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ON FUNCTIONS REPRESENTABLE AS A SUPREMUM

OF A FAMILY OF SMOOTH FUNCTIONS , II

Y. Yomdin#*

ABSTRACT. The classes Sg of functions £f(x), repre-
sentable as sup, h(x,t), where ¢t |is ah m - dimen-
sional parameter and h is a c? - smooth function of x
and t , are studied. Considering the "massiveness" of the
sets Sg in appropriate functional spaces, we show that
these classes really differ for different q and m .
Studying geometric invariants of maximum functions,
related to the critical values of smooth mappings involved,
we give explicit examples of "nice" functions, nonrepre-

sentable as the maximum of "too smooth" families.

1. Introduction. Functions, represented as a supremum of
families of a certain type, arise naturally in many questions
of analysis and optimization ( see e.qg.[1],[5],[6],[13] and

many others ). 1In [7],(9],(12] the class H(D) has been
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considered of functions £ on the domain D < Rn, repre~-

sentable as f(x) = sup h(x) , x € D, where Q
h € Q

is a bounded in a C2 - norm family of twice differentiabl
functions on D. The functions f € H(D) have many nice
properties, both geometric and analytic. The important

point is also that the consideration of families of Ck -
smooth functions, bounded in Ck - norm, for k > 2 , does
not restrict the class H. 1In fact, it is shown in [71,(9]
that H(D) can be described as the class of all £, repre-

sentable as f(x) = sup pi(x) , where P is a bounded
p E€EP

subset in the space of all the quadratic polynomials on r:.
Another important class of maximum functions appears

when we assume that the family Q is smoothly parametrized.
Let sg(D) denote the set of functions f, representable

as fix) = max h(x,t), where ™ is a compact
teTH

m - dimensional smooth manifold and h:DxT' + R
is a q - times continuously differentiable function, q 2 2.
Clearly, sg(n) c H(D).

A wry precise information on the local structure of
"generic” functions in sg(n) has been obtained by methods
of Sinqularities theory ( see e.g.[1],[5],[12],[13] ).

However, the following important queatién seems to be
untouched: do the classes sg really depend on q and m
This question is especially interesting in view of the
independence of the class H above of the smoothness of



functions involved.

In the present parer we answer this question, showing
in many cases noncoincidence of Sg for different gq and
m, although our results are not strong enough to separate
these classes completely.

T™wo different approaches are used: first we study the
'maésiveness' of the sets Sg in appropriate functional
spaces, in a way similar to that used in (4], (10] for
the problem of representability and approximations by means
of compositions. This method allows to separate classes
Sg rather accurately, but does not give explicit examples.

Another approach is based on the study of geometric
invariants of maximum functions, related in one or another
way to the structure of the sets of critical values of the
smooth families, defining these functions. On this way
we obtain various explicit examples of functions in sg \ Sg:

To give the flavor of these examples, we state here

the following

Theorem 4.4. Let f(x) be a convex piecewise-linear
function of the single variable x € [0,1] , with the
countable number of "edges". Let 61 < 62<...<6i € cene
be the slopes of these edges, and let a; = 61+1-61 .

Then £ can be represented in a form

f(x) = max a(t)x + b(t) ’ x € [0,1],
te[0,1]

with af(t) and b(t) k times continuously differen-
-}

tiable functions on (0,1], if and only if z “1/k < ®
i=1



There are many open questions, concerning the structure
of maximum functions, some of which we discuss in the last
section.

The author would like to thank Y.Kanai for useful
discussions and the Max-Planck-Institut fiir Mathematik,

where this paper was written, for its kind hospitality.

2. € - entropy of sets of maximum functions.

Let D < R®™ be a bounded closed domain. For gqg=p + a,
p21-an integer, 0 < a £ 1, we denote by Cq(D) the
space of p times continuously differentiable functions
g on D, whose derivatives of order p satisfy the
H8lder condition

(») |BPg(x) - dPg(y)]| s Lixyl* .
with some constant L .

Let M,(g) = max udig(ynl -, 1 =20, ... , Py
y €D

Mq(g) = 4infL 4in (=) .

(We consider all the Euclidean spaces RS and the spaces
of their linear and multilinear mappings with the usual
Euclidean norms ).

For ¢ > 0 denote by c9(p,c) the set of all g
tn ¢¥(D) with M,(g@) S c, 120, ...,0p q

Let F be a relatively compact set in a metric space X.
For some € > 0 a set PFP* ¢ X is called an € - net of

P if for any 2z € F there exists 2z* € P* with



d(z,z*) s ¢ , wvhere 4d denotes the distance in X.

Denote by N (F) the number of elements in a minimal
€ - net of F. The number HE(F) = log2 N. (F) is called
the € — entropy of the set F. It is convenient also to

define the number f4(F) as 1lim log, H_(F)/log, (1/¢).
€ + 0 €

The notion of entropy arises in a natural way in connec-
tion with various problems of analysis ( see e.g.[4],[10],
[14].[16] ).

In this section the metric space X 1is the space C(D)
of continuous functions on D with the uniform norm. Now
we turn back to maximum functions. Without loss of generality
we can assume that the parameter manifold ™ is the
unit m - dimensional cube I . For c > 0 denote by
Sg(D,c) the set of functions f on D, representable
as £(x) = max, h(x,t), with h e c¥(px 1™, ¢).
Clearly, for any ¢ > O, Sg(D,c) is a compact subset

in C(D).
Theorem 2.1. For any ¢ > 0,

n+m q n+m
T+ m/n S fd(sjp(D,c)) 3 q
Proof. Consider the mapping TR C(D><Im) + C(D) ,

defined by uth) = £, f(x) = max hi(x,t) .
t € IM

Clearly, u does not increase the distance. PFrom the
definition of ¢ - entropy we obtain that for any relatively

compact set F < C(DxIM, H_(u(F)) s H_(F) .



Since sg(D,c) = u(cq(D,c))‘ and since according to
theorem 2.2.1 [10]1 , fa(c¥(p,e)) = 239 ,» we obtain
the right-hand side inequality.

To obtain the lower bound for £4(sl(p,c)) it is suffi-.
cient to find in this set a suitable number of functions,

any two of which differ at least by 2¢ in C - norm.
Let us fix some § > 0 and let §' = % 61 + m/n .

Let 26 c rR? denote the net of points of the form

z = (kG,kZG,...,knG), k. € 2 .

1 i
Consider also the points zqg € R® of the form
(k16‘,...,kn6'), 1 8 ki's [6/6'] , indexed in some

fixed way, 1 S a $ [6/6']" . Finitely, let zj € )

be the points of the form. (k,8,...,k 8), 0 s k;, & {1/81 .,

i
indexed in some fixed way, 1 s 8 s [1/6]®m .

Since §/8' = 2(1/8)®/®

(676°1"% ~ 2%(1/6)® > [1/81® for & sufficiently
small, we can fix some one-to—-one mapping « from the set

of indices B into the set of indices o .

Now consider in R" xI®™ the net of points y of the

form y = (z+z,g +2§) , z€Zg, 15SBS [1/61® ,

and let YE ¢ 1 & S K(§), denote those from the

points y , whose projections xg on R® belong to D.

Since D has a nonempty interior, K(§) 2 K (1/6)n+m '
with some K' > 0 , not depending on 6§ .

We shall use below only the following property of points



m with the distance at

yE ¢ they form a net in DxI
least § between any two points, while their projections
X form a net in D with the distance at least §°
between any two points.

Let ¢ : R+ R Dbea c® - smooth even function

with the following properties:

i. ¢(s) = 1 - s? for |s| s -12-
ii. ¢(s) = 0 for Is|] 2 1
iii. ¢(s) is a decreasing function of |s|
for % s s s 1 .
n+m

Let y : R + R be defined by y¢ly) = ¢{|yl) -
Denote by M  2%max Mo(W) , L=, ..., ptl .

Now for any subset x < {1, ... , K(8)} define the
function wK : DxI® + R as follows: for y = (x,t) epx 1™
b ty) = § 6T I v Giy-ye)) .
Clearly, ¢ K is a C”~ function, and since the supports
of w(% (y-yg)) are disjoint for different £ by the property
i1 of ¢, we see that vpK € Cq(DXIm, c) .
Now consider the corresponding maximum function fK = p(\pK) '

which by definition belongs to sg(n,c) .

S 4T+ 2m/n

Lemma 2.2. For « # ' , ||f,< ~flle 2 &

Proof. Since the supports of w(%(y-yg)) are disjoint,

c g 2
we have: £ (x) = = 6° max max _ (F(y-y.)) =
K M Eexkte ™ § £
ﬁ 6§79 max ¢(-26- ”"""g” ) , by construction of function y .

£ €Ex



Now assume that K~Kk' =29 and fix some n € k ~ k'
c
Then f‘(xn) = g &4 ¢(0) = % &9 ., by the property
i of ¢ . On the other hand, for any £ = n ’

2 ', 2
0@ lxmxh = 1 = Glix, - xl? s 1 - a§H?,

since len - xEH 28 for £ = n . Hence

fK'(xn) s s s - ﬁ §9 4(%')2 = fx) - g 3 * 2m/1
Therefore £, = flc'”c > “fK(xn) - fK'(xn)“ > §6q+2m,
Now for given € > 0 let § = (%?e)1/q+2m/n . Then
6q+2m/n 3e and by lemma 2.2 all the functions

form the 3¢ - separated net in sg(D,c). Since
the number of elements in this net is equal to
n+m

2K(8) 2K'(1/5)n+m 2"(1/e)q*2m:n

= , we have

n+m
Helsg(D-C)) 2 K.(1/e)q+2m]n . Theorem 2.1 is proved.

As an immediate consequence of theorem 2.1 we obtain
the main result of this section:

Theorem 2.3. Let D be a compact domain in R® . Then

+m '
for any m, g and m', g', such that 35%373 > Pé?- ,

the set of functions: in Sg(D) < C(D), not belonging

]
to Sg.(D), is a set of second category. In particular,
this set is everywhere dense in Sg(D) .

Proof. Clearly, s3.(d) = u s9 (p,N) . By theorem 2.1
m N=1 m



' q n+m
for any ball @ in C(D), fd(s_ (D) N Q) 2 3+ 2m/n

q' n+m' n+m
But by the same theorem, f£d(S ,(D,N)} < a’ < F*m/n

?
Since san' (D,N) n Sg(D) is closed, it is therefore

a nowhere dense subset in Sg(D) .

Now we give some corrolaries, showing what classes S:
can be separated by means of theorem 2.3.

Corollary 2.4. For given D « R® and m and for any

q and gq' > q + 2m/n, Sg'(D) < sg(n) . In parti-

cular, if n > 2m , then for any q' > gq , Sg' (D) ¢ Sg(D)

+ +
ntm _ _n+m .

]
Proof. For q' > q + 2m/n , T *2a/n

Corollary 2.5. For given D ¢ R® r 9 and m, and

- for any m'< m - 2n(n+m) Sg. (D)

: q
3n+qm ' = Sm(D) . In

2n2-1

particular, for q > + 2n , Sg. D) ¢ Sg(D)

for any m' < m , and for q>2n2+2n-1,

sg. (D) S Sg.(D) for any m' < m" .

- 2n(n+m) n+m' n+m
Proof. For m' < m 2n+qm q < g+2m/n °
2
2n -1 2n (n+m)
For q > __nm +m, SiEF < 1. Finitely, for
q > 2n2 + 2n - 1 , the last inequality is satisfied

for any m .
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We can use the result of theorem 2.1 also to compare

sd(p) with c® (D). Indeed, by theorem 2.2.1 [10] ,

ga c*() = , and repeating the proof of theorem 2.3

by te)

we obtain the following:

Corollary 2.6. For 9%? < % , the set of k times

continuously differentiable functions on D , not belon-
ging to S:(D), is a set of second categoryband, in

particular, is everywhere dense in the uniform topology.

Notice that corrolaries 2.4, 2.5 and 2.6 do not
give explicit examples of functions, not representable
as a maximum of a suitably smooth family. Below we give

such examples for any situation, covered by corollary 2.6.

3. Critical values of maximum functions.

Let £ D - R® be a continuous mapping. The

point x € D is called a critical point of £ , if
the first differential df(x) exists and is equal to zero.
Let I(f) be the set of all the critical points of £
and let A(f) = £(I(f)) < R® be the set of critical
values of £ . ( Actually, ZI(f) is the set of critical
points of rank zero of £, in usual terminology ).

A well-known and widely Qsed property of critical
values of differentiable mappings is given by the Morse-
Sard theorem ( see [3],[8] ): if the mapping is sufficiently
smooth, the set of its critical values has the Lebesgue

measure ( or, more precisely, the Hausdorff measure of an



1

appropriate dimension ) zero.
In [14] the stronger property of critical values has
been established: let A be a bounded subset in RY .

The entropy dimension of 4, dimeA is defined as

dim A inf { 8/ 3K, Ve > 0, N_(A) s K(-::)B }e

where NE(A), as above, is the number of elements in a
minimal ¢ - net of A in RS f

For "nice” sets the entropy dimension coincides with
the Hausdorff dimension dimh and with the topological
dimension. For any A dimeA 2 dimhA , and the
important advantage of the entropy dimension, which we
shall use below, is that it allows to distinguish countable
sets, while the Hausdorff dimension of any countable set

is zero.

The following result has been obtained in [14] :

Theorem 5.4 ([14]). Let D c R® be a compact domain

and let f:p + RS be a cq - mapping. Then

dimeA(f) s

Qs

( The Morse-~Sard theorem, in its general form, proved
in [3] , gives the same bound for the Hausdorff dimen-
sion of A(f) ).

It turns out that also the critical values of the
function, representable as a maximum of a smooth family,

cannot form "too big" set.



12

Theorem 3.1. Let D c R® be a compact domain.

For any f € Sg(D) ’

dim A(£) s arm

Proof. Let f£(x) = max h(x,t) , h € cfox1™ .

te ™

Lemma 3.2. Let X, € D be a critical point of £ and

let t; € I' be such that £(xy) = h(x,,t;) . Then
(xo,to) € DxI® is a critical point of h .

Proof. Since h(xo,t) attains its maximum with respect

to t at to., we have dth(xo,to) = 0 ,

By the definition of critical points, £ is differen-

tiable at xo

expressidn of the generalized differential of maximum

and df(xol = 0 . But then from the

functions ( see [2] ) it follows immediately that dxh(xo,to)

Thus by lemma 3.2 any critical value f(xo) of £
is a critical value h(xo,to) of h, 1. e.

A(£) e A(h) . But by theorem 5.4 [14] , dim_A(h) S ? .

Now to obtain examples of functions, nonrepresentable

as maximum, we note that for any y < 2 + by theorem 5.6

[14] , the function g € Ck(D) can be built, with
dimeA(g) 2Y . By theorem 3.1, g does not belong to

any sg(n), with Eé! < a . and therefore, we

get explicit examples of nonrepresentable functions in

any situation, covered by corollary 2.6.
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In particular, let 9, ¢ >R ’ 9, € Cn-1(In)
be the Whitney function with Alg) = [0,1] . (| See [11] ).
Since dime[0,1] = 1, we have

Corollary 3.3. g, £ SI1") for q > n+m.

n

Notice that in all the constructions above it is sufficient
to use the Hausdorff dimension of the sets of critical
values. However, using the specific properties of the entropy
dimension we can give examples of very simple functions, not
representable as maximum:

Let wk : [0,11+ R be defined as wk(x) = xkcos(%) .

lwk € C[k/2]-1([0,1]) and the critical values of ¥, form

k

the sequence -(%) ’ (é%)k

ceee o b,

Hence dimeA(wk) = E%T ( see e.qg. [1s1 ).

‘Corollary 3.4. ¥, € SI({0,1]) for q > (k+1)(mel) .

4. Maxima of smooth families of linear functions.

In this section we give simple examples of convex functions,
nonrepresentable as a maximum of a sufficiently smooth fami-
ly of linear functions. Once more we reduce the question
of representability to the properties of critical values
of some differentiable mappings. But here; in contrast to
section 3, the arising sets of critical values are apriori

at most countable. Thus the Morse-Sard theorem gives no
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information in this case and the use of the entropy dimen-
sion and the stronger theorem 5.4 [14] becomes essential.
In fact, this theorem was found in attempt to give criteria
of representability of convex functions as maximum of
linear ones.

Let D be a convex compact domain in Rn. We consider
a cone Q(D) of convex functions £ on D, which are exten-
dable to convex functions on R® and whose graph T (f)
over D is a polyhedron with possibly countable number
of faces.

We study the representability of f € Q(D) as f = max _
tel

where for x = (x1,...,xn) € R®
= . d
1t(x) a, (‘I:)x1 +* .0 + an(t)xn + b(t), with a1,...,an,bec (

Denote the set of functions in Q(D), representable in

this form, by Qg(D).

Let L be a hyperplane in R®xR with a nondegenerate
projection on R®. L is a graph of the linear function

lL(x) = a1(L)x1 + c.. + an(L)xn + b(L) . Denote the point
(a,(L), ... ,a, (L)) €eR" by &(L).

For agiven £ € Q(D) let §(f)  R® be the
set of §(y), where Yy runs through all the faces of TI(f).

8§(f) is at most countable bounded subset in R".

Theorem 4.1. For any £ € Qg(D), dime §(F) s g .

Proof. Write f as max 1, , 1 (x) = a14t)x1+...+an(t)xn+b(t)
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and for each face vy of 'T (£) find some tY € 1™, such

that y 1is a graph of lt .
Y
Lemma 4.2. For any face y of T(f), tY is a critical

point of each of functions A AL b .

Proof. Let xo, x‘, ces o x® be the vertices of some

nondegenerate simplex in the projection of y on R®,

Since at each xi, f(xi) = 1t (xi) = max, lt(xi), we
Y

i
have dtlt(x )lt-t = (0, or

Y

i i - .
dta1(tY)x1 + ... + dtan(tY)xn + dtb(ty) =0, 1 0,...,0 ..

But since xo, cee ¢ X" are the vertices of a nondegenera-

ted simplex, this linear system has only zero solution.

Thus if we define the mapping ¢ : ™+ gj" by

() = { a1(t), cee an(t) ), any point 'tY is a

critical point of ¢ and §(y) = ¢(ty) is a critical
value of ¢ . Hence G(f) < Al(®) , and since by theorem

5.4 [14] dimeA(¢) s § . theorem 4.1 is proved.

Now consider, for instance, the set Ac c Rn, consisting

1 1 1

Of pOintS Of the fom ("'-,—p s oo '—) ’ ki=1'2'.-. I}

a a a
ky Kk kn
a>0 . We have d.i.meAu = A ( see e.g. [15] ).

a+l
One can easily find functions f_ € Q(I®) with 6(f ) = By-
We obtain the following:

q m L
Corollary 4.3. £ ¢ Q (1) for g < F -

Using the metric invariant Vg defined in [15], one can



4.1

a
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give more precise version of theorem 4.1.

We shall consider

only one special case, where the question of representability
can be answered completely.

Let £ € Q([0,1]) be a function, for which §(f)

is a sequence 61 < 62 € eee < 61 S and let a; = 61+1—61
Theorem 4.4. Function £ can be represented as
f(x) = max

a(t)x + b(t) ,
te(0,1] )

x € [0,1]
b

 With a and
k times continuously'differentiable functions on [0,1],

if and only if

-

[ ]
L o < @
i=1

Proof.

If f has a required representation, then, by
lemma 4.2,

a(f) = {61' 62' -oo} [ = A(a).

But then by
theorem 4.1 ([15] , z ag < ° .
: i=1
Now assume that T o < o
i=1 *+

In proof of theorem

[15]

it is shown that we can find the function
¢ [0,1] +~ R

with the following properties:

i. a € c7([o,1))

and all the derivatives
of a up toorder k at t € [0,1)

as t  tends to

tend to zero
1

( and,in particular, a is
k times continuously differentiable on [0,1] .
ii. a increases on (0,11 .
iii.

There is a sequence of points
14

t1, t2' .
in [0,1)

such that a(ti) = 61

converging to 1,
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and all the derivatives of a at ti vanish, 1 = 1,2,...

Using a{t) and £, we now define b(t) as follows:
b(t) is the constant term in the equation of the support
line to the graph T (f) with the slope af(t).

Clearly, f(x) = max, a(t)x + b(t) . It remains to

t
prove that b is k times continuously differentiable

en (0,1] .

Let (xi,yi) be the coordinates of the vertex of r(f),
belonging to the edges of r(f) with the slopes 61 and
61+1 e 1=1,2, ... . Then for 6; s af(t) s 61+1 '
i.e. for LTI S AP b(t) = y; — a(tlx, . Hence
b(t) is ¢~ - smooth on each segment [ti'ti+1]’ and its
derivatives coincide with the derivatives of a(t) up to
a coefficient -x; . But by the condition iii, all the
derivatives of a vanish at t;. Hence b e'c‘”([o,n).
Since by 1 , all the derivatives of a(t)'up to order k
tend to zero as t tends to 1 , the same is true for b(t)

and hence b 1is a k times continuously differentiable

function on [0,1] .

5. Some open questions.

Of course, the results above are far from iLeing complete.
However, they show that there is a rich vriety of interesting
phenaomena concerning the maxima of smooth families, as well
as various connections with the deep properties of smooth
mappings.

Theorem 2.1 gives bounds for the functional dimension
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fd of the sets of maximum functions. What is the precise
value of  £d(s3(p,e)) ?

Notice also that the invariants, obtained in sections 2
and 3 , "mixe" the smoothness q and the dimension m
of the parameter space. Could one find invariants of maximum

functions, separating the influence of these factors?

There is a big similarity between the study of maximum
functions above and the study of functions, representable
by means of compositions of functions of some given classes.
( see [10], [16] ). In both cases the consideration of the
e - entropy allows to prove the existance of nonrepresentable
functions, while the study of some invariants, related to
critical values, gives explicit examples of such functions.

Are there direct connections between these two problems?

The necessary condition for the representability of a
polyhedral convex function as a maximum of a smooth family
of linear functions, given by theorem 4.1, is very close
to the sufficient one ( see theorem 4.4 ). However, for an
arbitrary ( not polyhedral ) convex function, the method

used here breaks. Could one define invariants of a general
| convex function, responsible for the representability of
this function as a maximum of a smooth family of linear
functions?

The maximum functions of shooth families have nice
differentiability properties, which can be formulated,
in particular, in terms of their generalized derivatives

( both in sense of distributions - see [12], and in sense
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of optimization theory - see [2],[6],[7], [9] ). Could one
give . criteria of representability in these terms? In parti-
cular, could one find functional spaces, appropriate for

treatment of maximum functions?

There is one particular question, concerning the differen-
tiability properties of maximum functions. A continuous
function £ : R® + R 4is said to have the k - th
differential at Xy if there exists a polynomial

P: R® + R of degree k, such that ||f(x)-P(x)|| = odlx-x&lk).

Convex functions are known to have the second differential
almost everywhere. 1Is it true that functions in Sg(D)
have the k-th differential almqst everywhere in D ? Some
variant of this question ( for finite families ) is consi-
dered in [17] .
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