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ON THE KAROUBI FILTRATION OF A CATEGORY

MANUEL CARDENAS AND ERIK KJAR PEDERSEN

1. INTRODUCTION

In [5] Karoubi introduced the notion of an additive category U being filtered by
a full subcategory A (The precise statement - definition 1.5 pages 115-116 of [5] -
is recalled in definition 3.2). He then used this to give an axiomatic description of
negative K-groups, including an exact sequence

Ko(A) = Ko(Ud) = KoU]A) = K_1(A) —~ ... .

This sequence was generalized to hold for higher K-groups in [7] where a fibration of
spectra was obtained

(1.0.1) K(AMY 5 K(U) — KU/ A).

Here AM is a certain subcategory of the idempotent completion of A. In particular
K(A) and K(AM) only differ at Ko. This fibration was generalized in [3] to produce
a fibration

(1.0.2) K=(A) = K==U) = K~=(U/A)

Where K~ is a non-connective spectrum whose negative homotopy groups are the
negative K-groups of A, and whose connective cover is the usual K-theory spectrum.
These fibrations have been applied to produce excision results in controlled algebraic
K-theory, see (1], (2], [3], [4]. Most of these excision results are easy consequences of
the above fibrations. As an example we derive one of the excision results of [3] in the
final section.

The proof in [7] was based on the double mapping cylinder construction of Thoma-
son [10]. In recent years a number of results in algebraic K-theory have been given
easier proofs by using Waldhausen’s S.-construction see e. g. [6], and [9]. In this
paper we give a proofs of 1.0.1 using that method. The basic idea is to consider finite
chain complexes in U and two notions of weak equivalence, chain homotopy equiva-
lence and chain maps inducing homotopy equivalence in 2/ A. The proof then is an
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application of Waldhausen’s generic fibration lemma [12, Theorem 1.6.4], and iden-
tification of the terms. This identification uses results of Thomason and Trobaugh
[11], which we recall in section 6. We also give a proof of 1.0.2 in the final section.

It is our aim to make this paper as self contained as possible. In the first sections
we recall the basic notions and results we shall need in this paper.

2. CATEGORIES WITH COFIBRATIONS AND WEAK EQUIVALENCES

In this section we present a quick review of Waldhausens K-theory of a small
category with cofibrations and weak equivalences [12]. One example to keep in mind
is an additive category where the cofibrations are inclusions of direct summands up
to isomorphism, and the weak equivalences isomorphisms. Another example is finite
chain complexes in an additive category with cofibrations the degreewise inclusions
on direct summands and weak equivalences the homotopy equivalences. If we take
chain complexes and weak equivalences only the isomorphisms, we have an example
of an exact category ( exact sequences are only degreewise split exact). In addition
we recall the basic tools which will allow us to decide when two categories have
isomorphic K-theory.

Given any small category C, satisfying certain properties described below Wald-
hausen assigns functorially to C a topological space K(C), which we call K-theory
of C. The homotopy groups are defined to be the K-groups of C. This extends the
classical definitions of K-groups of a ring R by taking C to be the additive category
of finitely generated projective modules over R.

Definition 2.1. [12, Sections 1.1 and 1.2] A small category C with a zero object is
said to be a category with cofibrations and weak equivalences if it has two distin-
guished subcategories, coC and wC, satisfying the following axioms:

a) coC axioms.

cof 1 Isomorphisms in C are cofibrations.
cof 2 For every A € C, ¥ = A is a cofibration.
cof 3 Colibrations admit cobase change:
a: If A = B is a cofibration and A — C any map, then the push out
exists in C.

b: C — ClJ, B is a cofibration.

b) wC axioms.

weq 1 Isomorphisms in C are weak equivalences.
weq 2 (Gluing Lemma) If in the commutative diagram

1

B¢ A y '
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the horizontal arrows on the left are cofibrations and all three vertical arrows

are in wC then
Bl yc = B'lJC
A A

is in wC.

The two following axioms may, or may not, be satisfied by C.

Saturation axiom: If a, b are composable maps in C and if two of «, b, ab are in
wC then so is the third.

Extension axiom: Let

A y B » B/A

[

Al » B y B'JA
be a map of cofibrations sequences (B/A = x|J4 B). If A — A" and B/A - B'/A’
are in wC then B — B’ is in wC as well.

Having fixed coC and wC, we have a simplicial category:

S.C: A" — (cat)
[n] — S,C
where S,C is the category of objects:
*x = A2 Ay - Ay

with chosen quotients A;; = A;/A;, 1 <1 £ 7 € n where A;; = * always. The
degeneraicy maps are given by inserting identities, and the boundary map d; by
omitting the index z. This is almost like the nerve of the category, which since there
is an initial object would give a contractible space. The difference lies in dp, omitting
the Oth index means taking all the quotients, hence the need for chosen quotients. It
is a category with cofibrations and weak equivalences, by defining a map A = A’ to
be a cofibration if
A — A; and A;- UAJ-.H — A;-_,_l
Aj

are cofibrations in C for all . An arrow A = A’ is defined to be a weak equivalence if
the arrow A;; — A, is a weak equivalence for each pair ¢ < j. We thus have that
S. is a functor from categories with cofibrations and weak equivalences to simplicial
categories with cofibrations and weak equivalences. For more details about this see
sections 1.1, 1.2 and 1.3 in [12].

We can think of:
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wS.C : A7 — (cat)
[n] — wS,C

as a bisimplicial set by taking the nerve of wS,C

Definition 2.2. [12, Section 1.3] The Algebraic K-theory of the category with cofi-
brations C, with respect to the category of weak equivalences wC is given by the
pointed space

QwS.C| = K(C).
The K-groups of C are the homotopy groups of K(C)
I\,*C = 7'|',.(Q|’IUS.CI) (= TI',..+1|'UJS.C]).

Actually K-theory can be described as a spectrum rather than just a space. The
S.-construction extends namely, by naturality, to simplicial categories with cofibra-
tions and weak equivalences. In particular therefore it applies to S.C to produce a
bisimplicial category with cofibrations and weak equivalences, 5.5.C. Again the con-
struction extends to bisimplicial categories with cofibrations and weak equivalences;
and so on. Therefore we get a spectrum

n = jwS.---S.C|.

The structural maps are defined as the adjoint of the map L|wC| — |wS.C| which is
given as the inclusion of the 1-skeleton in the S.-construction, see [12, page 329].

It turns out that the spectrum is a Q-spectrum beyond the first term (the additivity
theorem 2.7 below is needed to prove this). As the spectrum is connective (the n-th
term is (n-1)-connected) an equivalent assertion is that in the sequence

|wC| = QwS.C| = Qzle.S.C| — e

all maps except the first are homotopy equivalences. Hence K-theory of C could
equivalently be defined as the infinite loop space
Q%S| = lim Q" |wS. M|

1

We will refer to either of the three versions as the K-theory of C and denote it as

K(C).

Now we recall criteria that determine when two categories have homotopy equiva-
lent K-theories. Some extra structure is required on the category. It is necessary to
have a notion of cylinder in order to define some kind of homotopy theory.
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Definition 2.3. A functor F' ;: C — (', between categories with cofibrations and
weak equivalences is said to be ezact if F' preserves all relevant structures. In a
natural way such a functor induces a map

wS.F : wS.C — wS.C'
and therefore a map between the K-theories.

2.4. Because of the properties of the product and the realization functor, given a
map (simplicial homotopy)

H:XxI=Y
where X and Y are simplicial sets, it induces a homotopy

H:|X|xI=]Y|

between | F| = |H|x|x{oy} and |G| = |H|x|x(13|- This applies, in particular, to our case
when X and Y are the S.-constructions of categories C and C'.

Therefore we have an idea of homotopy between functors. To see more about this
we refer the reader to [13, Section 5, Notions of homotopy theory].

Definition 2.5. [12, Section 1.6] A category C with cofibrations and weak equiva-
lences has a cylinder functor if there is a functor

T : ArC — DiagC

where ArC is the category of arrows of C and DiagC is the category of diagrams in

C.

T(f:A—=B)= A

satisfying:

Cyl 1: Front and back inclusion assemble to an exact functor

ArC -\ C
(f: A= B)=2(AV B> T(f))
where F\C is the full subcategory of ArC whose objects are the cofibrations
inC.

Cyl 2: T(x = A) = A, for every A € C and projection and back inclusion are
the identity on A.

There is an additional axiom that is often satisfied:

Cylinder axiom: The projection T(f) = B is in wC for every f: A = B.
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Definition 2.6. A cofibration sequence of exact functors C — C’ is a sequence of
natural transformations F' — F — F" having the property that for every A € C
F'(A) — F(A) — F"(A) is a cofibration sequence in C'.

One of the basic tools is the additivity theorem [12, Theorem 1.4.2 and Proposition
1.3.2], see also [6].

Theorem 2.7. There is a homotopy equivalence

(2.7.1) wS.F| = |[wS.(F' v F")|

This statement is equivalent to:

(i) The map

(2.7.2) wS.E(A,C,B) —wS. A x wS.B
A—C— Br—(A,B)
s ¢ homotopy equivalence.
(i1) The map
(2.7.3) wS.E(C) —wS.C x wS.C
A— C— B—(A,B)
is @ homotopy equivalence.
(iii) These two maps are homotopic
(2.7.4) wS. E(C) —wS.C
A-sC-B—(C, AVEB

Let’s see how the K-theories of a category and a subcategory relate to each other.

Definition 2.8. Let A be an exact subcategory of the exact category B. A is said
to be cofinal in B if 0 -5 A’ - B — A" — 0 is exact in B with A" and A” are in A,
then so is B, and if for each B in B there is a B’ in B so that B® B’ is isomorphic to
an object in A. (For simplicity we will assume A is isomorphism closed in B. This
doesn’t change the K-theory of A).

The next theorem is known as the cofinality theorem.

Theorem 2.9. [9, Theorem 2.1]

Let A be cofinal in B and G = Ko(B)/Ko(A). Then there is a fibralion sequence
up to homotopy

K(iS.A) > K(i5.B) = BG

Notice wA = 1A and wB = B, where 1 denotes the isomorphisms, the minimal
possible choice.
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In general, given a category C we will fix the cofibrations and then look at the in-
terplay of the two I{-theories defined by two differents notions of weak equivalences.
Let C be a category with cofibrations equipped with two categories of weak equiva-
lences, one finer than the other vCC wC. Let C* denote the full subcategory with
cofibrations of C given by the objects A in C having the property * — Aisin wC. It
inherits weak equivalences:

vC" =C"NvC wC” = C” NwC
Now recall the generic fibration lemma.

Lemma 2.10. {12, Theorem 1.6.4]
IfC has a cylinder functor, and the coarse category of weak equivalences wC satisfies
the cylinder aziom, saturation aziom and exlension aziom, then the square:

vS.CY —— wS.C"’(E *)

| |

v5.C —— wS.C

is homotopy cartesian, and the upper right term is contractible,

Next we recall the approximation theorem, a sufficient condition for an exact func-
tor F': A = B to induce a homotopy equivalence wS.A — wS.B.

Definition 2.11. Let F': A — B be an exact functor of categories with cofibrations
and weak equivalences. We say it has the approximation property if it satisfies:

App 1: An arrow in A is a weak equivalence in A if and only if its image in
B is a weak equivalence in B.

App 2: Given any object A in A and any map z: F'(A) = B in B there exists
a cofibration a: A & A’ in A and a weak equivalence ' : F(A') - B in B
such that

F(A)— B

F(a)l /;
F(A")
commutes.

The approximation theorem says:

Theorem 2.12. [12, Theorem 1.6.7]

Let A and B be categories with cofibrations and weak equivalences. Assume wA
and wB satisfy the saturation axiom. Suppose A has a cylinder functor that satisfies
the cylinder aziom. Let F: A = B be an exact functor having the approzimation
properties. Then wA — wB and wS.A — wS.B induce homotopy equivelences.
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3. ADDITIVE CATEGORIES. FILTRATIONS.

In this and the next section, we recall Karoubi’s notion of filtration of an additive
category [5] and present the natural structures of categories of cofibrations and weak
equivalences that this concepts lead to.

Definition 3.1. An additive category is a small category with a zero object 0, where
Hom(U, V), the group of morphisms between objects U/ and V, are abelian. Moreover,
the composition is bilinear with respect this operation. Finite product and coproducts
exist in these categories and are isomorphic.

All definitions that follow in this section are taken from [7, Section 5].

Let A be a full subcategory of the additive category &f. We shall use the letters
A — —F (resp. U — —Z) to denote objects of A (resp. U).

Definition 3.2. We say U is A-filtered if every object U has a family of decomposi-
tions {U = E, ® U,} (called a filtration of U) satisfying the following axioms:

F1: For Each U, the decompositions form a filtered poset under the partial
order £, ® U, < Eg & Uz whenever UsC U, and E,C Eg.

F2: Every map A — U factors A - E, = E, & U,= U for some a.

F3: Every map U — A factors U= E, ® U, — E,— A for some .

F4: Tor each U, V the filtration on U@V is equivalent to the sum of filtrations
{U=FE,® U} and {V=Fa® Vp}, ie to {UBV= (L. Fp)d (Ua® Vp)}.

Definition 3.3. We now suppose given an A-filtered category U. Callamap U — V
completely continuous, (cc), if it factors through an object in A. U/ A is defined to
be the category with the same objects as U but with

Homyya(U,V) = Homyu(U,V)[ {cc maps}
i.e. two maps are the same if their difference factors through an object in A.

The additive categories & and U/A have a natural structure as category of cofi-
brations and weak equivalences where cofibrations are the morphisms that are iso-
morphic to split monomorphisms into direct summands and weak equivalences are
the isomorphisms.

Given the A-filtration of U we can endow U with another, larger, category of weak
equivalences than the isomorphisms of Z. This new one, w, will be those morphisms
whose classes in U/ A are isomorphisms. We retain the same category of cofibrations
as in U. The category U with this choice of cofibrations and weak equivalences will

be denoted U(.A).

The objective is to apply the generic fibration lemma 2.10, to the identity functor

(3.3.1) U — U (A)
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hoping to obtaining as fiber the category A. We can not use these categories directly
since neither has cylinder functor as the generic fibration lemma requires. Therefore
we need to consider the corresponding categories of finite chain complexes.

4. THE CATEGORY C(U) AND ITS STRUCTURES

Given an additive category U, we can define the category of finite chain complexes
in U, where objects are:

C#¢0—>Cr—d>6‘r_1—d>----—>6';—>0

such that d? =0, i.e. d? factors through the zero object. A chain map f: Cy — Dy
is a collection of morphisms f = {f,: C, — D,} such that dpf = fdc . A chain
homotopy in A

e: f~f:.:C—=D
is a collection of morphisms {e: C, = D41} such that dpetedec = f'— f:C. = D,.

A chain equivalence is a chain map f: C — D which admits a chain homotopy
inverse, that is, a chain map g: D — C such that

h:gf=1:C>Candk: fg~1:D—=D.

The cofibrations will be those chain maps which degree-wise are inclusions into direct
summands. The weak equivalences will be the chain homotopy equivalences. We shall
denote this category C{U).

4.1. C(U) has a cylinder functor.

Given f: U — V a morphism, let T(f) be the chain complex (T(f)), = U, ®
Up—1 @V, with boundary

dy -1 0
dp = 0 —dU 0
0 f dV

We have the following diagram:

where 7, and j; are the obvious inclusions as direct summands. Degree-wise 7 is

defined as:
m = (f, (177, 1)
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It is easy to check that Cyl 1 and Cyl 2 are satisfied. The cylinder axiom also holds.
To see this, we need to show that 7 is a weak equivalence, i.e. a chain homotopy
equivalence. The homotopy inverse is the natural inclusion

0
'ig: 0
1
Degree-wise, all is given by the following matrices:
d -1 0 0 0 0
mo=(f, (<1 1) dy=|0 ~d 0| F,=[10 o0
0 f d 0 0 (—1)

It is easy to check now that ['yd,p1 + dpgalpt1 = 22mp41 — 1 and mip = 1.

4.2. C(U) satisfies the saturation and the extension axiom as well.

This is proved by elementary chain complex manipulations involving iterated map-
ping cones.

When C(U) is given as weak equivalences the chain maps, that induce homotopy
equivalence in C'(U/.A), we denote it by C(U(A)). Obviously the subcategory of chain
complexes concentrated in degree 0 is exactly U(A). C(U/A) has a cylinder functor
inherited from C(U) satifying the cylinder axiom, saturation axiom and extension
axiom. This follows by working in C(U/A).

At this point, we can properly apply the generic fibration lemma 2.10 to the functor
induced by the identity

CU) — CU(A))
obtaining C(U)" as fiber where w denote the weak equivalences in C(U(A)).
First we would like to show this setting is essentially the one we wanted originally,

without chain complexes. In order to do this, we need to introduce the concept of
idempotent complete category and restricted idempotent completion.

5. IDEMPOTENT COMPLETIONS.

The idempotent completion of an additive category A, denoted A", is the additive
category with objects (A, p) with p = p*: A = A and morphisms f: (A,p) = (B, q)
satisfying f = qfp: A = B. The identity morphism of (A, p) in A" is

I(A.p) =p: (A:P) — (A,[’)
The embedding of additive categories:

A= A"
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sending A to (A, 1) is full and cofinal. The morphisms f: (4,1} — (B,1) in A" are
precisely those in A, and for every (A, p) in A"

(p,1—p)

(A,p) @ (Asl - P) (4__3 (A: 1)

are isomorphisms expressing (A, p) as a direct summand of (A,1) . By the cofinality
theorem 2.9 we have a fibration up to homotopy:

K(wS.A) - K(wS.A") = Brm
where m = Ko(A") / Ko(A). In particular, this implies

Ko(A)>—— K¢(A")

A" has the following properties:

(P): If f: E — F is a map, and there is a map s: I" — E such that splits

fs = 1p, then f is an admissible epimorphism.
And its dual:

(P2 Ifg: F— E hast: £ — F such that {g= 1p then ¢ is an admissible
monomorphism.

(P) and (P*) imply each other. To see more about this we refer the reader to [11,
1.11.10] on page 283.

5.1. It is easy to see that (P) holds for A",
Let

(5.2 Un) = (Vo)

be such that rs = g. We have also

qrp =r ])2 =p pPsg=3S:5 32 = 5.

Now (sr)(sr) = s(rs)r = sqr = (psq)qr = psq*r = psqr = (ps¢)r = sr so (U, sr)
makes sense in 4" and moreover it is an idempotent for (U, p). Since A" is complete
by definition we have

(5.2.1) (U,p) = (U,p—sr)® (U, s7)
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Moreover
.

(U, ) " (Vi)

8

are isomorphic by those morphisms and therefore » in 5.2 is an admissible epimor-
phism.

5.3. The isomorphism 5.2.1 is true by the following argument.
If ¢: (U,p) = (U, p) is such that ¢*= ¢, also pgp = ¢, then
(pap)(pap) = (pap)

thus by the properties of the idempotent completion we have

(U, p) = (U, pgp) & (U, p — pap)

where the isomorphisms are given by the matrices

»pgp o
(p . pqz‘)) and (pqp, P pqp).

Actually the category A" satisfies a stronger property than (P), and its dual (P*).
A" is Karoubian. We say that an additive category E is Karoubian if whenever
p: E = E such that p?=p then there is an isomorphism £ = E’ @ E” under which
p corresponds to the endomorphism 1@ 0. In other words it is idempotent complete.
See this on page 398 in [11, appendix A] .

Now let U be an additive category and A a full subcategory of U.

Definition 5.4. Let &' C Ky(A") be the inverse image of Ko(U) under the map
Ko(A") — Ko(U"). We shall denote the full subcategory of U* with objects U &
(A,p), where [(A,p)] € K by U | Notice that A" is embedded in U”, AN — U,

U —ur

N

uAK

U is cofinal in UMY and in U" hence UMY is cofinal in U”. We thus obtain a
[
diagram of monomorphisms

Ko(U) — Ko(U™)

L

Ky (UAK)
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where the images of Ko(U) and Ko(U™MY) in Ko(U*) are the same. Hence
Ko(Ud) — Ko(UNK)

is an isomorphism and therefore & and UK have homotopy equivalent K-theories,
by the cofinality theorem.

In a more general setting we can give the following definition.

Definition 5.5. Given ¥/ an additive category and K a subgroup of Ko(2f). Let UK
be the full subcategory of U™ with objects (U, p) so that its stable isomorphism class

lies in I{. When K = Ky(U) we denote UM as 7Y,
Remark 5.6.

(i) The category I can be seen in terms of the first definition as U Ko@) by taking
the trivial filtration A = U.

(ii) There will be no confusion because of the notation for ¥ in the two defini-
tions above, since in one situation K C Ko(A” and in the other K" C Ko(U").

5.7. The category U is cofinal in I and therefore
Ko(U) >— Io(U™)

N

Ko(U)

is a commutative diagram where all arrows are monomorphisms. By the same argu-
ment as above, Ko(U) = Ko(Uf) is an isomorphism. Again, by the cofinality theorem
2.9, U and U have homotopy equivalent K-theories.

5.8. Note U satisfies the property (P).
We can use an argument similar to the one used in the preceding section for Y.
If we have the diagram in U

(U,p) —— (Viq)
5
with rs = ¢, it is also a map in 4" and thus

(Uv P) = (Ua P—= 37.) @ (Ua ST)

and
(U,sr) = (V, q).
But (U, p) and (V, q) are in U so by the properties of Ky and the definition of U we

conclude (U, s7) and (U, p — sr) are in U. Hence 7 is an admissible epimorphism and
U satisfies the property (P).
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Before we can state and prove the Main Theorem, we need some results on chain
complexes.

6. CHAIN COMPLEX CATEGORIES

In this section we give a proof of the theorem due to Thomason and Trobaugh [11]
From now on, we will abuse the language as follows. Everything has to be thought
of as being passed through the K-theory functor. When we say that two categories
are homotopy equivalent we mean that their K-theories are homotopy equivalent
and, any diagram we present must be thought as having the category replaced by its
corresponding K-theory and every functor replaced by its induced map between the
appropriate spaces.

As we have already mentioned, we wish to use the generic fibration lemma, but we
can not use it directly because the additive categories do not have cylinder functors.
Therefore we replace the categories by their corresponding categories of finite chain
complexes.

Proposition 6.1. [11, Theorem 1.11.7) Given U an additive category that satisfies
property (P), let C(U) be its category of finite chain compleres. Assume U and C(U)
are given the usual ‘structures’ of categorics with cofibrations and weak equivalences
as we mentioned in sections 3 and 4 Then, the embedding U — C(U), as chain
complexes of length 1, induces a homotopy equivalence of K-theory spectra.

Proof. 1t has been shown that C() has cylinder functor and satisfies the saturation
axiom, the extension axiom and the cylinder axiom, see section 4. Recall that the
weak equivalences in C (i) are the chain homotopy equivalences. We will denote this
(C({U),w). Without changing the subcategory of cofibrations, we can regard C(U)
as having as its weak equivalences just the isomorphisms of chain complexes. This
‘new structure’ on C(U) will be denoted as (C(U),7). The category C(U) can be
thought as ul]}l_l}x) C? , where C! is the full subcategory of complexes in C(U) with
b3 +o0

Ci= 0 whenever i <a—1 or ¢ >b+1. Forany a,b € Z, wC? is a category with
cofibrations and weak equivalences inherited from (C(U),w). The category : C? is
the category C° where the structures are inherited from (C(2),7) instead. Then we
identify ¢ with CJ. It is clear that wC§ =i CP.

In this context, we may consider (C(U)",7), which is the full subcategory of
(C(U),1) whose objects are those chain complexes that are contractible in the ‘w’-
sense, i.e. as objects in (C(U),w). Now, by the generic fibration lemma:

(CU)",1) = (CU),7) = (CU),w)

is a fibration, up to homotopy.
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We shall show that U (= (U, w)=(U,1)), considering ¢ embedded in C(U)}, is the
cofiber of the map
(CU)", 1) = (CU),9)

Consider the exact functor

b=a+1
(6.1.1) iCt— I U

Cy v+ (Coy...,C))
We claim it induces a homotopy equivalence of K-theories.

For @ = b, it is clear. Now, by induction, we will show

(6.1.2) 10— Gl xU

(Co=Cazi— - 2C) = ((Cag1 = =), (Ca = 0— - 5 0))

induces homotopy equivalence in K-theory. This is clear by the additivity theorem
2.7, since

1Ct=E(iC,,, C:, U).

Now, we claim that i C*" is homotopy equivalent in K-theory to b]:lCL U. We do this
by induction on the integers « <b.
For a = b, i C*" = ¢(U)" which is equivalent to the 0-category.
For ¢« = b — 1, it 1s also clear that

i CE”, = { category of complexes Cy_, 2 Cy where  is an isomorphism}

so it is equivalent to U.

We continue by induction on b — «. We shall produce a homotopy equivalence:

KGECY™) S KECH ") x KGCY, = U)

This is obtained by applying the additivity theorem 2.7 to the equivalence of cate-
gories

(6.1.3) ict =E(C, ok, o).

We need to show this equality. Given a chain complex Cyg in i C®" we should produce
an associated extension with a chain complex of length b— 1 or less, 7<5=!(Cy), and
other one of length b, 7*(Cy). The inverse equivalence of categories takes the total
complex Cg and forgets the extensions. It is easy to check that both the equivalence
of categories and its inverse are exact functors.
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Since
dp_y

C‘#E{U—>C¢,—+CQ+1-—>~-—+C;,_2 =N Cy- >C,,—)0}

is contractible, we have a chain map s such that sd + ds = 1. In case degree b — 1,
s is an splitting. Therefore, d;—; is an splitting epimorphism in &. But U satisfies
(P), so there exist Zy_, and an isomorphism such that C,_, = Z,_, @ C}. Moreover,
through this isomorphism, dy; becomes a projection ento C,. The maps dy— and s
factor through Z,_,. In this way, we obtain shorter contractible chain complexes:

TS0 = (05 Co = Cupr = -+ = Chog = Zpoy = 0)
(Cy) = (0= C S C, = 0)
Now, Cy fits into the sequence:

T Cp) > O — 1%(Cy)

0 0 0
Co——Co ——10
Copt == Copr —— 0
\
Cp-2 Chg — 0
Zyoy ——> Choy — G,
‘

0 Cy Cy

0 0

We have the equality of the formula 6.1.3 as we wanted. The additivity theorem
2.7 can be applied obtaining the homotopy equivalence of K'-theories we wanted.
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In this proof, we have shown that for Cy in C2", Z; a+1 < i < barein Y and the
functor Cg — Z; is an exact functor, for each 1. In fact, the homotopy equivalence
is induced by

w b—a
(6.1.4) iICY— U
C# — (Za+l)'--st)

Now, let us consider the exact inclusion
iCY" it
and the induced maps of K-theory spectra:

K(CY"y —— K(iC)

| |

b-a b—u+1
[ KU)— 11 KU)

b—a
Given a chain complex Cyg in ¢C!" the term in [] U is (Za41,.--, %) and in
b—u+1 S . . . » .
[T Uis (CsyCusrs--.,Cs). Since in Cy we can identify, for each dimension, the

exact sequence
2y, > Oy — Zi
It can be said, using the additivity theorem 2.7, that the map, once passing to K-

theory, sending Cy to Ci is homotopic to the ‘sum’ of the maps sending Cy to Zy
and Cy to Z4.

Therefore, we can assume the map in the above square
b—a b—a+1
[Irxw — I KWU)
1s induced by

(Zatrs -y 21) = (Zag1, L1 D Zat2s- -y Lb1 B Zb, Zy)

The homotopy cofiber of this map is K'(U). It is induced by

b—u+1
[ KU) = K@)

b
(2ay. . a) = > (—1)Fz
k=u
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Taking direct limits (¢ = —oo0, b = +00), we get the cofiber homotopy sequence
(6.1.5) K(@C") — K(:C) — K(U)
Cyp — Z(-1)’°C’k

By the generic fibration lemma 2.10, the homotopy cofiber spectrum is, up to
homotopy, K (wC). Thus, there is a homotopy equivalence

K(U) S K(wC)
induced by the exact functor & — C(i4). O

Corollary 6.2. Given an additive category U we have
KU) ~ K(CU))
induced by the inclusion of categories.

Proof. If U does not satisfy the property (£) then U does, see section 5. Moreover,
U is cofinal in U and both have the ‘same’ K-theory, see section 5. Chasing the
following diagram we obtain the result.

iCU)" — iC(U) —= wO W)

N T N

iCU" — iCU) — wCU) =U=U.

The top and bottom row are fibrations by the generic fibration lemma 2.10. The
two isomorphisms at the bottom are consequences of proposition 6.1 and cofinality
2.9. The vertical arrows on the left and on the middle are homotopy equivalences
because U is cofinal in U. We can conclude that the vertical arrow on the right is a
homotopy equivalence by considering the long exact sequences of homotopy groups
corresponding to the two fibrations generated by the rows. The right hand side
diagram commutes and therefore the result is obtained. [

7. PROOF OF THE MAIN THEOREM
In this section we will prove
Theorem 7.1. [7, Theorem 5.3] Given U, an additive A-fillered category, then
AN S U= UIA

is a fibration, up to homotopy. Here K is the inverse imnage of Ko(U) C K(UM) under
the induced map K(A") — K(UM).
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We will now apply the generic fibration lemma to the functor
CU) = CU(A)
and show that C (U (A)) and C (U/A) are homotopy equivalent in K-theory. By
corollary 6.2 we thus have models for K(U) and K(U/A).
Proposition 7.2. Let U be an additive A-filtered category. The functor
F:CU(A)) = C(UA)

which is the identily on the objects and takes classes on the morphisms mod{cc maps},
induces a homotopy equivalence of I{-theories.

Proof. We will use the approximation theorem 2.12. The weak equivalences wC(U(A))
and wC (U/ A) satisfy the saturation axiom. C(U(A)) has a natural cylinder functor
inherited from C(U) satis{ying the cylinder axiom, see section 4.

App 1: is satisfied trivially, because of the definition of wC(U(A)).

App 2: will be easy after the following remark:
By the properties of the A-filtration of U any Dy in C (U/A) is isomorphic
in U/ A to a chain complex from C(U) [4, Proof of theorem 4.1}.

Let Cy be in C(U(A)) and F(Cy) = Dy in C (UJA). We are assuming,
by the remark, that Dy is isomorphic by ¢ to a chain complex D}, which is
from C(U). We can apply the eylinder functor to g, obtaining an object,
T(pz) in C(U). The diagram is

F(Cy) = Dy —= Dy
l /
T ()

where ¢ is an isomorphism and hence a weak equivalence. So is p by the

linder axi Therefore ™!p i k equivalence. All of this onl d
cylinder axiom. Therefore ~'p is a weak equivalence. of this only needs
to commute modA because the ambient category is U/ A.

Therefore F' verifies the approximation properties, and by 2.12, it induces a homo-
topy equivalence of K-theories. (O

This last result has told us we are on the right track. Therefore our next step is
to investigate C(U)", the fiber of C(U) — C (U (A)). We need the following two
results from [8] (see also (4]} in order to continue the argumentat.

Proposition 7.3. [4, Proposition 4.7) Let U be an A-filtered category. A chain com-
plex Uy in U 1is A-dominated iff the induced UfA-chain complex is contractible.
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Lemma 7.4. [4, Lemma 4.8] Let A be a full subcategory of U, Uy an A-dominated
chain complex in U. Let K be the inverse image of Ko(U) under the induced map
Ko(AN) — KoU™), and let UMK be the full subcategory with objects U @ (A, p),
[(A,p)} € K.

Then the induced chain complex in UMY under the inclusion U — UMNE is chain
homotopy equivalent to a chain complex in AN,

In order to apply 7.3 we restate it in the following way.

Proposition 7.5. Let U be an A-filtered additive category and C(U) its category of
finite chain complezes. Let C(UY" be the full subcategory of chain complezes in U
that are contractible in Ul A and let C(UY* be the full subcategory of chain complezes
inU that are A-dominated. Then C(U)" = C(U)™ .

The category UMK JAMY is clearly equivalent to U/ A and U is cofinal in UK see
section 5. Therefore the functor induced by this cofinality

C (Ul A) — C (UM ] AN
induces a homotopy equivalence. Also the functor
CUy — C Uy

induces a homotopy equivalence of K-theories and both K-theories are homotopy
equivalent to that of U through the respective inclusions.

Let us denote by w' the weak equivalences in C (U"K (.4"1"))4 If we apply the
generic fibration lemma 2.10, to

C (Z/{AK) —C (u/\h’ (AAK)) ,
we obtain this fibration, up to homotopy:
(7.5.1) C ()" — C (UM) — ¢ [UnK (arK))

as we did for C(U) in the proof of proposition 7.2. On the other hand, applying the
generic fibration lemma 2.10 to

CU) — C{U(A))

we obtain
CUY — CU) — C(U(A))

The cofinality gives us maps to compare hoth sequences which with 7.2 produces the



ON THE KAROUBI FILTRATION OF A CATEGORY 21

following diagram.

r

C (UM (AN)) <<= C (U (A))

o =]

C (Z,{A"' /AAI\’) -2 (U] A)
So, by observing the long exact sequence of homotopy groups we can conclude that

Proposition 7.6. The induced functor p: C(U)Y — C (L("K)w induces a homo-
topy equivalence of K-theories.

We have the natural inclusion F: C (A"K) — C (Ll’"")w and by proposition 7.5

N AMK
( or more exactly [4, Proposition 4.7]) we have C(U)* = C(U)" and C (L{”‘) =

o\ w! .
o (U '\I‘) . The diagram above becomes then

C (AAK)
¢ ()" —S o ()" o cU)”= oy
C (Uk) «—= cw)

C (UM (ANK)) <= C (U (4))

= =

C (uAI(/A,\I\’) — (Z/FI/A)
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Proposition 7.7. The functor F : C(.AM") — C (L(”")w induces a homotopy

equivalence.

Proof. We want to apply the approximation theorem 2.12 to F. The categories
C (AAK) and C (U’\"’)w satisfy the saturation axiom. C (.A"‘K) satisfies the cylinder
axiom as well. Let us check App | and App 2.

App 1: holds trivially since C (AM") is a full subcategory of C (U"K>w and

therefore inherits weak equivalences from C (L( M").
App 2: follows easierly after the following remark:

Given By in C (L{""’)w then By is UM /AN _contractible. But any chain

complex in C (L("K) is homotopy equivalent to one in C(Uf). See the proof
of [4, Theorem 4.1]. Therefore By is homotopy equivalent to By in C(U)C
C (ZA’"K). But UM [ANK = UJA. This means that By, is U/A-contractible.
Then by 7.5 B} is A-dominated hence by lemma 7.4 B, is homotopy equiv-
alent, in UK, to a chain complex Ay in AN We conclude that By is
homotopy equivalent to an object A} in AN,

Now, let us try to verify App 2. '

Let Ay EN B4 be a morphism from an object in C (.A"K) to an object in C (L("K)w .

By the remark above, we have the homotopy equivalence i : By — Al with in-
verse r such that 9 + I'd = ri — 1 where T is a chain homotopy. The composite

Ayp EN By SN Al lies in C (AAK). We can apply the cylinder functor to it.

Ay = T(i]) <= A

NGl A

It is left to define f': T(if) — By such that f'5, = f and f’ is a weak equivalence.
We define f’ as follows.

(TG I, = A& A ®A, BB, [=(f, IS, 7)

Let us check f’is a chain map.
Since

rd=0r, fo=0f and O +T0=ri-1
then -
=1 =T9+
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and hence

g -1 0
f'd=(f, Of, r)- (0 ) 0) = (f8, —f —Tf0 +rif, rd)
0 if 8

=(af, Orf, or) =9 f".

0
A chain homotopy inverse for f’ is (0) = Jqt.

7

11}

0
0| is a weak equivalence, since j; and ¢ are. Then, by saturation, since rz is a
1

weak equivalence, so is f'. Clearly f'j; = f. So we have

Now,

Ag =5 TGS
fl %Ple
By — Al

We have verified App 2, and get the result. O

Corollary 7.8. C (AAK) is homotopy equivalent to C(UY*.

Proof. By proposition 7.7 C (AM") is homotopy equivalent to C (UAK)W , but this

is homotopy equivalent to C(f)" by proposition 7.6, which by proposition 7.5 is h.e.
to CU)*. O

Proof of Main Theorem. Let us condense all of the above as follows.
Applying the generic fibration lemma 2.10 to

CU) — CU(A))
we obtain the fibration

(7.8.1) CU)" — CU) — C (U (A)).
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but by proposition 7.2, C (U (A)) ~ C(U/A) and by propesition 7.5, C(U)" =
C@U)?. So, 7.8.1 now looks like

(7.8.2) cCuy* — cU) — C(UlA).
But by corollary 7.8, C(L{)A =C (.A"‘K), therefore 7.8.2 becomes

(7.8.3) C (AM) — C) — C (Ul A).
Finally, applying corollary 6.2 to the three terms, we obtain that
AN U — UIA
is a fibration, up to homotopy. [
If A is idempotent complete, then A and A*Y have the same IK-theory. Therefore
Corollary 7.9.
A—-U-UA

is a fibration, up to homolopy.

We finally show how to use the theorem to obtain excision as in [3] for bounded
K-theory. Let M = M, U M, be a metric space decomposed as two metric subspaces.
Let U, = C(M; R) the category of finitely generated free R-modules parameterized
by M and bounded morphisms, as in [7]. Let A; = C(M; R)py,, the full subcategory
with objects having support in a bounded neighborhood of M;. Then clearly U, is
A, filtered, and C(M; R)a, = C(My; R). Similarly let Uy = C(M; R)p, = C(M;; R)
and A, the full subcategory with objects support in a bounded neighborhood of M,
intersected with a bounded neighborhood of M,. It is easy to see that

U] A Z U] Ay,
and we obtain excision from the diagram

.Al 4 L{l ¥ Ul/Al

[

.Az 4 Z/{z > UQ/.AQ.

To give a proof of 1.0.2 we need to recall the definition of K~°°. Let A be an additive
category, M a proper metric space.

Definition 7.10. The bounded category C(M; A) has objects A = {A}rem, a col-
lection of objects from A indexed by points of M, satisfying {z]A, # 0} is locally
finite in M. A morphism ¢ : A = B is a collection of morphisms ¢3 : A, — By so
that there exists k = k(¢) so ¢7 = 0 if du(z,y) > k.



ON THE KAROUBI FILTRATION OF A CATEGORY 25

Composition is defined as matrix multiplication. Given a subspace N C M, we de-
note the full subcategory with objects A so that {z|A; # 0} is contained in a bounded
neighborhood of N by C(M; A)n. It is easy to see that C(M; A) is C(M, A)n-filtered .
We denote the quotient category by C(M, A)>V. We shall need this in the particular
case when M is euclidean space R'. Consider C(R'; A) — C(R**1; A) induced by the
standard inclusion. This inclusion factors through Hi' where Hi*' and H™' are
the two halfspaces intersecting in R'. Clearly C(Hi'; A) has an Eilenberg swindle
shifting modules by 1 in the direction of the last coordinate, hence these categories
have trivial K'-theory so the map

K(C(R'; A)) = K(C(R*'; A))
is canonically null homotopic in two ways thus giving a functorial map

SK(C(R'; A)) = K(C(RT; A))
or by adjointness

K(C(R'; A)) = QK (C(R™; A))
It follows from 1.0.1 that this is an isomorphism in homotopy groups in dimensions
bigger than 0. We define

K=(A) = hocolim Q* K (C(R'; A).

It is easy to see that if ¢/ is A-filtered, then C(R*;U) is C(R'; A)-filtered and we thus
recover the fibration of spectra

K™C(A) = K™°(U) = KU/ A)
by taking the homotopy colimit of the fibrations
QK(C(R AN = Q' K(C(RUY —» QK(C(R; U ca)
where K; is the appropriate subgroup of Ko(C(R'; A)".
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