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1. Introduction 

Let Mm be a compact, connected, m-dimensional Riemannian 

manifold with boundary aMm • The bass note A1 (Mm) is then 

defined as the first eigenvalue of the fixed membrane (Dirich­

let) problem 

(1 • 1 ) , 1jJ - 0 on ()M, 

where ~ is the Laplace operator acting on functions ~ by 

8~ = div(grad $) • 

Now assume that Mm admits a minimal isometric immersion 

~: M
m ~ Nn 

I where Nn is an no-dimensional Riemannian 

manifold. By abuse of notation we will say that Mm is a 

compact minimal immersion and write Mm c: Nn • 

The purpose of this paper is to point out a simple method by 

which lower and upper bounds for the bass note of M can be 

obtained in terms of the exterior size of M in N. In 

most of our results we control this si2e by assuming Mm is 

immersed into a regular ball in N. We consider two types 

of regular balls: 

Definition. Let p be a pOint in N. Then 

is a regular ball of radius R around 

and R < iN (p) I where 

P iff R;fj 'IT/21b 
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a two-plane in 

b :ii 0, and 

TBR(p} } 

iN(p) = injectivity radius of p in N. 

n-1 V be a totally geodesic hypersurface in N. Then 

a regular ball (or tube) of radius R around V is de­

fined similarly by 

where R S 1T/2 Ib and R < iN(V) • 

The following theorem due to Hoffman [6] is of the type mentio-

ned above and is obtained from an isoperimetric inequality to-

gether with a well known estimate of A1 due to Cheeger (cf. 

[1] ) . 

Theorem A (Hoffman). Let be a compact minimal 

immersion into a regular ball in N. If KN :;; a , then 

(1. 2) 

We note, that a slight modification of Hoffman's proof actually 

gives 

Theorem 1. If again Mm 
C BR (p) C Nn is compact and minimal 

and if now KN S b ~ 0, then 

( 1 • 3) 
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These lower bounds are only close to being optimal when m 

is large. We now state the main result of the present paper. 

(Note: from now on, whenever we write 1,1 c: B we also tacitly 
R 

Theorem 2. Let Mm c: BR (p) c: Nn be a compact minimal immer­

sion into a regular ball in any N. Then 

(1 .4) 

Remarks. 

i) If dim (M) = m:ii 9, then (1.4) is always better than 

( 1. 2 ) and (1. 3) • 

ii) The lower bound in (1.4) is sharp for geodesic segments 

y = M1 c:BR(p) and is generally best possible in the follo­

wing sense (which will be made precise in Proposition 10): 

If there are sufficiently many compact minimal immersions 
2 

such that A1 (M.) = dim(M.) IT2 for all j I then 
J J 4R 

BR(p) is a standard hemisphere of constant curvature 

K = (2; )2 . 

iii) Our method of proof does not apply any isoperimetric in-

equality but relies heavily on a well known beautiful obser-

vation (Theorem C) due to Barta. We also use this observation 

to get upper bounds on A1 (M) in many cases. It is further­

more possible to give corresponding results for compact 
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immersions with just a uniform bound on the length of the 

.mean curvature vector H. We s'hall not pursue this further, 

but only state the following 

Proposition 3. Let MmC:BR(p) C:Nn be a compact immersion in­

to a regular ball. If KN:li b ~ 0 and 

II H 1\ 

(1.5) 

:li m-1 Ib cot /bR 
m 

, then 

iv) In most of our results we may have m = n , in which case 

Mn is a compact domain in Nn and the adjective 

"minimal" should therefore be suppressed (i. e. a = H = 0 and 

T M = T N in Propos. 8). Cf. Li and Yau [10J and Kasue [9J 
q q 

for more general results on domains. 

If the receiving space N is a space form, one can say much 

more much sharper than Theorem 2. Using heat kernel compari-

son theory Cheng, Li and Yau have shown the following result. 

Theorem B ([ 4]) • Let m "'n 
M c: BR (p) c: N be a compact minimal 

(1. 6) 

immersion into a regular ball in a space form Nn • Let 

D~ be the totally geodesic disc of dimension m and 

radius R in ""'n N . 

Then 
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and equality occurs if and only if 

Remark. For comparison of this with Theorems 1 and 2 we note, 

that if Nn = ]Rn then m (jk/R)2 where , A 1 (DR) = 
jk("'k ..... 

1 -m 2 as m~ co ) is the smallest positive zero of 

the Bessel function J
k of order 1 k=-(m-2) . 2 

Acknowledgement. The author is pleased to thank Y. Itokawa 

and H. Urakawa for helpful discussions and the Max-Planck-

Institut fur Mathematik, Bonn FRG, for its support and 

hospitality. 
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2. Some preliminary results. 

We assume that Nn allows a totally geodesic hypersurface 

V and consider a regular tube BR (V) c N
n . In this tube the 

distance ~unction n(x);:: distN(V,x) is well defined and 

smooth outside V. Let T;:: grad(rd and q E: BR (V) -v . Then 

T(q) = .y(n(q» where y: [O,n(q)] ~N is the unique unit 

speed minimal geodesic from V to q. Now let X be a unit 

vector in T Nand X(s) be the Jacobi vector field along y 
q 

generated in the usual way by X through minimal geodesics 

to V such tha t X ( n (q)) = X and X I (0) = 'V Y ( 0) X;;; 0 

(cf. [2] pp. 20-21). 

(2.1) 

n 

Iy(X,X) - J(T<X 1 T»2as 
o 

where Iy is the index form along y. If we define 

X.1 ( s ) = X (s) - < T ( s), X ( s) > T ( s ) , 

so that 

we finally get 

(2.2) for all 

Standard index comparison theory now gives 

X E TN· q 

Then 



-7-

Proposi tion 4. If KN:ri b 

then for every X 

(respecti vely KN ~ b) I b E JR , 

in the unit bundle S 1 (BR (V) - V) 

have 

(2.3) 

where 

(2.4) 

2 
~ (~) fb (n) • (1 - <T I X> ) I 

- Ib tan ( Ib t) 

o 

+ r-b tanh( I=-bt) 

if b> 0 

if b = 0 

if b < 0 

In the same way we get for the distance function 

p(x) = distN (P,X) in a regular ball BR(p): 

Proposition 5. If KN~b (respectively KN if; b) , bE.JR I 

then for every XES 1 (B (p) -p) we have 
R 

(2.5) HessN(p) (X,X) ~ (S) hb ( p) • (1 - < T I X> 2) , 

where 
Ii) cot/b t if b>O 

(2.6) hb (t) 
1 if b=O = t 

I-b coth/=b t if b<O . 

we 

Remark. In [8] Kasue proved similar comparison theorems for 

more general distance functions and showed that in some cases 

they hold true in a distributional sense across the respective 

cut loci (cf. Theorem 18, where we shall use this approach). 
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The idea is now to restrict suitable modifications of the 

functions p and n to the minimal immersions Mm C:Nn . In 

order to do so we need the following lemmata. 

Let }.I: N --+ lR be any smooth function on N. Then the 

restriction }.I = }.11 M is a smooth function on M and the 

Hessians HessN(~) and Hess
M

(;) are related as follows. 

Lemma 6 (cf. [7] p. 713). 

(2.7) HeSS
M

(;) (X,X) = HessN(p) (X,X) + <.gradNhd, a(X,X» 

for all X E T~ c: TNn , where a is the second 

fundamental form of M in N . 

If we modify }.I to F 0].1 by a smooth F lR -;;> JR we get 

Lemma 7 

for all x E TNn • 

In the following we write II = 'iT. Combining (2. 7) and (2.8) 

we obtain 

(2.9) HessM(FO\l) (X,X) = F"(ll) <gradN(Il) , X >2 + 

FI (}.I) HessN(Il} (X,X) + <gradNhd , a(X,X» 
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Now again restrict attention to a regular ball BR in N 

of either type. Assume MmCB and let 
R 

be the correspon-

ding distance function in BR . We will always choose F 

such that F 0 j.I is smooth on M Now gradN(\l) = T and com-

bining (2.9) with (2.5) and (2.3, we get the following in-

equalities, where (~). means either (~) 
~ 

or for each 

i = 1,2,3 . 

Proposition 8. Let Mm C BR (V) C Nn be an isometric immersion 

(not necessarily minimal) into a ball BR(V) with 

R < iN (V) • Assume that P 0 '1 is smooth on Mm and 

that pI ("') 1 0 throughout [0, RJ • 

If KN ("') 2 b for some constant b E JR , then for 

every X E TM C TN 

(2.10) HessM (Pon) (X,X) ( ..... ) 3 (P" (n) - pI (n) fb (n}) < T,X >2 + 

F'(n)( fb(n) +<T,a(X,X) » 

(2.11) 

If {X1 ' ••• , Xm} is an orthonormal basis of TgM C TgN I 

we therefore get 

+ 

mP' (f
b 

+ <T,H(g) » 

where R{g) is the mean curvature vector of M at g 

in N. 
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If ~CBR(P) CNn we get similarly 

(2.12) 2 HessM(Fop) (X,X) ( ..... )3 (FU(p) _F'(p)hb(P» <T,X> + 

(2.13) 

F' (p) (hb ( p ) + < T I a (X I X) » I 

and thus 

+ 

m F I (h
b 

+ < T, H (q) » 

Clearly (~)3 depends uniquely on (~)1 and (~)2 

as follows: Let (~) correspond to +1 and (~) 

correspond to -1 i Then ( ..... ) = -(,....) • <---) 
3 1 2 

We can now prove Theorem 1 using only a modification of Hoff-

man's argument. 

3. Proof of Theorem 1. 

Since is minimal, we have HaO and now choosing 

F(t) = 1 - cos (Ib t) we get F" - F'hb ;,. O. Thus from (2.13) 

Now let X = grad (Fop) E X(I-1) and let .! be a domain 
M 

in Mm with outward pointing unit normal vector ~ on au. 



Then 
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F' (R) vol (ao) ~. J < X, ~ > * 1 

or.! 

= I lIM (Fop) * 1 2: 

r.! 

m b cos (/bR) vol (0) • 

Therefore vol (;Ht) Ivol (0) ~ mlf> cot (/b R) , 

so that the Cheeger constant (cf. [1]) 

h = inf {vOI(aO)/VOI(Q) S1 is a compact domain on 

M with 0 n aM = 9' } 

satisfies h ~ m Ib cot (Ib R) • The theorem then follows from 

Cheeger's inequality. 

4. Direct estimates of A1 

A direct two sided bound on A1 of a compact manifold M 

is obtained by the following result of Barta {cf. [3])and 

Kasue's generalization thereof. 

Theorem C (Barta). Let M be a Riemannian manifold with 

boundary aM. Let ~ be a smooth function on M 
o 

which is positive in M and zero on aM. 

o 



Then 
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and either one of the equalities occurs if and only if 

4>. is the first eigenfunction. 

Theorem D (Kasue, (9). Let M be a Riemannian manifold with 

(4.2) 

(4.3) 

boundary aM. Let $ be a continuous function on M 
o 

which is positive in M (but not necessarily zero on 

aM) • If $ satisfies 

o 

AM$ + K$ ~ 0 as a distribution on M 

for some constant K, then 

A 1 (M) ;;;; K 

If $ is smooth on an open dense subset of M, then 

equality holds in (4.3) if and only if ~J is the first 

eigenfunction. 

Remark. It follows in particular, that the lower bound in 

(4.1) is still valid even if 4> does not vanish on aM. 

5. Applications to minimal immersions. 

We now prove Theorem 2 by establishing the following more 

general result. 
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Theorem 9. Let Mm 
c: BR (p) c: N

n be a compact minimal inuner-

sion into a regular ball. Assume that KN ;S b E lR , 

and that z.fU n Br (p) = ~ , o ~ r < R Then 

(5.1) 1.1 (M) ~ K(m,r,R) 

; 'IT r) 
2 

'IT 'IT = (m -1) - tan \2 R hb(r) + 
4R2 2R 

'IT 2 
(5.2) ~ m --

4R2 

(5.3) ~ mb 

Remark. The inequality (5.2) - which corresponds to Theorem 2 

- only depends on b implicitly through the regularity 

assumption for BR(p) • It follows from (5.1) by letting 

r ~ o. Clearly (5.3) is only interesting if b > 0, in 

which case it follows from R;S 1T / 21b 

Proof of Theorem 9. We only prove (5. 1). Let F (t) = cos (k t) , 

k=rr/2R. Then F"(p) - F'(p) hb(p) ,: 0 for all p ~R , 

and Proposition 8 (2.13) gives 

(5.4) 

so that 

(5.5) 
F"(p) + K(m,r,R)F(p) ~ 0 
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for all p E [r,R] The theorem now follows from Kasue's in-

equality (4.3). 

CI 

As mentioned in the introduction, we also get a rigidity result: 

Proposition 10. Let BR{p) be a regular ball in a Riemannian 

manifold N with KN ~ b E IR • Assume that for every 

q E aBR (p) there exist compact minimal immersions 

such that 

and such that 

K (m. I r . , R) 
J J 

o ~ r. < R 
J 

for all j 

is isome-

tric to a standard hemisphere of constant curvature 

KlEb>O. 

Proof. With the notation of the proof of Theorem 9 we now 

have for every M. 
J 

that is the first eigenfunction 
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of ~M.. In particular the last inequality in (5.5) is an 
J 

equality for all p E [rj,R]. This is only possible if 

b> 0 and k = IT/2R = Ib . But then F" - F'h =: 0 so b 

that from equalities in (5.4), (2.13) and (2.12) we finally 

also have equality in (2.5). This is only possible if the sec-

tional curvature along the Jacobi field from p to 

is identically b. By assumption we can span TqN by such 

vectors x . It follows that where R=7T/21b , 

and the proposition is proved. 

c 

As a corollary to this proof we also obtain 

Proposition 11. Let Mn- 1 
CBR (p) - Br (p) C Nn be a compact 

minimal hyper-immersion such t~at [.1n-1 is everywhere 

transversal to the vector f loiti '1' '" grad (distN (p, .), • 

If KN ~ b, and A1 (M) = !{ (n-l ,r,R) 

then "1(M) = (n-1)b and ,Hn-l is isometric to a com­

pact minimal immersion into a standard hemisphere 

Bn / 21b (P) of constant curvature K == b . 

o 

If KN is nonpositive it is possible to give a lower bound 

for A1 which is better than (5.1) when r is positive and 

close to R. 
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Proposition 12. Let MmCBR(p) -Br(p) CNn be a compact mini­

mal immersion into a regular ball with KN ;:;; -b ;:;; 0 • 

(5.6) 

(5.7) 

Then 

>'1 (m) ;;: T (m,r,R) 

::mb cosh (lbr) 

cosh ( IbR) - cosh ( lbr) 

mb 

cosh (IbR) - 1 

In particular, if b:: 0, then 

A 1 (M) ~ 
2m 

R
2 2 -r 

Proof. For F we now choose F (t) :: cosh (/bR) - cosh (ibt) , 

so that Fit - F'h ;: 0 
-b and 

Thus ~M(Fop) ... t(m,r,R) (Fop) :s 0 for all .) E [r,R] I 

and the result follows from (4.3). 

c 
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Using Barta's TheoremC we obtain an uEper bound on A1 (M) 

in the following somewhat special situation. This result is 

also best possible in a sense analoguous to Proposition 10 

and 11. 

proposition 13. Let be a compact mini-

(5.8) 

mal immersion into N wi th KN ~ b· O. The ball 

B~/21b need not be regular, but we still assume 

~ /2ib < iN (p) • 

If 

A 1 {M) ~ m b • 

Proof. Let F (t) = cos (!bt) Then again F" - F'h == 0 b 

and (2.13) now gives 

so that 

Thus we have: 

and the result follows from Theorem C. 

c 
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We now turn attention to compact minimal immersions into 

balls (tubes) around totally geodesic hypersurfaces 

~-1 C Nn • For this we first note the following fact. 

Propositon 14. Let be a compact minimal 

Proof. 

immersion into a regular tube BR(V) in N with 

K :;; 0 
N 

If aM c V, then MeV • 

R 11 th t d · t (V) Now let F (t) -- 21 t 2 
• eca a n = ~s N I • • 

Then by Proposition 8 (2.11) , t.M(Fon) ~ m > Q which con­

tradicts the existence of an interior maximum of F 0 n I M if 

we had both aM c V and M <j: V • 

o 

Remark. Similarly, if KN > 0 and aM = 0 then M n V f ~ • 

If V is two-sided in N, then V separates every BR(V) 

into two connected components. In such a case we denote either 

one of these components by + 
BR (V) • 

Proposition 15. Let m + n 
M c BR (V) c N be a compact minimal 

immersion into a regular (half-) tube such that 

aM c V t M. Assume KN:i b • 

(5.9) 

Then b> 0 and 

2 
A1 (M} :i (m-1)b + --~-

4R2 
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Proof. The first claim follows from Propos. 14. Now let 

F(t) = sin(kt), k = 'lr/2R ~ Ii:). Then F"{n) _pI (rdfb{n) :;; 0 

for all n ~ R and from (2.11) 

The proof may now be completed as the proof of Propos. 13. 

o 

In a similar way, using F(t) = cos(kt), k ; ~/2R one obtains: 

Proposi tion 16. Let Mm 
C BR (V) C Nn be a compact minimal 

immersion into a (full) tube BR(V) The tube need 

not be regular, but we still assume R ~ ~/2/b and 

(5.10) 

o 

We close this section by establishing corresponding lower 

bounds for A1 (M) in case of negatively curved (resp., posi­

tively curved) ambient spaces. 

Proposition 17. Let Mm 
C B; (V) - B; (V) c: Nn 

I 0 ::: r <: R , 

be a compact minimal immersion into a regular tube 

(-annulus) in N If KN ~ -b < 0, then 
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(5.11) sinh (rbr) A 1 (M) I: m b _---.;;;;.;;;;:=....:..;...=;.;:;..c. __ _ 

sinh(tbR)-sinh(lbr) 

Proof. The proof is more or less a repetition of the proof of 

Propos. 12 only now with F(t) :: sinh(/bR) - sinh(/bt) . 

o 

The next result is stated somewhat differently from the pre-

vious ones since it applies to a much more general class of mi-

nimal immersions. 

Theorem 18. Let Mm c N be a compact minimal immersion (with 

(5.12) 

Remark. 

or without boundary) into N Assume that 

KN ~ b > 0 and that N admits a totally geodesic hy­

persurface V which separates N 

Let Mi be any connected component of M - (M n V) • 

Then 

A
1

(M
i

) ~ mb . 

It should be noted, that the following remains an open 

problem: If n-1 
M c sn 

1 
is a compact (aM:: 0) embedded minimal 

hypersurface of the standard unit sphere, is it then true that 

A (Mn-,) = n-1 ? 
1 

Proof. Following the work of A. Kasue [9) we only have to 
o 

establish inequality (4.2) in the distributional sense on Mi • 



-21-

For the continuous function we choose 

~ = F(n) = sin(/bn) • It then follows from Kasue's arguments 

on pp. 325-326 of [8] (suitably restricted to work on Mn c: N) I 

that (2.11) holds for this Fo n in the distributional sense. 

Thus from Fit -Ftfb ~ 0 we get ilM(Fon) + mb(For)) ~ 0 as a 
o 

distribution on M. The result then follows from Theorem D. 

o 

6. Some related estimates. 

There is no direct relation between the volume vol (Mm, and 

the bass note A1 (Mm, except for dimension m= 1 where the 

relation is always sharp: Let M1 be compact with boundary; 

then A1 (M1, = n 2/length2 (M1) • Thus every estimate in the 

previous section corresponds immediately to an upper or lower 

bound on the length of geodesic segments in the respective 

balls. 

For general dimensions, however, we can use the result of 

Theorem 18 to obtain a relation between vol (Mm, and the 

transversality T(M,V} I which we now define. 

Definition. Let V be a hypersurface in Nand M c: N an 

(6. 1 ) 

isometric immersion. Then 

T (M, V) = f cos 1: (M, v.l.) 1< 1 I 

MOV 
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where J. -i: (M, V ) (q) is the angle between any normal 

E; to V and its projection lI'M(t;) to M at q EM n V c:N • 

Theorem 19. Let ~ c: Nn be a compact minimal immersion 

without boundary. Assume that N is positively 

K-pinched by 0 < (1 ~ K N:i 0 for some constants (1,6 

and assume that N admits a totally geodesic hypersur­

face V which separates N. If Mm is contained in 

(6.2) 

a regular ball around V, then 

2/mc+o 
mo T(M,V) 

Proof. Let Mi be a closed connected component of 

M - (M n V) l' lwf. '. Then from Thm. 18· we have 

(6.3) 

The minimum principle (cf. [3])gives 

(6.4) II gradM . (sina n) 
~ 

* 1 

= 0 (VOl (Mi ) / f sin 
2 ro n * 1) - 13 

Mi 

Combining this with (6.3) we get 

* 1 
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~ vol (M. ) 
~ 

Now SchwartzI inequality implies 

(6.6) 1m.£. + 1 
6 f sin/51 n I * 1 

Mi 

< vol (M.) • 
~ 

On the other hand, if we let F(t) = sina t we get 

F"(n) - FI (n)fo(n) a 0 so that from Propos. 8 (2.11): 

Therefore 

(6.7) 

where 

l.\M. (Fon) ~ ruF I (n) fo Cn) :::: -m 0 sin/6' n 
~ 

mo fSinron * 1 ~ 
Mi 

= - J < grad (Fo~.) I 

3l-1i 

( > ,.. 1 
'out 

= - J F I (0) < ~ in, l; ou t > * 1 

3M. 
~ 

= + ro T(M.,V) , 
~ 

is the unit normal of V pointing towards M. 
J,. 
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at aMi C V and l;out is the outward pointing unit normal 

vector of Mi at aMi . 

Summing over i gives 

(6.8) J sin 161 nl 
M 

* 1 

With (6.6) we therefore have 

2 

rna 
T{M,V) . 

1m % + 1 2 T (M, vj < vol (M) 
mi6 

which is the desired inequality. 

, 

o 

Remark. In [5] Choi and Wang show that if M2 is a compact 

orientable embedded minimal hypersurface of a compact orien­

table Riemannian 3-manifold N3 with RicN ~ 20 > 0, then 

2 2 vol (M ) :ii 8n (g+1) / a, where g is the genus of M • Con-

sequently, if the assumptions of Theorem 19 is also satisfied, 

then there is an upper bound on T(M2,V2 ) in terms of 

g,n and a. 

As a final application of the results in section 5 we now prove 

the following theorem on minimal immersions into ~n which 

have their boundaries on parallel hyperplanes (such as a pa­

rallelly truncated catenoid in JR3) 
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Theorem 20. Let Mme JRn be a compact minimal inunersion 

(6.9) 

(6.10) 

aMme 1f 1 U 1f2 , where 'IT 1 and 1T2 are parallel 

planes in JRn with distance L . Assume that 

Mm e BR (p) - Br (p) for some p E JRn, 0:; r < R • 

Then 

L2 ~ min 1 {1T2 (R2 _ r2) 8R2} , 
2m 

and 

vol (Mm
) ~ Lm (41T) m/2 . 

m e 'IT 

with 

hyper-

Proof. The situation corresponds to those in Theorem 2, Pro-

position 12 and Proposition 16. Thus we get 

(6.11) m1T 
{ 

2 
max ----:2' 

4R 

2 1T 
L2 

and (6.9) follows immediately. The volume bound follows from 

(6.12) 
(41T) m/2 

e vol (M) 

where the first inequality is a consequence of [4] (Corol-

lary 4 p. 1057). 

o 
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