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1 Introduction.

The main theorem of this paper is the following:
1.1 Theorem. Let P : N — Z be an arithmetic function such that P(n) = x(Ox(nKx))
for some projective 3-fold X with at worst canonical singularities. Then the record (i.e. K%,
x(Ox), the global index R and the basket B of singularities; see [R, section 10]) of X are
uniquely determined by P. a

For canonical 3-folds this arithmetic function corresponds to the plurigenera and for Q-Fano
3-folds to the anti-plurigenera. This theorem shows that the minimal model of X has a unique
record.

In section 3 we recap the relevent definitions and theorems from [F1] and [R, Chapter I1I].
Section 4 contains 2 technical lemmas and section 5 contains the proof of Theorem 1.1. In
section 6 we discuss the practicalities of deducing the record from an arithmetic function P.

The contents of this paper were first presented in my Ph.D. thesis [F2] and follows on from
the work in [F1].
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3 Reid’s exact plurigenera formula.

Throughout this paper we use the notation of [F1] and [R, Chapter IIT] and assume that X
is a projective 3-fold with at worst canonical singularities.

3.1 Definition. Let r > 0, a;, az and a3 be integers and suppose that Z, act on A3 via:

T el
y— €y
z— %z
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where z, y and z are coordinates on A® and ¢ a primitive r*! root of unity. A singularity Q@ € X
is of type L(ay, a2,as3) if (X, Q) is isomorphic to an analytic neighbourhood to (A?,0)/Z,.

3.2 Note. Let 7 denote the least non-negative residue of z € Z modulo r. A singularity @} of
type (a1, az,as) is canonical (respectively terminal) if and only if

Y baixr

(respectively > r) for all b € Z7 (see [R, section 4.11}).
So the terminal cyclic quotient singularities are of type %(1, —1,b) for some r > 0 and
some b coprime to 7.

3.3 Definition. A basket is a list of types 1(1,—1,b) of terminal cyclic quotient 3-fold singu-
larities. A record is a collection

{K°€Q,p, € Z,x € Z,R € N, and a basket B of singularities}

where R is the lowest common multiple of the indexes r of the types in B.

3.4 Definition. For a singularity Q of type 1(1,—1,b) define:

0 ifn=0,1
I(Qan) = "~ b_("'“ﬁ) if n 2 2

This is extended to negative integers via:
I(=n)=-l(n+1)

for all n > 0. This is consistant with Serre duality. For a basket B of singularities define:

i(n) =Y Ig,n)

QeB

forall n € Z.

From [F1, Theorem 2.5, equation (4)] (see also [R, Chapter III]) we have the following:

3.5 Theorem. For any projective 3-fold X with at worst canonical singularities there exists a
basket B of singularities such that

(2n — Dn(n—1)

x(Ox(nKx)) = 197

Ky = (2n— 1)x(Ox) + (n)

for all n € Z.

In the case when X is a canonical 3-fold this formula is Reid’s exact plurigenera formula.
We shall call the above formula the plurigenera formula.
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3.6 Definition. The record corresponding to X is the record

{K%,pe(X),x(Ox), R, B},

where R is the global index of X and B is the basket corresponding to X.
3.7 Note. The types of singularity in B are not necessarily the types of singularity on X. If X
has canonical but nonterminal singularities then the basket will contain extra types corresponding
to these singularities (see [R, section 8.2]).

For example, the weighted projective space X = P(1,23,4) has an isolated terminal
singularity of type %(1,—1,1) and a line of canonical singularities of type %(1,1,0), upon
which there is a canonical singularity of type %(1, 2,3). The basket corresponding to P is:

{1 x %(1,-1,1),2 X %(1,1, 1)}.

3.8 A natural question. The previous theorem gives a formula for calculating x(Ox(nKx))
from a record. Can this process be reversed? ie. can the record be determined by the list
{x(Ox(nKx)) : n = 0,1,...}? Is this record unique? These questions are answered by the
Theorem 1.1.

4 Technical lemmas.
First we need 2 technical lemmas.

4.1 Lemma. Consider a periodic function f : Z — Q with exact period r. Consider the
differenced function 6 f(n) = f(n+ 1) — f(n). Then éf is periodic with exact period r.

Proof. 6f(n+7r)= f(n+r+1)— f(n+7r)=6f(n). So §f is periodic, with period dividing
T

Conversely suppose 8 f is periodic with period s.

f(n) = F(0) + Z 8f(m)

m=0

for n > 0. Thus

n+s—1

flnts)=f0)+ >  6f(m)

m=0
n+s—1

=f(n)+ > b&f(m

m=n

= )+ Y 85(m

m=0

However f(r) = f(0) and so z 6f(m) = 0. Hence £ E 8f(m) = 0and so Z §f(m)=0.
Thus f(n + s) = f(n) for all n > 0. Therefore r = s. "=
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O]

4.2 Lemma. Let B be a basket of isolated terminal 3-fold singularities. Then

81(n) = I(n +3) = 3(n + 2) + 3i(n + 1) — I(n)
for this basket has exact period R, the global period of B.
Proof. Now
_ <~ nbg(rg —nibg)
bi(n)= > o
QesB

has exact period R = lemgep(rg). By Lemma 4.1 §%I(n) has exact period R.

O

5 The proof of Theorem 1.1.

Theorem 1.1 follows immediately from Theorems 5.1 and 5.2 below. The following theorem
and its proof show how to calculate the global index. :
5.1 Theorem. Let P : N — Z be an arithmetic function which corresponds to a list of
{x(Ox(nKx))} of some projective 3-fold X with at worst canonical singularities. Then K%,
x(Ox), the global index R, and the correction function I(n) can be determined uniquely.

Proof. By the plurigenera formula, §*P(n) = K% + 6%I(n). By Lemma 4.2, this is of exact
period R and so determines R. Now §/(mR) = 0 for all m and so

Qr = 6P(R) = %RZK} —2x

and
Qur = 6P(2R) = 2R*K% — 2x

allowing both Ky and x to be determined. Hence {(n) can also be determined.

O

So Theorem 1.1 has been reduced to decoding the correction function I(n). This is done
using the next theorem.
5.2 Theorem. The functions 1(Q,n) for each type of terminal quotient 3-fold singularity @,
with index dividing some global index R, are linearly independent.

5.3 Origin of the idea of proof. The proof of this theorem follows a similar proof due to Reid
(see [R, appendix to section 5]). However Reid deals with the linear functions bk — r/2 and odd
characters arise; whereas this section deals with the quadratic functions bk(R — bk) (modulo R)
and hence with even characters.

Like Reid I shall start with a slightly easier problem (compare [R, Proposition 5.9]).

5.4 Lemma.  For fixed index r, the functions [(Q,n) for each type of terminal quotient
singularity Q = 1(1, -1, a), with hef(r,a) = 1 and a < r/2, are linearly independent.
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5.5 Well-known Results. Let ¢(r) be Euler’s function (i.e. the order of Z}). We have the
following from [H&W, section V.5.5]:

(1) ¢(1)=1=4¢(2),

(2) 2| ¢(r) for all r > 3 (see [H&W, Theorem 62]),

(3) R= 3 ¢(r) (see [H&W, Theorem 63]).
r|R
The following is deduced from the above 3 facts.

3= = [

r|lRr>2

Notice that for a fixed index r > 2 there are ¢(r)/2 types of singularity since the types
1(1,-1,a) and 1(1,—1,r — a) are equivalent.

5.6 Proof of Lemma 54. If r = 1 or » = 2 the result is trivial. Without loss of generality
assume that > 3. There are ¢(r)/2 such types of singularity of index = and

(Q,n) = l(%(l,—l,b),n) _ Z_: M

with b coprime to ». Clearly these correction functions are linearly independent if and only if
the functions
- 2r61(Q,n) = nb(r — nb)

are. In fact we need only consider the ¢(r) vectors in Z7~1:
Ty = (kb(r — kb))k=1,... r—1
for b coprime to r. Let V be the C-vector space spanned by these vectors. Note that
(To)k = (Tr-a)k = (Ta)r—k = (Tr=a)r—k

and so dimgV < ¢(r)/2.
Let G be the the group of Dirichlet characters:

x:4Z; - C?

and let Geyen be the even characters (i.e. those characters x such that x(—1) = 1). By [Wash,
Lemma 3.1}, |G| = ¢(r) and {Gepen| = ¢(r)/2.
For each character x define

We= 3 x(@)T.

aEZ?

Note that W, = 0 for odd x. In comparison with [R, appendix to section 5] Reid finds in his
case that W, = 0 for even y.
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Let 1 be the trivial character.

(Wi = > (Tl

acZ;

= Z a(r—a)#0
aEZ}

SO‘WG #(l
Consider a non-trivial character x with conductor f # 1. The following commutes:
zZ; = c*
N\ @ s

Zy

where o is the projection mod f. So 1 = x(~1) = x'o(—1) = x'(—1). Hence x': Z} — C*
is an even character. Let ¢ = r/f.

(W)e = ) x(a)(Tu),

a€Z;

= 3 x(a)mg(r — 77)

a€EZ}

But (T,), = (Ta + f)4, and so depends only on a mod f. Thus

We = 200 5™ () da(r — d'g)

0 .,
M;))qz S X(a)e(f - )
aEZ‘
=805 |L S Y@ - Y w@) (@ - fa+ 2/6)
0GR 6 4€Z} a€Z;

Let B, , be the generalized Bernoulli numbers as defined in [Wash, p. 30]. Then

a’ —a 2
By = 3 ¥(a)\ &2 X 0

a€Z; f
Also 5" x'(a)f%/6 = 0 since f2/6 is a constant. So

(7') 2 _ é(r)
Wda = =gy 1 Prox = —57)
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See also [Wash, Exercise 4.2 (a)]. By [Wash, Theorem 4.2 and p. 30],
By = =2L(-1,x"Y#0

for even x. Thus W, # 0 for non-trivial x.

Let Z* act on C*(") by permuting the coordinates. Let b be a generator. Then (bz); = (z)uk
for all b€ Z}. So

bTa = Tab
and
bWy = X(b)_]wx
for all even characters x. As the characters y are distinct and the {W, } are non-zero, then the
vectors {W, } are eigenvectors of the action of Z} on V. Therefore they are linearly independent.
Hence dimgV > ¢(r)/2 and so dimcV = ¢(r)/2. Thus the original vectors {7,} are linearly
independent.
U

5.7 The proof of Theorem 5.2.

The above proof does not generalise to Theorem 5.2 since there are not enough characters.
The proof of Theorem 5.2 will be done in a number of stages, and involves 2 changes of ‘basis’.
The main steps in the proof are Theorems 5.12 and 5.13, and sections 5.14 and 5.21.

There are 3 sets of bases T,, W, (a) and V,(a) used, defined in Definitions 5.8, 5.9 and
5.17 respectively. Lemmas 5.11, 5.18, 5.19 and 5.20 are technical results on the vanishing and
non-vanishing of certain coordinates of W, (a) and V, (a).

As before in the proof of Lemma 5.4, we consider the following vector space.

5.8 Definition. Let T denote residue of £ € Z modulo R and let T, = (&(R h&))k:l'“.’[{_l.
Define V to be the subspace of C®~! spanned by these vectors.

As in the previous proof, dimgV < |R/2]. Clearly the vectors {T, : a« = 1,..., | 12/2]}
are linearly independent if and only if Theorem 5.2 is true.

5.9 Definition. Let x : Z; — C* be an even Dirichlet character with conductor f, = f and
g = R/f. Define

Wa)= 3 x(b)Tu € V
bEZY,

W,(1) corresponds to W, in Proof 5.6.

5.10 Note.  The multiplicative action of Z% partitions Zg into equivalence sets; each set
consists of all elements of Zg with a given highest common factor with R. For example

Zs = {1,3,5,7} U {2,6} U {4}
under the action of Zj3.
Let a € Zg. There exists 8 € Z% such that a = Bhcf(a, R) and therefore

Wy(a) = > x(687" ) Tapg-1
=x(B)™" D x(b)Tapp-
= x(B) "' Wy(aB™)
= x(ﬁ)'IWx(hcf(a, R)).
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5.11 Lemma. .
(i) The ¢\ coordinate (W, (a)). depends only on ac mod R
(ii) If ac = ¢q then (Wy(a)). = —é—%Rqu,x # 0.
(iii) If B € Z7} then W (Ba) = x(B) "Wy (a)
(iv) If a | R and hcf(ac, R) [ q then (Wy(a)). = 0.

Proof.
@) (Wy(a))e= 3 x(b)ach(R — acb), which depends only on ac mod R.
beZ},
(if)
(Wx(a))e = (Wx(1))ac
= (Wx(1))q
()
¢(f) RqBZ,X # O

(Compare with the proof of Lemma 5.4.)
(iii)
Wy(Ba) =Y x(b)Taps

bEZY,

=x(B)™" D x(Bb)Tups

b

= X(8)™ Wy(a).
(@iv) Let ¢' = hef(ac, R) and f' = R/q'. Then there exists # € Z} (see Note 5.10) such that

(Wx(a))e = (Wx(ac)h
= (x(B)™ Wy(hef(ac, R))),
= x(B)" (Wx(a')

= x(B)7 D x(0)(Tog)s

= x(8)™" Y x(B)(Th)y
b

= x(8)"' ) x()Q(bg"),
b

where Q(z) = T(R — 7). The function b Q(bq') depends only on b mod f' and so
Q(kbg") = Q(b¢)

forall k € K = Ker (Z} — Z%) (ie. k € Z} such that f' | k —1).
Assume that x is trivial on K. Then K is contained in Ker (Z% — Z%) (since f is
the conductor). So f | f'| R (ie. 1|q' | ¢. But ¢’ =hef(ac,R) fq, a contradlcuon
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Thus y is not trivial on I{. So
(Wx(a))e = x(87) Y x(b)Q(bq")
b
=x(B7)Y > x(k)Q(¥q)

k€K b'€Z3,
=x(B7) > Q'd) > x(k¥')=0.
b EZ3, keK

5.12 Theorem. The subspace of CR~1 generated by the set

R
{Wx(a) : x even characters of Z% and a € Zp such that a | -f—}

X

lies in V and splits into $(R) distinct eigenspaces, one for each x. There are L;RJ vectors in
the above set.

Proof. By Lemma 5.11(32), each vector in the above set is a non-zero sum of the vectors {1, }.
Each W, (a) is an eigenvector with eigenvalue x~! under the action of the group Z%,.
O

Fix the character x once and for all and consider the x " !-eigenspace.
5.13 Theorem. For a fixed character x the vectors {W,(a) : a | q} are linearly independent,
where ¢ = R/ f,.

This will be proved after some preliminary work.

5.14 Proof of Theorem 5.2. Theorems 5.12 and 5.13 imply that {W,(a)} are linearly inde-
pendent and hence so are vectors {7, }. This proves Theorem 5.2, subject to proving Theorem

5.13.
O

To prove Theorem 5.13 the following definition and another change of basis is required.
5.15 Definition. Let P be the set of primes which divide ¢ but not f. For each p € P define
By by

Bp = p mod R/p*
By = 1 mod p“
where p® is the highest power of p dividing R. These 2 equations have a unique common

solution modulo R.
Extend this definition to the set D of products of distinct primes in P

ﬂd:—"Hﬂp; €Zp

where d = [[p; € D.
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5.16 Note.

(i) Bp € Z% since hef(B,, p®) = 1 and hef(5,, ) | p.
(ii) Bpz = pz mod R whenever p®t! | z.
We now make the second change of basis.

5.17 Definition. For all a | ¢, define
Vela)= 3 w(dx™(B)Wx(a/d)

d€D:d|a
= T W dWy(Bea/d)
deD:d|a
where p(d) is the Mobius function (ie. p(d) = (—1)™, where d is a product of m distinct
primes, and u(d) = 0 if p? | d for some prime p).
518 Lemma. Leta|qandc|qbutac }fq. Then (V,(a)). =0.
Proof. As ac fq there is a prime p such that p7 | ac but p7 [ ¢. There are 2 cases:
() pg€ P (ie. p| f) Then p¥ | hef(ac, R) and so hef(ac, R) f ¢. By Lemma 5.11(iv),
(Wy(a))e = 0. Similarly (W,(Baa/d))e = x~1(Ba)(Wy(a/d)). and p” | ac/d (since
p € P). Thus (W, (Baa/d)). = 0 and so (V,(a)). =0
(ii) p€ P (ie. p f f ). By the careful grouping of terms,

(Ve(@)e = D w(d)(Wx(Baa/d))e + p(pd)(Wy(Babpa/pd)).

dia,p fd
= Y p(d)[(Wy(Baa/d))e — (Wy(BaBpa/pd))c]
dla,p fd
Notice that p® | ac but p**! fac. By Note 5.16(71),

ac ac ac
ﬁpp 'p;E —-:T mod R
So each pair of terms cancels out to give (V,(a)). =0
a
5.19 Lemma. Let ac=q and d | a for some d € D. Then
$(R x(p)'-p
a/d)). = _n)
(Wlbael D)= =g e [ =3y

pld
Proof. Define Q(z) = Z(R — 7). By definition
(Wx(Baa/d))e = (Wx(1))puq/d
= 3 X(®)Q(bBag/d)

bGZ'
DS ) T QQBag/d)
(ﬁwa' b b

be Y
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Lett(d)y= > Q(bBag/d), where d' | d. We have
b— b
be Zy

de = Z;f U d'de U ade.
did  off
d'1 a>0
Notice that {b € aZy : b~ '} = @ forall «| f and « > 0. The reason is the following. An
element b of this set is of the form:

alb=b+nf

and so a | ¥, i.e. a | hef(d, f). But ¥' € Z%, a contradiction.
- This simplifies the sum:

> Qaa/d)= Y QUBag/d)- Y, > Q(bBaa/d)
b b bi— b prime pld b b/
be Zy beZgy be ply

+ Y QBag/d) - .

pipald  hio ¥
b € p1p22Zgf

= u(d) > Q(bag/d)
d'|d b— b
be d’de

=" w(d)H(d).

d'|d

Consider the sum ¢(d'). As d and f are coprime there is a unique integer 7o < d such that
dz = ' 41 f for some z. Since the sum ¢(d") involves only b € d'Z4; and Q(B4bg/d) depends
only on b mod f then

d" -1
Hd)= Y QU +iof +35d f)Bag/d)
Jj=0 .
where d” = d/d'. However (b' + 15f)Baq/d = b'q mod R (by the definition of 54 and Note
5.16(i1)). So
d'—1
t(d) =) Q'q+jdBafa/d)
=0
d’'-1
=Y Q¥'q+jdR/d)
j=0 '
d'’—1
= Z Qb q+jR/d")

j=0
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The numbers {b'q + jR/d" : j = 0,...,d" — 1} take their smallest value of (6'd" - ¢/d'") where
k. denotes least positive residue mod f. Thus the range of summation can be rewritten;

d'"' =1

(d)= Y QO - q/d"+iR/d")

=0

Notice that Q(a + b) = Q(a) + Q(b) — 2abfor a + b < R. So

d’—1
(&)=Y [@FF - 9/a") +QuRja") =2 T - iR/
1=0

AT 1" ‘= 11 qR d’ =
=d"Q(Vd" - q/d") + Z QUR/d") =2-5( ) - ¥d".

The calculation of 3~ x(V') 3 p(d')t(d') consists of 3 parts:

bEZ; d'|d
o
d"’ =1
SN x®Hud) | Y QGR/A") | =
d'}d b'€Z} 7=0
since the summand is independent of b'.
(i1)
d" 2qR T d"\ 2qR
> 5 xu@)(5) 57 T =3 5 () 5w T
d'|d b€z '|d b'EZ}
since d" and f are coprime.
(iii)

ST ST x()(d)d QA - g/d")

d'jd b €23

N gt Y 9 T
PNCTULE R R

2 frm— —_—
= Zgﬁﬂ(d’) > x(¥)-¥d" - (fd" - bd")

d'|d bezs
2
q -
— Z Fﬂ(d,)X(d”) 1 E X(bf)bl(fdlr _ b!)
d'|d b €2}
=3 q,,# x(@)7 D0 XY B(f - ¥) + b (@ 1))
d']d b EZ;

2
=~ > Tou(d)x(d") 7 fBoy.

d'\d
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So > x(¥) Y u(d)t(d") is the sum of these 3 parts. Therefore
b EZ3 d'ld

(Wy(pda/d). = 5 RaBae 3= E

Iy,

= "5((?))1%3 ()d]dzldd' p(d)x(d")™

= ﬁ((?)) 4B2,x d(¢()d;££[1 px(p)]
B
¢(f) o7 B H (1 ppsz—pl)) )

5.20 Lemma. Let ac = q. Then

~o(f) . P-1)
Proof.
(Vi(@)e =Y (Wy(Baa/d))e
dla
_ R _PP=x(p)™!
=5 P 2 [“(d)pr,! (-5 )}
o P = x(@)™ o @)
p? - x(p x(p)'—p
I—{ p(p—1) *E(l_ p(p—1) )
_ x®) ' —p
dZ[a: K )lg p(p -
Therefore

(R) p* —x(@)™!
(e = = Pebex 1 56255 T

As x(p)~! # p* we have (Vy(a)) # 0.

13-
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5.21 Proof of Theorem 5.13. Clearly the vectors {V,(a) : a | ¢} lie in the subspace spanned
by {Wy(a) : a | q}. Let {a; :4i =1,...,n} be the set of a | ¢, ordered such that a; } a; for
i > j. Let ¢; = g/a;. Let M be the matrix with entries

Mi ;= (Vy(ai))g

Suppose ¢ > j. Then a; | ¢, ¢j | ¢ and a;c; J¢. By Lemma 5.18, M; ; = 0. So M is an upper
triangular matrix. By Lemma 5.20, the diagonal enties M; ; are non-zero.
Thus M has maximal rank and the vectors {V,(a) : a | ¢} are linearly independent. So the
vectors {W,(a) : a | ¢} also are independent. This completes the proof of Theorem 5.13.
O

6 Practicalities.

The proof of Theorem 5.1 is constructive and can be used to find I3, x, R and the function
I(n) provided some way of limiting the global index R can be found. Without this limit the
period of an infinite list of integers must be found.

In the case of the example X = P(1,2,3,4) we have R < 1.2.3.4 = 24 and so this
technique can be used.
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