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B.2 Normierte und euklidische Vektorraume, metrische Raume, Konvergenz81

B.2 Normierte und euklidische Vektorraume, metrische
Raume, Konvergenz

6. Es bezeichne (X,|-|) einen normierten Vektorraum. Zeigen Sie, daB die
beiden folgenden Aussagen aquivalent sind:
(a)  Es gibt ein positiv definites Skalarprodukt {, )} auf X, soda8
|2} = +/{z,z) fir alle z € X.
(b)  Die Norm || erfiillt die Parallelogrammregel, d.h. es ist
|z + y” + |z — yf* = 21z|” + 2ly/* fiir alle z,y € X.

7. Fur eine reelle Zahl p > 1 und einen Vektor z = (z1,...,2,) € R™ setzen
wir
: 1
n »
ol = (z w) |
i=1

() Beweisen Sie die Holdersche Ungleichung : es gilt
z-y <z, -yl

fiir alle z,y € R™ und alle positiven reellen Zahlen p, ¢ mit 1 + % =

1. (Hinweis: beweisen Sie zunichst die fiir alle a,b > 0 geltende

Ungleichung ab < ‘:T’ + %, und wenden Sie diese auf die einzelnen

zi i
Summanden der Summe 3 l‘?ﬂlﬁll'} an.)

(ii)  Zeigen Sie, daB z — || eine Norm auf dem R" definiert. (Hinweis
zur Dreiecksungleichung: schreiben Sie Y (zi + wi)P = Y #i(zi +
y;)*f‘l + > iz + ¥i)’~! und wenden sie auf die Summmen auf der
rechten Seite jeweils die Holdersche Ungleichung an.)

8. (i) Zeigen Sie in den Bezeichnungen der vorstehenden Aufgabe, daf§
durch

eloo 2= lim |2,

eine Norm auf dem R™ definiert wird. Berechnen Sie den Grenzwert

(ii)  Skizzieren Sie die Einheitskreise {z € R?{|z|, = 1}.

B.3 Stetigkeit

9. Sei A Teilmenge eines metrischen Raumes X mit der Eigenschaft, daB jede
stetige Funktion f: A — R beschriankt ist. Zeigen Sie, da A dann eine
abgeschlossene Teilmenge von X ist.

10. Sei n > ?2; finden Sie eine Funktion f:R" — R, die im Punkt 0 unstetig ist,
sodaB aber die Einschriankung f|T fiir jede Gerade I' durch 0 im Punkt 0
stetig ist.



Computations of Siegel modular forms of genus two
by
Nils-Peter Skoruppa

Introduction

In 1978 Kurokawa computed explicit examples of Siegel modular forms of genus 2 ([Ku]).
These examples led to the Saito-Kurokawa conjecture whose proof focussed the attention
to Jacobi forms which were then first studied by ‘Eichler and Zagier ([E-Z)). Meanwhile
Jacobi forms have been extensively studied and, in the case of genus 1, they are quite
well understood. In contrast to that there are still many gaps in the theory of Siegel
modular forms of higher genus, and even in the case of genus 2 many questions are still
not answered: Is a Hecke eigenform uniquely determined by its eigenvalues? What is
the arithmetic nature of its Fourier coefficients? What is the relation between Hecke
eigenforms and Galois representations? Are there Hecke eigenforms of even weight and on
the full modular group whose first Fourier Jacobi coefficient vanishes? What is the relation
between the eigenvalues of a Hecke eigenform and the scalar products of its Fourier Jacobi

coefficients (cf. [K-S])?

At the time of Kurokawa’s paper it took much effort and tricky manipulations to
produce explicit examples of Siegel modular forms at all. This was mainly due to the lack
of computationally realistic formulas for Siegel modular forms. In the past decade there
has been much progress in the theory of Jacobi forms as well as in computer hard- and
software development. Exploiting this it is nowadays rather easy to go beyond Kurokawa’s
computations and to produce explicit examples of degree-two forms.

The purpose of this paper is first of all to point out how such calculations can be
done. Moreover, we performed such calculations. It turned out that there are two striking,
to our knowledge so far unobserved phenomena which might deserve further attention.
The second purpose of this paper is to describe these.

We computed the Siegel cusp Hecke eigenforms of genus 2 and even weight on the
full Siegel modular group which do not belong to the Maal-Spezialschar. The first of these
forms occurs in weight 20, and for weight 20 up to weight 32, which is the range of our
computations, the dimensions of the subspaces spanned by such forms is 1,1,2,2,3,4, 5,
respectively. Quite expectedly these Hecke eigenforms can be distinguished by their Hecke
eigenvalues (even by the eigenvalue of T(2), the second Hecke operator) and their first
Fourier Jacobi coefficient does not vanish. Let T20, T22, Y24a, T24b, etc. denote these
Hecke eigenforms (suitably normalized). Then, in complete analogy to the case of ellip-
tic modular forms, it turned out that for weight k£ = 28,30, 32 the corresponding Hecke
eigenforms are conjugate to each other, i.e. Tkb, The, etc. are obtained by applying an
automorphism of C to the Fourier coefficients of Yka.

The first of the phenomena mentioned above is that this does not hold true for the
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two eigenforms in weight 24 and weight 26, respectively: these eigenforms have rational
Fourler coefficients. This is striking and contradicts the common expectation.

The second, though less striking phenomenon is the existence of congruences modulo
various primes (or prime powers) between the Hecke eigenforms T* and Hecke eigenforms
from the Maafl-Spezialschar. These congruences are trivial in the sense that they can
be rather simply verified. On the other hand they extend to congruences between the
corresponding Andrianov (or Spinor) zeta functions and might have some less trivial im-
plications in the (so far void) theory of Galois representations associated to the Hecke
eigenforms Y *. '

In the course of the numerical computations we had to handle quite large integers
at a reasonable speed (multiplication, factorization) and we needed a certain amount of
linear algebra (multiplication of matrices, inversion, characteristic polynomials). All these
computations could easily be performed using the software package PARI (cf. [P]). I am
very grateful to H.Cohen for introducing me to this system and helping me to take the
first steps in using this great piece of software. More extensive tables of the examples
considered in this paper will appear in [C-S-Z].

Notations

Throughout we shall use the following notations:

— Z,Q,C = integers, rational and complex numbers, H = Poincaré upper half plane,
I'y = SL,(Z) = elliptic modular group, I'; = Spy(Z) = Siegel modular group of
genus 2

-~ M(T'3) = space of Siegel modular forms of genus 2 and weight k on the full Siegel
modular group I'y

— M(T'y) = space of elliptic modular forms of weight k£ on the full modular group I';
— Jk,m = space of Jacobi forms on SL,(Z) of index m and weight k.

— When the M or J above is replaced by S, we always mean the corresponding subspace
of cusp forms.

—g= e?m’r, ¢ = ezfriz’ q.r — e2m’r’ (1.,1_; eH,ze C)

— Special elliptic modular forms:

0 0o
— 2 n 24 _ _sz ¢
n=q% [[(1-¢"), a=n" Ex=1-3 ;_l:azk._l(!_’)q

n=1

(Bx = k-th Bernoulli number).



— Special Jacobi forms:

- BLES L
bo=~0-1"% Y (-1 ¢

r,o€cX
rgsmod2

l’ir’ 24,2
bn=A0-g0 6 3 P-1THC B Y (1T
r;;.xsc?d2 r;;.rsoldﬁ

— Special Siegel modular forms of genus two

x10 =V (é10), x12=V(¢12), x1a =V(d10Es), xi6a = V(d10Es).

The operator V (mapping Jacobi forms to Siegel modular forms) and the fact that @10
and ¢12 are elements of Sio; and Sy2,1 will be explained below (cf. the second theorem

and the proposition in section 1). As basic reference for Siegel modular forms we refer to
[F], for Jacobi forms cf. [E-Z].

§1. The relevant Theorems for computing Siegel modular forms

We are interested in Siegel modular forms of even integral weight on the full modular
group. Any such form F has a Fourier development of the form'

F= Z ar(n,r,m)q"("¢™,
rn,mecl
r2_4mn<o0
n,m>0

i.e. it has a Fourier development and only those Fourier coefficients af(n,r, m) are possibly
non-zero where the binary quadratic form [n,r,m] (i.e. the form nX? 4+ rXY 4+ mY?)
is positive semi-definite. Moreover, the Fourier coefficient ar(n,r,m) depends only on
the GLq(Z)-equivalence class of the binary quadratic form [n,7,m]. Thus, one wants
to compute the Fourier coeflicients ap(Q) for all positive semi-definite GLy(Z)-reduced
quadratic forms (). The essential ingredient to tabulate these Fourier coefficients is the
following theorem of Igusa which describes the structure of the graded ring of all Siegel
modular forms of even weight on Sp,(2).

Theorem ([I]). Let ¥4,%s, x10,X12 be non-zero forms in the one dimensional spaces
M4(P2), Ms(rg), Slo(rg), 512(P2), respectively. Then

My, (T2) = @ M2i(T2) = Clvba, 6, X105 X12],
ke

i.e. the modular forms 4, s, X10, X12 are algebraically independent and any element of
M7, (T'2) can be written as a polynomial in these functions.

According to Igusa’s theorem we have to seek for a good method to compute the
Y4, ...etc.. The most convenient method is provided by the following theorem which is
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essentially due to Maa. Recall that any element ¢ of Ji¢ 1 has a Fourier development of
the form

b= Y CoD)TEC

D,reZ,D<0
D=rimod4

(cf. [E-Z], Theorem 2.2).

Theorem ({M]). For any integer k > 0 the map

b= 3 CoDTEC S aln,rm)a*CTe™,

D,rel, DO n,r,meglk
DEr?mod4 rz—qmnSD
n,m>0a

72 — 4mn 2k

a(n,r,m) = Y aF Oy % a(0,0,0) := —B—Q"k-cqf,m)

2
al(mrm) ¢
defines a Hecke equivariant embedding

V: Jk,l — ML(I‘z)

It maps cusp forms to cusp forms and Eisenstein series to Eisenstein series.
The Siegel modular forms occurring in the image of V are called Maa8-Spezialformen.

To compute such forms, we want to compute Jacobi forms of index 1. Via the following
proposition this 1s reduced to the computation of elliptic modular forms on the full modular

group.

Proposition ([S]). Let

‘: Y':
A=n" 3 (-1 =24 (22 -8+ 12 8¢ 42N 4,

roagclk

r#amod2
23 4r2
B=7"" 3 (-1)¢ (¢ =2+ (2?8 +12 -8 +2("2) + .-
racR
rZsmod2 .

Then, for any integer k, the map

(,9) = 574~ (4. 1)B + 9B

defines an isomorphism
I Mi(Ty) ® Sk42(T1) = Ji 1

Proof. For the convenience of the reader we sketch the short proof of this theorem. Set

b= S ¢%¢ (p=0,1).

rcl
r=pmod2



Using these fundamental theta functions any ¢ € Ji 1 can be written as

$=hodo+mdi, hy= 3 Ce(D)g™F (p=0,1).

D<o,
Dgpmod2

From this equation we obtain

(ho, )W = (8(7,0), 4ss(7,0)), W = (3?&8; 32”::& ?3) ’

where the subindex zz indicates second partial derivative with respect to z. But W is
invertible: Namely, using det(W) = 2(27ri)2q"]? +0(g%), and the well-known transformation
laws satisfied by the 9, (cf. [E-Z], §5) it is easily verified that det(¥)* is an element of
S12(T'y), i.e. equals A up to multiplication by a scalar; whence

det(W) = 2(2m1)%n°.

Using this to write down the inverse matrix of W we find
1
- (3)-(ekin)
th 2(2mi

1

1
(}5(1’,2) = EQJB(T,O)A — mqﬁn(‘r, U)B,

Summing up we finally have

which can also be written as
k d
¢ = “z—fA—(qd—qf)B+gB,

where

f=

%: ! L ¢ZZ(7—30)'

= ——¢.(7,0) - ———
J kaqé (7.0) 2(271)?
From the transformation laws of ¢ under T'; it is easily deduced that f and ¢ are elliptic
modular forms on the full modular group of weight & and k + 2, respectively, and ¢ is even
a cusp form. Vice versa it can be shown, using the transformation laws for the 9,, that

the right of the last equation for ¢ always defines an element of Jx, if f € M(T';) and
g € Sk42(T). This completes the proof of the proposition.

Note that ¢ is a cusp form if and only if f is a cusp form. Hence the first. Jacobi
cusp forms of index 1 occur in weight 10 and 12; these are the two special Jacobi forms
listed in Notations. In fact, one has

10 = 1(0,-A), ¢12 = I(A,0).

5



Note that these Jacobi forms have integral Fourier coefficients and that they are normalized
in the sense Cy,,(—3) = Cy,,(-3) = 1.

Moreover, the proposition and its supplement concerning cusp forms shows that
dim Sk,l = dim Sk(rl) + dim Sk+2(P1) = dim M};_lg(rl) + diIl'le_lo(Pl). Since ¢']0 and
$12 are obviously linearly independent over the ring

M(T)) = @ Mi(Ty) = C[Ey, E]
kel

(#12/$10 does depend on z) we can conclude

Sk = Mi—10(T1)d10 & Mi_12(T1 )12

To sum up, by the proposition or the last equation we have explicit formulas for
Jacobi forms of index 1. Via Maafl’s theorem we then have as well explicit formulas for
the generators of the ring M;,(T'2), namely,

Yy = V(I(E4,0)), 6 =V(I(Es,0)), x10=V(10), x12=V(d12)

And hence we have such explicit formulas for any Siegel modular form. These formulas
are easily implemented on a computer to tabulate the Fourier coefficient of a basis of
Siegel modular forms of given weight k. The only parts of this procedure which are
computationally expensive are the multiplications of Siegel modular forms. To avoid some
of these multiplications it is reasonable to generate at least the MaafB3-Spezialschar of a
given weight directly, i.e. by applying Maaf’s theorem and the above proposition directly
instead of writing members of the Spezialschar as polynomials in 14 to x12. We followed
this procedure for our numerical calculations (cf §4).

§2. Hecke theory

In this section we recall the theorems concerning the Hecke theory of genus 2 forms which
are necessary to handle and to compute Hecke eigenforms.

Theorem ([A,p.228, Ex.4.2.10.]). Let k,{ integers, £ > 1; let
F= > a@qg"d™, TEOF= >  a(@q¢"¢d™,
where F' is an element of My(T'z) and T(€) denotes the £~th Hecke Operator on this space.
Then ol o o
s — - n T T
SORD DR DR (Gl
; 1 142 2

12312914 verl’(:—;-)\r1

QUX, YIV)=[n', ¢!, m!]
tyInf tofr’ m!
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where the inner sum is over a complete set of representatives V for T'°( %’;)\I‘] satisfying

the stated conditions, and where T°(N) := (% ];Z) nTy).

We mention some special cases of the above theorem which are important for our
numerical computations:

To begin with, assume that we have computed sufficiently many coefficients of a basis
of a Hecke invariant subspace of Siegel modular forms on I';, and that we want to compute
the Hecke eigenforms. The obvious method is to compute the matrix of T(p) for some
small prime number p and to diagonalize it. Thus, one needs in particular the formula
for the action of T'(p) on the Fourier coefficients a(Q) of a given form F. By the above
theorem it is easily verified that such an explicit formula can be given as follows:

. . m
aT(P)F(n7T:m) = a(p[n,r, m]) +p2L 3(1(%[711 r, m]) +Pk 20-(;,1‘,])?’1)

2

+pk—2 E a(mgﬂ.y_,r +2my,pm)_

vmodp

Here p is any prime number and we set a(Q) = 0 if () is not integral.

Secondly, assume that we have computed sufficiently many Fourier coefficients a(Q)
of a Hecke eigenform F' and that we want to compute the p-th Euler factor of the Andrianov
zeta function of F. As explained in the next theorem we thus need to compute the
eigenvalues A, and A,z of T(p) and T'(p?), respectively. By the above theorem we find the
formulas

Ma(1,1,1) = a(p,p,p) +p* (1 + (£))a(1,1,1),
Apa(p,p,p) = a(p?,p*,p*) + p** *a(1,1,1) + p*~2a(1,p,p?)
+p*7% > a1+ v+ p(1+2v),p%),

vmodp
Apra(1,1,1) = a(p?,p%,p") + 9472 Y a(l+ v+ i, p(1+ 2v),p%)

rmodp
1+y+v2=Dmodp

2

() (5t

The eigenvalue A, can be computed from the first of these equations (if a(1,1,1) # 0).
However, it is computationally expensive to compute A,z directly from the third equation
since one would need to compute a(p?, p*,p?), i.e. one would need to compute a Fourier
coefficients a(Q) where the discriminant of @ is of order p*. To avoid this one should
eliminate the a(p?,p?,p?) in the third formula using the second one. One can go even one
step further and eliminate then the a(p, p,p) using the first formula so to obtain a formula
expressing A,z in terms of a(1,1,1) and a(Q) with Q primitive and of discriminant —3p?.
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The precise formula that one obtains in this way is

hra(1,1,1) = 82— 40 (1 4+ (2)) 52 4 p%4((2) 4 (B)latt, L)

___pk_za(l’p’p2)___pk—2 Z ﬂ(1+V+U2ap(1+2U)’p2)'
14w -:ur;‘;dopmodp

The arithmetically interesting object associated to a Hecke eigenform is the Andri-
anov or Spinor zeta function:

Theorem ([A], p.165, Prop.3.3.35.; [A2], Theorem 1.3.4, Theorem 2.2.1 and
Corollary). The space Mi(I'2) has a basis consisting of simultaneous eigenforms for all
Hecke operators T(£) (¢ € N). If F' is a simultaneous eigenform with eigenvalues A¢, then
the Andrianov zeta function

Zr(s)i=((2s 2k +4) ) %

=1

has an Euler product of the form Zp(s) = Hp Q,(p~*)"!, where Q,(X) is a polynomial
of degree 4:

Qp(X) =1—2,X + (A2 = A2 — pFHXE - A p™ 2 X® 4 p* 0 X1,
Note that we can write the Euler factor Q,(X) in a more symmetric way as

Q) = (1= (2 + /&)X + 7 X7)(1 - (32 = /A X + %X

where 3
d, = _ZA;*; + A+ pFTt 4 op?h R,

This Euler factor is said to fulfill the Ramanujan-Petersson conjecture if all its roots have
absolute value p~2* ie. if

A
(F V)" <4p™ .
For the sake of completeness we mention the

Theorem ([A2], Theorem 2.4.1 and Theorem 3.1.1; [A], Theorem 4.3.16). The
Dirichlet series Zp(s) is absolutely convergent for ®(s) > 0. It can be meromorphically
continued to the complex plane and satisfies

Zr(s) := (27) U ()T (s — k + 2)Zp(s) = (-1 Z3(2k - 2 — 5).
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If D < 0 is a fundamental discriminant, and x a character of the group K(D) of positive
quadratic forms modulo SLo(Z) with discriminant D, then

2 Q)Z‘“‘"“Q — A L(s— k+2,%)" Z5(s),

where

L(s,x) = Z\’Q)wa, Ay = 3 x(Qar(@)
Q

t=1

(rq(€) = number of representations of ¢ by Q). Here the Q-sums are always over a complete
set of representatives Q for K(D).

§3. Hecke invariant splittings

If we write an element f of Mg(I'z) in the form

F= Z ¢mq

then the ¢,, are known to be elements of Ji ,,; the above development is the so-called
Fourier Jacobi development of F. The space of cusp forms Si¢(['y) 1s the space of all such
F with ¢9 = 0. This subspace is invariant under all Hecke operators. It contains the
Hecke invariant subspace V Si 1. This subspace, in turn, is Hecke equivariantly isomorphic

to Sar—z(Ty) ([E-Z], §5).

By a result of Oda and Evdokimov the subspace V' Sk ; can be characterized as the
subspace of S;(T'z) which is spanned by all those Hecke eigenforms whose Zp(s) has a
pole (cf. [O]). From this it is clear that there exists one and only one Hecke invariant
complement of V' Si; in Sk(T'z), namely the subspace spanned by all Hecke eigenforms F
with holomorphic Zp(s). We denote this space by Si(I';).

Finally, for any elliptic cusp form f in Si(I';) one can form the Klingen-Eisenstein
series

Kf= > fleg  (f(r,2,7"):= f(7), C = Ca, as in [KI)).

gEC\T,

The map f +— K f defines a Hecke equivariant embedding
K: Sk(l"l) = Mk(l"g).

It has the property that the 0-th Fourier-Jacobi coefficient of I f is f. In particular, we
see that the dimension of C - VE, @& KSi(T'y) equals the codimension of the subspace of
cusp forms in Mi(T';), that this space contains no cusp forms, and hence, that this space
is a Hecke invariant complement of the subspace of cusp forms.
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Summarizing, one has the Hecke invariant splitting
Mi(Ty) = KSk(T1) @ Vi) @ Si(Ty).

For the Andrianov zeta functions associated to the Hecke eigenforms in the former two
spaces one knows the following (cf. [Kl], [E-Z]):

Zp(s)=Lg(s)Ly(s—k+2) for F=Kf
Zr(s) = Ly(s)lp,(s —k+2) for F=Vg,

where, in the latter case, f denotes a suitable Hecke eigenform in Spp_o(T';) and where,
for any elliptic mopdular form f (or f = E;), we use

o0

Li(s) = ay(1)7' ) as(0)e=

=1

if f =3 52,ar(£)¢" and as(1) # 0. The above identity shows in particular that the
Ramanujan-Peterson conjecture fails for the Hecke eigenforms in V' Sy ;. The common
expectation is that the Hecke eigenforms which satisfy the Ramanujan-Petersson conjecture
are exactly those in the space Si(T2).

Thus, it is clear that the attention has to be focussed to the space of interesting
Siegel modular forms S;(T'2).

§4. Computation of the first interesting Hecke eigenforms

From Igusa’s theorem we deduce that the dimension of M(I';) equals the number of
quadruples (a, b, ¢, d) of nonnegative integers satisfying 4a + 6b 4+ 10c + 12d = k, i.e.

1
1— X4)(1 = XO)(1 — X10)(1 — X12)°

3 dim Mye(T2) X =
k=0 (

Similarily, using
S.(Ty) := €P Sx(T1) = A - C[E4, Ee]
kel

and the fact that K,V are injective and that Syx ; is isomorphic to Syx—2(T'y) we find

3:12

(- X1 -X%)

X101 + X?)
(T— X9 - X0)’

> dim K Spe(Ty) X =
k

=0
o0
> dim VS X2 =

k=0

10



and finally, using the results quoted in the preceding section,

X20(1+X2 +X4_X12+J'\’14)
(1-X9(1-X%

> dim S5, (T) X =

k=0
Table 1 in §6 lists the dimensions of the first few Hecke invariant subspaces.

The first candidate for an interesting Hecke eigenform, i.e. a non-Maafl-Spezialschar
cusp eigenform is found in weight 20. Since S;,(T;) is 1-dimensional this first non-
Spezialschar cusp eigenform is uniquely determined (up to multiplication by scalars) — we
call it T20. In [Ku] its first few Hecke eigenvalues have been computed (our Y20 equals -3

times Kurokawa’s xg?). To write down a formula for it we note first of all that the cusp
form x?%, is not a MaaB-Spezialscharform: in fact, its Fourier-Jacobi development starts
as ¢20g'® + ..., i.e. its first Fourier-Jacobi coefficient vanishes, whereas the first Fourier
Jacobi coeflicient of a MaaB3-Spezialform V¢ is ¢ itself.

Thus, x?%, equals Y20 plus a MaafBl-Spezialscharform, i.e. Y20 can be obtained by
adding a suitable cusp MaaB-Spezialscharform to x%,. The subspace V Sz of Spezial-
scharformen in Sy(T'z) is 2-dimensional; it is spanned by V(¢10E4Es) and V(g2 E?).
Hence, up to normalisation,

T20 = x3o + aV(é10E4 Ee) + bV (12 E})

for suitable constants a,b. To find a,b we computed sufficiently many coefficients of 2,
V(é10E4Es), V($12E2). Then we applied T(2) to these forms using the formula for T(p)
in section 2. This enabled us to find the matrix M, which is uniquely determined by
T(2)B = MB where B = (x%,,V(¢10E4Es), V(é12E2?))*. By well-known algebra we have
x(M)B = v-T20 with a suitable complex column vector v, where x(X') is the characteristic
polynomial of the restriction of T(2) to V' S20,1. From the formula for the Andrianov zeta
function of a MaaB-Spezialform quoted in section 3 one verifies for the latter polynomial
the identity x(X) = ¥(X +2¥-242%-1), where ¥(X) denotes the characteristic polynomial
of the Hecke operator T(2) on the space S35(T';) of elliptic cusp forms of weight 38. The
latter can be computed by well-known procedures.

The other first few Hecke eigenforms 122, T24a, T24b, T26a, T26b- - - of weights 22
to 32 can be found similarly The particular results are given in Table 2. In Table 3 we
listed the first few Fourier coefficients of these forms.

Note that Table 2 shows in particular that all the forms Y22 up to Y265 have ra-
tional Fourier coefficients. For the Hecke eigenforms in Sig(T), Sip(T2), Saq(T'z) this is
not true; their Fourier coefficients generate (after suitable normalisation) a cubic, quartic,
quintic number field, respectively. This is easily deduced from the fact, that the char-
acteristic polynomials H k(X) of T(2) on Si(Ty) (k = 28,30,32) are irreducible over Q.
These characteristic polynomials are listed in Table 5. This table gives also the prime
decomposition of the discriminants fdk of the fields Q[X]/(H k(X)). Note, that these
discriminants contain only a small number of primes as compared to their impressive size.
It may be worthwhile to investigate whether this is part of a more general phenomenon.
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Finally, using the formulas for A, and A,z from section 2 it is p0351ble to compute
the first few Euler factors Q,(X) of the Andna,nov zeta function of Y22 up to T26b. The
resulting values of A, and d, are given in Table 4.

We checked within the range of the table 4 that the roots of z ——(—L + \/—) X 4 p2h-s
are complex conjugate. Thus all roots of @,(X') have absolute value p3 2k j.e. within the
range of our computations the eigenforms Y20 to T26b satisfy the generallzed Petersson-
Ramanujan conjecture.

§5. Congruences for the interesting Hecke eigenforms

A Siegel modular form is said to be defined over R (a subring of C) if all its Fourier
coefficients are contained in R, i.e. if its Fourier development can be viewed as an element
of R[q,¢,q']. Two Siegel modular forms which are defined over Z are said to be congruent
modulo N (€ Z) if they have the same image under the projection map

Zfg,¢,q'1 = 214, ¢, ¢'l/N 2[4, ¢, q')

A similar obvious terminology will be applied to Jacobi forms, elliptic modular forms and
Dirichlet series.

Using this terminology we note

Proposition. All the Siegel modular forms T20 — T26b listed in Table 2 are defined

over Z. One has f
_ 1 if*= 20,22,240" 26a
ar«(1,1,1) = { 3 if * = 24b,26b

For each of these forms the g.c.d. of its Fourier coefficients is 1.

Proof. These assertions are easily read off from Table 2 and Table 3. For the integrality
asertions one uses the following obvious facts: The Jacobi forms ¢19 and ¢,2 and the elliptic
modular forms occurring in Table 2 are defined over Z. The V-operator maps forms defined
over £ to forms defined over Z. Therefore all MaaB-Spezialscharformen occurring in Table
2 are defined over Z. Thus the T are $Z-linear combinations of forms defined over Z,
i.e. they have rational Fourier coefficients with denominators at most equal to 6. That
the denominator 6 does not really occur has to be checked case by case using the fact that
E,; and Fs are congruent to 1 modulo 24 and ¢19 and ¢y, are congruent modulo 12. The
latter is immediately clear from the formulas in Notations.

This proposition together with Table 2 immedia.tely implies that Y20 is congruent
modulo 2° - 3% . 5.7 .11 to the Spezialscharform V( $12E2 + 2¢10E4E5) that Y22 is
congruent to a Spezialscharform modulo 2° -3 5.7 1423, etc. Even more, it is clear from
the closed formulas in Table 2 that the number 2% -3%.5-7 - 11 is the largest integer M
such that T20 is congruent modulo N to a Spezialscharform, and similar statements hold
for the other specimen in Table 2 too.

It is not hard to prove that congruences as the ones just considered imply congruences
for the Andrianov zeta functions. More precisely, one has

12



Proposition. Let N be a positive integer and let F' € V Ji 1 be defined over £ and such
that the g.c.d. of its Fourier coeflicients is prime to N. Assume that F is a Hecke eigenform
modulo N, ie. that T(€)F = A¢F mod N for all £ and with suitable integers Ay. Then
there exists a f € Sox—2(I'1), which is defined over Z and is a Hecke eigenform modulo N,
such that
A
C(2s =2k +4)> 2L = Li(s)Lg,(s — k +2) mod N.

£3
=1

Proof. If F is a Hecke eigenform one has for any @

((2s —2k+4) ) aryr(Q)* = ar(Q)Zr(s),

£=1

whence

(25 =2k +4) Y apyrt™" = ap(Q)Ls(s)L g, (s — k +2)
=1

with a suitable elliptic modular form f from Mzx_2(T';). Since V' Ji ; has a basis of Hecke
eigenforms and by linearity the latter identity is true for any element in V Ji ;. In particular
it holds true for the F' as in the proposition, and since aryr(Q) = Aear(Q) mod N we
conclude

(25 — 2k +4)ar(Q) Y Ael™* = ar(Q)Ls(s)Li,(s — k +2) mod N.
=1

Note that by assumption on F' and the foregoing identity f is defined over Z. Since by
assumption the g.c.d. of the arp(Q) and N are relatively prime we deduce from the last
identity the asserted one. This identity shows in particular that L(s) mod N has an Euler

product, and by well-known arguments this implies that f is a Hecke eigenform modulo
N.

As we saw above the T* are congruent to Spezialscharformen modulo certain N.
These Spezialscharformen are then Hecke eigenforms modulo N and its Fourier coefficients
are even relatively prime (cf. Table 3), i.e. they fulfill exactly the assumptions of the
proposition. Thus, the proposition shows that to each T* and its N there corresponds an
elliptic modular form f, which is a Hecke eigenform modulo N, such that

Zyu(s) = Lg(s)LE,(s — k +2) mod N.
Note that this identity implies as(p) = Ay — p*=2 — p*~1 mod N, where p denotes any
prime and A, the eigenvalue of Tkx with respect to T(p). Thus, given N and the first
few eigenvalues A, of Tk, we can immediately identify the modular form f mod N with
respect to any Z-basis of the lattice of elements of Sgx_2(I";) which are defined over Z.
The particular f (and N) corresponding to the T+ are listed in Table 6.

13



Note that these congruences together with the theory of congruences for elliptic
modular forms imply further congruences. E.g. from the first row of Table 6 we can
deduce the congruences

Zra0(s) = Lg,(s —18)LEg,(s —4) mod 5,
Zr20(8) = Lp,(s — 18)LE,(s —3) mod 7,
Zy20(8) = Lg,(s — 18)LE,(s — 2) mod 11.

To prove these congruences recall first of all that for any prime p one has Ey; = E,; mod
p and that 8 := qd—‘; maps Mi(Ty) to Siyp41(T'1), preserving Hecke eigenforms. Here

M;(T) and §k+p+1(1“1) denote the reduction modulo p of the Z—modules of modular
forms in My(T¢) and Sk4p+1(T1), respectively, which have Fourier coefficients in Z. From
this it is immediately clear that §?F; mod 5, *E; mod 5 or 6°E; mod 7, 8*FE4 mod 7 or
6°F4 mod 11, 8Eg mod 11 are Hecke eigenforms in S3s(l1) for p = 5,7, 11, respectively.
Since the latter spaces are 2-dimensional (over Z/pZ) these are all Hecke eigenforms in these
spaces, and hence the f in Table 6 has to be congruent modulo 5,7,11 to one of these
eigenforms (up to multiplication by a scalar), respectively. The particular congruences,
which one finds in each of these cases, are just the ones listed above.

We leave it to the reader to verify similar congruences for the other Tx.

Finally, we mention another kind of congruence which can immediately be read off
from Table 2. Namely, if we look at the 2 x 5 matrix which has as rows the rows of Table
2 corresponding to T24a and T24b then we recognize that the g.c.d. of its 2 X 2 minors is
4 - 31. This indicates that there should be a congruence between Y24a and 1245 modulo
4-31, and that 4- 31 is the largest integer for which such a congruence holds true. In fact,
consulting Table 2 the congruence

3-T24a = T24bmod 4 - 31

is easily verified: the coefficients 3 - (—2%.32.5.7.11-157) and —27-3-7-13%-83 in
the formulas for 3 - T24a and Y24) in front of x19x14 are congruent modulo 31, and the
same is true for the corresponding coefficients in front of x2,, ¢12EZ, etc.. The claimed
congruence modulo 4 can be verified similarily where one has to use additionally that
$12E2 is congruent modulo 4 to ¢y E? Es. In the same way it is deduced that

3-T26a = Y26b mod 4 - 37
and that 4 - 37 is the largest integer for which such a congruence holds true. It is easily
checked (e.g. by using the formula expressing the Spinor zeta function in terms of Fourier

coefficients as quoted in the last theorem in §2) that these congruences imply corresponding
congruences for the Spinor zeta functions.

14
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§6. Tables

Table 1 : Dimensions of M;(I'3) and subspaces for 0 < £ < 50

VSka

OOO:O‘\A.&MOJMHHH| —

[ IOy |

PR CIN I OO RSN

S;(T2)

o o= =

k Mk(r‘g) KSy(T1) VSia Si(Ty)
26 1 3 2
28 10 2 4 3
30 11 2 4 4
32 12 2 4 5
34 14 2 5 6
36 17 3 5 8
38 16 2 5 8
40 21 3 6 11
42 22 3 6 12
44 24 3 6 14
46 27 3 7 16
48 31 4 7 19
50 31 3 7 20

Table 2 : Closed formulas for the interesting Hecke eigenforms T20 - 1265

1 1
T20 = 2875711 xfo + V(561254 + 561054 Es)
122 =-925.3.5-7.1423. mm

+ V( - _""4512E4E6 +

+ V(-

+V(

¢10E‘5+2“ 3.61-¢10A)
Y24a = -2%. 32 5.7- 11-157.;510;(1‘,+25-3-52-11-157,»(‘{2

13
¢12EG 24.3.67 ¢120 + 73 910E{Es)
‘I‘24b——27 3 7 132 .83 - x10x14 —2%-3-7-13%.83 . x2,

¢1zEs+26 3-5-7- ¢12A—*——¢10E4Es)
T26a=—26 33 52.11-29 - x10X16a — 25 34.52 11-29 - ¥12X14

1 3
+ V(- §¢12E42E6 + §¢1052 —25.32.31 . ¢10AE,)
Y266 =-25.33.5%.7.132. Xmea +25.3%3.52.72.13% . y1ax14

5-13

+ V(——¢12E4E5 - ——¢10E4 +2%.3.5.251 ¢10AF,)

Table 3 : The first few Fourier coefficients of the T20 — T26b

Tx 1,1,1 1,0,1 1,1,2 1,0,2 11,3
T20 1 22 2% .7 22.3-109 —-3-11-1669
T22 1 —-22.3 28.3.7 23.33 3%.5059
T24a 1 -24 -2%.11-23 —2%.3-11-19 -=3-11-23.563
T24b 3 2219 -23.7.11 —2%.3-112  3.11-131-491
T26a 1 -23 —25.233 2%.3-317 -3-11-83.431
T26b 3 22.31 21.7-461 —-2°.3.17-269 3 - 2433059
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Table 4 : The first few Euler factors of the Andrianov zeta functions of Y20 — Y265

-1

-1
Zya(s) = H (1 — (.’.\22 + \/(E)p—: +p2k-3-2:) . (1 _ (’\_2}3_ _ @)p-a +p2k-3—2.o)
4

T P Ap dp = -%,\g + Ap: + p-d 4 2;)”'3
T20 |2 —98.32.5.73 214.32.7.13.19.241
3 23.3%5.5.7.5099 26.310.19. 47 - 150628997
5 —22.32.5%.7.166103087 28.32.5%.19.47 - 1396135808326877
7 24.52 .73 .673 . 28346749 98.36.76.99.1097 - 41713094306662453
T22 |2 -28.3.5.577 214.31.132.31.439
3 -23.3%.5.19.97-167 98.310.11 .61 - 8364437759
5 22.3.5%.60700091989 210.34.5%.7193 - 9888524030928593
T24a | 2 —211.3.5-181 220 .32.7.17-61559
3 —23.3%.5.7.232.491 26 .312. 73 . 413057028823
5 ~2%.3.5%.7.29.100438961 | 28.32.55.72.13.19%.157 - 659 - 74293331977811
T24b | 2 —929.32.923.61 216 .32.5.112.97. 373
3 —23.36.92328401 26.312.5.112.13% . 1163672669
5 22.3%.5%.1562781531383 28.32.55.112.132.50368985463609956441
T26a | 2 —213.32.5.72 ' 221.32.859 . 5779
3 —923.35.5.307 61091 910.310 . 107 . 1093 - 16123577711
5{—2%-32.5%.13.37.293 - 1847 - 3067 212.32.510.17. 373 - 165515489 - 74684067301
T26b | 2 -29.32.5.229 216.32.7.67.163 - 33703
3 ~23.37.5.7.1061 1579 910, 314 . 41.1153 - 504719897
5| 22.32.53.7.37-.757-2713.51713 212.32.55.11-206009 - 13183364794216242331

Table 5 : Characteristic polynomials H k of 7(2) on S{(I';) and discriminants fdk of Q[X]/(H k(X)) for
k = 28,30,32

H28 =X3 + 137681664.X 2 + 4794374687293440X + 4100431555335920025600

Fd28 =5-13 - 73693 - 1418741

H30 =X 4 374036736X2 — 38240213642772480.X 2 — 1675860454758443227545600X
+ 3326494782878021681883906048000

fd30 =3 - 769896956241058733183

H32 =X5 4 2026982400.X* — 1037849863848984576X3 — 1460765778655696250606714880.X 2
+ 197850685506224024897745617682432000X
+ 186323642358004277344714415914598409437184000

Fd32 =272 .3.7.170912892945636421076635084794644759
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Table 6 : Congruences for the Andrianov zeta functions: Zv.(s) = Lg,(s — k+ 2)Ls(s) mod N

T f N

T2 | Ej-Es-A+ 146016E2 - Eg - A 2°.32.5.7.11
T22 | ES-FEs- A+ 4200240E2 - Eg - A2 + 4200240R - A® 25.3.5.7.1423
T2a | EI-Eg-A+92736E - Es - A + 33120E, - Bs - A® 25.3.5.11-157
T24b | E]-Es- A+ 18655488E] - Es - A? 4 12111936E, - Es - A® | 26.3.7.137.83
T2a | E3-Eg-A+507600E% - Eg - A? + 13694400E2 - Eg - A3 26.3%.52.11.29
To6b | E$.Eg- A+ 46602000E5 - Es - A2 + 22420800E2 - B - A® | 26.3%.52.7.132
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