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QUINTICS IN Cp?
WITH NONABELIAN FUNDAMENTAL GROUP

A. DEGTYAREV

ABSTRACT. The fundamental groups of all the complex plane projective quin-
tics are listed; some new examples of curves with abelian and nonabelian
fundamental group are constructed.

1. INTRODUCTION

Given an algebraic curve C € Cp?, its fundamental group Il is defined
to be 7;(Cp? \ C). The problem of studying this group was first posed by,
probably, O. Zariski [Z1], and since then just a few results in this direction
have been obtained: on one hand, it is known that II¢ is abelian provided
that the singularities of the curve are simple enough (see Deligne [De] and
Nori [N]), and, on the other hand, there are a few examples of curves with
nonabelian fundamental group (see, e.g., [Al], (D3], [M], [01], [02], [S1],
[S2], [Z1], [Z2}). Though, what is known is quite enough to show that the
fundamental group is an interesting invariant of algebraic curves; e.g., to
my knowledge it is II¢ (more precisely, the Alexander polynomial, which
is a purely algebraic invariant of the group) that distinguishes nonisotopic
equisingular irreducible curves in all known examples.

It is clear that the abelinization of ¢ depends only on the components
of C: if C =3 r;iC; with C; irreducible and reduced and degC; = d;, then
the abelinization is [[{«;)/(3_ dia;). Thus, the problem is only interesting
when Il¢ is nonabehian. The main result of the paper is the complete list
of all the quintics with nonabelian fundamental group (see 3.3). The most
interesting examples are certainly the two irreducible quintics; for one of them
[Ic is finite, for the other it is infinite. (The fundamental group of a quintic
with the singular set A U 34, was independently calculated by B. Artal in
his recent paper [A2].) As a by-product of the techniques used we also obtain
two new series of examples of curves with controllable fundamental groups:
one series consists of curves with ‘deep’ singularities whose group is abelian
(see 3.2), the other one produces new curves with nonabelian (and sometimes
finite) group (see 3.1).

Typeset by AaqS-TEX
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The principal tool used in the paper is a slight modification of well-known
van Kampen’s method (see §4), which allows to overcome the standard difficul-
ty with the ‘global’ braid monodromy when the curve has deep singularities.
It is used to prove Theorems 3.1 and 3.2 (see §5) and to find the groups of all
the irreducible curves (see §6). The calculation for reducible curves (which is
absolutely similar and even easier, but involves too many curves to consider)
can be found in [D1]; details will appear elsewhere.

I would like to express my gratitude to O. Viro, who inspired this work,
and V. Kharlamov for his helpful remarks. I am also thankful to the Max-
Planck-Institut fiir Mathematik: but for its hospitality, these results would
probably never be completed and published.

2. NOTATION
2.1 Group notation.

2.1.1. Given a group G, denote by KG and I'G its first and second com-
mutants respectively: KG = [G,G] and K'G = K(KG).

2.1.2. Given a,b € G, let {a,b] = a0 ab.

2.1.3. Some standard groups:

- F, is the free group of rank p;

- Ty, s the fundamental group of a toric link of type (p,¢): if p =2, then
Tyop = ((1,, b | (ad)" = (bn)") and T 2041 = (a, b | (eD)"a = b(ab)'); if
ged(p,q)=1,then T, , = (n.,b | al = h‘f);

- B, is the braid group on p strings:

B, = (0‘1 e Op | [giyo;] =1for |i — j| > 1, 0i0i410; = a;+]a;ag+1>;

m particular, By = Ty 3;
- G(T) and G,(T), where T € Z[t] is an integral polynomial, are the ex-
tensions

{1} — Z[}t)/)T — G(T) — Z — {1} and

{1} — Z,/T — G,(T) — Z — {1},
where the conjugation action of the generator of the quotient Z on the
kernel is the multiplication by #;

- we use some notations from [CM], attaching Gr to them in order to avoid
confusion. Thus,

Gr(p,q,7) ={a, 8,7’ =p1 =" =afy=1),
Gr{p,q,r) =(a,B,7|o” =p1=+"=afy),
Gr{(p, q|r)) a,ﬂ | o =f1=1, (af) = (ﬁa)r>, (r e Z).
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The last notation is also used for r = (2k + 1)/2 € %Z; in this case
the last relation reads (af)*a = B(aB)*, and it is shown in {CM] that
Gr{p,p|(2k +1)/2)) = Gr{(2,p |2k + 1)).

2.2. Other notation.

2.1.1. We use Arnol'd’s notation for the types of singular points (see [AVG}).
In particular, A, denotes a singularity given locally by =2 4+ y**! = 0. A set
of singularities is denoted like this: 5A; LU2A4, U. ..

2.2.2. A curve is said to be of type «C, U bBC, U ... if it has a irreducible
components of degree p, b nreducible components of degree ¢, etc.

2.2.3. Cy(Z), where L 1s a list of singularities, denotes an irreducible curve
of degree d whose set of singular points is . (If d € 5, such a curve is unique
up to rigid isotopy.)

2.2.4. The mutual position of an irreducible curve C and a line L is denoted
by a list {...} whose elements correspond to the intersection points of L

and C:
xd — L meets C with multiplicity d at a nonsingular point of C;
A, - L intersects C transversally at a singular point of C of type A
A} - L is tangent to C at a singular point of C' of type A,.

P

Remark. The notion of transversal intersection and tangency for the types A,
is obvious; the tangency 1s always assumed to have the smallest possible mul-
tiplicity.

3. MAIN RESULTS

3.1. Proposition. Given four integers p,r 2 0 and a,b > 0 such that ap <
b(2r + 1), there exists an irreducible curve C of degree 20(21 4+ 1) — ap with
the fundamental group

(on,00 | of = b, (012) a1 = ax(1a2)", 077 = (a100)"F7HD).
This group 1s abelian only if = 0 or p = 1; otherwise, it is finite only if p = 2

or (p,7) =(3,1), (3,2), (4,1), or (5,1).

3.2. Proposition. If C is an irreducible curve of an odd degree 2k + 1
with a singular point adjacent to the semiquasihomogeneous singularity of
type (k,4k), then = (Cp? \ C) is abelian.

3.3. Quintics with nonabelian fundamental group. The following is
the complete list of complex plane projective quintics whose fundamental
group II is nonabelian:
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3.3.1 Irreducible quintics.

Cs(3A4): I = (a,b | b= abla, a* = b2(13b2>:
- II/KTI = Zs;
- KII/K'T = Zot])/(#* + £ + 2 + t + 1);
- K'll = Zy x Z2 is a central subgroup of II,;
- ord IT = 320.

Cs(Ac U342): T = (u,v|u=02u?? v? =uw’u)
= (u,v [ u® =07 = (w?)?):

II/u® = Gr(2,3,7) is infinite.
3.3.2 The quintics of type Cy U Cy (see 2.2.4).

C4(3A42) U{x2, x2}: IT is given below
U{x2,x1,%x1} or {47, x1}: I1 = DB,
U otherwise: II=G;3(t+1)
C4(2A2L|A[)U{X4} I :B4
L.I{><2,><2}: H=BJ
Cy(24,) U {x4} or {x2, x2}: II = B,
C4(A4UA2) U{X3,X1}: H=ZXG1(2,3,5>
LU {A}}: II =203
LJ{A-z,xQ}: H=G5(t+1)
Cq(AgUAg) LJ{A-;,X?}Z H:Bg
Cq(A(;) U{Ag;,XQ}: H=B3
C4(As) U{x4} or {x2,x2}: Il = B,
Ci(Ey) U {x4}: M=Ty,
U {x2, x2}: II = By

The fundamental group of a curve of type Cs(342) U {x2, x2} is

II= ((L, h,e l aba = bab, beb = che, abeh™ a = bcb—labcb_l>.

3.3.3. The quintics of type C3UC>. The only such quintic with nonabelian
fundamental group has the cubic component of type C3(Az) which intersects
the other component (the quadric) at two points with multiplicity 3 at each.
The group is IT = (a, b | [@*,8) = 1, ab? = ba?), and one has:

- I/ KII = Z;

KTI is the quaternion g;loup 1,7 [ 12 =52 1_7) ) and the conjugation
by the generator of II/KII acts via i — 7, 7 — 17,

KT/ K'Tl = Z[t)/(t? + t + 1);

K'TI = Z; is a central subgroup of II.

]
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3.3.4. The quintics of type C; U2C;. The position of each of the linear
components in respect to the cubic is denoted using 2.2.4. If the two linear
components intersect each other at a point in the cubic, the corresponding
elements in their lists are underlined.

C3(Az)u {x3}U{x2,x1}: IT is given below
C3(A2)U {As} U {x3}: =Ty
C3(A2) U {x3} U{A;, x1}: =14

C3(Az) U {x3} U {x1, x1,x1}: II1=27Zx B;
Cg(Ag)U{X:}}U{A-J,X].}: II=2Z x B,

Ca(A) U {x3} U {x1,x1,x1}: Il =Z x B;
Cg(AQ)U{__)S_Z,Xl}U{Xz,X_l}: H=ZX33

Ca(Az) U {Ag, x1) U {x2,x1}: T =G —1)
C;;(A})LJ{X3}L]{X3}Z H=G(t3—1)
Cs(A1)U{x3} U {x2,x1}: I=G(t2-1)

Ci(A1)U {x2,x1} U {x2,x1}: I=G(t*-1)
The fundamental group of a curve of type Ci(Ay) U {x3} U {x2, x1} 1s

II = ((L,I),c | aca = cac, [b,c] = 1, (ab)? = (IJ(J.)2>

3.3.5. The quintics of type 2C, U ().

- the two quadrics have an intersection point of multiplicity 4. If the linear
component i1s their coumon tangent at this point, then II = Fj; other-
wise, [1 =T 4;

- the two quadrics touch each other at two points. If the linear component
passes through these two points, then II = Fy; otherwise, Il = Ty 4;

- the two quadrics have a common point of multiplicity 3, and the linear
component is their common tangent at this point. Il = Z x Bj.

3.3.6. The quintics of type C; U 3C,.
The three linear components have a common pont,.

- if two of them are tangent to the quadric, then
I = (a,bc | [a, 0] = [a,che) = 1, (be)? = (ch)2>;
- otherwise, I[I = Z x F).
The three linear components do not have a common point, and two of them
are tangent to the quadiric.

- if the third line i1s also a tangent, then
I = {a,bc | (ab)? = (ha)?, (ac)? = (ca)?, [b,c] = 1);

- if the third line passes through the tangency points of the first two, then
II =7 x Fg;

- otherwise, I = Z x T} 4.
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3.3.7. The quintics of type 5C;. The fundamental group depends on the
singular points of multiplicity greater than 2:

- if there is a 5-ple point, then Il = Fj;

- if there is a quadruple point, then II = Z x F;

- if there are two triple points, then II = F, x Fy;

- if there is only one triple point, then I = Z x Z x F,.

4. VAN IKAMPEN’'S METHOD

Below we give a description of a slight modification of well-known van Kam-
pen’s method (see [vK]). The principal difference from the classical version is
that we do not assume the projection generic; its center may belong to the
curve and even be one of its singular points.

4.1. General idea. Let C' € Cp? be an algebraic curve. Pick a point O €
Cp? and a line Ly through O. Consider the canonical projection pr: Cp? ~
O — Cp! and pick a generic fiber L of pr. Then van Kampen’s method gives
a representation of the fundamental group of Cp? \ C which consists of:

(4.1.1) one generator «; for each intersection point S; € € N L other than O;

(4.1.2) one generator v; for each singular fiber L; of pr (see 4.2) other than Lg;

(4.1.3) relations 'yj_lo',-'yj = mjuj, where m;: {ay,...) — (a1,...) is the
braid monodromy along ¥; {see 4.3);

(4.1.4) one relation 7; = 1 for each singular fiber L;, j 2 1, which is

E . ', ey — T SN g . .1
not a component of C; here §; = vy;w; for a certain word w; in
ay, ... (see 4.5);
(4.1.5) relation ay...7v;... =1, present if Ly is not a component of C.

4.2. Singular fibers and generators. A fiber L of pr is called singular
(in respect to C) if #(L N C) # degpre. Thus, L is singular if it either is
a component of C, or is tangent to C, or mtersects C at a singular point
other than O, or is tangent to a branch of C at O (i.e., the proper transforms
of L and C in the blow-up of Cp? at O meet at a point of the exceptional
divisor). Let Ly,...,L, be all the singular fibers other than Ly. Pick some
small disjoint closed disks d; C Cp! about prL; and let d; = pr='d; U O.
Fix another line M # O close to Ly. (More precisely, we let M = M),
where M(" is a perturbation of Ly = M®) so small that for each t € (0,1]
the line M (Y meets C U Ly transversally and does not intersect C in |Jdd;.)
Let § = LN M. Choose a system of simple disjoint (except S) paths o;
connecting S and dd; N M and let v; be the loop which goes along o;, then
along the circle 0d; N M in the positive direction, and then comes back to S
along aj_l. We assume that o; are chosen so that ;... v, 1s homotopic to a
large circle in M surrounding all the M N L;, 5 2 1. Then 7,...,7, form a
standard simple basis of m) (M ~ Uj;u L;,S).
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Remark. Note that, unlike the classical construction, +; surrounds not on-
ly Lj, but also the branches of C at O tangent to L;.  Hence, in general
v; may not be contractible in Cp? \ C.

The generators oy, . .. a, are constructed in a similar manner, as a standard
simple basis of m; (M N~ OUJ S, S), where Sy,..., 5, are all the intersection
points L N C other than O.

4.3. Braid monodromy. Let s: I — Y beapathinY = Cp? \C'UUJ-20 L;,
and let L' and L" be the fibers of pr through s(0) and s(1) respective-
ly. The braid monodromy along s (relative to C) is the homeomorphism
m,: (L';0,8(0),CNL)— (L";0,s5(1),CNL"), defined up to relative homo-
topy, constructed as follows: Consider the fibration s*pr: (s*Y,s*C) — I. Tt
is trivial. Moreover, its restriction to s*C is trivialized (as its fiber is discrete),
and this trivialization extends to s*Y, which gives a fiberwise homeomorphism
of s*Y to the cylinder L' x I. By definition, m, is the composition of the in-
clusion of the base over 0 and projection to the base over 1, which is L.

Since my is defined up to relative homotopy, it induces a well defined iso-
morphism (also denoted by m,) m (L' <~ QU C,s(0)) —» m (L'~ OUC,s(1)).

To simplify the notation, denote m; = m.;. From the Serre exact sequence
of the fibration prfy it immediately follows that 7,(Y,S) is generated by
@1,..., 00,71, .., 7, and the defining relations are (4.1.3).

Consider now a small analytical branch B at a point of a singular fiber L;
different from O. Our next goal is to express the loop 0B in terms of the
standard generators. Assume that the disk d; (see 4.2) is so small that the
restriction of pr to B N d; is proper and all the fibers over d; \ prL; are
transversal to B. Then, given a path in d;, one can obviously speak about
the braid monodromy in respect to CUB. Assume for a moment that the base
fiber L is in 0d;. (Afterwards we can drag it back along G'J-_l and translate
everything via the braid monodromy.) Let {Py,...,P,} = BN L. Denote
by §' the loop BN Od; starting at Py. Pick a path w in L connecting § and Py
and disjoint from C, and let f=w -4 -w™'.

4.3.1. Proposition. One has f = yjw, where v = #(B N L) and w is the
word in oy, ..., «, corresponding to the loop m’w - w™!

Proof. The statement is obvious if » = 1; the ‘square’ drawn by w when it
is dragged along 7; gives a homotopy v; ~ w - #' - m;w™". In the general
case, assume that the points P are ordered so that m; induces the cyclic
permutation (Py,..., Px), and denote by fi, & = 1,...,r, the loop which
goes from S to Py along mf;_lw, then goes along BN dd; to Pyy,, and comes
back to § along mfw-l. (We let P41 = P;.) Then similar arguments show
that v; ~ f¢ for all k. On the other hand, f, ... 8, = - w - mgw_', and the
result follows. 0O
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4.4. Patching Ly (velation (4.1.5)). It is clear that patching Ly ads to the
representation a relation vy = 1, where 4 1s a small loop in M around LeNM.
On the other hand, in m (M < |J L;) one has 'y(;'l =@ ... Q71 ...y, Where
@; are some appropriate loops surrounding the intersection points M NC, and
rotating M about S to L shows that @, ... &, = a1 ...a,. This gives (4.1.5).

4.5. Patching the singular fibers (relations (4.1.4)). Patching a fiber L,
adds a relation 5; = 1, where ¥; is a small loop in Y about L;. To construct
such a loop, choose another line M’, which intersects L; ‘far’ from C' (more
precisely, we require that M’ N d; should not intersect C ), and let 7, be the
loop M' N 8d;, connected to a point in M N Od; along a fiber and then to S
along ;. Proposition 4.3.1 gives ¥; = y;w;, where w; is a word in a, . .., ap,
which can be easily found nsing the local monodromy about L;.

4.6. Birational transformations. Let Cp? & X 4 Cp? be a birational
transformation of Cp?. (Here p and 7% are two sequences of blow-ups.) Con-
sider a curve C in the first copy of Cp? and denote by C its proper transform
in the second copy. Let Ej (resp. E;) be the projections to the first (resp.
second) copy of Cp? of the exceptional divisors of p (vesp. p). Then it is clear
that 73 (Cp? ~ CUU Ex) = m(Cp? ~ CUJ E}), and, hence, m;(Cp? ~ C) can
be obtained from 7, (Cp? ~ CUJ E}) by adding the relations corresponding to
gluing in all the E’s. Such a relation can be chosen in the form [0bg] =1 or
[C’)ﬁk] = 1, where b; 1s a small analytical branch transversal to Ep and disjoint
from C, and Dy is its proper transform in the second copy of Cp?. Now, [9h;]
can be found using Proposition 4.3.1.

We will use the three well-known quadratic birational transformations.
Each of them is determined by its three fundamental points (Oq, Oz, 03) and
is denoted by T(O;,0,,03). (Some of the fundamental points may be in-
finitely near; the fact that O is infinitely near to O is denoted by O — 0'.)
The fundamental points (of both T and T~!), exceptional divisors Ey and Ej,
and branches by are shown in Fig. 1-3, which also represent the intermediate
configuration appearing i X.

Oy E) 04

N

I);j

FiGure 1. T(0;,02,03)

4.7. First results. As an immediate consequence of the above machinery,
one obtains the following;:
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E3
O3 01 — 0,

FIGURE 2. T(0O) « 02,03)

FIGURE 3. T(O; « Oy « Oy)

4.6.1. Proposition. Suppose that C las a singnlar point O of multiplici-
ty m and does not have linear components through O. Then m (Cp? \ C)
admiis a representation with at most (deg C — ) generators.

4.6.2. Corollary. If an irreducible curve C has a singular pomt of multi-
plicity (deg C — 1), then n1(Cp? \ C) is abelian.

4.6.3. Proposition. If C has a singular point of multiplicity (deg C—1) and
consists of r components, r 2 2, then 7| (Cp* N\ C)=2Z x F,_,.

5. CURVES WITH DEEP SINGULARITIES

In this section we consider a curve €' with a singular point of multiplicity
(deg C — 2). The main results are Theorem 5.2, which is proved in 5.4, and
proof of Propositions 3.1 and 3.2.

5.1. Classification (see [D2]). Throughout this section we assume fixed a
curve C and a singular point O of C of multiplicity (deg C —2). Let C = CUL,
where C has no linear components through O and I is the union of all such
components of C, and let Ly,..., L, be all the singul'u fibers (in respect to C')
of the projection from O. Consldm the blow-up of Cp? at O and denote by E
the exceptional divisor and by C, L, and L the proper transforms of C, L,
and L; respectively.

5.1.1. Definition. A pair (p,¢) of nonnegative integers is called admissible
if either p = ¢ or the smallest of p,q 1s even. The reduced type of a singu-
lar fiber L; is the admissible pair (pj,q;) defined as follows: p; is the local
intersection index of C and E at L NE,and ¢; =0, 1, or k 2 2 if, respective-
ly, C intersects L transversally, is tangent to LJ, or has a singular point of
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type Ar-j on Zj (see Fig. 4). Note that if p; > ¢;, then C has two branches
intersecting L ;, and one of them has greater local intersection index with E;
this branch will be called the principal branch of C at L;. The formule of C is
the set {(p;, q;)} of the reduced types of all the singular fibers enriched with
the following two additional structures:

(1) if L; is a component of C, its reduced type is marked,

(2) if all the ¢;’s are even, then the types (pj,q;) with p; > ¢; split into
two classes By, By in the following way: under the hypotheses, C
consists of two components C1, Cy, and we say that (pj,q;) € B, iff
the principal branch at L; is in C.. (If there is ¢; odd, we let B, = @)

1 | 1 1
AT i >
~"}C ; :
k: A_.l; \\
IL_ ! q ' 1
. J 1 ] 1
p=q=0 p=0,¢= p=0,¢922 p=1,4¢9=0
I{ i ] 1
- :-éll - L
¢ ¢ L 4 o
7\ =7 1 ‘Ap tAg—1
1 1 L] 1
: :. i :
i I i
p=qg=1 P> qg=2k>0 p=g 22 qg>p=2k>0
hoFl=p-k Cokl =p aoE:p
lboE=F

FIGULE 4

5.1.2. Proposition (see [D2]). The pair (C,0) is determined by its for-
mula up to rigid isotopy (I.e., isotopy through algebraic curves with distin-
guished singular point). Furthermore, any abstract formula (i.e., a finite
set {(pj,q;)} of adinissible pairs enriched with the above additional struc-
tures) with > q; = 2> p; + 2 is realized by an algebraic curve of degree
3o pj + 2 + {number of marked pairs}; this curve is irreducible iff there is no
marked pairs aud there is at least one pair (p;,q;) with ¢; odd.

5.2. Theorem. Denote by o the automorphism of (o, «g) which takes o
to cnagafl_l and aq to avy. Given a curve C with a singular point O of multi-
plicity (deg C — 2), the fundamental gronp m(Cp? \ C) admits the following
representation:

(1) there are generators v;, j = 1,...,q, corresponding to the singular
fibers L; (or pairs (p;,q;)), and two more generators o, ag;
(2) there is relation ayogyy ... vy = 15
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(3) each marked pair (p;, q;) gives two relations «; = 0% 7 ?Piq;, 1 = 1,2;

(4) each nonmarked pair (pj, q;) gives one of the following relations:

(2) pj=q; =2k 7 = ()’

by pj=qi=2k+1: ay =0z, 7=a;

(c) q; > p;j =2k: a; =04 "Pia, i=1,2, v;=(ac1az)";
(d) pj > q; =2k: [0r, 0l TP =1, v =ad TP (i) 7h,

where (pj,q;) € B, ands =3 —r.
This theorem is proved in 5.4.

5.3. The local monodromy. Fix a singular fiber L; of type (p;,¢;) and
assume that the base fiber L is in Jd; (see the notation in §4). Let o1, a2
be the two generators of mi(L ~ C U O,S); if p; > ¢j, we assume that a;
corresponds to the principal branch. Keeping in mind other applications, let
us also consider several branches By, ..., By, which meet L; transversally ‘far’
from C, M, and M’ (i.e., B;Nd; does not intersect these curves), and complete
ay, a2 to a simple basis ay, a0, f1,..., Bk of m (L~ (CUOULB;),S) (see
Fig. 5, where §' = M'NL and P, = B,NL). Let p= ... 5.

FiGunr 5

Considering model exanples, one can easily find the braid monodromy m;
along v; = 0d; and the word w; (see 4.5). The results are listed below,
where we give the monodromy operator mnj, the word w; = mjw - w™!, and
an equation of the model curve in an affine coordinate system (z,y) in which
L;, L, and M' have equations « = 0, # = € and y = 0 respectively, 0 < e € 1,
and dj is the disk |¢] < e.

5.3.1. The case p; = q;. The model curve is «¥iy* = 1. The points Sy, S,
are rotating throngh —p;m about S'. Thus, m; = 6%/, where § is the operator
corresponding to the rotation throngh —m:

6 a1 = pTlayp,
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ay o p oy parpTaap,
Bi v+ p~lag pBipT aap,

and wj—l =op-6ay ... -8 o,

1

5.3.2. The case p; > ¢; = 2k. The model is (z*y—1)(x? ~*y—1) = 0. The
points Sy, S, are rotating about S' through 2(k —p;)m and —2kx respectively.
Thus, m; = ﬁi'j—kﬁg, where &; is the operator corresponding to rotating S;
through —2= (obviously [6,682]) = 1):

C o -1,.-1_
61t oy = pTlag ajagp,
" =11 =1 e la"tla o
ag — pTlag ol agpagpTlay ajagp,
-1..-1 =1 =1 =1
Bi = pTlag ol agpfBipT oy Taragp,
621 o] +— g,
-1
az = plagp,
-1 -1 —1
Bi v pT gy pBipT aup,

k-1

-1 . N =1 pi—k—1
and w;” = oy (a7 - 60 ... 0 6, og) oy - (oy - brog - 6] o).

5.3.3. The case q; > p; = 2k. The model curve is (x¥y — 1)2 = y% =i,
The small disk containing Sy and S, is translated along the large circle
through —2km and rotates about its center through (¢; — 2p;)w. If 6 and 6,
correspond to the rotation throngh —m and translating through —2x respec-

tively, then [6,,6,] =1 and m; = 5?""_""" &5

1 vy g,

ay — a.l'la'la'z,
Bi — B

80 oy = pTlagp,
ay /)-10’2[),

. =1,-1. =1 g =1,
Bi — p 0y oy pPip~ arazp,

and w}'l = a1y - ba(pan) ... 52"'1(0'10»2)

5.4. Proof of Theorem 5.2. The group is found by van Kampen’s method,
using the results of 5.3, where we let 8y = --- = 8 = p = 1. This gives the
generators vy, ..., 7, 2l oy, oy (the two latters generate the group of a fixed
generic fiber L) and the braid monodromy m; = 0% ~*#i which provides for
relations 5.2 (2). (Note that 5.3 gives the monodromy in some local generators
af, o of the group of a generic fiber L' close to L. However, o}, af differ
from «, a2 by the action of the braid group By, i.e., by a power of 0. Hence,
the monodromy has the same form in oy, a3.)

Patching a nonmarked fiber L; gives an additional relation y; = w;
in some local generators o, o) has the form (cf. 5.2(4)):

(b) pj=q; =2k +1: 7, =aj(afay)’;

! which
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() ¢j >pi =2k ;= (ata));

(d) pj >q; =2k v; = o ah TP (o o ypi Tk
Combining this with 'yj']cr‘,-'y]- = gti~iah, i = 1,2, after simplification one
gets 5.2(4) written in of, o). Now it suffices to notice that the resulting nor-
mal subgroup is o-invariant, and hence these relations can be written in oy, ay.
The only exception is case (d), p; > ¢j, when the curve has two asymmetric
branches at L;; in this case the relations are only o?-invariant and, hence,
one should take into account the permutation monodromy. O

5.5. Simplification of the group. Combining like relations provided by
Theorem 5.2, one arrives to a representation which has one or several relations
from the following list:

(5.5.1) ol = al, p =0,

(5.5.2) (rraz) o = az(aron)", q =20,

(5.5.3) af = (o), 2w —-u=degC >0,
(5.5.4) (o], a2] = (o1, 0] =1, pq =20,

(5.5.5) (ayag) = (avgaq)7, r 20,

(5.5.6) ofay = (ara,)", 2w—u—v=degC >0,

(5.5.7) 'yj—la,-'yj =o%ao;, 1=1,2.

More precisely, one has:

5.5.8. Proposition. The fundamental group of a curve C' with a singular
point of multiplicity (deg C — 2) has one of the following representations:

O = (o, az | (5.5.1)~(5.5.3) with p|u and (27 + 1)|w),
0" = (o, 02 | (5.5.1),(5.5.2)),

Ok = (e, 0,71, -, vk | (5.5.1),(5.5.2),(5.5.7)),

E ={a),m [ (5.5.4)~(5.5.6) with p|u, ¢ v, and v |w),
E' = (1,00 ] (5.5.4),(5.5.5)),

B = {a1,00,71,- .-, 7k | (5.5.4),(5.5.5),(5.5.7)),

Proof. The representations are provided by Theorem 5.2. Several relations
o"a; = «; (see 5.2(4c)) give o"a; = «i, n = g.c.d.(n;), which is equivalent
to (5.5.2) if n = 2r + 1 or (5.5.5) if n = 2r. Similarly, several relations
(o}, ag] = 1 (see 5.2(4d)) give [}, o] =1, p = g.e.d(pi). If(5.5.2) is present,
(5.5.4) is equivalent to (5.5.1) with p = g.c.d.(p,¢). Finally, (5.5.3) and (5.5.6)

are obtained from 5.2 (2) after replacing each v; with its expressions in «y, a.
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(If at least one fiber 1s a component of C, one can take it for Ly, and 5.2(2)
does not appear.) Since the powers of «; appear only from 5.2 (4b) or (4d),
together with the commutativity relations, one can collect them all together
and, if (5.5.2) is present, replace oy with aq. This also implies the divisibility
conditions p|u and ¢ |v. The other two divisibility conditions are proved as
follows: If 5.2 (4b) is present, then ¢ = 01in (5.5.2), and the condition (2¢+1){w
is trivial. Otherwise, since u + v is the sum of (p; — ¢;) over all the singular
fibers L; with p; 2 ¢; and 2w = degC +u+v = Y (¢; — pj) + u + v, it is
the sum of (¢; — p;) over all the fibers with ¢; > p;, i.e., those which give
the relations «; = 0% 7P ov; resulting in (5.5.2) or (5.5.5). Hence, the greatest
common divisor of these numbers divides 2. O

Below we list some elementary properties of the groups obtained, assum-
ing fixed some particular values of the parameters p,¢,r,.... Note, by the
way, that E' and E obviously do not change under a permutation of (p, ¢,r)
(respectively, a simultaneous permutation of (p, ¢,r) and (u,v,w)).

5.5.9. One has O = O' x Fi.. If all the s; in (5.5.7) are even, then also
E| = E' x Fy; otherwise one can let sy =1 and s; =0 for 7 2 2.

Proof. The statement follows from the fact that o 1s an inner automorphism
of O' and ¢? is an inner automorphism of £/, [

5.5.10. One has:
(1) ifp#0, then KO = KO' = K Gr{(p,p|(2r +1)/2)). In particular, the
commutant is trivial only when p =1 orr = 0, and it is finite only for
the values of (p,r) listed in Table 1;
(2) ifp=0, then O =T, 3,41 and KO = KO' = Fy,;
(3) ifgcd(p,d4r+2)=1, then O' =Z x KO',

5.5.11. One has:

(1) if p,q,r # 0, then KE = KE' = K Gr{p,q|r)). In particular, the
commutant is trivial only when one of these munbers is 1, and it is
finite only for the values of (p,q,r) listed in Table 2;

(2) ifr =0, then KE = KE' = F,,_yy(4-1). If, besides, g.c.d.(p,q) = 1,
then E' =Z x T, ,;

(3) f p=q=0andr > 1, then KE=KE' = F;

(4) ifgcd(p,q)=gcd(pr)=gecd(q,r)=1, then E' =Z xZ x KE'.
If, besides, g.c.d.(w —w,w —v) =1, then E =Z x KE;

5.5.12. If p = ¢ = 2, then O' = Gyp41(t + 1) and there are split exact
sequences

1 — Z?p+l[t]/(t +4 ].) —_ O - Zm — ].,
1= Z{t)/{rt+1),#* - 1)} 2 E—Z — 1,
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TABLE 1 TABLE 2

(p,7) KG ord NG (pyq,7) KG ord KG
2,‘!‘) Zgr+] 2r +1 (2,2,7') Zr r
(3,1) | Gr{2,2,2) 8 (2,3,3) | Gr(2,2,2) 8
(3,2) | Gr(2,3,5) 120 (2,3,4) | Gr(2,3,3) 24
(4,1) | Gr(2,3,3) 24 (2,3,5) { Gr(2,3,5) 120
(5,1) | Gr(2,3,5) 120

Proof. 5.5.10 and 5.5.11 follow from trivial Lemma 5.5.13 below. 5.5.12 is
proved by a direct calculation. Details are left to the reader. 0O

5.5.13. Lemma. If H C G is a central subgroup such that the projection
H — G/KG is mono, then KG = K(G/H). If, besides, the image of H is a
direct summand in G/KG, then G=H x G/H.

5.6 Proof of Proposition 3.1. The result follows from 5.5.8 and 5.5.10:
one can choose for C' a curve whose formula has a pairs of type (p,0) and
2b pairs of type (0,20 +1). O

5.7 Proof of Proposition 3.2. In [D2] it is shown that there is a trans-
formation T(Q) « O, — O3) (see 4.6 and Fig. 3) which takes C to another
curve C with a singular point of multiplicity k. According to 4.6, 7,(Cp? N C)
is the quotient of 7, (Cp? N CUE) by the relation [0)] = 1, where ), the trans-
form of an analytical branch transversal to E, is tangent to E. The following
three cases are possible:

Case 1: degC = k + 1. In this case 7, (Cp* ~ C'U E) is abelian due to
Proposition 4.6.3.

Case 2: deg C = k+2, and C is inflection tangent to . Then the additional
relation is yfoyovprp = 1, and, taking into account the relations ;- Yoy =
oo, one obtains (ajoqa) )ay(ayaa;)™! = 71—202712 = o0?aq = alcrgal_l,
which implies aqaqai’l = oy,

Case 2: degC =k + 2, and C intersects E transversally at bNE. The ad-
ditional relation is y¥ v, = 1, and there also are relations v, Yoy = 07 Pa; =
(aycp) " Peoi(ay a2 ) for some p 2 0, which nnply that 4, and, hence, oy com-
mute with ajag. Thus, a; also cominutes with «;. O

6. IRREDUCIBLE QUINTICS

6.1. The quintics of type C;(344). A curve of type C5(3A44) can be ob-
tained by T(0,,0,, 03) from a 3-cuspidal quadric C, see Fig. 6. Thus, its
fundamental group is the quotient of 7 (Cp? ~ C U Ey) by the relations
[00k] = 1, k = 1,2,3. The projection and the generators a,b,c,d, v;,v are
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shown in Fig. 6 (where 43 and 4 are loops in M about the singular fibers L
and E; respectively), as well as the paths connecting L and L;. The ‘global’
braid monodromy can easily be seen as all the intersection points remain real.

M

Ceo— @,

I.LL, Ly E, L,

FIGURE 6

The relations [00;] = 1 and [9hy] = [0D3) = 1 give, respectively,

(6.1.1) abc=1 and
(6.1.2) yded b = 47 deT! = 1.

((6.1.2), as well as all the other relations, is written using (6.1.1).) Patching
the other singular fibers gives

(6.1.3) Ly: [byed] =1,

(6.1.4) bede = dbed,

(6.1.5) Ly [e,(c7d)?) =1,

(6.1.6) Ly [a,cVded ead] = 1,

(6.1.7) ada™ ¢ Vded™ cad = ¢ ded ™ cade™ ded™ c.

Finally, patching Lo gives abedyys = 1. Using (6.1.1), v = b~ldc1d™!
from (6.1.2), and y3 = (abed)? (¢~ abed)™® = ded™'c from 5.3 (and (6.1.1)
again), this transforms into

(6.1.8) b=cd.
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6.2. To simplify the representation obtained, we use (6.1.1) and (6.1.8) to get
¢ =b7'a"! and d = ab?; then (6.1.4) and (6.1.2), from which we eliminate ~,
give

(6.2.1) abla =,
(6.2.2) bab = (ab®a).

Let us prove that these two relations imply the rest, i.e., (6.1.3) and (6.1.5-7).
The first one obviously follows from (6.1.8). The three others after replacing ¢
and d give

[bab, ab?a) = 1,
[@,bab - a”'b™2a" " al?) = 1, and

ab® - bab - a” 0" a7 abtababla = bab - a0 20T (ab? a)(bab).

Now the first relation follows immediately from (6.2.2), and the others, after
replacing the underlined expressions with (ab?a)? and transposing the two
factors in parentheses, transform to [a,b?ab™'al?] = 1 and bab~'al? = 1
which follow from (6.2.1).

Finally, to get the representation announced in §3, we use (6.2.1) to trans-
form (6.2.2) into bab = ab? - a? - b¥a = ba="1072 - a® - b7%2a71h, equivalent to

3

(6.2.3) a® = a' bt

A standard calculation shows that the commutant I of this group is gen-
erated by o = «® and § = o’ba=C+tV) { = 0,... 4, and (6.2.1,3) take the
form

(6.2.4) 616283640 = by,
(625) (6051)2 = Cl‘_l.

Besides, one can apply the automorphism T: z — " !za to any relation
in K. In particular, one has (8364)> = o™}, and together with (6.2.4,5)
this implies [a, ;] = 1. Now (6.2.4) and T7!(6.2.4) can be rewritten in
the form 51—150 = 838384 = 66,1, which shows that 62 = 62 and, hence,
8?2 = const. Denote §2 = . Obviously, this is a central element of the
group; (6.2.5) implies [8;,8;41] = 87 %a™!, and then the product of (6.2.4)
and T_2(024) gives 6()62 = 5162(53640‘6364)50510’ = (5152)(5061 )O’ = 5250ﬂa,
1.e., [6;,6i42] = B~*a~!. Thus, the second commutant is generated by «, 8
and is central. Finally, substituting & from (6.2.4) to the other relations and
using the commutators obtained gives o = 2 = 1.
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6.3. The quintics of type C5(As U 34;). Such a curve can be obtained
by T(0, « Oz, 03) from a 3-cuspidal quartic C (see Fig. 7, which shows two
real forms of C: either two cusps of C or the two tangency points of C and E3
have to be imaginary). The projection, singular fibers, branches b which give
additional relations, and paths connecting L and L; are shown in Fig. 7. (The
paths go along one of the two real parts of M, which are denoted by R1 2.) 72
and v are the generators corresponding to L and E; respectively; the other
generators «, b, ¢ are some standard loops i L about the points a, b, ¢ shown
in Fig. 7.

00

U
7
L

1

FIGURE 7

The singular fibers give the following relations:

(6.3.1) Ly:  aba = bab,

(6.3.2) Ly [a,(be)?] =1,

(6.3.3) Ly: cac™Vbeac™ = beac™h,
(6.3.4) Ly caca = acac,

[0B,] = [8b2] = 1 has the form
(6.3.5) b = y(b™ abc)? = 1,

and patching Ly gives the relation abey,y = 1, which, due to v = b™?
from (6.3.5) and y2 = (abc)?(be)™? (see 5.3), transforms into

(6.3.6) abcabea = e,

6.4. Let v = ¢! and v = b 'abe. From (6.3.5) it follows that b = v?
and then ¢ = u™! and a« = v¥uv~?2, i.e., u and v generate the group. Rela-

tions (6.3.1) and (6.3.6) in «, v are

3 2
6.4.1) wv'n = viuv?,  and

(6.4.2) uvtu = vi.
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Given (6.4.2), the first relation is equivalent to either

(6.4.1") viu?vt =u, or

(6.4.1) v’ =1,

(Just represent (6.4.1) as v* = = 'v? - u - v2u~! and replace one or both un-
derlined expressions using (6.4.2).) Prove that these relations imply (6.3.2-4),
which in u,v are as follows:

v tun? = w7 e T,
vt dun Tt w?e Tt vt T ue T = vttt 1@,
w0 (v R ) Tt = lwe ™ w T P e e

After replacing the underlined expressions using (6.4.1) and the expression
in parentheses using (6.4.1'), the first relation converts to [1?,v?] = 1, which
follows from (6.4.1"), the third one is equivalent to (6.4.2), and the second one

gives u™2 - v2u?  viuT2vtuto ™ = v2um? - w2u?; the substitution v?? 2

= v
from (6.4.1') transforms this to [t*, v%] = 1, which follows from (6.4.1").
One can easily see that, given (6.4.1"), relation (6.4.2) is equivalent to
(uv™%)? = u®. Thus, replacing v with v~!, one gets the second representa-
tion from 3.3.1, which shows that the group is infinite, as it factors through

Gr(2,3,7).

6.5. Other irreducible quintics. If a curve has a triple or a quadruple
singular point, its fundamental group can be found using Theorem 5.2 or
Corollary 4.6.2 respectively. All these groups are abelian. Thus, it suffices to
only consider curves of type Cs(3> ¢, 4,). From Nori’s theorem [N] it follows
that the group of such a curve is abelian if 2a) + 37 ;(2p + 2)a, < 25. All
other curves, not covered by Nori’s theorem, are adjacent to one of those
considered in 6.5.1-4 below; hence, their groups are abelian as well. (The
fact that the curves are adjacent follows from the way they are constructed

in [D2].)

6.5.1. Cs5{A;2) and Cs{A4s U A4). These curves have abelian fundamental
groups due to Proposition 3.2.

6.5.2. C5(244 U A2 U A;). The curve can be obtained by a perturbation
of C5(344): the exceptional divisor Ey in Fig. 6 should not pass through U
(see Fig. 8). In addition to (6.1.1-8) this gives relations [b,c] = [b,d] = 1.
Then (6.1.1) implies [¢, b] = 1, and we know that « and b generate the group.

6.5.3. C5(As U 245 U Ay). The curve is obtained from Cs(Aq U 3A;) by

perturbing U in Fig. 7 to a node (see Fig. 9). The additional relation is @ = b,

and (6.3.6) implies then ¢ = a™*,
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24, UA, LA, Ag U 3A, Ag U2A4, U A,
FIGURE 8 FIGURE 9

6.5.4. C5(A.3 L'4A'2), Cs(.44 Ll3.42 UA.]), and Cs(As U3A2). All these curves
are obtained by perturbing Cy(As U 3A4z), see Fig. 10, which shows the per-
turbation in a small neighborhood B of O. Choose some generators o, ', v’
of (8B ~ C U E,) so that the inclusion homomorphism be given by o' + a,
B — a 'y, = (bc)a(be)™?, and 4"+ v = b7! (see (6.3.5)). Below we con-
sider all the three cases and prove that the additional relations caused by the
perturbation make the group abelan.

Ay U4A, AgU34; U A4,y As U3A,

FIGURE 10

The type Cs(Az U4A42). The additional relation [¢,v'] = 1 gives [, b] = 1.
Then (6.3.1) implies ¢« = b, and from (6.3.6) it follows that ¢ = a3, i.e.,
a generates the group.

The type Cs(A4 U 3A, U Ay). The additional relation [o',8'] = 1 gives
[a,bca(be)™'] = 1. From (6.3.6) one has bca(bc)™! = (b~ 'abe)a; hence, a
commutes with d~'abc and, due to (6.3.4), also with b, and the group is
abelian (see previous case).

The type C5(AsU3A;3). The additional relation o' = ' implies [o’, 8] =1,
and the previous case applies.
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