A note on R.J. Sacker Theorem.
L.A.Gutnik

Abstract

Sacker’s Theorem asserts that if £ € N,
Pn € (0,2), ppak = pn for all the n € Ny

then the Ricker equation x,,11 = x, exp(pn — ), o = = € (0, +00) has a globally
asymptotically stable k-periodic solution {z}}.>9 and
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I prove here that above assertions of Sacker’s theorem remain true if we replace
the condition p, € (0,2) by a weaker condition p, € [0,2]. I obtain here also an
effective estimates of the speed of convergence of arbitrary solution of the Ricker
equation to the limit periodic solution.

0. Foreword. The Ricker equation has been studied in connection with
some biological problems. In [1], R.J. Sacker studies the k-periodic Ricker
equation

(1) xpp1 =Ry, (xn) = 2pexp(pn — ), To = 2 € (0,400), Prik = Pn

for n € Ny, and proves the following theorem.
Theorem A. Assume p, € (0,2). Then the Ricker equation (1) has a
globally asymptotically stable k-periodic solution x. Moreover

N

-1

N
—_

* *

(2) Ty =P =

Di-

| =
[l
o
| =
[l
[e=)

(2 (2

Some constants, which determine the speed of convergence of arbitrary
solution to the limit periodic solution appear in [1] as ineffective constants
thanks to the use of Borel’s Lemma. In this note I replace the Sacker’s
”Uniformity Lemma” in his proof by some direct considerations, wich allow
obtain an effective estimate of the mentioned above speed. I prove also that
after replacement the condition p,, € (0,2) by more week condition p,, € [0, 2]



all the above assertion of Sacker’s Theorem remain true. More precisely
I prove the following
Theorem 1 . Let k € N,

Pn € [0,2], prik = pn for all the n € Ny.

Let
3) A= in pn D= max
1 k—1
Pt = E ;pi‘

Then the Ricker equation (1) has a globally asymptotically stable k-periodic
solution {x*}1%, and (2) holds.

Moreover, let {x,}.12% be a solution of the equation (1), and xy > 0.

Let b = max(xg, exp(B—1)),a = min(xg, A, bexp(A—1b)). The following
cases exhaust all the possibilities:

(a) in the case 0 < A < B <2, n € Ny we have

b

(4) [ — 2] < (o)™ OCTV= (b — a) max([, [b - 1], 1),
a

with

(5) 0 < X\ =max(e’/4 — 1, |[a — 1|,exp(B — 2)) < 1;

(b) in the case 0 < A < B = 2, we take

C € (max(A,1),2), hs(C) = (C = 1)(Clexp(2 — C) — 1),

(6) 0 <M\ (C)=max(e?/4 -1, |a—1]|,C — 1, hy(C)).

Then A\ (C) < 1, and

(7) [ — a5 < O ()0 k3/ a2 Ly oy gy

a

where n € Ny;
(c) in the case 0 = A < B < 2 we have

b
(8) = @] < (Ao)" O = (b — a) max(], [b - 1], 1),
a

where n € [k — 1,+00) N Ny,
9) 0 < Ay = max(e®/4 — 1, laexp((—k)a) — 1|,exp(B — 2)) < 1;
(d) in the case A =0, B =2, we take

C e (1,2), hy(C) = (€ = 1)(Clexp(2 = C) — 1),



(10) 0 < A(C) =
max(e®/4 — 1, laexp(—ka) — 1|,C — 1, hy(C).)
Then A\3(C) < 1, and

(1) 23] < (@022 gy 1),

where where n € [k — 1,4+00) N Ny;
(e) in the case A = B = 0, we have the inequality

Zo

12 n <
( ) . 1"‘71(130

(f) in the case A= B =2, ife € (0,1]

n € [C1(zg, ), +00) NN,

where
Ci(zg,e) = maz(0,In(1/z0),In(1/z1))+
In(1/¢)
ST /(1 = 2/12))"
then

|z, — 2| < e.

The Theorem 1 is proved for the cases (a) and (b) respectively in the
sections 1 and 2, for the cases (c) and (d) — in the section 3, for the cases (e)
and (f) respectively in the sections 4 and 5.

Remark. The estimate in (4) is independent from k, but estimate in (7)
depends from k. This is an essential difference between these two estimates.

1. Proof of the Theorem 1 in the case (a) The iteration of (1) give
the equality

m—1
(13) Tpt+m = an (xn) = Tn €Xp (Z(pn—i-i - xn+z)> )
=0

where m € N.
Lemma 1. Let B € [0,+00), A € [0, B]. Assume A <p < B. Let

b e lexp(B—1),+0), a € [0,min[A,bexp(A —b))], x € |a, b].

Then R,(x) := xexp(p — x) € [a, b].
Proof. Since

Ry (z) = (1 —z)exp(p — x), Ry(z) == (z — 2) exp(p — ),

it follows that
R,(x) <exp(B —1) <b,

R,(x) > min(R,(a), R,(b)) = min(aexp(A — a),bexp(A — b)) > a.



[ |
Let

(14) hp(x) = (By(x) = 1)(z = 1).

Lemma 2. Ifz € [0,1], C € [1,2], and p € [0,2], then

2
(15) (o)) < o (5 = 1.1 - 11).
If C € [1,2],z € [1,C] and p € [0,2], then ho(x) increases together with

increasing x € [1,2],

(16) 0 < hy(z) < he(C) < ha(2) =1, 2exp(—2) =1 <

|hp(7)| < max (1 - g,exp(p - 2)h2(0)) < max (1 - % exp(p — 2)) :
and, if C € [1,2), then
(17) 0< he(C) < 1.
Proof. We have
(18) hy() = (22 — 2) exp(p — x) —w + 1, b (a) =

—(a® =3z + 1) exp(p —x) — 1, h)(t) = (2® — 5z +4) exp(p — ).
If x € [0, 1], then, clearly,

(19) u(z) = —iexp(Q—:v)%—l—:v <

—z(l—z)exp(2—2z)+1—z=hylz) <1—uz.
Further we have

_exp(2)
4

min(u(0), (1)) < u(x) < hy(z).

The inequality (15) follows from (19) and (20). If = € [1,2], then, in view of
the equalities (18), hy(x) < 0 for x € [1, 2]; hence

(20) W) <0, —1 < +1=u(0) =

(21) hy() > min(hy (1), hy(2) > 2exp(p —2) — 1 >

2exp(—2) — 1, ifx € [1,2].
On the other hand, in view of (18), h,(x) decreases together with increasing
of z € [1,2], hy(1) = e — 1, h4(2) = 0; hence hy(z) > 0, and hy(z) in-
creases together with increasing x € (1,C), 0 < ho(x) < ho(C) < ho(2) = 1.
Therfore, if x € [1, (], then

(22)  hy(x) = exp(p — 2)ha(x) < exp(p — 2)ha(C) < exp(p — 2),



and, if C' € [1,2), then 0 < hy(C) < 1. Clearly, the inequalities (16) follow
from (21) and (22). &
Corollary 1. Ifz € [0,2] and p € [0,2], then

(23) |hp()] < 1.

Proof. The inequality (23) directly follows from (15) and (16) W
Corollary 2. Let B € (0,2), A € (0,B], A < p, < B for all the
n € No, b=-exp(B —1), a = min(A,bexp(A —0)). If x € [a, 2], then

[Fop, ()] < Ao,

where \g have been specified in (5).
Proof. Since exp(2)/4—1 > 0,84 > 0,73 > 1 — 2exp(—2), it follows
that the assertion of the Corollary directly follows from (15) and (16). W
Corollary 3. Let

Be(1,2], A€ (0,B), C € (max(1,A),B), A<p<DB

for all the n € Ny, b = exp(B — 1), a = min(A,bexp(A —b)). If x € [a,C],
then
A < 1, and |hy(z)] < A,

where \; have been specified in (6).
Proof. Since exp(2)/4—1 > 0,84 > 0,73 > 1 — 2exp(—2), it follows
that the assertion of the Corollary directly follows from (15) and (16). W
Let

(24) g@o(ﬂf) =, and gi,n(x) = an—lJri (gi,n—l(x))v

where 7 € Ny, n € Ng, and let

(25) Qi = min (g; ,(x)), b;,, = min (g;,(x)),
z€[a,b] z€[a,b]

where 7 € Ny, n € Nj.
Clearly,

(26) Aitkn = Ain, bz’—i—k,n - bi,n; gz’—l—k,n(x) - gi,n(x)y

where 7 € Ny, n € Nj.
Lemma 3. Let
iGNo,neNo,mENo.

Then

(27) Gisntm(T) = Gitnm(gin()).

Proof. Clearly, if m = 0 then (27) holds. Suppose that m € N, and let
the equality (27) holds for m — 1 instead of m. Then,

gi—i-n,m(gi,n(‘r)) - Rpm—l+i+n (gi+n,m—1(gi,n(x>>> =

Rpm71+i+n (gi,n—i-m—l(x)) = Gin+m (x)



[ |
Clearly,

(28) () = (1= gina(2)) 220y ()

for any n € N. The iteration of (28) give the equality

(20) ) = 22D TT (1 g

k=0

for any n € Ny.
Lemma 4. Let

B €(0,2), A€ (0,B], A<p, < B for all then € Ny.

Let b > exp(B — 1), a = min(A,bexp(A — b)), a < x < b Let {z,} be a
solution of the equation (1). Let further {my, ma} C Ny and my < my. Let,
finally, i € Ny, and

gin(x) € [a,2] forn € [my, my) N Z.

Then

ma
(30) H ‘gi,n(x) — 1| < (AO)[(mz—mﬁ-l)/Q]

n=mi

Proof. Let us consider the pairs

gi,m2—2m+2(x)> 9m2—25+1(93)> where;k € N, mg — 25 +1 > my,

1.e.
k<mgz:=[(my—mg+1)/2] < (myg—my+1)/2.
Then
m2
H |gz,n(x) - 1‘ =
K=m1
m3
(H ‘gi,mz—2ﬁ+2(m) - 1||gm2—2ﬁ+1(m) - 1|> X
i=1
mo—2ms
n=m1

According to the Corollary 2 of the Lemma 2,
|Gi;mo—2n+2 — L||Gimo—2i41 — 1| =
‘hpi+m2—2n+1 (gi,m2—2l€+1)‘ < )‘0

for i =1, ..., m3 and, clearly,

mo—2ms

H |gin(z) — 1] < 1.

n=mi



Hence (30) holds. H
Lemma 5. Let are fulfilled all the conditions of the Lemma 4.
Let further i € Ng, n € Ng. Then

(31) [ lgin(z) =11 <

< (}\O)max(o,(n—l)/4)) max(|b _ 1|7 1)

Proof. If n = 0 then, clearly, (31) holds. Let n € N. Let nog = 0, if
To>2and ng = —1if 29 < 2. Let n € N and let

MNn) ={re0,n—1NN: g, () > 2}

Let the set 9M(n) consists of s elements. If s > 0, then let ny, ..., ns are all
the elements in the set 91(n), and let n; < n;, if 0 <i < j <s. Let n = nsiy.
Since gi11(z0) < 2 for any v € MN(n), it follows that n; —n;—y > 2if s > 1
and i = 1,...;s. Clearly, ng,1 —ng=n—-nys>n—(n—1) =1,

s+1
n:ns+1:n0+2(ni—ni_1 > —14+2s+1,s<n/2,
i=1

Further we have

(32) [11gis(x) =11 =

s nj41
IT{ II lgst@)=11] | x
7=0 K=mn;+1

no
H |gi,n(x> - 1|
k=0

If we take in the Lemma 3 m; = n; + 1, my = n;y; then we obtain the

inequality
Tj4+1

H |gin(z) — 1] < (/\0)[(”j+1—nj)/2]’

K=n;+1
for j =0, ..., s. Since [(nj+1 —n;)/2] > (nj41 —ny;)/2 —1/2, it follows that

s

D (31 —ny)/2] = (n=np) = (s+1))/2> (n—1—ng—s)/2 > (n—2)/4.

j=0
Therefore

s Tj4+1

(33) [T lz—=1) ] <o)/



Clearly,
no

(34) 11 19:s(x) = 1] < max(|a — 1],1) < max(|b - 1],1)
k=0

The inequality (30) follows from the inequalities (33) and (34). W
Lemma 6. Let B € (0,2), A € (0, B|

A <p, < B for all then € Ny,

b>exp(B—1),0<a<min(Abexp(A—0)),a<x<b Letn € N. Then
3 910 < ) ™02 sy — 1], 1),
’ a

where \g have been specified in (5)

Proof. Assertion of the Lemma follows directly from the Lemma 1,
Lemma 5 and (29).

Let

fo(z) = gor(z) — .
Since, according to the Lemma 1, fo(a) > 0, fo(b) < 0, it follows that there
exists a x3* € [a,b] such that fo(z3*) = 0; let is fixed such z§*. Let {x7}12
be a solution of the equation (1) with initial values x§ = z{*. This solution
is k — periodic, and, according to the Lemma 1, x € [a,b] for any n € Ny.
Clearly, =, = gon(z0), } = gon(z}) for any n € No.for i = 0, ..., k — 1.
Therefore
T — xZ{n/k}‘ = |z, — ;| =
gha(1 6)2 + 621z — 3] <
(b— a)lgon((1 = O)n + 0z7)],

where 6 € (0,1). and (4) follows from (35) now. H.
The Theorem 1 in the case (a) is proved.
2. Proof of the Theorem 1 in the case (b) Let

(36) C € (max(A,1),2).
Since hg(z) increases with increasing x € [1, 2], and (16) holds, it follows that
(37) 0 < he(z) < hy(C) < 1, ifx €[1,C].
Lemma 7. Let
EkeN0<A<B=2 A<p,<B, Dnir =0Dn
for all the n € Ny. Let further
b>exp(B—1),0<a<min(A,bexp(A—0)), x € [a,b.
Let (3) and (36) hold. Then k > 2 and

(38) {m e [0,k]NZ: gipim(z) < C} 0



for any i and n in Ny.
Proof. The inequality k£ > 2 directly follows from the relations 0 < A <
B =2 and from (3). If (38) isn’t true, then

(39) gim(x) > C

forany m = 0, ..., k—1 In view of the equalities (3), there exists m € [1, k|NN
such that p;;,,, = A. Then

Gim () = Ry i (gim-1(2)) = gim—1(2) exp(A = gim-1(2)).
In view of (39) and (36), 1 < C' < g;m-1(2). Since R, (x) decreases
together with increasing of x € [1,400) it follows that

Gim(2) = gim-1(x) exp(A — gim-1(z)) < Cexp(A—-C) < C.

So we obtain a contradiction with (39). This proves the Lemma. B
Lemma 8. Let p, € [0,2] for all the n € Ny Let {x,},'2% be a solution
of equation (1). Let further {my, mo} C Ny and m; < my. Let further

(40) T € [a,2] forn € [my, ma) N Z.

Then

ma2
(41) I lzn—11<1.

n=mi

Proof. Let m =my+1—mq. If m =1, then

ma
(42) I lzn =1 =l2m, — 1] < 1.

n=mji

If m = 2, then assertion of the Lemma coincides with assertion of the Corol-
lary 1 of The Lemma 2. Let m > 3 and let assertion of the Lemma is true
for all © € [1,m — 1] N Z. Then it is true for g = m — 2 > 1. Therefore

mo—2

(43) H |xn - 1| <1,

n=mj

and, accpording to assertion of the Corollary 1 of The Lemma 2,

m2

(44) H ‘xn_l‘ <1,

n=mqz—1

In view of (43) and (44) assertion of the Lemma is true for p = m. B.
Lemma 9. Let

for all the n € N,

b > max(exp(B —1))], 0 < a <min(A,bexp(A—10)), a <z <b,



(45) max(A4,1) < C < 2,

the equalities (3) take place, x < 2. and m € [k + 1, +o0] N N.
Then (for given i € No, n € Ny and x € (0,2])
there exists v € [0,k + 1] NNy such that

(46) [Tt = ginsnl@)] < M(C)) < 1,
k=0

and

(47) Gintv+1(T) <2,

where A\ (C') specified in (6).
Proof. In view of (38), let

(48) mo = {m S [07 k] NZ: gi,n-l—m(‘r) < C}
The product

(ﬁ 1 —giW(m)\)

is an empty product, if my = 0, and, according to the Lemma 8, this product
is not bigger, than 1, if my > 1. Hence,

(49) [11t - ginenle)] =

|1 — GJin+mo (‘r)‘ X
mo—1
H ‘1 - gi,n-i—ri(x)‘ S
k=0
|1 - gi,n+m0(x)‘ < C-1 < /\I(C)

If gintmo+1(x) < 2, then, we can take v = mg and for this v assertion of the
Lemma is true. If g; 4mo+1(z) > 2, then we have

mo+1

(50) H 1- gi,n+n(x)| =

1= Ginrmo (@)1 = Gintmo+1 (@)X
mo—1

H |1 - gi,n—i—n(x)‘ S
k=0

|1 - gz’,n+mo($)H1 - gz’,n+mo+1(x)‘ < AI(C)v

according to the Lemma 2; further we have

Gin+mo+2 (33) = Rpi+n+m0+l (gi,n-i-MO-i-l (33)) =

eXP(pi,n+mo+1)(gi,n+mo+1(93)) eXp(_gi,n-l-mo-i-l(x)) <



exXP(Pintmo+1)2 exp(—2) < 2.

Therefore the assertion of the Lemma is true for v = mg + 1 in this case. B
If the conditions of the Lemma 9 are fulfilled,
then we denote by v~ (i,n, z) the smallest number
amomg of all the v, which satisfies the reqirements of
the aserrtion of this Lemma. Let

voMx) = -1, ifz € [0,2],

and
vpMNx) =0, if z > 2.

Then go,pn@)+1(z) € [0,2]. According to the Lemma 9, there exists an in-

creasing sequence {v"(m,z)}}>, with the following properties:

(D

v (m,x) € [—1,+00) NZ for all the m € Ny,

(IT)

vN0,2) = 15" (@),

(I11)
9o (mz)+1(2) € [0,2] for all the m € N,
(IV)
(51) Vim,z) +1 < v (m+1,2) <vm,z) +k+2,
(V)

vN(m,x)

[T 11— e < (),

k=vN(m—1,2)+1

where m € N and \;(C) is specivied in (7). For example, the sequence,
produced by recurrence equation

VN0, 2) = vp" (), v (m+1,2) =

VN (Z7 n? y)?

with i = n = v"(m,x) + 1,¥ = gour(m)(z) has the properties (I) — (V).
Let n € Ny. Then, clearly, n > v(x). Let

p = p(n,z) = max{m € Ng: n > v"(m, z)}
Then
(), 2) < m < oA (u(m,2) + 1,2) < o, ), )+ k42

and
0<n—v"0,2)(z) <

Vi (p(n,z) +1,2) — v (0,2) =
Y k=00 K+ 1 3) — v (k,2) < (u(n, ) + 1)(k +2).



Hence u(n,z) > max(0,n/(k+2)—1) = max(0, (n—k—2)/(k+2)). Therefore

n vj (@)
[Tt =gon@l={ I] It = gon(@)]] x
k=0 k=0
v (x)
II 1n=gos@)] =
r=v{(z)+1
I[I 11— gxl)
k=v (z)+1
Clearly,
vy (z)
I[I]=<0-0,
k=0

the product
IT 11— g0
r=v"(p,z)+1

is an empty product if u(n,z) = n, and, according to the Lemma 8, it is not
bigger then 1, if u(n,x) < n. Finally,

v (pw)
H |1 - 90,,{(517)‘ =
r=rg ()41
w /\(m,m) k k
n,T max(0,(n—k—2 5
H H 11— gox(z)] < \un) o yma(0 V(hr2)
m=1 \ k=v"N(m—1,z)+1
Hence,
[T = gon(@) <~ 1) max(0(n=k=2)/(k+2)
k=0
b
(52) ‘gé n(x)‘ S _(b — 1)()\1(C))max(ov(n_k—i)))/(k—iﬂ)7
’ a

where n € Ny and we have (7). The Theorem 1 in the case (b) is proved.
3. Proof of the Theorem 1 in the cases (c) and (d)
Lemma 10. Let

keN0=A<B<2, A<p, < B, Ppir =DPn
for all the n € Ny. Let

b>exp(B—1),0<a<min(bexp(A—b), p"),
and (3) takes place. Then k > 2 and

(53) {m € [1,k]NZ: gimla,b]) C [a,b]} #0



for any i € Ny.

Proof. The inequality & > 2 directly follows from the equality A = 0,
inequality B > 0 and (3) . Clearly, ¢;,,([0,0]) C [0,b]. Therefore we must
prove that there exsists m; € [1, k] NZ such that g; ,,([a,b]) C [a,+00). The
contrary means that

(54) gim(la,b]) Z [a, +00).

for any m =1, ..., k. Then g;m([a,b]) = [aim, bim]|, where
(55) Qi < Qi < b

for any m =1, ..., k. We want to prove that

(56) Aim = Gim(a)

for any m =0, ..., k. Since g;o(z) = z, it follows that (56) holds for m = 0.
Suppose that m € [1, k]NN, and (56) holds for m — 1. If b; ,,—1 < 1, then the
function R, . () increases on [@;m—1, b;m—1]; hence

gi,m(x) = Rpi+m71 (gi,m l( )) > sz+m 1(ai,m—1) =

Ry r (Gim—1(a)) = gim(a).
If 1 < bjo1 < b, then the function R, (x) increases on [a;m—1,1] and

decreases on [1, b; y,—1]. Therefore, in view of (55),

> im T ©,m - R ,m— =
a > a; xrél[;%] 9i, (ZL’) zlél[g})] Pitm—1 (g 1 (JI))

min(Rp'H—m—l (ai,m—1>7 Rpi+m—1 (bi,m—l) .

Since

Rpwmfl(bi,m—l) Z Rpi+m71(b)) Z beXp<_b)) Z a,
it follows that

a> Qim = min gin(r) = Ry, (Gim-1) =
z€[a,b]

Rpi+m71 (gi,m—l(a)) = ng(a).
So, the contrary to the assertion of the Lemma means that g; ,(a) < a for

all the m =1, ..., k. Since k > 2, it follows that

k—1
pz—i—m gzm _kp _Zgzm >k‘p —k:a>0

m=0

In view of (13),

e

-1

(]

(57) gik(a) = aexp ( (Pigm — gi,m(a>)> >

0
kp* — ka).
55). This proves the Lemma. B

3
]

—~

a exp

—~

So we obtain a contradiction with



In view of (53) let
(58) vV (i) =min({m € [1,k]|NZ: gim[a,b]) C [a,b]}
for any ¢ € Ny. In view of (58),
(59) Gviplart]) C [o, B}

Lemma 11. Let {i,n} C Ny, and let

gi,n([av b]) - [av b]}

Then
(60) gi,n+uv(i+n)([a7 b]) - [a7 b]

for any 7 € Nj.
Proof. In view of (27),

(61) JindvY(i4n) (JI) = GJitn,vV(i4+n) (gz,n(x»
Therefore
gi—i—n,u*(i—i—n) (gi,n([a> b])) C gi—i-n,uv(i—i-n)([aa b]) C [(Z, b]

|
In view of (61), let

(62) v*(i,0) = 0,v*(i,n) = v*(i,n — 1) + v (i + v*(i,n — 1)),

for any n € N.
In view of (58), (62),

(63) v*(i,n) >n,

for any n € Np.
According to the Lemma 11,

(64 v im ([, b)) € o, ]
In view of (62),
(65) 1<v*(i,n) —v*(i,n—1) <Kk,
Lemma 12. Ifn € Ny, m € Ny, then
(66) v'(i,n+m)=v"(i,n) + v i+ v*(i,n), m).
Proof. We apply induction on m. Clearly, (66) holds for m=0. In view

of (62),
v*(i, 1) = v"(3),

(67) vi(i,n+1)=v*(,n) + v/ (i +v*(i,n)) =



vi(i,n) + v (i +v*(i,n),1)
Let m € N, m > 2 and let assertion of the Lemma holds for m — 1. Let
further 7y = i + v*(i,n) Then, in view of (62) and inductive hypothesis
(63) vi(i,n+m) =

vi(ii,n+m—1)+v (i + v (i,n+m—1))
vi(i,n+m—1)+vY(i+v(i,n+m—1))
viii,n+m—1)+v i+ v (i,n+m—1),1),

According to inductive hypothesis,

(69) vi(i,n+m—1)=v*(i,n) + v (i +v*(i,n),m—1) =
v*(i,n) + v*(i;,m —1).

Therefore

(70) v+ vi(i,n+m—1),1) =

vi(i+v*(i,n) + v (i;,m —1),1) =

v*(iy + v (iy,m — 1), 1).

In view of (68) — (70) and inductive hypothesis,

(71) v(i,n+m) = v*(i,n) +

vi(iy,m — 1) + v*(iy + v*(ir,m — 1), 1) = v*(i,n)+
v*(iy,m) = v (i,n) + v (i + v*(i,n),m)

[ |
Lemma 13. Ifn € Ny, then

(72) Giwim(la; b)) C a,b]

Proof. Since v*(7,0) = 0, it follows that the assertion of the Lemma is
true for n = 0. Suppose that n € N, and the assertion of the lemma is true
for n — 1. Hence g; - n-1)([a,b]) C [a,b]. Let i* = ¢ + v*(i,n — 1), and, in
view of (62), let

m* =v*(i,n) —v(i,n—1)=v'({i +v*(i,n—1)) = v (i*);

Then, in view of (58),

gir ) ([a, 0]) C [a, O]}
Hence,
gi,u*(i,n)([av b)) = 9i,u*(i,n—1)+m*([aa b)) =
Gitv*(i;n—1),m* (gz‘,u*(z',n—l) ([a,b]))
Gix v (i) (Giw -1y ([a, B])) C [a, b].



B Lemma 14. Let
EkeN0=A<B<2, A<p,<B, Dnir =0Dn
for all the n € Ny. Let x > 0,
b > max(exp(B —1))], 0 < a < min(bexp(A —b), p*),

and (3) takes place.
[fm € No, Ng € N,

(73) a< gi,n(a)v gi,n-i—m(a) < (IfOTm = 17 ey N2,
then
(74) Gimtm(a) > aexp(—ma)

Proof. We apply induction on m. If g;,(a) > 1, then

Gint1(a) = By, (gin(a)) = bexp(p — b) > a,

what is impossible, according to (73). Hence,

gint1(a) = By, (gin(a)) = Ry, (a) > aexp(—a).

If ny = 1, then the Lemma is proved. Let ny > 2, m € [2,n5] NN, and let the
inequality (74) holds for m — 1 instead of m. Then

gi,n-i-m(a) = Rpi+n+m—1 (gi,n—i-m—l(a))v

and g; n+m-1(a) < a < 1. Therefore

Gimtm(@) 2 Ry, iy (@oxp(=(m —1)a)) =

aexp(—a(m — 1) + pitnim—1 — aexp(—(m — 1)a) > aexp(—am).

[
Corollary 1. If v*(i,n) <ny < v*(i,n+ 1), then g;,,(a) > aexp(—ak)
Proof. The assertion of the Corollary follows from the inequalities

gi,u;(n)(a) > a, gi,u;(nﬂ)(a) > a,
Givrmy(a) < afor k€ (v (n),vi(n+1)) NNy,
viln+1))—vi(n) <k+1,

and from the Lemma 10.
Corollary 2. The inequality

gix(a) > aexp(—ak))

holds for any x € [i,+00) N Ny.
Proof. Since v*(7,0) =0, v*(i,n+ 1) — v*(i,n) > 1, it follows that

UnZo[v; (n),vi (n + 1)) = [0, +-00).



Hence, if k € Ny, then « € [v*(i,n),v*(i,n + 1)) NNy for some n € Ny.
According to the Corollary 1,

Gin(a) > aexp(—ak).

[ |
Lemma 15. Let k € N,

B e (0?2)7 A=0 (hencep* > 0)7 A< Pn < Bapn-l-k = Dn
for all the n € Ny, and (3) holds. Let further
b>exp(B—1),0<a<min(p", bexp(A—0)),a <z <hb.

Let n € Ny. Then
(75) g (@)] < Q)P0 L ap 1), 1),
’ a

where Ny have been specified in (9).

Proof. It is sufficient to repeat the Proof of the Lemma 6 with A, instead
of )\0 n

Lemma 16. Let k € N,

B e (0?2]7 A=0 (hencep* > 07 A < pn < B>pn+k = Dn
for all the n € Ny, and (3) holds. Let further
b>exp(B—1),0<a<min(p", bexp(A—10)),a <z <bC € (1,2).

Let n € Ny. Then

S

(76) 90,0 ()] < = (b= 1)(A5(C)) M=t/ 20,
’ a
where \3(C') have been specified in (10).
Proof. It is sufficient to repeat the Proof of the inequality (52) with the
value A3(C) instead of A\;(C) B

Clearly, there is two numbers n; and ny in the set {0, ..., k} such that
ny < ny and
(77) k{v*(0,m)/k} = k{v*(0,n2)/k},

where, as usually, {} denotes the fractional part of z.

Let mo = v*(0,n9) — v*(0,n1), 49 := v*(0,ny) Since ny < k — 1 and
v (0, u+ 1) — v*(0,mu) < k41 for any p € Ny, it follows that
(78) io < k* mo < (k+ 1)k

If we take in (66) i = 0, n = ig, m = ny — ny, then we obtain the equality

mo = v*(ig,n2 — nq)



In view of (77), ¢ := my/k € N. Since my < (k+1)k, it follows that ¢ < k+1.
According to the Lemma 13,

(79) Gio.mo)([a; b]) C [a, 0]

Hence, as in section 1, the map & = giy mq) (), ¥ € [a,b] has a fixpoint x}".
Let

(80) {z0 a2

n=ig

be a solution of the equation
(81) Tni1 = Ry, (2n) =

T €XP(Pn — Tn), T € (0,400),n € [ip, +00) NNy

with initial values z}, = x}* € [a, b]. This solution i gk-periodic. Let {z,,} 2
be a solution of the equation (1) with =g € [a, b]. Snce iy = v*(0, ny), it follows
that z;, € [a,b]. Therefore, in the same art, as (4) and (7) are deduced, we
obtain

, b
(52) o — o5l < Q)OI 26— a) max((b - 1],1),

if Be€(0,2), A€ [0,B), n € [iy, +00) NNy, and Ay is specified in (9),

(83)
, b
[ — a5 | < (Ag(C))mxOrmiom k=B = (h — a) max(|b — 1], 1),
a
if
Be€(0,2], A€[0,B), C € (max(A4,1),2), n € [ig, +00) N Ny,
and A3(C') € (0, 1) is specified in (10).
We will prove now that the sequence (80) is not omly gk-periodic but also
gk-periodic.
Lemma 17. There exists ¢ € (0,a] such that gox(c) > c.
Proof. Let us consider the sequence

(84) {90.kn(@) }520-

The contrary to the assertion of the Lemma means that this sequense is
decreasing. In fact, if {gorm+1)(a) > gorn(a), the we can take ¢ = gopn(a),
because then

go,k(C) = gO,k(QO,kn(a)> = {go,k(n+1)(a) > go,im(a) =c

So, the sequence (refeq:3bc) is decreasing. According to th Corollary 2 of
the Lemma 14, go xn(a) > aexp(—ka). Hence

co = lim (goxn(a)) > aexp(—ka) > 0.

Then
gO,k(CO) = nli_{{)lo(go,k(go,kn(a))) =



ngToo(go,k(n—i-l)(a)) = Cp.

|
Lemma 18. There exists y € (0,b] such that gox(y) = y.

Proof. According to the Lemma 17, there exists ¢ € (0, a] such that
Jor(c) > c.

If gox([c,b]) C [c, b] the map x — go(x) has a fixed point in [e, b].

The opposite case means that gox(d) & [c, b] for some d € [c, b].

Since gox([c, b]) C (0, ], it follows that gox(d) < ¢ < d.

Let now ¥ (z) = gox(x) — 2. Then ¢(c) > 0, ¥(d) < 0. Hence there exists
y € [c,d) such that ¢(y) =0, and gox(y) =y. R

According to the Lemma 18, there exists y € (0,0) such that gox(y) = y;
we fix such y; let a; = min(y,a) and let {y,}!% be the solution of the
equation (1) with yo = y. We replace now in the previous considerations the
segment [a, b] by segment [a1,b] and see that

(85) ‘yn - x:;‘ S O)‘n>

where C'is come positive constant, A € (0,1), and n € [ig, +00) N Ny. Each
n € Ng n = ry + kry + qkv, where

€ [O,k— 1] NNy, ry € [0,(]— 1] N Np,
and v € Ny. Therefore the inequality (85) can be rewritten in the form
(86) ‘yrl - x:1+kr2+qku‘ S O)‘TI—HWQ—HI]W'

Therefore
x;—i—k(rg—l—qz/) = Yry)
where {s =17+ ¢l, v} C Ny,

e [O,k—l]ﬂNo,TQ c [O,Q—l]ﬂNo,

n=ry+ k(ry + qv) € [ig, +00) N Np.

Consequently, the sequence (81) is not only gk-periodic, but also k-priodic,
and
x;, =y, for n € [ip, +00) N Np.

Since x} is undefined, if n € [0,7y) N Ny, we let

z, =y, if n € [0,i9) N Ny.
Therefore
(87) x; =1y, forn € [0,+00) NNy

In view of (26), we can replace ig < k% and by k{io/k} < k — 1; therefore in
view of (87), (82), (83), that

b
(88) o = @3] < Q)OO — a) max((b - 1], 1),



if Be (0,2), A€[0,B),n e [k—1,+00) NNy and Ay have been specified in
(9),

(89)
1 ] < (€)= 00=2/ 052 D) —1,1),
if
B€(0,2], A€[0,B), C € (max(A,1),2),n € [k —1,4+00) N Ny;
and A3(C') € (0, 1) have been specified in (10). B The Theorem 1 in the cases
(c) and (d) is proved

3. Proof of the Theorem 1 in the case (e).
Lemma 19. Let {z,},% be an arbitrary sequence, which satisfies to

conditios .
0< 2,1 < " wheren € N.
+ xy
Then
(90) Ty < —0 for anyn € Ny.
1+ nxg

Proof. Assertion of the Lemma is true for n = 0. Supppose that n € N
and that assertion of the Lemma is true for n — 1 instead of n. Then

Tn-1

Zo
91 0<z, 1< .
(91) > Tp—1 T

——— and 0<z, <
_1+(n—1)x0an =7

Since the function /(1 + x) is increasing on (0, +00), it follows from (91)
that

Tp_1 << zo/(1+ (n — 1)xo)

+ Tpo1 1+ z/(14 (n—1)xg)

0<zx, <

= xo/(l + nl’o).

|

Since in the case (e) we have x,,.1 = z,,/ exp(x,) < zo/(1+nxo), it follows
from the Lemma 19 that the assertion of the Theorem 1 is true in this case
. B The Theorem 1 in the case (e) is proved.

4. Proof of the Theorem 1 in the case (f).

Let {x,}12% be an arbitrary solution of the equation (1) Then z,, € (0, €]
for all the n € N. Clearly z,, € [1,3] for some n € Ny, if and only if the
iequality |n,| <1 holds for 7, = 2 — z,.

Let |n| < 1. Then

(2—n)e><p(n)—2zz<%—ﬁ)n":

n=1




1 n— 2
- (—1)" >
6 n=4 !
1 1 _1
6 12 12
and
(92) (2 = n) exp(n) — 2| < [n(1—7n?/12) <.
Therfore, if |n,| < 1, then, in view of (92),
(93) 1] < (1= (m2)?/12) <y, < 1,

and |N,11] < 7, if 0 < |n,] < 1. Let is given ¢ € (0, 1].

If |9y, | < € for some ng € Ny, then, in view of (93), [Nngtm| < |7no| < €
for all the m € Ny. If 1 > |n,| > € > 0 for n € [ng, ng +m] NNy, for some ny
and m in Ny, then, in view of (93),

(94) D] < [nal (1= (£)%/12),
(95) & < Mngtml < 1o |(1 = (£)%/12)™ < (1 = (2)%/12)™,
and

In(1/e)

M N/ = 2/12))

Hence, if |n,,| < 1 for some ny inNp, then
.| < e, for all the n € [ng + Cy(e), +00),

where

In(1/¢)
Co(e) =1 .
o) =1+ 7 = 212
The function Ry(z) = z exp(2—x) decreases with increasing x € [1, +00) and
maps bijectively [1, 2] onto [2, e]; it maps bijectively the half-interval [1, +00)
onto (0, e] also. Let w(z) be the inverse map to the map

x+— Ro(z),x € [1,+00].

Let 71 = w(1). Since Ry(3) = 3/e € (1,2) it follows that v, > 3, and the
function Ry(z) = xexp(2 — x) maps bijectively (3,7] onto [1,3/e) C [1,3];
therefore if zy € (3,71], then z; € [1, 3].

If 2o > 71, then z; € (0,1).

If x, € (0,1) for some n € Ny, then each m € Ny such that z, € (0,1) for
all the v € [n,n +m] NNy satisfies to the inequalities 1 > z,, 1., > x,, exp(m)
and m < In(1/xz,); therefore

my = max{m € Ny: 2, € (0,1) forv € [n,n+m| NNy} <In(1/z,),



and, if mg = my + 1, then z,,, € [1,¢] C [1, 3].
Consequently, for each xy € (0, 4+00) there exists

ny = no(xo) € [0, max(0,1n(1/xg),In(1/x1)) + 2

such that z,, € [1,3].
Therefore
|z, —2| <eifn e [Ci(e), +00) NN,

where
Ci(e) = max(0,In(1/x¢), In(1/2z1))+
In(1/¢)
In(1/(1 —e%2/12))

3+
B The Theorem 1 is proved.
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