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QUINTICS IN Cp 2

WITH NONABELIAN FUNDAMENTAL GROUP

A. DEGTYAREV

ABSTRACT. Tlte fundament.al groups of all the complex plane projeetive quin
tics are list.ed; some new examplcs of CUl'VCS with abelian and nonabelian
fund amental group are cOllstruct.cd.

1. INTRODUCTION

Given an algebraic curve C E Cp2, its fundaluental group IIc is defined
to be 7rl (Cp2 "C). The problein of stuelying this g1'oup was first posed by,
probahly, O. Za1'iski [Zl], allel since then jnst a few results in this direction
have been obtainecl: on one hand, it. is known that IIc is abelian provided
that the singularities of the curve are silnple enollgh (see Deligne [De] and
NOl'i [ND, and, on the ot,her hand, there are a few exanlples of curves with
nonabelian fundalnental group (see, e.g., [Al], [D3], [M], (01], [02], (51],
[82], [Zl], [Z2D. Though, what is known is quite enough to show that the
funclaluental group is an interesting invariant of algebraic curves; e.g., to
lUY kl10wledge it is IIc (l1101'e precisely, the Alexaneler polynolllial, which
is a purely algebraic invariant. of the grollp) that elistingllishes nonisotopic
equisingular irreclucible CUl'ves in a11 known exanlples.

It is clear that the abelinization of IIc depencls only on the cOlllponents
of C: if C = 2: TiCi with Ci il'reducible anel reeluccel anel cleg Ci = di, then
the abelinizatioll is TI (ai) / (2: di(J.i). ThllS, the problem is only illteresting
when Ilc is nonabelian. Tbe 111a.in result of tbe paper is the cOlllplete list
of aU the qUiIltics witb nonabelian funclmllcntal group (see 3.3). The most
interesting eXaIllples are certainly t.lle two irreclucible qllinticsj for one of thenl
IIc is finite, for the other it is infinite. (The fundrunental group of a quintic
with thc singular set A ü U 3Az was independently calculated by B. Artal in
his recent papel' [A2].) As a by-procll1ct of t.hc techniques useel we also obtain
two new series of exal11ples of curves with cont1'ollable fUlldaluental groups:
one series consists of CUl'ves with 'deep' singulaJ:itics whose group is abelian
(see 3.2), the other one prnduces new curves with nonabelian (and sOluetimes
fini te) group (see 3.1).

Typeset by AMS-TEX
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2 A. DEGTYAREV

The principal tool llsecl in the papel' is a slight 111odificat.ion of well-known
van Kanlpen 's lnethoel (see §4), which allows to overCOll1e the standard elifficul
ty with the 'global' braiel 111onoeln:HllY when the curve has eleep singularities.
It is useel to prove Theoreills 3.1 anel 3.2 (see §5) and to find the groups of all
the irl'eclucible curvcs (see §6). Thc calculation for reelucible curves (which is
absolutely sinülar and even easier, hut involves too luallY curves to consider)
can be faund in [D1]; det.ails will appeal' elsewhere.

I would like to express IUY gratituele to O. Viro, who inspired this work,
anel V. I(harlamov for his helpfnl l'eillarks. I aln also thallkful to the Max
Planck-Inst.itut für Mat.hernatik: but for it.s hospitality, these results would
probably nevel' be corllpleteel anel publishecl.

2. NOTATION

2.1 Group notation.

2.1.1. Given a group C, clenote by l(G anel lCG its first anel seconcl COIU
mutants respectively: ](G = [G, C] allel ]CG = ]((](G).

2.1.2. Given (L, b E C, let [a, b] = a- 1 b-1 ab.

2.1.3. SOllle standard groups:

- p]' is the free gronp of rank p;

- T]J,fj is the funelaruent.al grollp of a t.oric link of type (p, q): if p = 2, then
TZ ,2r = (a,b I (ab)" = (Im)") allel TZ ,Zl'+l = (a,b I (ab)"a = b(ab)r); if
g.c.el.(p,q) = 1, t.hen T]J,IJ = (a,b IaJl = 1//);

- B p is the braiel grollp Oll ]J st.rings:

B p = (al" .t1p -l I [t1 i,a]] = 1 for li - jl > 1, ai t1 i+l t1 i = Gi+l Gi t1i+l)j

in particular, Ba = TZ,:l;

- G(T) anel G]J(T), where T E Z[t] is an integral polynornial, are the ex
tensions

{I} ~ Z[t]/T ~ G(T) ~ Z ~ {l} anel

{I} ---4 Z,,[t}/T ---4 G,,(T) ---4 Z ---4 {I},

whel'e the conjugation action of the generator of the quotient Z on the
kernel is the luultiplication by tj

- we use SOUle notations frolll [CM], attaching GI' to theln in order to avoid
confllsion. ThllS,

Gr(p, 'l,"') = (Cl', (i" I (\'1' = ßI/ = ,1' = aß, = 1),
Gr(p, 'l, T) = (0', (i" j O"J = ßIJ = ,'- = aß,),
Gr((p,qIT)) = (O',ß I (\'Jl = fi(J = I, (aß)r = (ßar), (r E Z).
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The last notation is also used für l' = (2 k + 1)/ 2 E ~Z; in this case
the last relation reads (o'ß)k 0' = {-J( nß)k, antI it is shown in reM] that
Gr((p,p 1(2k + 1)/2)) = Gr((2,p 12k + 1)).

2.2. Other notation.

2.1.1. vVe use Arnol'd's notat.ion for the types of singular points (see (AVG]).
In particular, All dcnotes a singlliarity given locally by x 2 + yp+l = O. A set
of singularities is clcnoted like this: 5A 1 U 2A2 U ...

2.2.2. A curve is said to be 0/ tY]Je aGp U bCg U . .. if it has a irreducible
components of degree p, b irreducible conlponents of clegree fJ, etc.

2.2.3. Cd(L:), wherc L: is a. list. of singularities, denotes an irreducible curve
of degree d whose set of singular points is 2:. (If cl ~ 5, such a curve is unique
up to rigid isotopy.)

2.2.4. The lllutual position of an irreducible curve C anel a Ene L is denoted
by a list. {... } whose eleluellt.s correspond to the illtersect.ioll points of L
anel C:

xd - L llleets G with Illllitiplieity d at a nonsingular point of C;
Ap - L intersects C transversally at. a singular point of C of type All j

A; - L is tangent. t.o CI at. a singular point of C of type All'

Rernark. The not.ion of transversal intersection and tangency für the types All

is obvious; the tangency is always assluned to have the slnallest possible nutl
tiplicity.

3. IvlAIN RESULTS

3.1. Proposition. Given fOlll' integel's 1), l' ?: 0 m](l (L, b > 0 such tlJat ap <
b(2T + 1), tllere cxists an il'Hxlncible CUl'VC C of dCg'l'ee 2b(2'1' + 1) - ap Witll
the [undanlent[l] 13'1'011))

This grou)) is abe1iml only iE,,. = 0 or]J = 1; otllerwise, it is finite only iEp = 2
01' (p, r) = (3,1), (3,2), (4,1), 01' (5,1).

3.2. Proposition. JE C is an irreducible curve oi an odd degree 2k + 1
witll a singular ))oint adjacent to tlle sClni(lUflsihon]ogeneotls singularity of

type (k,4"~)J tllen 7rl (Cp 2 '" C) is ahelian.

3.3. Quintics with nonabelian fundanlental group. The following is
the COlll))lete list of c0111plcx pl[lJle projective (ltlintics whose [unda,nlental
group rr is nOllaheliall:
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C4(A3 U A2 )

C4 (A{d

C4 (As )

C4 (Eß )

3.3.1 Irreducible quintics.

Cs(3A4 ): TI = (a,b Ib = al/i a, a2 = b2(L31J2):

- TI/!(II = Zs;
- !(II/!('Il = Z2[t]j(t4 + t3 + t2 + t + 1);
- !('II = Z2 X Z2 is a central subgroup of IIj
- ordIT = 320.

Cs(AG U 3A2 ): IT = (u,v 11L = v2 u 2v 2
, v 2 = 1LV

5
1l)

= (71, V 71
3 = v7 = (uv 2 ?):

II/u3 = Gr(2, 3,7) is infinite.

3.3.2 The quintics of type C4 U Cl (see 2.2.4).

C4 (3A 2 ) U {x2, x2}: II is given below
U { x 2, x 1, x 1} 01' {A;, x 1}: II = B 3

U otherwise: II = G3 (t + 1)

C4 (2A2 U At} U {x4}: TI = B 4

U {x2, x2}: TI = Ba

C4 (2A2 ) U {x4} or {x2, x2}: II = Ba

C4 (A4 U A2 ) u {X 3, x 1} : TI = Z x Gr (2, 3, 5)
U {A~}: II = B 3

U {A2 , x2}: rr = Gs(t + 1)

U {A2 , x2}: IT = B 3

U {A H, x2}: 11 = B 3

U { X 4} 01' {x 2, x 2} ; rr = B3

U { x4} : TI = Ta,4

U {x2, x2}: rr = B.l

The fundaluental group of a curve of type C4 (3A 2 ) U {x2, x2} is

3.3.3. The quintics of type Ca UC'2. Thc only such quintic with nonabelian
fUll(hl.1nental group has thc cuhic cOlnponent. of type C3 (A2 ) which intersects
the other cOlnponent (the (lUaclric) at two point.s with 111ultiplicity 3 at each.
The group is 11 = (a, b I [a:\, b] = 1, a1J2 = lw.2 ), and one has:

- ITjI(11 = Z;
- !(II is the quaternion gToup (i,j I i 2 = j2 = (ij)2), and the conjugation

by the generator of Il/!(IT acts via i 1--4 j, j 1--4 ij;
- !(TI/!('TI = Z2[t]/(t 2 + t + 1);
- !('II = Z2 is a cent.ral subgrollp of n.
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3.3.4. The quintics of type C;~ U 2C\. The position of each of the linear
cOluponents in l'espect to the cubic is clenoted using 2.2.4. If the two linear
cOlllponents intersect each other at Cl. point in the cubic, the corresponding
eleluents in their lists are unclerlinec1.

C3 (A 2 ) u {x3} U {x2, Xl}: II is given below

C3 ( A2 ) u {A~} u { X 3} : rr = Tz, 6

C3(Az) U {x3} U {A:l'.d}: TI = TZ ,4

C3 (Az) U {x3} U {.d, xl, xl}: rr = z x B 3

C3 (Az) U {x3} U {A:l 1 Xl}: II = Z X Ba

C3 (A2 ) U {x3} U{xl, xl, Xl}: II = Z X B 3

C3 (Az) U { X 2, xl} U { X 2) ..d} : rr = Z x B3

C3(A2 ) U {Az,..d} U {x2,..u}: TI = G(t2 -1)
C3(A 1 ) U {x3} U {x3}: TI = G(t3 -1)
C3 (A1 ) U {x3} U {x2,.d}: II = G(t Z

- 1)
C3 (A 1 ) U {x2,..u} U {x2, -d}: II = G(tZ

- 1)

The func1atllental gronp of a curve of type C:~ (A:l) U { x 3} U { x 2, xl} is

II = (a, h, c I acu = cac, [h) cl = 1, (ah)2 = (ha?)

3.3.5. The quintics of type 2C2 U Cl'

- the two quaclrics have an intersect.iol1 point uf llluitiplicity 4. If the lineal'
cOlllponellt is their conUllon tangent at this point, then rr = F2 ; other
wise, II = Tz ,4 j

- the two quac1rics tonch each othcr at two points. If the linear component
passes through these two points, thell rr = Fz; otherwise, II = TZ,4;

- the two quadrics have a COllllllOll point of nUlltiplicity 3, anc1 the linear
COlllpOllellt, is their conunon tangent at this point. rr = z x B 3 •

3.3.6. The quintics of type C2 U 3C1 •

The three linear cOInponent,$ have a COlll111011 point.

- if two of theIn are tangent t.o the quadric, then
rr = (a, h, c I [a, h] = (a, c- 1 hc] = I, (bC)2 = (cb)2);

- otherwise, 11 = Il X F',l.

The three linear cOInponent.s do not have a conlnlon point, anel two of them
are tangent to the quaelric.

- if the thirel line is also a. tangent., t.hen
rr = (a, b, c I (ab? = ('Ja?, (ac? = (ca)2, [b, c] = 1);

- if the third Elle pa....:.;scs t.hrollgh t.he tangency point.s of the first t.wo, then
rr = Z x Fz;

- otherwise, 11 = Z X T'2,4.
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3.3.7. The quintics of type 5C'1. The fllnclal11ental group clepenels on the
singular points of lllUltiplicit.y greater than 2:

- if there is a 5-ple point, then TI = F4 ;

- if therc is a quadruple point, then rr = z x F3 ;

- if there are two tripIe points , then TI = F2 X F2 j
- if there is only one tripie point, t.hen TI = Z x Z X F2 .

4. VAN !(AMPEN'S METHon

Below wc hrive a clescript.ion of Cl. slight 111oclification of wcll-known van !(am
pen's l11ethocl (see [vK]). The principal difference fronl thc ela.ssical version is
that we da not a.SSlune the projection gencricj its center l11ay belang to the
curve a.nd even be one of it.s singular point.s.

4.1. General idea. Let C E Cp2 be an algebraic curve. Pick a point 0 E
Cp2 anel a Ene Lu through O. COllsider the c{lJ)ol1ical projection pr: Cp2 "

o -t Cp l anc1 pick a generic fiber L of pr. Then van !(alnpen's 111ethod gives
a representation of the func!rl.nlellt.al J;roup of Cp2 " C which consists of:

(4.1.1) one generator (l'i for each interseet.ion point. Si E C n Lother than 0;
(4.1.2) one generator Ij for each singular fibel' Lj of pr (see 4.2) other than La;
(4.1.3) relat.ions 'Yi10'i'Yj = r1l.jO'j, where '(nj: (0'1"") -t (0'11".) is the

brai cl monOclr01l1Y along 'Yj (see 4.3);
(4.1.4) one relat.ion '"fj = 1 for each singular fiber L j, j ~ 1, which is

not. a. cOlnponent. of Cj here 7j = 'Yj'Wj for a certain word 'l.l)j in
al, . .. (see 4.5);

(4.1.5) relat.ion 0'] ••. 11 ... = 1, present. if Lu is not. a cOlllponent of C.

4.2. Singular fibers and generators. A fiber L of pr is calleel ~,.i1Lg1Llar

(in respect to C) if #(L n C) =1= deg prc. Thus, L is singular if it either is
a cOlllponent of C, 01' is tangent to C, or int.ersect.s C at a singular point
other than 0 , 01' is tangent. t.o a branch of C at 0 (i.e., the proper transfonns
of L anel C in the blow-up of Cp2 at 0 Ineet at a point of the exeeptional
divisor). Let LI, . .. ,Lq be all Ule singular fibers other th~n Lu. Pick some
SllHtll disjoint. clnsed disks d j C Cp] ahout. pr Lj and let. d j = pr-1 d j U O.
Fix another Ene 1\1 ~ 0 elose t.o Lu- (More precisely, we let. M = M(l),
where 1\1(1) is a pert.urbat.ion of Lo = 1\1(0) so slunll that. for each t E (0,1]
the line 1\;J(t) 111eets Cu Lu t.ransversa11y and dnes not int.ersect C in Ualj.)
Let S = L n 1\1. Choose CL SystCIll of silllpie elisjoint (cxeept S) paths a j

eonneeting S ancl pdj n _~;J und let 'Y j be t.he loop whieh goes along a j, then
along the circle adj n 1\1 in the posit.ive elireetinn, anel tllen eOlnes back to S
along ajl. \~Te assnUle t.haJ, Gj are chosen so t.hat 1'1 ... 'Y1j is hOlllotopic to a
large circle in 1\1 surroundillg a11 t.he 1\1 n L j , j ~ 1. Then 'Yl,' .. "q fonn a
standard silllple basis of /T] (1\1 " U">':1l Lj, S).

Jr
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RemfLrk. Note thnt, unlike t.he classical construction, ,j surrounds not on
ly L j, but also the branches of C at 0 tangent to L j.' Hence, in general,j may not be contractible in Cp2 " C.

The generators 0'1, ... O'p are constructed in a siInilar 111anner, as a standard
siInple basis of trI (1\1 " 0 UUSi, S), where SI, ... ,SI! are all the intersection
points Ln C other than O.

4.3. Braid lllonodroluy. Let s: I ---+ Y" be a path in Y" = Cp2 "CUUj~O L j,

and let L' anel L" be the fibers of pr t.hrough 8(0) anel s(l) respective
ly. The brnid rnonotlrorny along 8 (relat.ive to C) is the hOlueolllorphism
m,,: (L'; 0, s(O), C n L') ---+ (L"; 0,8(1), C n L"), defined up to relative homo..
topy, constrl1cted 35 follows: Consider t.he fibl'ation s·pr: (s·Y,s·C) ---+ I. It
is t.rivial. Moreover, its res tricbon t.o .s" C is trivializecl (as it.s fiber is discrete),
and this t.rivialization cxt.ends t,o s·}"'", which gives a fibcrwise honleolllorphisill
of s·Y ta the cylinder L' x I. By definition, rn.'1 is t.he COlllposition of the in
clusion of the base aver 0 anel pl'ojection to the hase aver 1, which is L".

Since 'Ins is defined up to relative hOlllOt.Opy, it ineluces a weIl definecl iso..
Illorphisln (also denoted by rH.,) trI (L' " 0 U C, 8(0) ---+ tr] (L" " 0 U C, s(1».

To sinlplify the notation, denote 'In j = nt'Yj' Froll1 thc SeITe exact sequence
of the fihration prly it inuuediately follows that tr] (Y, S) is generated by
0'1 , ... , 0' J1' 11 , ... "'1' anel t.he defining relations are (4.1.3).

Considcr now a. sl11a11 allalytical branch B nt a point of a singular fiber Lj
different fronl O. Dur uext. goal is to express the loop aB in ten11S of the
standard generators. ASS;]Ille that the disk clj (see 4.2) is so sIllall that the
l'cstl'iction of pr t.o B n dj is proper Hlld,.3t.ll the fibcrs aver dj " pr Lj are
transversal to B. Thell, givell a, path in d j , one can obviously spea.k about
the braicl 1110nodnnllY in rcspcct to Cu B. Asslll11e for a 1110111ent that the base
fi bel' L is in 8flj. (Aftenvards we cau clrag it back along Cfj] and trallslate

everything via the l~'aid nl011odrcnny.) Let {PI"'" Pr} = B n L. Denote
by ß' the loop B n 8d j start.ing at P 1 • Pick a pat.h w in L connecting Sand PI
and disjoint. fronl C, allel let ß = w . f-J' . w- I .

4.3.1. Proposition. One hns f-J = ,}w, wllere'l" = #(B n L) fUld w is tlle

word in 0'1, ... ,0'1' cOl'responding tn tllC lon}) rnjw . w -I .

Proof. Thc statenlent. is obviollS if r = 1: thc 'square' drawn by w when it
is dragged along I j gives a h()}11otapy ,j '" W . ß' . 111jW -1. In the general
case, asSlll11e that the points Pk a.rc ordered so that rn j induces the cydic
pernnltation (p], ... , Pk), auel dcnote by ßk, k = 1, ... ,1', the loop which
goes fronl S to Pk along 1nY -} w, then goes alollg B n8l7j to Pk+ I, and comes

back to S alollg 171.JW- I . ('Ve let Pr+1 = PI') Then silllilar arguments show
that ,j '" fh for all k. On t.he othcr hand, f-J I ... ß,· = ß .w . 'Injw- 1, and the
result fo11ows. 0
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4.4. Patehing Lu (relation (4.1. 5) ). It is deal' tha.t patching Lu ads to the
representation a. relatioll tU = 1, whel'e tU is CL SUHtllloop in M around L onM.
On the other hand, in 7f} CA1 " ULi) one has ,;;-} = 0'1 ... etptl ... tq, where
O'i are SOUle appropriate lonps surrounding tbe iuterseet,ion points Mn C, and
rotating ],,1 about S to L shows tlw.t 0'1 .•. 0'" = 0'1 ..• 0'1" This gives (4.1.5).

4.5. Patching the singular fibers (relations (4.1.4)). Patching a fiber L J'

adds a relation 7j = 1, where 7j is a ~nnallloop in Y about Lj. Ta construct
such a loop, choose auothcr Eue ],,1' , which intersects L j 'far' from C (luore
prccisely, we2:equire that Al' n (lj should not. iEtersect C), and let 'Yj be the
loop 1v/' n Belj, connect.cd t.o a. point in A1 n DeZj along a fiber and t.hen to S
along (Ij. Proposition 4.3.1 gives 1j == ,j1lJj, where 1lJ j is a word in 0'), ... , Q'p,

which can be easily found llsing t.lle loeal l1l0110dronlY abont L j.

4.6. Birational transforillations. Let Cp 2 t- )( !Ä. Cp 2 bc abirational
transfonllation of Cp2. (Here p a.nel p are two sequences of blow-ups.) Con
sieler a curve C in tbc first. copy of Cp2 anel denote by C its proper transfonn
in the second copy. Let EI. (resp. EI) be t.be projcctions to t,he first (resp.
seeond) copy of Cp2 of the cxcep t,ioual divisors of 75 (resp. p). Then it is deal'
that 7fl (Cp 2 " Cu UEI.) = 7f} (Cp2 " Cu UEd, and, benee, 7f) (Cp 2 " C) can
be obtained fnUn?TI (Cp2" CuU Ei) by adcling t.he rela.tions eorresponcling to
glui ng in all t.he EI.'S. S11ch Cl. relnt. ion ean be chosen in the fonu [abk] == 1 01'
[eibk] = 1, whe1'e bk is a fnuall analyt.ieal branch t.ransversal t.o Ek anel disjoint
fronl C, anel hk is its proper transfonn in the seeond eopy of Cp2. Now, [abd
can be found using Proposit.ion 4.3.1.

y..,Te will use t.he three well-known qnaclratic birational transforulations.
Eaeh of t.henl is dctcnninecl by its thrce fundmnental point.s (01 , O2 , 0 3 ) anel
is elenoted by T (0 1 , O2 , O:~). (Solue of the funclaIuen tal points nlay be in
finitely near; the fact that 0' is infinit.ely near to 0 is denoted by 0 f- 0'.)
The fnndanlcntal points (of hot.h T anel T- l ), exeeptional divisors EI;; and EI,
anel branches bk are shown in Fig. 1-3, whieh also l'cprcsent thc intenuediate
configl1rat.ion appearing in _Y.

4.7. First results. As an inllneeliatc consccluence of the above lllachinery,
one obtains the following:
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I EI I

0 1 +- O2 'bI -' 0 3b3

FIGURE 3. T(OI f- O2 f- O:d

4.6.1. Proposition. Sup]Jose that C lUkCi CL singular point 0 oE llltdtiplici
ty 111, a.lld does not lw.ve linear conlponents tllrouglJ O. TlJen?Tl (Cp 2 " C)
adnJits a representation Wit.11 a,f, 1110St (c1eg C - "-11.) generators.

4.6.2. Corollary. IE an irredllcible cllrve C llas a singula.r point oE l1ltdti
plicity (deg C - 1), t.11cn 7f1 (Cp2 ......... C) is abe1ian.

4.6.3. Proposition. If C 111109 a singlllar point oE llHdtiplicit}' (deg C -1) B.nd
cOllsists oE l' COllljJonents, l' ~ 2, then Ir. (Cp:.! " C) = Z X Fr - 2,

5. CURVES \\'11'11 DEEP SINGU LA IUTIES

In this section we consider a Cllrve C with a singular point of Inultiplicity
(deg C - 2). Thc Inain reslllt.s are Theoreln 5.2, which is proved in 5.4, anel
proof of Propositions 3.1 anel 3.2.

5.1. Classification (see [D2]). Throllghout this section we assurne fixed a
curve C and a singular point. 0 of C of llllllt.iplieit.y (deg C - 2). Let C = cu L,
where C lws no linear c0111ponent.s through 0 anel L is the union of all such
cOll1ponents of C, anel let. LI, ... ,L" be all t.he singular fibers (in respect to C)
of the projection fro111 O. Consieler t.he blow-up of Cp2 at 0 anel denote by E
the exceptional divisor anel by C, L, and Lj the proper transfonns of C, L,
and L j l'espectively.

5.1.1. Defi nition. A pair (p, q) of nonnegat.ive int.egers is called adm.isjible
if either ]J = q 01' t.he s111allcst of ]J, q is even. The red7tcerl t!JlJe of a singu
lar fiber L j is the ael!!lissible pai..: (J)j , qj) defined as follows; ]Jj is the loeal

inte:,section iade:: of C a.nel E at L j n E, anel fjj ~ 0, 1, 01' 1.: ~ 2 if, respective

ly, C intersects L j transversally, is tangent. t.o L j, 01' has a. singular point of
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type Ak-l o~ Lj (see Fig. 4). Note that if Pi > qj, theu C has two brauches

intersecting L j, and oue of t.henl has greater loeal iutersectiou index wi th E j

this branch will be called tbc princip{},[ brlLnch of C at Li' The JOTm,ulfL of C is
t.he set {(Pj, qi)} of t.he redllced t.ypes of 3011 t.he singular fibers enriched with
the following two additional structnres:

(1) if L j is CL COUlPonent of C, it.s reduced type is nu\.rkeel;
(2) if all thc q/s are even, then the types (Pi, qj) with ]Jj > f]i split into

two classes 8 1 , 8 2 in the follnwing way: uneler the hypotheses, C
consists of two cOlllponents CI, C2, auel we say that (p j, f]j) E 8 r iff
thc priucipal brallch at Lj is in C,.. (If there is qj oelel, we let 8 2 = 12'.)

E __t--
I

.;-+- }e
,...r:-

:L j

p=q=O

p=q=l

I

--+--(,
p = 0, IJ = 1

p > IJ = 21.~ > 0

11 0 E = T) - 1.,

I'.! 0 E = k

fJ =0, q ~ 2

,

~---~rAp-l,
1
I,

]J=q~2

Co E = TJ

t-....'----;"I

p=l , (}=O

IJ > P = 2k >°
CoE =p

FIGURE 4

5.1.2. Proposition (see [D2]). Tlle pair (Gf, 0) is detennined by its [or
nulla up t0 rigi cl iso topJ' (i. e., iso topy throlJgll algebraie curves wi tlJ dis tin
guislled singular ]Joint). Furtlu:nnore, R,ny abstract fonnula (i.e., a finite
set {(p j , qj )} of adnlissible pairs cnriehed wi tJl tlle above addi tiona1 s tru c

t ures) wi th L qj = 2L jJj + 2 is realized by an algehrruc curve of degree
~ Pi + 2 + {Tltllnber of Inarked pairs}; t,his clIrve is irredllcihle iff there is no
Inarked pairs etlHl tllere is at lea.st Olle pair (Pi, ljj) witll qj odd.

5.2. Theoreul. Del10te by a tl](~ aut()j1l0rpllisll1 of (0'1,0'2) w]lic11 takes 0'1

to 0'1 0'20'~1 ru](10'2 to 0'1. Given a curve C wit]l Cl singular ]Joint 0 oE lllUlti
plicity (deg C - 2), tlle fUllcliUllentCl1 grolI]J 1rl (Cp 2 " C) (l,cllllits the following
representation:

(1) there al"e generators {j, j = 1, ... l q, corresponcling to tlle singular
fi hers L j (or jj[Jjrs (1) j , qj ) ), ancl two 1110re generators 0' 1, 0'2;

(2) there is relation erl0'2{] ... {q = 1;
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(3) eadl nlarked pair (J1j,fjj) gives two relations C\'i = a(lj-2p;(\'i, i = 1,2;

(4) eac11 llolllnarkeel pair (Pj, (jj) gives Olle of tlle following relations:

(a) pj = f]j = 2k: Tj = (0'1(\'2)k j

P"(h) P j = qj = 2I.~ + 1; a] = Q":l, f j = (\'] J ;

(c) fj j > Pj = 2k : Q" i = a /Jj -lJj 0' i, i = 1, 2, f j = (Cl' 1 0'2) k j

(cl) }}. > (I' - ')1... (0' o)Jj-qj] -1 "Y" - O'q;-P;(0'10'2)Pi- k
J 1) - .... ". r, ,"I -, I} - lJ ,

wllere (Pj, fjj) E ß r anel s = 3 - r.

This theorenl is provecl in 5.4.

5.3. The loeal 1l1ollodrolllY. Fix a singular fiber L j of type (]Jj,fjj) ancl
assluue that the base fiber L is in 3dj (see the notation in §4). Let 0'1, 0'2

be the two generators of 7f 1(L " C u 0, 5); if ]'j > fjj, we assluue that 0' 1

corresponcls to the principal branch. Keeping in ulind other applicatioris, let
us also consider several brauches BI" .. , Bk, which n1eet Lj transversally 'far'
frolu C, NI, aucll\lI' (i. e. , Bi n (lj clnes no t iu tersect these curves), and COIUplete
0'1, 0'2 to a sin1ple basis nl, 0'2 , ß1 , ... ,fh of 71'" 1 (L " (C U 0 U UBi), 5) (see
Fig. 5, where 5' = 1\1' n Land Pi = Bj n L). Let p = ß1 ... ß~·.

W W W

~

~

} 51 ,2

I

}Pi
I

}Pi ': }pI
I I
I I

• I,
I I

\ I I
\

~ .. ~

" .. " ~

... _--
52

FIGURE 5

Consielering_luoelel eXaIuples, one can easily finel the braid luonoelroluy m j

along rj = 3d j anel the word Wj (see 4.5). The results are listed below,
where we give tbe 1110110elr<:nUY operator rn.j, the word Wj = nl.jW . w- 1 , and
an equa.tion of t.he ulodel cnrve in an affine coordinate systen1 Ce, y) in which
L j , L, allel 111' have eqnations :/: = 0, :1: = fand y = 0 respectively, 0 < f ~ 1,
allel dj is t.he disk jJ;1 < E.

5.3.1. The ease Pj = f]j. The 1l1ode1 Cllrve is :I;I'i y'l. = 1. Tlle points SI, 52
are rotating tl1rOllgh -1'j71'" abnTl t 5'. TlllJs, 1Hj = li lJ; , whcre Ei is the operator
correspollding' to tlle rotation throngll -71'":

r -1v: 0'1 I---t P 0"2 p,
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Pi -k-l )
. (0'1 . 01 ül .. - .. li l 0'1 -

-] -] -]
0'2 1---7 P 0'2 {Ja'] {J 0'21',

ßi 1---7 p-10';-]pßiP- 1a2P,

1 -1 {' 1'1,·-1anc W j = 0']' (/0'1· ... · (I] 0'1-

5.3.2. The case pj > qj = 2k. Tllc lnodel is (xky -1)(:c Jli -ky -1) = O. Tlle
poin ts S], S2 are rotating' abotl t S' throlIgll 2( k - Pj)1I'" aJ] cl - 2k1l'" respectively.
Thus, 111j = 5~Jj -k 8~, wllere tlj is tlle opera.tor corresponding to rotating Si
tllTougiJ -211'" (obviously [1>1,52 ] = 1):

{' -) -]
v 1 : 0' 1 1---+ P 0'2 0'] 0'2 p,

-] -] -] -1 -1
0'2 1---7 P 0'2 0'1 0'2P0'2P 0'2 0'10'2P,

ß -1 -] -1 (J -] -1
i 1---7 P 0'2 0'1 0'2PPiP 0'2 0'1 Cfz{J,

0' ] 1---7 0' 1 ,

0'2 1---7 {J-I Cf2 P1

(J -I -] ß -1
Pi 1---7 l' 0'2 P i{J O''/.P,

= 0' 1 . (0'2 . 02 (X2 ..... 0; -10'2) . 0' ~ 1

5.3.3. The case l)j > ]1j = 2k. Tllc 1110del Cllrve is (:l;k y - 1)Z = yqj -J'i_

Tlle snudl disk cont,ainillg SI allel 52 is traJ1s1at,ed along the large circ1e
tllrough -2k1l'" [111(1 rotates alJoll t its center tiJrougll (qj - 2pj}rr. JE 81 Rnd 82

correspond to tlle rotation tllrollgiJ -7r and translating tiJrough -27r respec
tively, tllen [li l , 52) = 1 and n1j = ll;l'i -fJi Ii~:

81 : 0') 1---7 0'2,
-]

O''J. 1---7 0'2 0' 1 0'2 ,

ßi 1---+ {1j,
{' -I(/z: 0'1 1---+ P O"lP,

-I
O''/. 1---7 P 0'2 p,

ßi 1---7 p-10'210'~1 pßiP- 10'10''1.P,

allel 10;1 = 0'](X2 - 52 (0']0'2) - .... 5;-1(0'10'Z)

5.4. Proof of Theorenl 5.2. The grollp is found by van I(alupen 's Inethod,
using the resnlts of 5.3, where we let ßl = ... = ßk = P = 1. This gives the
generators 11, . - . "q and (l' 1,0'2 (the two latters generate the group of a fixed
generie fiber L) and t.he hrnid Illonodnnny 'In j = a'}j -2"i , which provides for
relations 5.2 (2). (Note that 5.3 gives the Inonodrolny in sOlne loca.l generators
O'~ ,O'~ of the grOllP of a genel'ic fiber L' elose t.o L j _ However, (}'~, Q'~ differ
frolu 0'1,0'2 by the act.ion of thc hraid grnup B Z1 i.e., by apower of a. Hence,
the nl0nodroluy has t.he s'l.lne fOlTn in (}' 1 , 0'2 _)

Patehing a 110nlllarked fibel' L.i gives an additional relation Ij = 'W;1 ,whieh
in SOlne loeal generat.ors 0"1' O'~ has t.he fonn (cf. 5.2 (4»:

(a) ]) ' - l). - ~ ,.. "V. - (n.,1 0,1 )k.( J - J - ~ h.. • I J - '.' 1 2 ,

(h) ]Jj = qj = 2k + 1: Ij = 0"1 (0'; O'~)kj
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(C) fJj > Pi = 2k: Ij = (()'~ O'~)k;

(cl) Pi > qj = 2k: Ij = O'~O';I/j-]Jj+l(O'~O';)l'j-k-l.

COlnbining this with ,;1 ni'i = (JI/j -21'j ni, i = 1,2, after silnplification one
gets 5.2 (4) writt.cn in O'~, (\'~. Now it sllffices to notice that the resulting nor
mal subgrollp i8 a-invariant, ancl hence t.hese relations cau be written in 0'1, Q'2.

The only exception is ca..~e (cl), Pj > '1;' when the CUl've has two asynunetric
branches at L j ; in this case the relat.ions a.re only a 2 -invariant and, hence,
one should take into acconnt the penulltation lllonodrollly. 0

5.5. Silnpliflcation of the group. COlubining like relations provided by
Theorenl 5.2, one arrives to a represellt.atioll which ha.o;; one 01' several relat.ions
fronl the following list.:

(5.5.1)

(5.5.2)

(5.5.3)

(5.5.4)

(5.5.5)

(5.5.6)

(5.5.7)

O"]J - O"]J
1 - 2'

(0'10'2)"0'1 = 0'2(0'10'2)",

n ( )W0'1 = 0'10'2 ,

[ni, 0'2] = [0'1,0'1] = 1,

(0'10'2)'" = (0'2(\'IY,
tt 11 ( ) l/!0'10'2= 0'10'2 ,

-1 ~.. I?Ij O'ili=(JJO'i 1 1.= ,:...

p ~ 0,

q ~ 0,

2w - u = cleg C > 0,

p, (J ~ 0,

'1' ;? 0,

2w - 11, - v = deg C > 0,

More precisely, Olle has:

5.5.8. Proposition. Tl1C fUlldcullcnt;J1 grou}) oE a curve C witll a singular
point oE llHZltiplicity (deg C - 2) 11llB Olle oE tlle following representations:

o = (0'1,0'21 (5.5.1)-(5.5.3) with pi1/. and (21' + 1)110),

0' = (0'1,0"21 (5.5.1),(5.5.2)),

O~ = (0'1,0'2,/11.'. "I.- 1 (5.5.1),(5.5.2),(5.5.7)),

E = (0"1, 0'2 I (5.5.4)-(5.5.6) witll P lu, fJ Iv, alld l' 110),

E' = (0'J,0'2 1(5.5.4),(5.5.5)),

E~ = (a], 0"2,/1, ... ,1'k 1 (5.5.4), (5.5.5), (5.5.7)) 1

Proof. The represent.a.tionH are provided by Theorelll 5.2. Several relations
afljO'i = O'i (see 5.2 (4c)) give (JuO'i = O'i, 11. = g.c.d.(nd, which is equivalent
to (5.5.2) if 11 = 2"1' + 1 01' (5.5.5) if 11 = 21'. Silnilarly, several relat.ions
[afi, l:t2] = 1 (see 5.2 (4d)) give [ur, 0'2] = 1, jJ = g.c.cl.(pj). Ir (5.5.2) is present,
(5.5.4) is equivalent to (5.5.1) with ]) = g.c.d.(l), q). Finally, (5.5.3) and (5.5.6)
are obtainecl frolll 5.2 (2) after replacing each ,j with its expressions in 0'1,0'2.
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(If at least one fiber is a cOlllponeut of C I Olle can take it for Lu, anel 5.2 (2)
eloes not appeal'.) Since t.he powers of (\'i appeal' only froI11 5.2 (4b) 01' (4d),
together with the cOlullultativit.y relat.ions, one ean eollect theIn all together
anel, if (5.5.2) is present., replace O''l with 0'1. This also iIllplies the divisibility
conclitians p 11L anel q Iv. The other two elivisibility conelitions are proved as
follows: If 5.2 (4b) is present., then q = 0 in (5.5.2), anel the condition (2q+l)lw
is trivial. Otherwise, since 'll + v is t.he sun1 of (Pj - l]j) aver all the singular
fibers Li with pj ~ qj anel 210 = dege + 'll + V = L:(qi - Pi) + 11 + v, it is
the 8un1 of (qj - ]Jj) aver an the fibers with qi > ]Jj, i.e., thase which give
the relations O'i = a fJi -l

J
j O'i l'esllltillg in (5.5.2) 01' (5.5.5). Hence, the greatest

Ca11U110n divisor of these nnillbers clivides 21/J. 0

Below we list S()lne eleIllcnt.ary pl'operties of the groups obtainecl, assUffi
ing fixed SfJIUe particnlar vall1es of the panunet.ers p, q, '1',. . •. Note, by the
way, that E' anel E obviollsly clo not change nncler a. pennutation of (p, q, r)
(respectively, a siIuultaneons penllut.at.ion of (p, q,"I') and (u, v, w»).

5.5.9. One hAB O~ ~ 0' X Fk. If all the 8j in (5.5.7) are evell, t1lell also

E~ = E' x FI.:; ot11crwise Olle C[lll let 81 = 1 HllrI 8j = 0 for j ~ 2.

P1'oof. The st.a.t.elnent. follows fnHll thc fa.ct t.lw.t. (J is an inner alltolllorphis1l1
of 0' ancl (J2 is an inner ant,olllOl'phis111 of EI. 0

5.5.10. Olle l](1B:

(1) if]J =f:. 0, tllCll I~·O = ](0' = ]( Gr((]J,p 1(2.,. + 1)/2)). III particu1ar, t1le
COll11ll11tant is trivül1 only wllelll' = 1 01' l' = 0, and it is finite only for
t11e va1ues oE (p, 1') 1isted in Tab1e 1;

(2) if]J = 0, tllen 0' = T2 ,2r+l [md ](0 = 1(0' = F2r ;

(3) iEg.c.d.(p,4'1' + 2) = 1, dlen 0' = Z x 1(0';

5.5.11. One 1la...;::

(1) ifp,q,"I' =I=- 0, tllell ](E = 1(E' = ](Gr((p,fJI1')). In pal'ticu1ar, tbe
C01111Jlutallt is trivial on1.v wllell Olle oE tllese lllllnbers is 1, R.nd it is

finite only for the valucs of (p, fJ, 'I') 1isted ill Tah1e 2;
(2) if ',. = 0, t11en !(E = !(E' = F(p-l Hf/-I)' If, hesirIes, g.c.d.(p, q) = 1,

t1lell EI = Z X Tp,fl;

(3) iE l' = q = 0 an d .,. > 1, then !(E = !(E' = Fce;
(4) ifg.c.d.(]l,q) = g.c.d.(]J,r) = g.c.d.(q,r) = 1, tllen E' = Z x JE x !(E'.

IE, besirIes, g.c.d.(w - 1L, W - v) = 1, t11cn E = JE x !(E;

5.5.12. If jJ = q = 2, t11t!n 0' = (;:111+ 1(t + 1) and t1lere are split exact
sequellces

1--+ Z21J+1[t]/(t+ 1) --+ 0 ~ Zm ~ 1,

1-+ Z[t]/{-I'(t+ 1),(t2 -I)} -+ E -+ Z ~ 1.
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TABLE 1

(p,r) ](G ordI(G

(2, 'r) Z2r+l 21' + 1

(3,1) Gr(2, 2, 2) 8

(3,2) Gr(2, 3,5) 120

(4,1) Gr(2, 3,3) 24

(5,1) Gr(2, 3, 5) 120

TADLE 2

(p,q,r) ](G oreI ](G

(2,2,1') Zr T

(2,3,3) Gr(2, 2,2) 8

(2,3,4) Gr(2, 3, 3) 24

(2,3,5) Gr(2, 3,5) 120

Proo/. 5.5.10 and 5.5.11 follow frOlll t.rivial LellUllli 5.5.13 below. 5.5.12 is
proved by a direct. caIculat.ioll. Det.ails are left to the reader. 0

5.5.13. Lenlllla. JE H C G is a centnd slIhgroup sud] tllat tlle projection
H ~ C';/ ](G is 1110no, tluJn ](G = I((G/ H). JE, besides, t11e ilnllge oE H is a
direct slullllland i!l G/ I( G, then G = H x G / H.

5.6 Proof of Proposition 3.1. Thc result follows frOIll 5.5.8 and 5.5.10:
one can chaose for C a curve whose forllnl1a hns a pairs of type (p,O) and
2b pairs of t.ype (0,21' + 1). 0

5.7 Proof of Proposition 3.2. In [D2] it. is shown that t.here is a trans
fOl'lllation T(O. t-- O2 +- 0 3 ) (sec 4.6 allel Fig. 3) whieh takes C to another
curve C with a singular point nf l11ultiplicit.y k. Accorcling to 4.6, 11'"1 (Cp2 " C)
is the quotient. of 11'"1 (Cp2 "C UE) by t,he relat.ion [a;;] = 1, where b, the trans
fonn of an analytical branc.h t.rallsversal t.o E 1 is tangent. to E. The following
three cases are possible:

Ca.'H? 1: deg C = 1.: + 1. In t.bis case 7fl (Cp2 " Cf U E) is abelian due to
Proposition 4.6.3.

Ca.~e 2: deg C = 1.~+2, a.llel C is inftcct.ion t.angent. t.o b. Then the additional
relation is ,rO'l0'20'1 = 1, anel, t.aking int.o account. the relat.ions '1 1

0'i'1 =
aO'i, one obtains (0'10'2nt}0'2(0'10'20'.)-1 = ,12 0'2"·d = a 2

0'2 = CYICY20'1"1 ,

which iluplies 0'10'20'1"1 = 0'2.

Cnse 2: deg C = k + 2, and C int.ersects E transversally at hn E. The ad
ditional relat.ion is ,la2 = I, anel t.here also are relat.ions ,;-1 O'i'l = a-21'ai =
(0:'10'2)-1'0';(0'10'2)1

1 for SOllle 1)): 0, which ill1ply that ,I and, hence, CY2 coru
luute wit.h 0'10'2. Thus, 0'2 also COnU1l1Ites with 0'1. 0

6. IItREDUCIßLE QUINTICS

6.1. The quintics of type C;1(3A4 ). A Cl1rve of t.ype C 5 (3A 4 ) can be ob
tainecl by T( 0 1, O2 , 0 3 ) froll1 a 3-cllspidal (illadric C, see Fig. 6. Thus, its
fuud[uuent.al group is the qllot.icllt of ?Tl (Cp2 " C U E k) by thc relations
[aLk] = 1, k = 1,2,3. Tbe projcct.ion and tbe generators u,h,c,d,'3" are
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shown in Fig. 6 (where ,3 and , are loops in lvI about the singular fibers La
anel EI l'espectively), as weIl as the paths connecting Land Lj. The 'global'
braid nI0nodroiny can easily be seen as aIl the intersection points relnain real.

FIGURE 6

The relations [8b1 ] = 1 and {8hz]= [8b3 ] = 1 give, respectively,

(6.1.1)

(6.1.2)

a1Jc = 1 and

,ded-1b = ,[)-1 de- 1 = 1.

((6.1.2), as weIl a.s all the other relations, is written using (G.1.1).) Patching
the other singular fibers gives

(6.1.3)

(6.1.4)

(6.1.5)

(6.1.6)

(6.1.7)

LI: {b, C(~ = 1,

hede = dhed,

L;,: [c, (e- 1d)2] = 1,

L 4 : [a, c- 1dcd- 1cad) = 1,

(ula- 1e- l ,[ed- 1 carl = e- 1 dcd- 1eade- 1 ded- 1c.

FinaIly, patching Lu gives abed"a = 1. Using (6.1.1), I = b-1de-1d-1

fronl (6.1.2), anel /3 = (abcd)2(e- 1abcd)-Z = rled-lc froln 5.3 (and (6.1.1)
agaill) , this transfonns into

(6.1.8) b = cd.
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6.2. To siIllplify the represent.ation obtaineel, we use (6.1.1) anel (6.1.8) to get
c = b-1a- 1 anel d = ab2

j then (6.1.4) anel (6.1.2), fron1 which we eliminate "
glve

(6.2.1)

(6.2.2)

ab4
(l = b,

[mb = (ab2 a)2 .

Let us prove that these t.wo relat.ions hnply the rest, Le., (6.1.3) and (6.1.5-7).
The first one obviously follows froln (6.1.8). The three others after replacing c
anel d give

[bab, o.b20.] = 1,

[a, bab . a- 1 b-2 a- 1 b- 1 ab2 ] = 1, anel

ab2 . bab· a-lb-2a-lb-lo.b2a[)(L[l'fL = [mb· a-Ib-2a-lb-l(ab2a)(bab).

Now the first relation follows inuneeliately fronl (6.2.2), anel the others, after
replacing the l1nelerlineel expressions with (a!J2 a? anel transposing the two
fac tors in parentheses, tl'anSfOrIll to [a, lJ2 ab-1 ab2 ] = 1 anel [,2 CL b-1 ab2 = 1,
which follow frolll (6.2.1).

Finally, to get the repl'esentatioll announccc1 in §3, we use (6.2.1) to trans
fonn (6.2.2) into balJ = 0.1,2 . a2 . lJ2 a = [w- l h- 2 . (l2 . b-2 a- 1 h, equivalent to

(6.2.3)

A standard calculatiol1 shows that the COIllIl1utant ]( of this group is gen
erateel by a = a 5 anel lii = ai[w-(i+l), i = 0, ... ,4, anel (6.2.1,3) take the
fonn

(6.2.4)

(6.2.5)

fi1525:~54Q = Du,

(liobI? = 0'-1.

Besides, one can apply t.he allt(nnol'phis111 T; x ~ a -1 xa to any relation
in JC In particular, one has (5304)2 = 0'-1, anel t.ogether with (6.2.4,5)
this hnplies [0', bi] = 1. Now (6.2.4) anel T- 1 (6.2.4) ean be rewritten in
the fonn 8;-10'0 = 0'20'30'40' = 51 Ii~ 1, w hieh shows that Da = iir and, hence,
br = const. Dcnote c5r = ß. Obviously, this is a eentral element of the
groupi (6.2.5) iluplies [8i, c5i+d = ß-2 0'-l, anel then the product of (6.2.4)
and T- 2 (6.2.4) gives 80 52 = iilD2(fia540'5:t54)bo810' = (O' 1 O'2 )(ooO'dO' = b2bOßa,
i.e., [Oj, 5i+2 ] = ß- 3 0'-1. Thns, the seconel COUlluutaut is generated by a, ß
anel is central. Finally, substituting fiu fron1 (6.2.4) to the other relations and
using the COU1111utat.ors obtaineel gives a 2 = ß2 = 1.
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6.3. The quintics of type Cs(AG U 3A2 ). Such a cU1've can be obtained
by T(Ol ~ O2 , 0 3 ) frolll a 3-cltspielal qua1'tic C (see Fig. 7, which shows two
real fonns of C: eithe1' two cusps of C 01' the two tangency points of C and E 3

have to be ilnaginary). The pl'ojection, singular fibcrs, branches bio which give
additional relations, anel paths connecting L anel Lj are shown in Fig. 7. (The
paths go along one of the two real parts of A1, which are denoted by 3?1,2.) ,Z
and , are the generators corresponding to L z and E] respectively; the other
generators a, b, c are S(Hne standard loops in L abollt the points (1, b, c shown
in Fig. 7.

M /
/

/
/ • a

tJ /~./.-b'-"--- -
~!_ E:1/ ----'----1.:-,/ c I
L] L L z L:1

FIGURE 7

The singular fibers give tohe following relations:

(6.3.1 )

(6.3.2)

(6.3.3)

(6.3.4)

L] : aha = hah,

L 2 : [a,{bc}l] = 1,

L 3 : cac- l hcac- 1 = hcac- l b,

L 4 : caca = acac,

(6.3.5) 1 )2,h = ,(b- abc = 1,

and patching Lu gives thc relation ahc,2, = 1, which, due to , _ b-1

fronl (6.3.5) and'2 = (a[J(::)2(bc)-2 (see 5.3), t.ransfornls into

(6.3.6)

6.4. Let 11. = c- l anel v = b- l abc. Fronl (6.3.5) it follows that b = v 2 ,

anel then c = 1l-
1 anel (L = v:1uV-2, i.e., 1l anel v generate the group. R,ela

tions (6.3.1) and (6.3.6) in u, v are

(6.4.1)

(6.4.2)

'I 2 2
1LV' '/L = V llV, anel

7/.V
5

U = v 2
.
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Given (6.4.2), the first relation is eCluivalent to eit.her

(6.4.1')

(6.4.1")

V
2

U
2

V
2 = 'lL, 01'

u 3 v 7 = 1.

(Just represent (6.4.1) as v 3 = u- 1v 2 • u . v 2u- 1 and replace one 01' both un
derlined expressions using (6.4.2).) Prove that these relations ilnply (6.3.2-4),
which in u, v are as folIows:

-'2 3 -1 3 -2v 1/.1) = U . V 1/.V • 1l,

u -1 . v 3 'lL V - '2 . ll.'V'2 U -1 . v 3 U V - 2 . 'IL V - 2 = v 2 'll. -1 . v 311.V - 2 . 1L,

'l:t -1 v5 . (v -2 uv -'2) . '/1-1 v:'llV- 2 = 1)3 'lLV -2 . u -1 v 3uv-2u- 1 .

After replacing the unclerlinecl expressions using (6.4.1) anel the expression
in parentheses USillg (G.4.1'), the first relation converts to [1L 3 , v 2

] = 1, which
follows frolll (6.4.1"), the third one is equivalent to (6.4.2), and the second oue
gives 11,-2 . v 2 u 2 . V21l-ZV2U2v-2 = v 2u-2 . V 2 U 2 j t.he subst.it.ution '/12 U 2 = 7LV- 2

frolll (6.4.1') transfonns this to [u:~, v2
] = 1, which follows fronl (6.4.1 11

).

Oue can easily see that, given (6.4.1"), relation (6.4.2) is equivalent to
(uv-2 )2 = 'lL

3
. Thus, replacing v with v-I, aue gets the secoud 1'ep1'esenta

tion frolll 3.3.1, which shows that. t.he gToup is infinite, as it fact.ors through
Gr(2, 3, 7).

6.5. Other irreducible qllintics. If a curve has a tripIe 01' a quaclruple
singular point, it.s fllnd<ullental group can be found using Theorenl 5.2 01'

Corollary 4.6.2 respectively. All t.hese grollps are abelian. Thus, it suffices to
only consicler curves of t.ype C5CE u p A1,). Frolll Nori's t.heo1'elll [N] it follows
that the group of such a Cllrve is ahelian if 2al + 2:1'>1 (2p + 2)ap < 25. All
other curves, not. coverecl hy Nori 's theoreln, are acljacent to one of those
consiclerecl in 6.5.1-4 below; hence, their grollps are abelian as well. (The
fact that the curves are adjacent follows fronl the way they are constructed
in [D2].)

6.5.1. C5 ( A 12) ancl C[) (AB U A4 ). These curves have abelial1 fundalllental
groups due t.o Proposition 3.2.

6.5.2. C5 (2A4 U A2 U Al). Thc curve can bc obtained by aperturbation
of C5 (3A4 ): the exceptionn.l divisor E 3 in Fig. 6 shoulcl not pass through U
(see Fig. 8). In addition to (6.1.1-8) this gives relations [b, c] = [b, cl] = 1.
Then (6.1.1) iInplies [a, b] = 1, and we know that (l and b generate the group.

6.5.3. C5 (A ü U 2A2 U Al). The cnrve is obtained fronl C5 (An U 3A2 ) by
perttll'bing U in Fig. 7 to a Hode (see Fig. D). The additional relation is a = b,
and (6.3.6) ilnplies t.hen c = a-:i

.
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FIGURE 8 FIGURE 9

6.5.4. CS (A3 U4Az), CS (A4 U3Az UAl), and Cs(As U3A2 ). All these curves
are obtained by perturbing Cs(AG U 3A2 ), see Fig. 10, whieh shows the per
turbation in a sIllall neighborhooel B of O. Chaose SOllle generators 0", ß',,'
of 7fl (aB" Cu E d so that tbe inclusion hOlllolllorphislll be givell by 0" I-t a,
ß' I-t a- I

1'Z = (bc)a(bc)-l, anel " I-t , = b- l (see (6.3.5)). Below we eOll
sieler all the three eases and prove that the addi tional relations eaused by the
perturbation nlake the grollp abelian.

i:b U 4A2

FIGURE 10

The type es (A 3 U4A2 ). The aeldi tional relat.ion [(I" l /,') = 1 gives [(l, b] = 1.
Then (6.3.1) iIllplies CL = b, anel frolll (6.3.6) it follows that c = a-3

, l.e.,
a generatcs the grOll}).

The ty])C C5(Aq U 3A2 U Al)' The additional relation [0", ß') = 1 gives
[(I" bca(bc)-l) = 1. Frolll (6.3.6) one has 'Jen( he)-l = (lJ- 1abc)a; henee, a
cOlunultes wit.h b- 1 abc anel, due t.o (6.3.4), also wit.h b, anel the group is
abelian (see previous case).

The type es (A5 U3A2 ). The additional relat.ion 0" = ß' inlplies [0", ß'] = 1,
and the previous ense applies.
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