Quintics in $\mathbb{C}_{p}{ }^{2}$ with nonabelian fundamental group

A. Degtyarev

Steklov Mathematical Institute
St. Petersburg Branch
St. Petersburg 191011
RUSSIA

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
GERMANY

QUINTICS IN $\mathbb{C p}^{2}$
 WITH NONABELIAN FUNDAMENTAL GROUP

A. Degtyarev

Abstract

The fundamental groups of all the complex plane projective quintics are listed; some new examples of curves with abelian and nonabelian fundamental group are constructed.

1. Introduction

Given an algebraic curve $C \in \mathbb{C}^{2}$, its fundamental group Π_{C} is defined to be $\pi_{1}\left(\mathbb{C p}^{2} \backslash C\right)$. The problem of studying this group was first posed by, probably, O. Zariski [Z1], and since then just a few results in this direction have been obtained: on one hand, it is known that Π_{C} is abelian provided that the singularities of the curve are simple enough (see Deligne [De] and Nori [N$]$), and, on the other hand, there are a few examples of curves with nonabelian fundamental group (see, e.g., [A1], [D3], [M], [O1], [O2], [S1], [S2], [Z1], [Z2]). Though, what is known is quite enough to show that the fundamental group is an interesting invariant of algebraic curves; e.g., to my knowledge it is Π_{C} (more precisely, the Alexander polynomial, which is a purely algebraic invariant of the group) that distinguishes nonisotopic equisingular irreducible curves in all known examples.

It is clear that the abelinization of Π_{C} depends only on the components of C : if $C=\sum r_{i} C_{i}$ with C_{i}^{\prime} irreducible and reduced and $\operatorname{deg} C_{i}=d_{i}$, then the abelinization is $\Pi\left\langle a_{i}\right\rangle /\left(\sum d_{i} a_{i}\right)$. Thus, the problem is only interesting when Π_{C} is nonabelian. The main result of the paper is the complete list of all the quintics with nonabelian fundmental group (see 3.3). The most interesting examples are certainly the two irreducible quintics; for one of them Π_{C} is finite, for the other it is infinite. (The fundamental group of a quintic with the singular set $A_{6} \sqcup 3 A_{2}$ was independently calculated by B. Artal in his recent paper [A2].) As a by-product of the techniques used we also obtain two new series of examples of curves with controllable fundamental groups: one series consists of curves with 'deep' singularities whose group is abelian (see 3.2), the other one produces new curves with nonabelian (and sometimes finite) group (see 3.1).

The principal tool used in the paper is a slight modification of well-known van Kampen's method (see $\S 4$), which allows to overcome the standard difficulty with the 'global' braid monodromy when the curve has deep singularities. It is used to prove Theorems 3.1 and 3.2 (see $\S 5$) and to find the groups of all the irreducible curves (see §6). The calculation for reducible curves (which is absolutely similar and even easier, but involves too many curves to consider) can be found in [D1]; details will appear elsewhere.

I would like to express my gratitude to O. Viro, who inspired this work, and V. Kharlamov for his helpful remarks. I am also thankful to the Max-Planck-Institut für Mathematik: but for its hospitality, these results would probably never be completed and published.

2. Notation

2.1 Group notation.

2.1.1. Given a group G, denote by $K G$ and $K^{\prime} G$ its first and second commutants respectively: $K G=[G, G]$ and $K^{\prime} G=K(K G)$.
2.1.2. Given $a, b \in G$, let $[a, b]=a^{-1} b^{-1} a b$.

2.1.3. Some standard groups:

- F_{p} is the free group of rank p;
- $T_{p, y}$ is the fundamental group of a toric link of type (p, q) : if $p=2$, then $T_{2,2 r}=\left\langle a, b \mid(a b)^{r}=(b a)^{r}\right\rangle$ and $T_{2,2 r+1}=\left\langle a, b \mid(a b)^{r} a=b(a b)^{r}\right\rangle$; if g.c.d. $(p, q)=1$, then $T_{p, y}=\left\langle a, b \mid a^{p}=b^{q}\right\rangle$;
- B_{p} is the braid group on p strings:

$$
\left.B_{p}=\left\langle\sigma_{1} \ldots \sigma_{p-1}\right|\left[\sigma_{i}, \sigma_{j}\right]=1 \text { for }|i-j|>1, \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\rangle
$$

in particular, $B_{3}=T_{2,3}$;

- $G(T)$ and $G_{p}(T)$, where $T \in \mathbb{Z}[t]$ is an integral polynomial, are the extensions

$$
\begin{aligned}
& \{1\} \longrightarrow \mathbb{Z}[t] / T \longrightarrow G(T) \longrightarrow \mathbb{Z} \longrightarrow\{1\} \text { and } \\
& \{1\} \longrightarrow \mathbb{Z}_{p}[t] / T \longrightarrow G_{p}(T) \longrightarrow \mathbb{Z} \longrightarrow\{1\}
\end{aligned}
$$

where the conjugation action of the generator of the quotient \mathbb{Z} on the kernel is the multiplication by t;

- we use some notations from [CM], attaching Gr to them in order to avoid confusion. Thus,

$$
\begin{aligned}
& \operatorname{Gr}(p, q, r)=\left\langle\alpha, \beta, \gamma \mid \alpha^{\prime}=\beta^{q}=\gamma^{r}=\alpha \beta \gamma=1\right\rangle \\
& \operatorname{Gr}\langle p, q, r\rangle=\left\langle\alpha, \beta, \gamma \mid \alpha^{p}=\beta^{q}=\gamma^{r}=\alpha \beta \gamma\right\rangle \\
& \operatorname{Gr}\langle\langle p, q \mid r\rangle\rangle=\left\langle\alpha, \beta \mid \alpha^{p}=\beta^{q}=1,(\alpha \beta)^{r}=(\beta \alpha)^{r}\right\rangle, \quad(r \in \mathbb{Z})
\end{aligned}
$$

The last notation is also used for $r=(2 k+1) / 2 \in \frac{1}{2} \mathbb{Z}$; in this case the last relation reads $(\alpha \beta)^{k} \alpha=\beta(\alpha \beta)^{k}$, and it is shown in [CM] that $\operatorname{Gr}\langle\langle p, p \mid(2 k+1) / 2\rangle=\operatorname{Gr}\langle\langle 2, p \mid 2 k+1\rangle\rangle$.

2.2. Other notation.

2.1.1. We use Arnol'd's notation for the types of singular points (see [AVG]). In particular, A_{p} denotes a singularity given locally by $x^{2}+y^{p+1}=0$. A set of singularities is denoted like this: $5 A_{1} \sqcup 2 A_{2} \sqcup \ldots$
2.2.2. A curve is said to be of type $a C_{p} \sqcup b C_{q} \sqcup \ldots$ if it has a irreducible components of degree p, b irreducible components of degree q, etc.
2.2.3. $C_{d}(\Sigma)$, where Σ is a list of singularities, denotes an irreducible curve of degree d whose set of singular points is Σ. (If $d \leqslant 5$, such a curve is unique up to rigid isotopy.)
2.2.4. The mutual position of an irreducible curve C and a line L is denoted by a list $\{\ldots\}$ whose elements correspond to the intersection points of L and C :
$\times d-L$ meets C with multiplicity d at a nonsingular point of C;
$A_{p}-L$ intersects C transversally at, a singular point of C of type A_{p};
$A_{p}^{*}-L$ is tangent to C at a singular point of C of type A_{p},
Remark. The notion of transversal intersection and tangency for the types A_{p} is obvious; the tangency is always assumed to have the smallest possible multiplicity.

3. Main results

3.1. Proposition. Given four integers $p, r \geqslant 0$ and $a, b>0$ such that $a p<$ $b(2 r+1)$, there exists an irreducible curve C of degree $2 b(2 r+1)-a p$ with the fundamental group

$$
\left\langle\alpha_{1}, \alpha_{2} \mid \alpha_{1}^{p}=\alpha_{2}^{p},\left(\alpha_{1} \alpha_{2}\right)^{r} \alpha_{1}=\alpha_{2}\left(\alpha_{1} \alpha_{2}\right)^{r}, \alpha_{1}^{a p}=\left(\alpha_{1} \alpha_{2}\right)^{b(2 r+1)}\right\rangle .
$$

This group is abelian only if $r=0$ or $p=1$; otherwise, it is finite only if $p=2$ or $(p, r)=(3,1),(3,2),(4,1)$, or $(5,1)$.
3.2. Proposition. If C is an irreducible curve of an odd degree $2 k+1$ with a singular point adjacent to the semiquasihomogeneous singularity of type $(k, 4 k)$, then $\pi_{1}\left(\mathbb{C p}^{2} \backslash C\right)$ is abelian.
3.3. Quintics with nonabelian fundamental group. The following is the complete list of complex plane projective quintics whose fundamental group Π is nonabelian:

3.3.1 Irreducible quintics.

$$
\begin{array}{ll}
C_{5}\left(3 A_{4}\right): & \\
& \Pi=\left\langle a, b \mid b=a b^{4} a, a^{2}=b^{2} a^{3} b^{2}\right\rangle: \\
& -\Pi / K \Pi=\mathbb{Z}_{5} ; \\
& -K \Pi / K^{-} \Pi=\mathbb{Z}_{2}[t] /\left(t^{4}+t^{3}+t^{2}+t+1\right) ; \\
& -K^{\prime} \Pi=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \text { is a central subgroup of } \Pi ; \\
& - \text { ord } \Pi=320 . \\
C_{5}\left(A_{6} \cup 3 A_{2}\right): & \begin{aligned}
\Pi & =\left\langle u, v \mid u=v^{2} u^{2} v^{2}, v^{2}=u v^{5} u\right\rangle \\
& =\left\langle u, v \mid u^{3}=v^{7}=\left(u v^{2}\right)^{2}\right\rangle: \\
& \Pi / u^{3}=\operatorname{Gr}(2,3,7) \text { is infinite. }
\end{aligned}
\end{array}
$$

3.3.2 The quintics of type $C_{4} \sqcup C_{1}$ (see 2.2.4).

$C_{4}\left(3 A_{2}\right)$	$\sqcup\{\times 2, \times 2\}:$		Π is given below
	$\sqcup\{\times 2, \times 1, \times 1\}$ or $\left\{A_{2}^{*}, \times 1\right\}:$		$\Pi=B_{3}$
	\sqcup otherwise:		$\Pi=G_{3}(t+1)$
$C_{4}\left(2 A_{2} \sqcup A_{1}\right)$	$\sqcup\{\times 4\}:$		$\Pi=B_{4}$
	$\sqcup\{\times 2, \times 2\}:$	$\Pi=B_{3}$	
$C_{4}\left(2 A_{2}\right)$	$\sqcup\{\times 4\}$ or $\{\times 2, \times 2\}:$	$\Pi=B_{3}$	
$C_{4}\left(A_{4} \sqcup A_{2}\right)$	$\sqcup\{\times 3, \times 1\}:$		$\Pi=\mathbb{Z} \times \operatorname{Gr}(2,3,5\rangle$
	$\sqcup\left\{A_{4}^{*}\right\}:$	$\Pi=B_{3}$	
	$\sqcup\left\{A_{2}, \times 2\right\}:$	$\Pi=G_{5}(t+1)$	
$C_{4}\left(A_{3} \sqcup A_{2}\right)$	$\sqcup\left\{A_{2}, \times 2\right\}:$	$\Pi=B_{3}$	
$C_{4}\left(A_{6}\right)$	$\sqcup\left\{A_{6}, \times 2\right\}:$	$\Pi=B_{3}$	
$C_{4}\left(A_{5}\right)$	$\sqcup\{\times 4\}$ or $\{\times 2, \times 2\}:$		$\Pi=B_{3}$
$C_{4}\left(E_{6}\right)$	$\sqcup\{\times 4\}:$	$\Pi=T_{3,4}$	
	$\sqcup\{\times 2, \times 2\}:$	$\Pi=B_{3}$	

The fundamental group of a curve of type $C_{4}\left(3 A_{2}\right) \cup\{\times 2, \times 2\}$ is

$$
\Pi=\left\langle a, b, c \mid a b a=b a b, b c b=c b c, a b c b^{-1} a=b c b^{-1} a b c b^{-1}\right\rangle .
$$

3.3.3. The quintics of type $C_{3} \sqcup C_{2}$. The only such quintic with nonabelian fundamental group has the cubic component of type $C_{3}\left(A_{2}\right)$ which intersects the other component (the guadric) at two points with multiplicity 3 at each. The group is $\Pi=\left\langle a, b \mid\left[a^{3}, b\right]=1, a b^{2}=b a^{2}\right\rangle$, and one has:

- $\Pi / K \Pi=\mathbb{Z}$;
- $K \Pi$ is the quaternion group $\left\langle i, j \mid i^{2}=j^{2}=(i j)^{2}\right\rangle$, and the conjugation by the generator of $\Pi / K \Pi$ acts via $i \mapsto j, j \mapsto i j$;
$-K \Pi / K^{\prime} \Pi=\mathbb{Z}_{2}[t] /\left(t^{2}+t+1\right)$;
- $K^{\prime} \Pi=\mathbb{Z}_{2}$ is a central subgroup of Π.
3.3.4. The quintics of type $C_{3} \sqcup 2 C_{1}$. The position of each of the linear components in respect to the cubic is denoted using 2.2.4. If the two linear components intersect each other at a point in the cubic, the corresponding elements in their lists are underlined.

$$
\begin{array}{ll}
C_{3}\left(A_{2}\right) \sqcup\{\times 3\} \sqcup\{\times 2, \times 1\}: & \Pi \text { is given below } \\
C_{3}\left(A_{2}\right) \sqcup\left\{A_{2}^{*}\right\} \sqcup\{\times 3\}: & \Pi=T_{2,6} \\
C_{3}\left(A_{2}\right) \sqcup\{\underline{\times 3}\} \sqcup\left\{A_{2}, \times 1\right\}: & \Pi=T_{2,4} \\
C_{3}\left(A_{2}\right) \sqcup\{\times 3\} \sqcup\{\times 1, \times 1, \times 1\}: & \Pi=\mathbb{Z} \times B_{3} \\
C_{3}\left(A_{2}\right) \sqcup\{\times 3\} \sqcup\left\{A_{2}, \times 1\right\}: & \Pi=\mathbb{Z} \times B_{3} \\
C_{3}\left(A_{2}\right) \sqcup\{\times 3\} \sqcup\{\times 1, \times 1, \times 1\}: & \Pi=\mathbb{Z} \times B_{3} \\
C_{3}\left(A_{2}\right) \sqcup\{\times 2, \times 1\} \sqcup\{\times 2, \times 1\}: & \Pi=\mathbb{Z} \times B_{3} \\
C_{3}\left(A_{2}\right) \sqcup\left\{A_{2}, \times 1\right\} \sqcup\{\times 2, \times 1\}: & \Pi=G\left(t^{2}-1\right) \\
C_{3}\left(A_{1}\right) \sqcup\{\times 3\} \sqcup\{\times 3\}: & \Pi=G\left(t^{3}-1\right) \\
C_{3}\left(A_{1}\right) \sqcup\{\times 3\} \sqcup\{\times 2, \times 1\}: & \Pi=G\left(t^{2}-1\right) \\
C_{3}\left(A_{1}\right) \sqcup\{\times 2, \underline{\times 1}\} \sqcup\{\times 2, \underline{\times 1}\}: & \Pi=G\left(t^{2}-1\right)
\end{array}
$$

The fundamental group of a curve of type $C_{3}\left(A_{2}\right) \sqcup\{\times 3\} \sqcup\{\times 2, \times 1\}$ is

$$
\Pi=\left\langle a, b, c \mid a c a=c a c,[b, c]=1,(a b)^{2}=(b a)^{2}\right\rangle
$$

3.3.5. The quintics of type $2 C_{2} \sqcup C_{1}$.

- the two quadrics have an intersection point of multiplicity 4. If the linear component is their common tangent at this point, then $\Pi=F_{2}$; otherwise, $\Pi=T_{2,4}$;
- the two quadrics touch each other at two points. If the linear component passes through these two points, then $\Pi=F_{2}$; otherwise, $\Pi=T_{2,4}$;
- the two quadrics have a common point of multiplicity 3 , and the linear component is their common tangent at this point. $\Pi=\mathbb{Z} \times B_{3}$.

3.3.6. The quintics of type $C_{2} \cup 3 C_{1}$.

The three linear components have a common point.

- if two of them are tangent to the quadric, then $\Pi=\left\langle a, b, c \mid[a, b]=\left[a, c^{-1} l c\right]=1,(b c)^{2}=(c b)^{2}\right\rangle ;$
- otherwise, $\Pi=\mathbb{Z} \times F_{2}$.

The three linear components do not have a common point, and two of them are tangent to the quadric.

- if the third line is also a tangent, then

$$
\Pi=\left\langle a, b, c \mid(a b)^{2}=(b a)^{2},(a c)^{2}=(c a)^{2},[b, c]=1\right\rangle ;
$$

- if the third line passes through the tangency points of the first two, then $\Pi=\mathbb{Z} \times F_{2} ;$
- otherwise, $\Pi=\mathbb{Z} \times T_{2,4}$.
3.3.7. The quintics of type $5 C_{1}$. The fundamental group depends on the singular points of multiplicity greater than 2 :
- if there is a 5 -ple point, then $\Pi=F_{4}$;
- if there is a quadruple point, then $\Pi=\mathbb{Z} \times F_{3}$;
- if there are two triple points, then $\Pi=F_{2} \times F_{2}$;
- if there is only one triple point, then $\Pi=\mathbb{Z} \times \mathbb{Z} \times F_{2}$.

4. Van Kampen's method

Below we give a description of a slight modification of well-known van Kampen's method (see [vK$]$). The principal difference from the classical version is that we do not assume the projection generic; its center may belong to the curve and even be one of its singular points.
4.1. General idea. Let $C \in \mathbb{C}^{2}$ be an algebraic curve. Pick a point $O \in$ $\mathbb{C}^{1}{ }^{2}$ and a line L_{0} through O. Consider the canonical projection pr: $\mathbb{C p}^{2}$, $O \rightarrow \mathbb{C P}^{1}$ and pick a generic fiber L of pr . Then van Kampen's method gives a representation of the fundamental group of $\mathbb{C p}^{2} \backslash C$ which consists of:
(4.1.1) one generator α_{i} for each intersection point $S_{i} \in C \cap L$ other than O;
(4.1.2) one generator γ_{j} for each singular fiber L_{j} of pr (see 4.2) other than L_{0};
(4.1.3) relations $\gamma_{j}^{-1} \alpha_{i} \gamma_{j}=m_{j} \alpha_{j}$, where $m_{j}:\left\langle\alpha_{1}, \ldots\right\rangle \rightarrow\left\langle\alpha_{1}, \ldots\right\rangle$ is the braid monodromy along γ_{j} (see 4.3);
(4.1.4) one relation $\bar{\gamma}_{j}=1$ for each singular fiber $L_{j}, j \geqslant 1$, which is not a component of C; here $\bar{\gamma}_{j}=\gamma_{j} w_{j}$ for a certain word w_{j} in α_{1}, \ldots (see 4.5);
(4.1.5) relation $\alpha_{1} \ldots \gamma_{1} \ldots=1$, present if L_{0} is not a component of C.
4.2. Singular fibers and generators. A fiber L of pr is called singular (in respect to C) if $\#(L \cap C) \neq \operatorname{deg}^{\prime 2}{ }_{C}$. Thus, L is singular if it either is a component of C, or is tangent to C, or intersects C at a singular point other than O, or is tangent to a branch of C at O (i.e., the proper transforms of L and C in the blow-up of $\mathbb{C}_{\mathrm{p}}{ }^{2}$ at O meet at a point of the exceptional divisor). Let $L_{1}, \ldots, \mathrm{~L}_{q}$ be all the singular fibers other than L_{0}. Pick some small disjoint closed disks $d_{j} \subset \mathbb{C}^{1}{ }^{1}$ abont pr L_{j} and let $\widetilde{d}_{j}=\mathrm{pr}^{-1} d_{j} \cup O$. Fix another line $M \not \supset O$ close to L_{0}. (More precisely, we let $M=M^{(1)}$, where $M^{(t)}$ is a perturbation of $L_{0}=M^{(1)}$ so small that for each $t \in(0,1]$ the line $M^{(t)}$ meets $C \cup L_{0}$ transversally and does not intersect C in $\bigcup \partial \tilde{d}_{j}$.) Let $S=L \cap M$. Choose a system of simple disjoint (except S) paths σ_{j} connecting S and $\partial \widetilde{d}_{j} \cap M$ and let γ_{j} be the loop which goes along σ_{j}, then along the circle $\partial \tilde{d}_{j} \cap M$ in the positive direction, and then comes back to S along σ_{j}^{-1}. We assume that σ_{j} are chosen so that $\gamma_{1} \ldots \gamma_{q}$ is homotopic to a large circle in M surrounding all the $M \cap L_{j}, j \geqslant 1$. Then $\gamma_{1}, \ldots, \gamma_{q}$ form a standard simple basis of $\pi_{1}\left(M \backslash \bigcup_{j \geqslant 0} L_{j}, S\right)$.

Remark. Note that, unlike the classical construction, γ_{j} surrounds not only L_{j}, but also the branches of C at O tangent to L_{j}. Hence, in general γ_{j} may not be contractible in $\mathbb{C p}^{2} \backslash C$.

The generators $\alpha_{1}, \ldots \alpha_{p}$ are constructed in a similar manner, as a standard simple basis of $\pi_{1}\left(M \backslash O \cup \bigcup S_{i}, S\right)$, where S_{1}, \ldots, S_{p}, are all the intersection points $L \cap C$ other than O.
4.3. Braid monodromy. Let $s: I \rightarrow Y$ be a path in $Y=\mathbb{C p}^{2} \backslash C \cup \bigcup_{j \geqslant 0} L_{j}$, and let L^{\prime} and $L^{\prime \prime}$ be the fibers of pr through $s(0)$ and $s(1)$ respectively. The braid monodromy along s (relative to C) is the homeomorphism $m_{s}:\left(L^{\prime} ; O, s(0), C \cap L^{\prime}\right) \rightarrow\left(L^{\prime \prime} ; O, s(1), C \cap L^{\prime \prime}\right)$, defined up to relative homotopy, constructed as follows: Consider the fibration $s^{*} p^{2}:\left(s^{*} Y, s^{*} C\right) \rightarrow I$. It is trivial. Moreover, its restriction to $s^{*} C$ is trivialized (as its fiber is discrete), and this trivialization extends to $s^{*} Y$, which gives a fiberwise homeomorphism of $s^{*} Y$ to the cylinder $L^{\prime} \times I$. By definition, m_{s} is the composition of the inclusion of the base over 0 and projection to the base over 1 , which is $L^{\prime \prime}$.

Since m_{s} is defined up to relative homotopy, it induces a well defined isomorphism (also denoted by m_{s}) $\pi_{1}\left(L^{\prime} \backslash O \cup C, s(0)\right) \rightarrow \pi_{1}\left(L^{\prime \prime} \backslash O \cup C, s(1)\right)$.

To simplify the notation, denote $m_{j}=m_{\gamma_{j}}$. From the Serre exact sequence of the fibration $\left.\mathrm{pr}\right|_{Y}$ it immediately follows that $\pi_{1}(Y, S)$ is generated by $\alpha_{1}, \ldots, \alpha_{p}, \gamma_{1}, \ldots, \gamma_{g}$, and the defining relations are (4.1.3).

Consider now a small analytical branch B at a point of a singular fiber L_{j} different from O. Our next goal is to express the loop ∂B in terms of the standard generators. Assume that the disk d_{j} (see 4.2) is so small that the restriction of pr to $B \cap \tilde{d}_{j}$ is proper and all the fibers over $d_{j} \backslash \operatorname{pr} L_{j}$ are transversal to B. Then, given a path in \tilde{d}_{j}, one can obviously speak about the braid monodromy in respect to $C \cup B$. Assume for a moment that the base fiber L is in $\partial \widetilde{d}_{j}$. (Afterwards we can drag it back along σ_{j}^{-1} and translate everything via the braid monodromy.) Let $\left\{P_{1}, \ldots, P_{r}\right\}=B \cap L$. Denote by β^{\prime} the loop $B \cap \partial \widetilde{d}_{j}$ starting at P_{1}. Pick a path ω in L connecting S and P_{1} and disjoint from C, and let $\beta=\omega \cdot \beta^{\prime} \cdot \omega^{-1}$.
4.3.1. Proposition. One has $\beta=\gamma_{j}^{r} w$, where $r=\#(B \cap L)$ and w is the word in $\alpha_{1}, \ldots, a_{p}$, corresponding to the loop $m_{j}^{r} \omega \cdot \omega^{-1}$.
Proof. The statement is obvious if $r=1$: the 'square' drawn by ω when it is dragged along γ_{j} gives a homotopy $\gamma_{j} \sim \omega \cdot \beta^{\prime} \cdot m_{j} \omega^{-1}$. In the general case, assume that the points P_{k} are ordered so that m_{j} induces the cyclic permutation (P_{1}, \ldots, P_{k}), and denote by $\beta_{k}, k=1, \ldots, r$, the loop which goes from S to P_{k} along $m_{j}^{k-1} \omega$, then goes along $B \cap \partial \tilde{d}_{j}$ to P_{k+1}, and comes back to S along $m_{j}^{k} \omega^{-1}$. (We let $P_{r+1}=P_{1}$.) Then similar arguments show that $\gamma_{j} \sim \beta_{k}$ for all k. On the other hand, $\beta_{1} \ldots \beta_{r}=\beta \cdot \omega \cdot m_{j}^{r} \omega^{-1}$, and the result follows.
4.4. Patching L_{0} (relation (4.1.5)). It is clear that patching L_{0} ads to the representation a relation $\gamma_{0}=1$, where γ_{0} is a small loop in M around $L_{0} \cap M$. On the other hand, in $\pi_{1}\left(M \backslash \bigcup L_{i}\right)$ one has $\gamma_{0}^{-1}=\bar{\alpha}_{1} \ldots \bar{\alpha}_{p} \gamma_{1} \ldots \gamma_{q}$, where $\bar{\alpha}_{i}$ are some appropriate loops surrounding the intersection points $M \cap C$, and rotating M about S to L shows that $\bar{\alpha}_{1} \ldots \bar{\alpha}_{p}=\alpha_{1} \ldots \alpha_{p}$. This gives (4.1.5).
4.5. Patching the singular fibers (relations (4.1.4)). Patching a fiber L_{j} adds a relation $\bar{\gamma}_{j}=1$, where $\bar{\gamma}_{j}$ is a small loop in Y about L_{j}. To construct such a loop, choose another line M^{\prime}, which intersects L_{j} 'far' from C (more precisely, we require that $M^{\prime} \cap \tilde{d}_{j}$ should not intersect C), and let $\bar{\gamma}_{j}$ be the loop $M^{\prime} \cap \partial \tilde{d}_{j}$, connected to a point in $M \cap \partial \tilde{d}_{j}$ along a fiber and then to S along σ_{j}. Proposition 4.3 .1 gives $\bar{\gamma}_{j}=\gamma_{j} w_{j}$, where w_{j} is a word in $\alpha_{1}, \ldots, \alpha_{p}$, which can be easily found using the local monodromy about L_{j}.
4.6. Birational transformations. Let $\mathbb{C}_{p}{ }^{2} \stackrel{\longmapsto}{\leftrightarrows} \xrightarrow{\bar{p}} \mathbb{C}^{2}$ be a birational transformation of $\mathbb{C p}^{2}$. (Here ρ and $\bar{\rho}$ are two sequences of blow-ups.) Consider a curve C in the first copy of $\mathbb{C}^{2}{ }^{2}$ and denote by \bar{C} its proper transform in the second copy. Let E_{k} (resp. \bar{E}_{l}) be the projections to the first (resp. second) copy of $\mathbb{C}_{\mathrm{p}}{ }^{2}$ of the exceptional divisors of $\bar{\rho}$ (resp. ρ). Then it is clear that $\pi_{1}\left(\mathbb{C p}^{2} \backslash C \cup \bigcup E_{k}\right)=\pi_{1}\left(\mathbb{C p}^{2} \backslash \bar{C} \cup \bigcup \bar{E}_{l}\right)$, and, hence, $\pi_{1}\left(\mathbb{C}^{2} \backslash C\right)$ can be obtained from $\pi_{1}\left(\mathbb{C}^{2} \backslash \bar{C} \cup \bigcup \bar{E}_{1}\right)$ by adding the relations corresponding to gluing in all the E_{k} 's. Such a relation can be chosen in the form $\left[\partial b_{k}\right]=1$ or $\left[\partial \bar{b}_{k}\right]=1$, where b_{k} is a small analytical branch transversal to E_{k} and disjoint from C, and \bar{b}_{k} is its proper transform in the second copy of $\mathbb{C}_{\mathrm{P}}{ }^{2}$. Now, $\left[\partial \bar{b}_{k}\right]$ can be found using Proposition 4.3.1.

We will use the three well-known quadratic birational transformations. Each of them is determined by its three fundamental points (O_{1}, O_{2}, O_{3}) and is denoted by $T\left(O_{1}, O_{2}, O_{3}\right)$. (Some of the fundamental points may be infinitely near; the fact that O^{\prime} is infinitely near to O is denoted by $O \leftarrow O^{\prime}$.) The fundamental points (of both T and T^{-1}), exceptional divisors E_{k} and \bar{E}_{l}, and branches \bar{b}_{k} are shown in Fig. 1-3, which also represent the intermediate configuration appearing in X.

Figure 1. $T\left(O_{1}, O_{2}, O_{3}\right)$
4.7. First results. As an immediate consequence of the above machinery, one obtains the following:

Figule 2. $\quad T\left(O_{1} \leftarrow O_{2}, O_{3}\right)$

Figure 3. $\quad T\left(O_{1} \leftarrow O_{2} \leftarrow O_{3}\right)$
4.6.1. Proposition. Suppose that C has a singular point O of multiplicity m and does not have linear components through O. Then $\pi_{1}\left(\mathbb{C}^{2}{ }^{2} \backslash C\right)$ admits a representation with at most ($(\operatorname{leg} C-m$) generators.
4.6.2. Corollary. If an irreducible curve C has a singular point of multiplicity $(\operatorname{deg} C-1)$, then $\pi_{1}\left(\mathbb{C p}^{2} \backslash C\right)$ is abelian.
4.6.3. Proposition. If C has a singolar point of multiplicity $(\operatorname{deg} C-1)$ and consists of r components, $r \geqslant 2$, then $\pi_{1}\left(\mathbb{C}^{2}{ }^{2} \backslash C\right)=\mathbb{Z} \times F_{r-2}$.

5. Curves witil deep singulabities

In this section we consider a curve C with a singular point of multiplicity ($\operatorname{deg} C-2$). The main results are Theorem 5.2 , which is proved in 5.4 , and proof of Propositions 3.1 and 3.2.
5.1. Classification (see [D2]). Throughout this section we assume fixed a curve C and a singular point O of C of multiplicity ($\operatorname{deg} C-2$). Let $C=\bar{C} \cup \bar{L}$, where \bar{C} has no linear components through O and \bar{L} is the union of all such components of C, and let L_{1}, \ldots, L_{q} be all the singular fibers (in respect to C) of the projection from O. Consider the blow-up of $\mathbb{C p}^{2}$ at O and denote by E the exceptional divisor and by $\widetilde{C}, \widetilde{L}$, and \widetilde{L}_{j} the proper transforms of \bar{C}, \bar{L}, and L_{j} respectively.
5.1.1. Definition. A pair (p, q) of nomegative integers is called admissible if either $p=q$ or the smallest of p, q is even. The reduced type of a singular fiber L_{j} is the admissible pair $\left(p_{j}, q_{j}\right)$ defined as follows: p_{j} is the local intersection index of \widetilde{C} and E at $\widetilde{L}_{j} \cap E$, and $q_{j}=0,1$, or $k \geqslant 2$ if, respectively, \widetilde{C} intersects \widetilde{L}_{j} transversally, is tangent to \widetilde{L}_{j}, or has a singular point of
type A_{k-1} on \tilde{L}_{j} (see Fig. 4). Note that if $p_{j}>q_{j}$, then \tilde{C} has two branches intersecting \widetilde{L}_{j}, and one of them has greater local intersection index with E; this branch will be called the principal branch of C at L_{j}. The formula of C is the set $\left\{\left(p_{j}, q_{j}\right)\right\}$ of the reduced types of all the singular fibers enriched with the following two additional structures:
(1) if L_{j} is a component of C, its reduced type is marked;
(2) if all the q_{j} 's are even, then the types $\left(p_{j}, q_{j}\right)$ with $p_{j}>q_{j}$ split into two classes $\mathcal{B}_{1}, \mathcal{B}_{2}$ in the following way: under the hypotheses, \bar{C} consists of two components \bar{C}_{1}, \bar{C}_{2}, and we say that $\left(p_{j}, q_{j}\right) \in \mathcal{B}_{r}$ iff the principal branch at L_{j} is in \bar{C}_{r}. (If there is q_{j} odd, we let $\mathcal{B}_{2}=\varnothing$.)

$p=q=0$

$p=q=1$

$p=0, q=1$

$$
\begin{gathered}
p>q=2 k>0 \\
l_{1} \circ E=p-k \\
l_{2} \circ E=k
\end{gathered}
$$

$p=0, q \geqslant 2$
$p=1, q=0$

$$
p=q \geqslant 2
$$

$$
q>p=2 k>0
$$

$$
\tilde{C} \circ E=p \quad \tilde{C} \circ E=p
$$

Figure 4
5.1.2. Proposition (see [D2]). The pair (C, O) is determined by its formula up to rigid isotopy (i.e., isotopy through algebraic curves with distinguished singular point). Furthermore, any abstract formula (i.e., a finite set $\left\{\left(p_{j}, q_{j}\right)\right\}$ of admissible pairs enriched with the above additional structures) with $\sum q_{j}=2 \sum p_{j}+2$ is realized by an algebraic curve of degree $\sum p_{j}+2+\{$ number of marked pairs\}; this curve is irreducible iff there is no marked pairs and there is at least one pair $\left(p_{j}, q_{j}\right)$ with q_{j} odd.
5.2. Theorem. Denote by σ the automorphism of $\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ which takes α_{1} to $\alpha_{1} \alpha_{2} \alpha_{1}^{-1}$ and α_{2} to α_{1}. Given a curve C with a singular point O of multiplicity $(\operatorname{deg} C-2)$, the fundamental group $\pi_{1}\left(\mathbb{C}^{2}{ }^{2} \backslash C\right)$ admits the following representation:
(1) there are generators $\gamma_{j}, j=1, \ldots, q$, corresponding to the singular fibers L_{j} (or pairs $\left(p_{j}, q_{j}\right)$), and two more generators α_{1}, α_{2};
(2) there is relation $\alpha_{1} \alpha_{2} \gamma_{1} \ldots \gamma_{q}=1$;
(3) each marked pair $\left(p_{j}, q_{j}\right)$ gives two relations $\alpha_{i}=\sigma^{y_{j}-2 p_{i}} \alpha_{i}, i=1,2$;
(4) each nommarked pair $\left(p_{j}, q_{j}\right)$ gives one of the following relations:
(a) $p_{j}=q_{j}=2 k: \quad \gamma_{j}=\left(\alpha_{1} \alpha_{2}\right)^{k}$;
(b) $p_{j}=q_{j}=2 k+1: \quad \alpha_{1}=\alpha_{2}, \quad \gamma_{j}=\alpha_{1}^{p_{j}}$;
(c) $q_{j}>p_{j}=2 k: \quad \alpha_{i}=\sigma^{q_{j}-p_{j}} \alpha_{i}, i=1,2, \quad \gamma_{j}=\left(\alpha_{1} \alpha_{2}\right)^{k}$;
(d) $p_{j}>q_{j}=2 k: \quad\left[\alpha_{r}, \alpha_{s}^{p_{j}-q_{j}}\right]=1, \quad \gamma_{j}=\alpha_{s}^{q_{j}-p_{j}}\left(\alpha_{1} \alpha_{2}\right)^{p_{j}-k}$, where $\left(p_{j}, q_{j}\right) \in \mathcal{B}_{r}$ and $s=3-r$.

This theorem is proved in 5.4.
5.3. The local monodromy. Fix a singular fiber L_{j} of type (p_{j}, q_{j}) and assume that the base fiber L is in $\partial \widetilde{d}_{j}$ (see the notation in $\S 4$). Let α_{1}, α_{2} be the two generators of $\pi_{1}(L \backslash C \cup O, S)$; if $p_{j}>q_{j}$, we assume that α_{1} corresponds to the principal branch. Keeping in mind other applications, let us also consider several branches B_{1}, \ldots, B_{k}, which meet L_{j} transversally 'far' from C, M, and M^{\prime} (i.e., $B_{i} \cap \tilde{d}_{j}$ does not intersect these curves), and complete α_{1}, α_{2} to a simple basis $\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{k}$ of $\pi_{1}\left(L \backslash\left(C \cup O \cup \bigcup B_{i}\right), S\right)$ (see Fig. 5 , where $S^{\prime}=M^{\prime} \cap L$ and $P_{i}=B_{i} \cap L$). Let $\rho=\beta_{1} \ldots \beta_{k}$.

Figule 5
Considering model examples, one can easily find the braid monodromy m_{j} along $\gamma_{j}=\partial \tilde{d}_{j}$ and the word w_{j} (see 4.5). The results are listed below, where we give the monodromy operator m_{j}, the word $w_{j}=m_{j} \omega \cdot \omega^{-1}$, and an equation of the model curve in an affine coordinate system (x, y) in which L_{j}, L, and M^{\prime} have equations $x=0, x=\epsilon$ and $y=0$ respectively, $0<\epsilon \ll 1$, and d_{j} is the disk $|x|<\epsilon$.
5.3.1. The case $p_{j}=q_{j}$. The model curve is $x^{p_{j}} y^{2}=1$. The points S_{1}, S_{2} are rotating through $-p_{j} \pi$ about, S^{\prime}. Thus, $m_{j}=\delta^{p_{j}}$, where δ is the operator corresponding to the rotation through $-\pi$:

$$
\delta: \quad \alpha_{1} \mapsto \rho^{-1} \alpha_{2} \rho
$$

$$
\begin{aligned}
\alpha_{2} & \mapsto \rho^{-1} \alpha_{2}^{-1} \rho \alpha_{1} \rho^{-1} \alpha_{2} \rho, \\
\beta_{i} & \mapsto \rho^{-1} \alpha_{2}^{-1} \rho \beta_{i} \rho^{-1} \alpha_{2} \rho,
\end{aligned}
$$

and $w_{j}^{-1}=\alpha_{1} \cdot \delta \alpha_{1} \cdot \ldots \cdot \delta^{p_{j}-1} \alpha_{1}$.
5.3.2. The case $p_{j}>q_{j}=2 k$. The model is $\left(x^{k} y-1\right)\left(x^{p_{j}-k} y-1\right)=0$. The points S_{1}, S_{2} are rotating about S^{\prime} through $2\left(k-p_{j}\right) \pi$ and $-2 k \pi$ respectively. Thus, $m_{j}=\delta_{1}^{p_{j}-k} \delta_{2}^{k}$, where δ_{i} is the operator corresponding to rotating S_{i} through -2π (obviously $\left[\delta_{1}, \delta_{2}\right]=1$):

$$
\begin{aligned}
\delta_{1}: & \alpha_{1} \mapsto \rho^{-1} \alpha_{2}^{-1} \alpha_{1} \alpha_{2} \rho, \\
& \alpha_{2} \\
& \mapsto \rho^{-1} \alpha_{2}^{-1} \alpha_{1}^{-1} \alpha_{2} \rho \alpha_{2} \rho^{-1} \alpha_{2}^{-1} \alpha_{1} \alpha_{2} \rho, \\
\beta_{i} & \mapsto \rho^{-1} \alpha_{2}^{-1} \alpha_{1}^{-1} \alpha_{2} \rho \beta_{i} \rho^{-1} \alpha_{2}^{-1} \alpha_{1} \alpha_{2} \rho, \\
\delta_{2}: & \alpha_{1} \\
& \alpha_{2} \mapsto \alpha_{1}, \\
& \mapsto \rho^{-1} \alpha_{2} \rho, \\
\beta_{i} & \mapsto \rho^{-1} \alpha_{2}^{-1} \rho \beta_{i} \rho^{-1} \alpha_{2} \rho,
\end{aligned}
$$

and $w_{j}^{-1}=\alpha_{1} \cdot\left(\alpha_{2} \cdot \delta_{2} \alpha_{2} \cdot \ldots \cdot \delta_{2}^{k-1} \alpha_{2}\right) \cdot \alpha_{1}^{-1} \cdot\left(\alpha_{1} \cdot \delta_{1} \alpha_{1} \cdot \ldots \cdot \delta_{1}^{p_{j}-k-1} \alpha_{1}\right)$.
5.3.3. The case $q_{j}>p_{j}=2 k$. The model curve is $\left(x^{k} y-1\right)^{2}=y^{q_{j}-p_{j}}$. The small disk containing S_{1} and S_{2} is translated along the large circle through $-2 k \pi$ and rotates about its center through $\left(q_{j}-2 p_{j}\right) \pi$. If δ_{1} and δ_{2} correspond to the rotation through $-\pi$ and translating through -2π respectively, then $\left[\delta_{1}, \delta_{2}\right]=1$ and $m_{j}=\delta_{1}^{2 p_{j}-q_{j}} \delta_{2}^{k}$:

$$
\begin{aligned}
& \delta_{1}: \alpha_{1} \mapsto \alpha_{2}, \\
& \alpha_{2} \mapsto \alpha_{2}^{-1} \alpha_{1} \alpha_{2}, \\
& \beta_{i} \mapsto \beta_{i}, \\
& \delta_{2}: \alpha_{1} \mapsto \rho^{-1} \alpha_{1} \rho, \\
& \alpha_{2} \mapsto \rho^{-1} \alpha_{2} \rho, \\
& \beta_{i} \mapsto \rho^{-1} \alpha_{2}^{-1} \alpha_{1}^{-1} \rho \beta_{i} \rho^{-1} \alpha_{1} \alpha_{2} \rho, \\
& \text { and } w_{j}^{-1}=\alpha_{1} \alpha_{2} \cdot \delta_{2}\left(\alpha_{1} \alpha_{2}\right) \cdot \ldots \cdot \delta_{2}^{k-1}\left(\alpha_{1} \alpha_{2}\right)
\end{aligned}
$$

5.4. Proof of Theorem 5.2. The group is found by van Kampen's method, using the results of 5.3 , where we let $\beta_{1}=\cdots=\beta_{k}=\rho=1$. This gives the generators $\gamma_{1}, \ldots, \gamma_{4}$ and α_{1}, α_{2} (the two latters generate the group of a fixed generic fiber L) and the braid monodrony $m_{j}=\sigma^{q_{j}-2 p_{j}}$, which provides for relations 5.2 (2). (Note that 5.3 gives the monodromy in some local generators $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ of the group of a generic fiber L^{\prime} close to L_{j}. However, $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ differ from α_{1}, α_{2} by the action of the braid group B_{2}, i.e., by a power of σ. Hence, the monodromy has the same form in α_{1}, α_{2}.)

Patching a nonmarked fiber L_{j} gives an additional relation $\gamma_{j}=w_{j}^{-1}$, which in some local generators $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$ has the form (cf. $5.2(4)$):
(a) $p_{j}=q_{j}=2 k: \quad \gamma_{j}=\left(\alpha_{1}^{\prime} \alpha_{2}^{\prime}\right)^{k}$;
(b) $p_{j}=q_{j}=2 k+1: \quad \gamma_{j}=\alpha_{1}^{\prime}\left(\alpha_{1}^{\prime} \alpha_{2}^{\prime}\right)^{k}$;
(c) $q_{j}>p_{j}=2 k: \quad \gamma_{j}=\left(\alpha_{1}^{\prime} \alpha_{2}^{\prime}\right)^{k}$;
(d) $p_{j}>q_{j}=2 k: \quad \gamma_{j}=\alpha_{1}^{\prime} \alpha_{2}^{\prime} \eta_{j}-p_{j}+1\left(\alpha_{1}^{\prime} \alpha_{2}^{\prime}\right)^{p_{j}-k-1}$.

Combining this with $\gamma_{j}^{-1} \alpha_{i}^{\prime} \gamma_{j}=\sigma^{4 j-2 p_{j}} \alpha_{i}^{\prime}, i=1,2$, after simplification one gets 5.2 (4) written in $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$. Now it suffices to notice that the resulting normal subgroup is σ-invariant, and hence these relations can be written in α_{1}, α_{2}. The only exception is case (d), $p_{j}>q_{j}$, when the curve has two asymmetric branches at L_{j}; in this case the relations are only σ^{2}-invariant and, hence, one should take into account the permutation monodromy.
5.5. Simplification of the group. Combining like relations provided by Theorem 5.2, one arrives to a representation which has one or several relations from the following list:

$$
\begin{array}{ll}
\alpha_{1}^{p}=\alpha_{2}^{p}, & p \geqslant 0, \\
\left(\alpha_{1} \alpha_{2}\right)^{r} \alpha_{1}=\alpha_{2}\left(\alpha_{1} \alpha_{2}\right)^{r}, & q \geqslant 0, \\
\alpha_{1}^{u}=\left(\alpha_{1} \alpha_{2}\right)^{w,}, & 2 w-u=\operatorname{deg} C>0, \\
{\left[\alpha_{1}^{p}, \alpha_{2}\right]=\left[\alpha_{1}, \alpha_{2}^{q}\right]=1,} & p, q \geqslant 0, \\
\left(\alpha_{1} \alpha_{2}\right)^{r}=\left(\alpha_{2} \alpha_{1}\right)^{r}, & r \geqslant 0, \\
\alpha_{1}^{u} \alpha_{2}^{u \prime}=\left(\alpha_{1} \alpha_{2}\right)^{w \prime}, & 2 w-u-v=\operatorname{deg} C>0, \\
\gamma_{j}^{-1} \alpha_{i} \gamma_{j}=\sigma^{* j} \alpha_{i}, i=1,2 . & \tag{5.5.7}
\end{array}
$$

More precisely, one has:
5.5.8. Proposition. The fundamental group of a curve C with a singular point of multiplicity $(\operatorname{deg} C-2)$ has one of the following representations:

$$
\begin{aligned}
O & =\left\langle\alpha_{1}, \alpha_{2}\right|(5.5 .1)-(5.5 .3) \text { with } p \mid u \text { and }(2 r+1)|w\rangle, \\
O^{\prime} & =\left\langle\alpha_{1}, \alpha_{2} \mid(5.5 .1),(5.5 .2)\right\rangle, \\
O_{k}^{\prime} & =\left\langle\alpha_{1}, \alpha_{2}, \gamma_{1}, \ldots, \gamma_{k} \mid(5.5 .1),(5.5 .2),(5.5 .7)\right\rangle \\
E & =\left\langle\alpha_{1}, \alpha_{2}\right|(5.5 .4)-(5.5 .6) \text { with } p|u, q| v, \text { and } r|w\rangle, \\
E^{\prime} & =\left\langle\alpha_{1}, \alpha_{2} \mid(5.5 .4),(5.5 .5)\right\rangle, \\
E_{k}^{\prime} & =\left\langle\alpha_{1}, \alpha_{2}, \gamma_{1}, \ldots, \gamma_{k} \mid(5.5 .4),(5.5 .5),(5.5 .7)\right\rangle,
\end{aligned}
$$

Proof. The representations are provided by Theorem 5.2. Several relations $\sigma^{n_{j}} \alpha_{i}=\alpha_{i}($ see $5.2(4 \mathrm{c}))$ give $\sigma^{n} \alpha_{i}=\alpha_{i}, n=\operatorname{g.c.d} .\left(n_{i}\right)$, which is equivalent to (5.5.2) if $n=2 r+1$ or (5.5.5) if $n=2 r$. Similarly, several relations $\left[\alpha_{1}^{p_{i}}, \alpha_{2}\right]=1$ (see $5.2(4 \mathrm{~d})$) give $\left[\alpha_{1}^{p}, \alpha_{2}\right]=1, p=\mathrm{g} . \mathrm{c} . \mathrm{d} .\left(p_{i}\right)$. If (5.5.2) is present, (5.5.4) is equivalent to (5.5.1) with $p=$ g.c.d. (p, q). Finally, (5.5.3) and (5.5.6) are obtained from $5.2(2)$ after replacing each γ_{j} with its expressions in α_{1}, α_{2}.
(If at least one fiber is a component of C, one can take it for L_{0}, and 5.2 (2) does not appear.) Since the powers of α_{i} appear only from $5.2(4 \mathrm{~b})$ or (4d), together with the commutativity relations, one can collect them all together and, if (5.5.2) is present, replace α_{2} with α_{1}. This also implies the divisibility conditions $p \mid u$ and $q \mid v$. The other two divisibility conditions are proved as follows: If $5.2(4 \mathrm{~b})$ is present, then $q=0$ in (5.5.2), and the condition $(2 q+1) \mid w$ is trivial. Otherwise, since $u+v$ is the sum of $\left(p_{j}-q_{j}\right)$ over all the singular fibers L_{j} with $p_{j} \geqslant q_{j}$ and $2 w=\operatorname{deg} C+u+v=\sum\left(q_{j}-p_{j}\right)+u+v$, it is the sum of $\left(q_{j}-p_{j}\right)$ over all the fibers with $q_{j}>p_{j}$, i.e., those which give the relations $\alpha_{i}=\sigma^{q_{j}-p_{j}} \alpha_{i}$ resulting in (5.5.2) or (5.5.5). Hence, the greatest common divisor of these numbers divides $2 w$.

Below we list some elementary properties of the groups obtained, assuming fixed some particular values of the parameters p, q, r, \ldots. Note, by the way, that E^{\prime} and E obvionsly do not change under a permutation of (p, q, r) (respectively, a simultaneons permutation of (p, q, r) and (u, v, w)).
5.5.9. One has $O_{k}^{\prime} \cong O^{\prime} \times F_{k}$. If all the s_{j} in (5.5.7) are even, then also $E_{k}^{\prime}=E^{\prime} \times F_{k} ;$ otherwise one can let $s_{1}=1$ and $s_{j}=0$ for $j \geqslant 2$.
Proof. The statement follows from the fact that, σ is an inner automorphism of O^{\prime} and σ^{2} is an inner automorphism of E^{\prime}.
5.5.10. One has:
(1) if $p \neq 0$, then $K O=K O^{\prime}=K \mathrm{Gr}\langle\langle p, p \mid(2 r+1) / 2\rangle\rangle$. In particular, the commutant is trivial only when $p=1$ or $r=0$, and it is finite only for the values of (p, r) listed in Table 1;
(2) if $p=0$, then $O^{\prime}=T_{2,2 r+1}$ and $K O=K O^{\prime}=F_{2 r}$;
(3) if g.c.d. $(p, 4 r+2)=1$, then $O^{\prime}=\mathbb{Z} \times K O^{\prime}$;
5.5.11. One has:
(1) if $p, q, r \neq 0$, then $K E=\kappa E^{\prime}=\kappa \mathrm{Gr}\langle\langle p, q \mid r\rangle\rangle$. In particular, the commutant is trivial only when one of these numbers is 1 , and it is finite only for the values of (p, q, r) listed in Table 2;
(2) if $r=0$, then $K E=K E^{\prime}=F_{(p-1)(q-1)}$. If, besides, g.c.d. $(p, q)=1$, then $E^{\prime}=\mathbb{Z} \times T_{p, q}$;
(3) if $p=q=0$ and $r>1$, then $K E=K E^{\prime}=F_{\infty}$;
(4) if g.c.cl. $(p, q)=$ g.c.d. $(p, r)=$ g.c.d. $(q, r)=1$, then $E^{\prime}=\mathbb{Z} \times \mathbb{Z} \times K E^{\prime}$. If, besides, g.c.d. $(w-u, w-v)=1$, then $E=\mathbb{Z} \times K E$;
5.5.12. If $p=q=2$, then $O^{\prime}=G_{2 p+1}(t+1)$ and there are split exact sequences

$$
\begin{gathered}
1 \rightarrow \mathbb{Z}_{2 p+1}[t] /(t+1) \rightarrow O \rightarrow \mathbb{Z}_{m} \rightarrow 1 \\
1 \rightarrow \mathbb{Z}[t] /\left\{r(t+1),\left(t^{2}-1\right)\right\} \rightarrow E \rightarrow \mathbb{Z} \rightarrow 1
\end{gathered}
$$

Table 1

(p, r)	$K G$	ord $K G$
$(2, r)$	$\mathbb{Z}_{2 r+1}$	$2 r+1$
$(3,1)$	$\operatorname{Gr}\langle 2,2,2\rangle$	8
$(3,2)$	$\operatorname{Gr}\langle 2,3,5\rangle$	120
$(4,1)$	$\operatorname{Gr}\langle 2,3,3\rangle$	24
$(5,1)$	$\operatorname{Gr}\langle 2,3,5\rangle$	120

Table 2

(p, q, r)	$K G$	ord $K G$
$(2,2, r)$	\mathbb{Z}_{r}	r
$(2,3,3)$	$\operatorname{Gr}\langle 2,2,2\rangle$	8
$(2,3,4)$	$\operatorname{Gr}\langle 2,3,3\rangle$	24
$(2,3,5)$	$\operatorname{Gr}\langle 2,3,5\rangle$	120

Proof. 5.5.10 and 5.5.11 follow from trivial Lemma 5.5.13 below. 5.5.12 is proved by a direct calculation. Details are left to the reader.
5.5.13. Lemma. If $H \subset G$ is a central subgroup such that the projection $H \rightarrow G / K G$ is mono, then $K G=K(G / H)$. If, besides, the image of H is a direct summand in $G / K G$, then $G=H \times G / H$.
5.6 Proof of Proposition 3.1. The result follows from 5.5.8 and 5.5.10: one can choose for C a curve whose formula has a pairs of type $(p, 0)$ and $2 b$ pairs of type $(0,2 r+1)$.
5.7 Proof of Proposition 3.2. In [D2] it is shown that there is a transformation $T\left(O_{1} \leftarrow O_{2} \leftarrow O_{3}\right)$ (see 4.6 and Fig. 3) which takes C to another curve \bar{C} with a singular point of multiplicity k. According to $4.6, \pi_{1}\left(\mathbb{C}_{\mathrm{p}}{ }^{2} \backslash C\right)$ is the quotient of $\pi_{1}\left(\mathbb{C p}^{2} \backslash \bar{C} \cup \bar{E}\right)$ by the relation $[\partial \bar{b}]=1$, where \bar{b}, the transform of an analytical branch transversal to E, is tangent to \bar{E}. The following three cases are possible:

Case 1: $\operatorname{deg} \bar{C}=k+1$. In this case $\pi_{1}\left(\mathbb{C}^{1}{ }^{2} \backslash \bar{C} \cup \bar{E}\right)$ is abelian due to Proposition 4.6.3.

Case 2: $\operatorname{deg} \bar{C}=k+2$, and \bar{C} is inflection tangent to \bar{b}. Then the additional relation is $\gamma_{1}^{2} \alpha_{1} \alpha_{2} \alpha_{1}=1$, and, taking into account the relations $\gamma_{1}^{-1} \alpha_{i} \gamma_{1}=$ $\sigma \alpha_{i}$, one obtains $\left(\alpha_{1} \alpha_{2} \alpha_{1}\right) \alpha_{2}\left(\alpha_{1} \alpha_{2} \alpha_{1}\right)^{-1}=\gamma_{1}^{-2} \alpha_{2} \gamma_{1}^{2}=\sigma^{2} \alpha_{2}=\alpha_{1} \alpha_{2} \alpha_{1}^{-1}$, which implies $\alpha_{1} \alpha_{2} \alpha_{1}^{-1}=\alpha_{2}$.

Case 2: $\operatorname{deg} \bar{C}=k+2$, and \bar{C} intersects \bar{E} transversally at $\bar{b} \cap \bar{E}$. The additional relation is $\gamma_{1}^{2} \alpha_{2}=1$, and there also are relations $\gamma_{1}^{-1} \alpha_{i} \gamma_{1}=\sigma^{-2 p} \alpha_{i}=$ $\left(\alpha_{1} \alpha_{2}\right)^{-p} \alpha_{i}\left(\alpha_{1} \alpha_{2}\right)^{p}$ for some $p \geqslant 0$, which imply that γ_{1} and, hence, α_{2} commute with $\alpha_{1} \alpha_{2}$. Thus, α_{2} also commutes with α_{1}.

6. Irreducible quintics

6.1. The quintics of type $C_{5}\left(3 A_{4}\right)$. A curve of type $C_{5}\left(3 A_{4}\right)$ can be obtained by $T\left(\bar{O}_{1}, \bar{O}_{2}, \bar{O}_{3}\right)$ from a 3 -cuspidal quadric \bar{C}, see Fig. 6. Thus, its fundamental group is the quotient of $\pi_{1}\left(\mathbb{C}_{p}{ }^{2} \backslash \bar{C} \cup \bar{E}_{k}\right)$ by the relations $\left[\partial \bar{b}_{k}\right]=1, k=1,2,3$. The projection and the generators $a, b, c, d, \gamma_{3}, \gamma$ are
shown in Fig. 6 (where γ_{3} and γ are loops in M about the singular fibers L_{3} and \bar{E}_{1} respectively), as well as the paths connecting L and L_{j}. The 'global' braid monodromy can easily be seen as all the intersection points remain real.

Figure 6
The relations $\left[\partial \overline{1}_{1}\right]=1$ and $\left[\partial \bar{h}_{2}\right]=\left[\partial \bar{h}_{3}\right]=1$ give, respectively,

$$
\begin{gather*}
a b c=1 \quad \text { and } \tag{6.1.1}\\
\gamma d c d^{-1} b=\gamma b^{-1} d c^{-1}=1 . \tag{6.1.2}
\end{gather*}
$$

((6.1.2), as well as all the other relations, is written using (6.1.1).) Patching the other singular fibers gives

$$
\begin{array}{ll}
L_{1}: & {[b, c d]=1} \\
& b c d c=d b c d, \\
L_{3}: & {\left[c,\left(c^{-1} d\right)^{2}\right]=1} \\
L_{4}: & {\left[a, c^{-1} d c d^{-1} c a d\right]=1} \\
& a d a^{-1} c^{-1} d c d^{-1} c a d=c^{-1} d c d^{-1} c a d c^{-1} d c d^{-1} c . \tag{6.1.7}
\end{array}
$$

Finally, patching L_{0} gives abcd $\gamma \gamma_{3}=1$. Using (6.1.1), $\gamma=b^{-1} d c^{-1} d^{-1}$ from (6.1.2), and $\gamma_{3}=(a b c d)^{2}\left(c^{-1} a b c d\right)^{-2}=d c d^{-1} c$ from 5.3 (and (6.1.1) again), this transforms into

$$
\begin{equation*}
b=c d . \tag{6.1.8}
\end{equation*}
$$

6.2. To simplify the representation obtained, we use (6.1.1) and (6.1.8) to get $c=b^{-1} a^{-1}$ and $d=a b^{2}$; then (6.1.4) and (6.1.2), from which we eliminate γ, give

$$
\begin{gather*}
a b^{4} a=b, \tag{6.2.1}\\
b a b=\left(a b^{2} a\right)^{2} . \tag{6.2.2}
\end{gather*}
$$

Let us prove that these two relations imply the rest, i.e., (6.1.3) and (6.1.5-7). The first one obviously follows from (6.1.8). The three others after replacing c and d give

$$
\begin{gathered}
{\left[b a b, a b^{2} a\right]=1,} \\
{\left[a, \underline{b a b} \cdot a^{-1} b^{-2} a^{-1} b^{-1} a b^{2}\right]=1, \quad \text { and }} \\
a b^{2} \cdot \underline{b a b} \cdot a^{-1} b^{-2} a^{-1} b^{-1} a b^{2} a b a b^{2} a=\underline{l a b} \cdot a^{-1} b^{-2} a^{-1} b^{-1}\left(a b^{2} a\right)(b a b) .
\end{gathered}
$$

Now the first relation follows immediately from (6.2.2), and the others, after replacing the underlined expressions with $\left(a b^{2} a\right)^{2}$ and transposing the two factors in parentheses, transform to $\left[a, b^{2} a b^{-1} a b^{2}\right]=1$ and $b^{2} a b^{-1} a b^{2}=1$, which follow from (6.2.1).

Finally, to get the representation announced in $\S 3$, we use (6.2.1) to transform (6.2.2) into $b a b=\underline{a} b^{2} \cdot a^{2} \cdot \underline{b^{2} a}=\underline{b a^{-1} b^{-2}} \cdot a^{2} \cdot \underline{b^{-2} a^{-1} b}$, equivalent to

$$
\begin{equation*}
a^{2}=b^{2} a^{3} b^{2} \tag{6.2.3}
\end{equation*}
$$

A standard calculation shows that the commutant K of this group is generated by $\alpha=a^{5}$ and $\delta_{i}=a^{i} b a^{-(i+1)}, i=0, \ldots, 4$, and $(6.2 .1,3)$ take the form

$$
\begin{gather*}
\delta_{1} \delta_{2} \delta_{3} \delta_{4} \alpha=\delta_{0} \tag{6.2.4}\\
\left(\delta_{0} \delta_{1}\right)^{2}=\alpha^{-1} \tag{6.2.5}
\end{gather*}
$$

Besides, one can apply the automorphism $T: x \mapsto a^{-1} x a$ to any relation in K. In particular, one has $\left(\delta_{3} \delta_{4}\right)^{2}=\alpha^{-1}$, and together with ($6.2 .4,5$) this implies $\left[\alpha, \delta_{i}\right]=1$. Now (6.2.4) and $T^{-1}(6.2 .4)$ can be rewritten in the form $\delta_{1}^{-1} \delta_{0}=\delta_{2} \delta_{3} \delta_{4} \alpha=\delta_{1} \delta_{0}^{-1}$, which shows that $\delta_{0}^{2}=\delta_{1}^{2}$ and, hence, $\delta_{i}^{2}=$ const. Denote $\delta_{i}^{2}=\beta$. Obviously, this is a central element of the group; (6.2.5) implies $\left[\delta_{i}, \delta_{i+1}\right]=\beta^{-2} \alpha^{-1}$, and then the product of (6.2.4) and $T^{-2}(6.2 .4)$ gives $\delta_{0} \delta_{2}=\delta_{1} \delta_{2}\left(\delta_{3} \delta_{4} \alpha \delta_{3} \delta_{4}\right) \delta_{0} \delta_{1} \alpha=\left(\delta_{1} \delta_{2}\right)\left(\delta_{0} \delta_{1}\right) \alpha=\delta_{2} \delta_{0} \beta \alpha$, i.e., $\left[\delta_{i}, \delta_{i+2}\right]=\beta^{-3} \alpha^{-1}$. Thus, the second commutant is generated by α, β and is central. Finally, substituting δ_{0} from (6.2.4) to the other relations and using the commutators obtained gives $\alpha^{2}=\beta^{2}=1$.
6.3. The quintics of type $C_{5}\left(A_{6} \sqcup 3 A_{2}\right)$. Such a curve can be obtained by $T\left(\bar{O}_{1} \leftarrow \bar{O}_{2}, \bar{O}_{3}\right)$ from a 3 -cuspidal quartic \bar{C} (see Fig. 7 , which shows two real forms of \bar{C} : either two cusps of \bar{C} or the two tangency points of \bar{C} and \bar{E}_{3} have to be imaginary). The projection, singular fibers, branches \bar{b}_{k} which give additional relations, and paths connecting L and L_{j} are shown in Fig. 7. (The paths go along one of the two real parts of M, which are denoted by $\left.\Re_{1,2}.\right) \gamma_{2}$ and γ are the generators corresponding to L_{2} and \bar{E}_{1} respectively; the other generators a, b, c are some standard loops in L about the points a, b, c shown in Fig. 7.

Figure 7
The singular fibers give the following relations:

$$
\begin{array}{ll}
L_{1}: & a b a=b a b \\
L_{2}: & {\left[a,(b c)^{2}\right]=1} \\
L_{3}: & c a c^{-1} b c a c^{-1}=b c a c^{-1} b \\
L_{4}: & c a c a=a c a c \tag{6.3.4}
\end{array}
$$

$\left[\partial \bar{b}_{1}\right]=\left[\partial \bar{b}_{2}\right]=1$ has the form

$$
\begin{equation*}
\gamma b=\gamma\left(b^{-1} a b c\right)^{2}=1 \tag{6.3.5}
\end{equation*}
$$

and patching L_{0} gives the relation abc $\gamma_{2} \gamma=1$, which, due to $\gamma=b^{-1}$ from (6.3.5) and $\gamma_{2}=(a b c)^{2}(b c)^{-2}$ (see 5.3), transforms into

$$
\begin{equation*}
a b c a b c a=b^{2} c \tag{6.3.6}
\end{equation*}
$$

6.4. Let $u=c^{-1}$ and $v=b^{-1}$ abc. From (6.3.5) it follows that $b=v^{2}$, and then $c=u^{-1}$ and $a=v^{3} u v^{-2}$, i.e., u and v generate the group. Relations (6.3.1) and (6.3.6) in u, v are

$$
\begin{gather*}
u v^{3} u=v^{2} u v^{2}, \quad \text { and } \tag{6.4.1}\\
u v^{5} u=v^{2} \tag{6.4.2}
\end{gather*}
$$

Given (6.4.2), the first relation is equivalent to either

$$
\begin{gather*}
v^{2} u^{2} v^{2}=u, \quad \text { or } \\
u^{3} v^{7}=1
\end{gather*}
$$

(Just represent (6.4.1) as $v^{3}=\underline{u^{-1} v^{2}} \cdot u \cdot \underline{v^{2} u^{-1}}$ and replace one or both underlined expressions using (6.4.2).) Prove that these relations imply (6.3.2-4), which in u, v are as follows:

$$
\begin{gathered}
\frac{v^{-2} u v^{3}}{2}=u^{-1} \cdot \underline{v^{3} u v^{-2}} \cdot u \\
u^{-1} \cdot \frac{v^{3} u v^{-2}}{2} \cdot u v^{2} u^{-1} \cdot \frac{v^{3} u v^{-2}}{} \cdot u v^{-2}=v^{2} u^{-1} \cdot \underline{v}^{3} u v^{-2} \cdot u \\
u^{-1} v^{5} \cdot\left(v^{-2} u v^{-2}\right) \cdot u^{-1} v^{3} u v^{-2}=\underline{v^{3} u v^{-2}} \cdot u^{-1} v^{3} u v^{-2} u^{-1} .
\end{gathered}
$$

After replacing the underlined expressions using (6.4.1) and the expression in parentheses using ($6.4 .1^{\prime}$), the first relation converts to $\left[u^{3}, v^{2}\right]=1$, which follows from (6.4.1"), the third one is equivalent to (6.4.2), and the second one gives $u^{-2} \cdot v^{2} u^{2} \cdot v^{2} u^{-2} v^{2} u^{2} v^{-2}=v^{2} u^{-2} \cdot v^{2} u^{2}$; the substitution $v^{2} u^{2}=u v^{-2}$ from (6.4.1 1^{\prime}) transforms this to $\left[u^{3}, v^{2}\right]=1$, which follows from (6.4.1").

One can easily see that, given (6.4.1 ${ }^{\prime \prime}$), relation (6.4.2) is equivalent to $\left(u v^{-2}\right)^{2}=u^{3}$. Thus, replacing v with v^{-1}, one gets the second representation from 3.3.1, which shows that the group is infinite, as it factors through $\operatorname{Gr}(2,3,7)$.
6.5. Other irreducible quintics. If a curve has a triple or a quadruple singular point, its fundamental group can be found using Theorem 5.2 or Corollary 4.6.2 respectively. All these groups are abelian. Thus, it suffices to only consider curves of type $C_{5}\left(\sum a_{p} A_{p}\right)$. From Nori's theorem $[\mathrm{N}]$ it follows that the group of such a curve is abelian if $2 a_{1}+\sum_{p>1}(2 p+2) a_{p}<25$. All other curves, not covered by Nori's theorem, are adjacent to one of those considered in 6.5.1-4 below; hence, their groups are abelian as well. (The fact that the curves are adjacent follows from the way they are constructed in [D2].)
6.5.1. $C_{5}\left(A_{12}\right)$ and $C_{5}\left(A_{8} \sqcup A_{4}\right)$. These curves have abelian fundamental groups due to Proposition 3.2.
6.5.2. $C_{5}\left(2 A_{4} \cup A_{2} \cup A_{1}\right)$. The curve can be obtained by a perturbation of $C_{5}\left(3 A_{4}\right)$: the exceptional divisor \bar{E}_{3} in Fig. 6 should not pass through \bar{U} (see Fig. 8). In addition to (6.1.1-8) this gives relations $[b, c]=[b, d]=1$. Then (6.1.1) implies $[a, b]=1$, and we know that a and b generate the group.
6.5.3. $C_{5}\left(A_{6} \sqcup 2 A_{2} \sqcup A_{1}\right)$. The curve is obtained from $C_{5}\left(A_{6} \sqcup 3 A_{2}\right)$ by perturbing \bar{U} in Fig. 7 to a node (see Fig. 9). The additional relation is $a=b$, and (6.3.6) implies then $c=a^{-3}$.

Figure 8
Figure 9
6.5.4. $C_{5}\left(A_{3} \sqcup 4 A_{2}\right), C_{5}\left(A_{4} \sqcup 3 A_{2} \sqcup A_{1}\right)$, and $C_{5}\left(A_{5} \sqcup 3 A_{2}\right)$. All these curves are obtained by perturbing $C_{5}\left(A_{6} \sqcup 3 A_{2}\right)$, see Fig. 10, which shows the perturbation in a small neighborhood B of O. Choose some generators $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ of $\pi_{1}\left(\partial B \backslash \bar{C} \cup \bar{E}_{1}\right)$ so that the inchusion homomorphism be given by $\alpha^{\prime} \mapsto a$, $\beta^{\prime} \mapsto a^{-1} \gamma_{2}=(b c) a(b c)^{-1}$, and $\gamma^{\prime} \mapsto \gamma=b^{-1}$ (see (6.3.5)). Below we consider all the three cases and prove that the additional relations caused by the perturbation make the group abelian.

$A_{6} \sqcup 3 A_{2}$

$A_{3} \sqcup 4 A_{2}$

$A_{4} \sqcup 3 A_{2} \sqcup A_{1}$

$A_{5} \sqcup 3 A_{2}$

Figure 10

The type $C_{5}\left(A_{3} \sqcup 4 A_{2}\right)$. The additional relation $\left[\alpha^{\prime}, \gamma^{\prime}\right]=1$ gives $[a, b]=1$. Then (6.3.1) implies $a=b$, and from (6.3.6) it follows that $c=a^{-3}$, i.e., a generates the group.

The type $C_{5}\left(A_{4} \sqcup 3 A_{2} \cup A_{1}\right)$. The additional relation $\left[\alpha^{\prime}, \beta^{\prime}\right]=1$ gives $\left[a, b c a(b c)^{-1}\right]=1$. From (6.3.6) one has $b c a(b c)^{-1}=\left(b^{-1} a b c\right) a$; hence, a commutes with $b^{-1} a b c$ and, due to (6.3.4), also with b, and the group is abelian (see previous case).

The type $C_{5}\left(A_{5} \sqcup 3 A_{2}\right)$. The additional relation $\alpha^{\prime}=\beta^{\prime}$ implies $\left[\alpha^{\prime}, \beta^{\prime}\right]=1$, and the previous case applies.

References

[AVG] V. I. Arnol'd, A. N. Varchenko, and S. M. Guschn-Zade, Singularities of Differentiable Maps. I, Nauka, Moscow, 1982; II, Nauka, Moscow, 1984. (Russian)
[A1] B. Artal, Les couples de Zariski, J. Algebr. Geom. 3 (1994), 223-247.
[A2] B. Artal, A curve of degree five with non-abelian furdamental group, Preprint (1094).
[CM] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Springer-Verlag, 1957.
[D1] A. Degtyarev, Topology of complex plane projective algebraic curves, Ph.D. thesis, Leningrad State University, 1987. (Russian)
[D2] A. Degtyarev, Isotopy classification of complex plane projective curves of degree 5 , Algebra i Analis 1 (1989), no. 4, 78-101 (Russian); English transl. in Leningrad Math. J 1 (1900), no. 4, 881-904.
[D3] A. Degtyarev, Alexander polynomial of a curve of degree six, Knot theory and Ramif. 3 (1994), no. 4, 439-454.
[De] P. Deligne, Le groupe foudamental du complénnent d'une courbe plane n'ayant que des points doubles ordinates est abélien (d'après W. Fulton), Séminaire Bourbaki 32e amnée 543 (1979-80).
[M] B. G. Moishezon, Stable branch curves and braid monodromies, Lect. Notes Math. 862 (1981), 107-192.
[N] M. V. Nori, Zarishii conjecture and related problems, Ann. Sci. Éc. Norm. Sup., 4 série 16 (1983), 305-344.
[O1] M. Oka, Sonte plante curves whose complement have non-abelian fundamental group, Math. Ann. 218 (1978), 55-65.
[O2] M. Oka, Sympetric plane curves with nodes and cusps, J. Math. Soc. of Japan 44, 375-414.
[S1] I. Shimada, On projective plane curves whose complements have finite non-abelian fundamental groups, Preprint.
[S2] I. Shimada, A note on Zarishi pairs, Preprint.
[vK] E. R. van Kampen, On the fundamental group of an algebraic cume, Amer. J. Math. 55 (1933), 255-260.
[Z1] O. Zariski, On the problem of esistence of algebraic functions of tuo variables possessing a given branch curve, Amer. J. Math. 51 (1929), 305-328.
[Z2] O. Zariski, On the irregularity of cyclic multiple planes, Ann. Math. 32 (1931), 485-511.

Steklov Mathematical Institute
St. Petersburg branch
St. Peterebbuhg 191011, Russia
Current address: Max-Planck-Institut. für Mathematik
53225 Bomm, Germany
E-mail address: degt@mpim-bonn.mpg.de

