 1)(k + 2).
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Hence µ(n, x) ≥ max(0, n/(k+2)−1) = max(0, (n−k−2)/(k+2)). Therefore

n
∏

κ=0

|1 − g0,κ(x)| =





ν∧

0
(x)
∏

κ=0

|1 − g0,κ(x)|



×





ν∧

µ (x)
∏

κ=ν∧

0
(x)+1

|1 − g0,κ(x)|



×





n
∏

κ=ν∧
µ (x)+1

|1 − g0,κ(x)|



 .

Clearly,




ν∧

0
(x)
∏

κ=0



 ≤ (b− 1),

the product
n
∏

κ=ν∧(µ,x)+1

|1 − g0,κ(x)|

is an empty product if µ(n, x) = n, and, according to the Lemma 8, it is not
bigger then 1, if µ(n, x) < n. Finally,

ν∧(µ,x)
∏

κ=ν∧

0
(x)+1

|1 − g0,κ(x)| =

µ
∏

m=1





ν∧(m,x)
∏

κ=ν∧(m−1,x)+1

|1 − g0,κ(x)|



 ≤ λ
µ(n,x)
1 ≤ λ

max(0,(n−k−2)/(k+2)
1 .

Hence,
n
∏

κ=0

|1 − g0,κ(x)| ≤ (b− 1)λ
max(0,(n−k−2)/(k+2)
1 ,

|g′0,n(x)| ≤
b

a
(b− 1)(λ1(C))max(0,(n−k−3)/(k+2),(52)

where n ∈ N0 and we have (7). The Theorem 1 in the case (b) is proved.
3. Proof of the Theorem 1 in the cases (c) and (d)
Lemma 10. Let

k ∈ N, 0 = A < B < 2, A ≤ pn ≤ B, pn+k = pn

for all the n ∈ N0. Let

b ≥ exp(B − 1), 0 < a ≤ min(b exp(A− b), p∗),

and (3) takes place. Then k ≥ 2 and

{m ∈ [1, k] ∩ Z : gi,m[a, b]) ⊂ [a, b]} 6= ∅(53)
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for any i ∈ N0.
Proof. The inequality k ≥ 2 directly follows from the equality A = 0,

inequality B > 0 and (3) . Clearly, gi,m([0, b]) ⊂ [0, b]. Therefore we must
prove that there exsists mi ∈ [1, k]∩ Z such that gi,mi

([a, b]) ⊂ [a,+∞). The
contrary means that

gi,m([a, b]) 6⊂ [a,+∞).(54)

for any m = 1, ..., k. Then gi,m([a, b]) = [ai,m, bi,m], where

ai,m < a, bi,m ≤ b(55)

for any m = 1, ..., k. We want to prove that

ai,m = gi,m(a)(56)

for any m = 0, ..., k. Since gi,0(x) = x, it follows that (56) holds for m = 0.
Suppose that m ∈ [1, k]∩N, and (56) holds for m− 1. If bi,m−1 ≤ 1, then the
function Rpi+m−1

(x) increases on [ai,m−1, bi,m−1]; hence

gi,m(x) = Rpi+m−1
(gi,m−1(x)) ≥ Rpi+m−1

(ai,m−1) =

Rpi+m−1
(gi,m−1(a)) = gi,m(a).

If 1 < bi,m−1 ≤ b, then the function Rpi+m−1
(x) increases on [ai,m−1, 1] and

decreases on [1, bi,m−1]. Therefore, in view of (55),

a > ai,m = min
x∈[a,b]

gi,m(x) = min
x∈[a,b]

Rpi+m−1
(gi,m−1(x)) =

min(Rpi+m−1
(ai,m−1), Rpi+m−1

(bi,m−1).

Since
Rpi+m−1

(bi,m−1) ≥ Rpi+m−1
(b)) ≥ b exp(−b)) ≥ a,

it follows that

a > ai,m = min
x∈[a,b]

gi,m(x) = Rpi+m−1
(ai,m−1) =

Rpi+m−1
(gi,m−1(a)) = gi,m(a).

So, the contrary to the assertion of the Lemma means that gi,m(a) < a for
all the m = 1, ..., k. Since k ≥ 2, it follows that

k−1
∑

m=0

(pi+m − gi,m(a)) = kp∗ −
k−1
∑

m=0

gi,m(a)) > kp∗ − ka ≥ 0

In view of (13),

gi,k(a) = a exp

(

k−1
∑

m=0

(pi+m − gi,m(a))

)

≥(57)

a exp(kp∗ − ka).

So we obtain a contradiction with (55). This proves the Lemma. �
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In view of (53) let

ν∨(i) = min({m ∈ [1, k] ∩ Z : gi,m[a, b]) ⊂ [a, b]}(58)

for any i ∈ N0. In view of (58),

gi,ν∨(i)[a, b]) ⊂ [a, b]}(59)

Lemma 11. Let {i, n} ⊂ N0, and let

gi,n([a, b]) ⊂ [a, b]}

Then

gi,n+ν∨(i+n)([a, b]) ⊂ [a, b].(60)

for any i ∈ N0.
Proof. In view of (27),

gi,n+ν∨(i+n)(x) = gi+n,ν∨(i+n)(gi,n(x)).(61)

Therefore

gi+n,ν∗(i+n)(gi,n([a, b])) ⊂ gi+n,ν∨(i+n)([a, b]) ⊂ [a, b].

�

In view of (61), let

ν∗(i, 0) = 0, ν∗(i, n) = ν∗(i, n− 1) + ν∨(i+ ν∗(i, n− 1)),(62)

for any n ∈ N.
In view of (58), (62),

ν∗(i, n) ≥ n,(63)

for any n ∈ N0.
According to the Lemma 11,

gi,ν∗(i,n)([a, b]) ⊂ [a, b].(64)

In view of (62),

1 ≤ ν∗(i, n) − ν∗(i, n− 1) ≤ k,(65)

Lemma 12. If n ∈ N0, m ∈ N0, then

ν∗(i, n+m) = ν∗(i, n) + ν∗(i+ ν∗(i, n), m).(66)

Proof. We apply induction on m. Clearly, (66) holds for m=0. In view
of (62),

ν∗(i, 1) = ν∨(i),

ν∗(i, n+ 1) = ν∗(i, n) + ν∨(i+ ν∗(i, n)) =(67)
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ν∗(i, n) + ν∗(i+ ν∗(i, n), 1)

Let m ∈ N, m ≥ 2 and let assertion of the Lemma holds for m − 1. Let
further i1 = i + ν∗(i, n) Then, in view of (62) and inductive hypothesis

ν∗(i, n +m) =(68)

ν∗(i, n+m− 1) + ν∨(i+ ν∗(i, n+m− 1)) =

ν∗(i, n+m− 1) + ν∨(i+ ν∗(i, n+m− 1)) =

ν∗(i, n+m− 1) + ν∗(i+ ν∗(i, n +m− 1), 1),

According to inductive hypothesis,

ν∗(i, n+m− 1) = ν∗(i, n) + ν∗(i + ν∗(i, n), m− 1) =(69)

ν∗(i, n) + ν∗(i1, m− 1).

Therefore

ν∗(i + ν∗(i, n+m− 1), 1) =(70)

ν∗(i+ ν∗(i, n) + ν∗(i1, m− 1), 1) =

ν∗(i1 + ν∗(i1, m− 1), 1).

In view of (68) – (70) and inductive hypothesis,

ν∗(i, n+m) = ν∗(i, n) +(71)

ν∗(i1, m− 1) + ν∗(i1 + ν∗(i1, m− 1), 1) = ν∗(i, n)+

ν∗(i1, m) = ν∗(i, n) + ν∗(i+ ν∗(i, n), m)

�

Lemma 13. If n ∈ N0, then

gi,ν∗(i,n)([a, b]) ⊂ [a, b](72)

Proof. Since ν∗(i, 0) = 0, it follows that the assertion of the Lemma is
true for n = 0. Suppose that n ∈ N, and the assertion of the lemma is true
for n − 1. Hence gi,ν∗(i,n−1)([a, b]) ⊂ [a, b]. Let i∗ = i + ν∗(i, n − 1), and, in
view of (62), let

m∗ = ν∗(i, n) − ν∗(i, n− 1) = ν∨(i + ν∗(i, n− 1)) = ν∨(i∗);

Then, in view of (58),

gi∗,ν∨(i∗)([a, b]) ⊂ [a, b]}.

Hence,
gi,ν∗(i,n)([a, b]) = gi,ν∗(i,n−1)+m∗([a, b]) =

gi+ν∗(i,n−1),m∗(gi,ν∗(i,n−1)([a, b])) =

gi∗,ν∨(i∗)(gi,ν∗(i,n−1)([a, b])) ⊂ [a, b].
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� Lemma 14. Let

k ∈ N, 0 = A < B < 2, A ≤ pn ≤ B, pn+k = pn

for all the n ∈ N0. Let x > 0,

b ≥ max(exp(B − 1))], 0 < a ≤ min(b exp(A− b), p∗),

and (3) takes place.
If n1 ∈ N0, n2 ∈ N,

a < gi,n(a), gi,n+m(a) < a for m = 1, ..., n2,(73)

then

gi,n+m(a) ≥ a exp(−ma)(74)

Proof. We apply induction on m. If gi,n(a) ≥ 1, then

gi,n+1(a) = Rpi+n
(gi,n(a)) ≥ b exp(p− b) ≥ a,

what is impossible, according to (73). Hence,

gi,n+1(a) = Rpi+n
(gi,n(a)) ≥ Rpi+n

(a) ≥ a exp(−a).

If n2 = 1, then the Lemma is proved. Let n2 ≥ 2, m ∈ [2, n2]∩N, and let the
inequality (74) holds for m− 1 instead of m. Then

gi,n+m(a) = Rpi+n+m−1
(gi,n+m−1(a)),

and gi,n+m−1(a) < a < 1. Therefore

gi,n+m(a) ≥ Rpi+n+m−1
(a exp(−(m− 1)a)) =

a exp(−a(m− 1) + pi+n+m−1 − a exp(−(m− 1)a) ≥ a exp(−am).

�

Corollary 1. If ν∗(i, n) < n1 < ν∗(i, n+ 1), then gi,n1
(a) ≥ a exp(−ak)

Proof. The assertion of the Corollary follows from the inequalities

gi,ν∗

i
(n)(a) ≥ a, gi,ν∗

i
(n+1)(a) ≥ a,

gi,ν∗

i
(κ)(a) < a for κ ∈ (ν∗i (n), ν∗i (n + 1)) ∩ N0,

ν∗i (n + 1)) − ν∗i (n) ≤ k + 1,

and from the Lemma 10.
Corollary 2. The inequality

gi,κ(a) ≥ a exp(−ak))

holds for any κ ∈ [i,+∞) ∩ N0.
Proof. Since ν∗(i, 0) = 0, ν∗(i, n+ 1) − ν∗(i, n) ≥ 1, it follows that

∪+∞
n=0[ν

∗
i (n), ν∗i (n + 1)) = [0,+∞).
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Hence, if κ ∈ N0, then κ ∈ [ν∗(i, n), ν∗(i, n + 1)) ∩ N0 for some n ∈ N0.
According to the Corollary 1,

gi,κ(a) ≥ a exp(−ak).

�

Lemma 15. Let k ∈ N,

B ∈ (0, 2), A = 0 (hence p∗ > 0), A ≤ pn ≤ B, pn+k = pn

for all the n ∈ N0, and (3) holds. Let further

b ≥ exp(B − 1), 0 < a ≤ min(p∗, b exp(A− b)), a ≤ x ≤ b.

Let n ∈ N0. Then

|g′i,n(x)| ≤ (λ2)
max(0,(n−3)/4)) b

a
max(|b− 1|, 1),(75)

where λ2 have been specified in (9).
Proof. It is sufficient to repeat the Proof of the Lemma 6 with λ2 instead

of λ0 �

Lemma 16. Let k ∈ N,

B ∈ (0, 2], A = 0 (hence p∗ > 0, A ≤ pn ≤ B, pn+k = pn

for all the n ∈ N0, and (3) holds. Let further

b ≥ exp(B − 1), 0 < a ≤ min(p∗, b exp(A− b)), a ≤ x ≤ b, C ∈ (1, 2).

Let n ∈ N0. Then

|g′0,n(x)| ≤
b

a
(b− 1)(λ3(C))max(0,(n−k−3)/(k+2)),(76)

where λ3(C) have been specified in (10).
Proof. It is sufficient to repeat the Proof of the inequality (52) with the

value λ3(C) instead of λ1(C) �

Clearly, there is two numbers n1 and n2 in the set {0, ..., k} such that
n1 < n2 and

k{ν∗(0, n1)/k} = k{ν∗(0, n2)/k},(77)

where, as usually, {x} denotes the fractional part of x.
Let m0 = ν∗(0, n2) − ν∗(0, n1), i0 := ν∗(0, n1) Since n1 ≤ k − 1 and

ν∗(0, µ+ 1) − ν∗(0, mu) ≤ k + 1 for any µ ∈ N0, it follows that

i0 ≤ k2, m0 ≤ (k + 1)k(78)

If we take in (66) i = 0, n = i0, m = n2 − n1, then we obtain the equality

m0 = ν∗(i0, n2 − n1)
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In view of (77), q := m0/k ∈ N. Since m0 ≤ (k+1)k, it follows that q ≤ k+1.
According to the Lemma 13,

gi0,m0)([a, b]) ⊂ [a, b](79)

Hence, as in section 1, the map x 7→ gi0,m0)(x), x ∈ [a, b] has a fixpoint x∗∗i0 .
Let

{x∗n}
+∞
n=i0

(80)

be a solution of the equation

xn+1 = Rpn
(xn) =(81)

xn exp(pn − xn), xn ∈ (0,+∞), n ∈ [i0,+∞) ∩ N0

with initial values x∗i0 = x∗∗i0 ∈ [a, b]. This solution i qk-periodic. Let {xn}
+∞
n=0

be a solution of the equation (1) with x0 ∈ [a, b]. Snce i0 = ν∗(0, n1), it follows
that xi0 ∈ [a, b]. Therefore, in the same art, as (4) and (7) are deduced, we
obtain

|xn − x∗n| ≤ (λ2)
max(0,n−i0−3)/4) b

a
(b− a) max(|b− 1|, 1),(82)

if B ∈ (0, 2), A ∈ [0, B), n ∈ [i0,+∞) ∩ N0, and λ2 is specified in (9),

|xn − x∗n| ≤ (λ3(C))max(0,(n−i0−k−3)/(k+2)) b

a
(b− a) max(|b− 1|, 1),

(83)

if
B ∈ (0, 2], A ∈ [0, B), C ∈ (max(A, 1), 2), n ∈ [i0,+∞) ∩ N0,

and λ3(C) ∈ (0, 1) is specified in (10).
We will prove now that the sequence (80) is not omly qk-periodic but also

qk-periodic.
Lemma 17. There exists c ∈ (0, a] such that g0,k(c) ≥ c.
Proof. Let us consider the sequence

{g0,kn(a)}
+∞
n=0.(84)

The contrary to the assertion of the Lemma means that this sequense is
decreasing. In fact, if {g0,k(n+1)(a) ≥ g0,kn(a), the we can take c = g0,kn(a),
because then

g0,k(c) = g0,k(g0,kn(a)) = {g0,k(n+1)(a) ≥ g0,kn(a) = c

So, the sequence (refeq:3bc) is decreasing. According to th Corollary 2 of
the Lemma 14, g0,kn(a) ≥ a exp(−ka). Hence

c0 = lim
n→∞

(g0,kn(a)) ≥ a exp(−ka) > 0.

Then
g0,k(c0) = lim

n→∞
(g0,k(g0,kn(a))) =
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lim
n→+∞

(g0,k(n+1)(a)) = c0.

�

Lemma 18. There exists y ∈ (0, b] such that g0,k(y) = y.
Proof. According to the Lemma 17, there exists c ∈ (0, a] such that

g0,k(c) ≥ c.

If g0,k([c, b]) ⊂ [c, b] the map x→ g0,k(x) has a fixed point in [c, b].
The opposite case means that g0,k(d) 6∈ [c, b] for some d ∈ [c, b].
Since g0,k([c, b]) ⊂ (0, b], it follows that g0,k(d) < c ≤ d.
Let now ψ(x) = g0,k(x)− x. Then ψ(c) ≥ 0, ψ(d) < 0. Hence there exists

y ∈ [c, d) such that ψ(y) = 0, and g0,k(y) = y. �

According to the Lemma 18, there exists y ∈ (0, b) such that g0,k(y) = y;
we fix such y; let a1 = min(y, a) and let {yn}

+∞
n=0 be the solution of the

equation (1) with y0 = y. We replace now in the previous considerations the
segment [a, b] by segment [a1, b] and see that

|yn − x∗n| ≤ Cλn,(85)

where C is come positive constant, λ ∈ (0, 1), and n ∈ [i0,+∞) ∩ N0. Each
n ∈ N0 n = r1 + kr2 + qkν, where

r1 ∈ [0, k − 1] ∩ N0, r2 ∈ [0, q − 1] ∩ N0,

and ν ∈ N0. Therefore the inequality (85) can be rewritten in the form

|yr1
− x∗r1+kr2+qkν| ≤ Cλr1+kr2+qkν.(86)

Therefore
x∗r1+k(r2+qν) = yr1

,

where {s = r2 + ql, ν} ⊂ N0,

r1 ∈ [0, k − 1] ∩ N0, r2 ∈ [0, q − 1] ∩ N0,

n = r1 + k(r2 + qν) ∈ [i0,+∞) ∩ N0.

Consequently, the sequence (81) is not only qk-periodic, but also k-priodic,
and

x∗n = yn for n ∈ [i0,+∞) ∩ N0.

Since x∗n is undefined, if n ∈ [0, i0) ∩ N0, we let

x∗n := yn if n ∈ [0, i0) ∩ N0.

Therefore

x∗n = yn for n ∈ [0,+∞) ∩ N0(87)

In view of (26), we can replace i0 ≤ k2, and by k{i0/k} ≤ k− 1; therefore in
view of (87), (82), (83), that

|xn − x∗n| ≤ (λ2)
max(0,(n−k−2)/4) b

a
(b− a) max(|b− 1|, 1),(88)
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if B ∈ (0, 2), A ∈ [0, B), n ∈ [k − 1,+∞) ∩ N0 and λ2 have been specified in
(9),

|xn − x∗k{n/k}| ≤ (λ3(C))max(0,(n−2k−2)/(k+2)) b

a
(b− a) max(|b− 1|, 1),

(89)

if

B ∈ (0, 2], A ∈ [0, B), C ∈ (max(A, 1), 2), n ∈ [k − 1,+∞) ∩ N0;

and λ3(C) ∈ (0, 1) have been specified in (10). � The Theorem 1 in the cases
(c) and (d) is proved

3. Proof of the Theorem 1 in the case (e).
Lemma 19. Let {xn}

+∞
n=0 be an arbitrary sequence, which satisfies to

conditios
0 ≤ xn+1 ≤

xn

1 + xn

where n ∈ N0.

Then

xn ≤
x0

1 + nx0
for any n ∈ N0.(90)

Proof. Assertion of the Lemma is true for n = 0. Supppose that n ∈ N

and that assertion of the Lemma is true for n− 1 instead of n. Then

0 ≤ xn−1 ≤
x0

1 + (n− 1)x0

and 0 ≤ xn ≤
xn−1

1 + xn−1

.(91)

Since the function x/(1 + x) is increasing on (0,+∞), it follows from (91)
that

0 ≤ xn ≤
xn−1

1 + xn−1
≤≤

x0/(1 + (n− 1)x0)

1 + x0/(1 + (n− 1)x0)
= x0/(1 + nx0).

�

Since in the case (e) we have xn+1 = xn/ exp(xn) ≤ x0/(1+nx0), it follows
from the Lemma 19 that the assertion of the Theorem 1 is true in this case
. � The Theorem 1 in the case (e) is proved.

4. Proof of the Theorem 1 in the case (f).
Let {xn}

+∞
n=0 be an arbitrary solution of the equation (1) Then xn ∈ (0, e]

for all the n ∈ N. Clearly xn ∈ [1, 3] for some n ∈ N0, if and only if the
iequality |ηn| ≤ 1 holds for ηn = 2 − xn.

Let |η| ≤ 1. Then

(2 − η) exp(η) − 2 =
+∞
∑

n=1

(

2

n!
−

1

(n− 1)!

)

ηn =

η −
+∞
∑

n=3

n− 2

n!
ηn =

η

(

1 −
+∞
∑

n=3

n− 2

n!
ηn−1

)

=
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η

(

1 − η2

(

1

6
+ η

+∞
∑

n=4

n− 2

n!
ηn−4

))

,

1

6
+ η

+∞
∑

n=4

n− 2

n!
ηn−4 ≥

1

6
−

+∞
∑

n=4

n− 2

n!
(−1)n >

1

6
−

1

12
=

1

12
,

and

|(2 − η) exp(η) − 2| ≤ |η|(1 − η2/12) ≤ η.(92)

Therfore, if |ηn| ≤ 1, then, in view of (92),

|ηn+1| ≤ |ηn|(1 − (ηn)2/12) ≤ ηn ≤ 1,(93)

and |ηn+1| < ηn, if 0 < |ηn| ≤ 1. Let is given ε ∈ (0, 1].
If |ηn0

| < ε for some n0 ∈ N0, then, in view of (93), |ηn0+m| ≤ |ηn0
| < ε

for all the m ∈ N0. If 1 ≥ |ηn| ≥ ε > 0 for n ∈ [n0, n0 +m] ∩ N0, for some n0

and m in N0, then, in view of (93),

|ηn+1| ≤ |ηn|(1 − (ε)2/12),(94)

ε ≤ |ηn0+m| ≤ |ηn0
|(1 − (ε)2/12)m ≤ (1 − (ε)2/12)m,(95)

and

m ≤
ln(1/ε)

ln(1/(1 − ε2/12))
.

Hence, if |ηn0
| ≤ 1 for some n0 inN0, then

|ηn| < ε, for all the n ∈ [n0 + C0(ε),+∞),

where

C0(ε) = 1 +
ln(1/ε)

ln(1/(1 − ε2/12))
.

The function R2(x) = x exp(2−x) decreases with increasing x ∈ [1,+∞) and
maps bijectively [1, 2] onto [2, e]; it maps bijectively the half-interval [1,+∞)
onto (0, e] also. Let w(x) be the inverse map to the map

x 7→ R2(x), x ∈ [1,+∞].

Let γ1 = w(1). Since R2(3) = 3/e ∈ (1, 2) it follows that γ1 > 3, and the
function R2(x) = x exp(2 − x) maps bijectively (3, γ1] onto [1, 3/e) ⊂ [1, 3];
therefore if x0 ∈ (3, γ1], then x1 ∈ [1, 3].

If x0 > γ1, then x1 ∈ (0, 1).
If xn ∈ (0, 1) for some n ∈ N0, then each m ∈ N0 such that xν ∈ (0, 1) for

all the ν ∈ [n, n+m]∩N0 satisfies to the inequalities 1 > xn+m ≥ xn exp(m)
and m < ln(1/xn); therefore

m1 = max{m ∈ N0 : xν ∈ (0, 1) for ν ∈ [n, n +m] ∩ N0} ≤ ln(1/xn),
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and, if m2 = m1 + 1, then xm2
∈ [1, e] ⊂ [1, 3].

Consequently, for each x0 ∈ (0,+∞) there exists

n0 = n0(x0) ∈ [0, max(0, ln(1/x0), ln(1/x1)) + 2

such that xn0
∈ [1, 3].

Therefore
|xn − 2| < ε if n ∈ [C1(ε),+∞) ∩ N,

where
C1(ε) = max(0, ln(1/x0), ln(1/x1))+

3 +
ln(1/ε)

ln(1/(1 − ε2/12))
.

� The Theorem 1 is proved.
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