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Automorphisrns of non-compact.Riemann surfaces

and rri-emannian rnanif0lds o.fnegative curvature

. 'lk'+Ravl. S. Ku arn1.

§1. Introduction (1.1). Let S be aRiemann surface of genus 9

and t ends ("ideal boundary cornp~nents")., 0.::. g, t < co. Let

G = Aut S. If t = 0 and g > 2, then by a well-known result of

Hurwitz jGI.::. 84(g-1) with equality iff G~ ~ w1 and the canonical

projection p: S -+ ~S = JP
1 has precisely three branch points wi th

G

branching indices {2,3,7}, cf. e.g. [4] theorem 1.7.2. Now suppose

that S i5 non-compact, so t > 1. In this case Greenberg proved

that if 3 < 2g+t then G is discrete and if moreover, 2g+t < co

then IGI < co, cf. [3], theorem 3, cf. also [4] theorem 1.7.1.

It appears however that the following more precise analogue of

Hurwitz's theorem is not in the literature. This analogue has an

interesting.connection.with the classical.modular group.

(1.2) Theorem. Let S. be as above. with 3 < 2g+t. Then G is

discrete. If t > 1 and 3 ~ 2g+t < 00. then. IGI < 12(g-1)+6t with

\

has precisely two branch points with branchi~g

Moreover in the case of equality, G\S is biholo-

equality iff G"S
tion p: S -+ G'\S

indices. {2, 3} .

is homeomorphic to 2
:IR and the canonical projec~

+ Partially supported by an NSF grant and the Max-Planck Institut
für' Ma thematik " Bonn, Germany'
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morphic to ~ iff 5 is biholomorphic ta. a compact Riemann surface

with finitely' many punctures.

This result is better understood in its moregeometric.formulation

which also points out the special role played' .by the modular. group.

In case 3.::. 2g+t,. the universal coverof . S may be' identified

with the upper half plane lli
2

and the deck-transformation group

ß :::;'IT 1 (5) acts on lli 2 so b, < Aut m2 ~ PSL
2

(IR) which is also

the full group of orientation-preserving isometries with respect to

the hyperbolic metric.' Let X . be ,the normalizer. of in
2Autlli .

The~ b,\~ ~ G, and the latter part of the above theorem amounts

occursto the following. The equali ty IGI = 12 (g-1) +6.t

... r '" 2Z 2Z 5 ){ 1 2 . 3)'1 '" 2* 3· uppose = <x,y x = y = e>. Let P,Q

iff

be the

fi:xed points of x and y
. '2

respectively 1n JH • Then

the hyperbolic d±stance d(P,Q) > Q,n 13 with equality-

(f.2.1) { iff N' is conjugate to the modular g:r:oup iff the

hyperbolic area of S is finite.

(1 .3) In the proof of .( 1 .2) we reprove the part already obtained by

Greenberg by a more geometrie methode This proof has the advantage

tha t i t partially extends to ..the .isome try groups. of arbi trary

n-dimensional complete Riemannian manifolds of negative curvature.

In this case the nation of the limit set of the deck-transformation

_group and its convex hull have a meaning. We call.such a mani~old

non-elementary if the correspondi~g limit set has at least three

points.
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(1.4) Theorem. Let Mn be a complete, non-elementary Riemannian

manifold with negative curvature bounded away from zerQ. Let ~

be the convex .hull of .the. correspondi!lg.limi t set, and I (M) (resp.

IO(M)) denotes the' full isometry group of' M (resp. the identity

component of I(M).). Then. IO(M) i8 compact, and has dimension

where 1 = n-k, k = dirn e.. In particular if

dirn ~~ n-1 then I(M) is discrete.

(1.5) This result partially extends the results of [2], 5.18&and

5. 19 . In these resul ts.,. ehen and Eberlein allow the curva ture to

be non-positive but make a strong hypothesis that the geodesie flow

is non-wandering. I t .appears. tha talready in dimension 3 .( 1 .4) has

wider applieability than the results available in the literature.

A much more sub.tle question here is to. decide the number of eompo-

nents of I(M). Using deeper results from Kleinian groups and

3-dimensional topology, one ean answer this question substantially

in dimension 3 ef. (3.7) - (3.9). Of course, making strong geometrie

hypotheses, e.g. if M is compact or at least has finite volume,

this question ean be answered in all dimensions.. But a weak topo-

logieal hypothesis "TT (M)
1

is finitely generated", is not sufficient

to guarantee an affirmative answer .. We. diseuss some possibilities

in §3. All this is of course .very. far' from the preeise understanding

a la Hurwitz in dimension .24 The only works in higher dimensions

in this direet·ion. appear to be. Huber [6] and. Im Hof [7].
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§2. Proof of. theorem (1.2)

(2.1) . Let· S be the universal. cover of. S. Since t > 1 and

3 ~ ~g+t we see that ... TI 1 (S) Z a.nonabelian· ~·ree. group on 2g+t-1

generators. It may:be realized as a deck~transformation group

6 < Aut(S). If ~ is 'the normalizer of ~ in Aut(S) then

i\J{' :::: Aut S = G.. Now S., being. non-compact is biholomorphic to

or But Aut(G:) is solvable and so cannotcontain a non-

abelian free subgroup~ So ~ may be taken tob~ ~2, and ~o G

is also the full group. of orientation-preserving isometries of S

w.r.t. the induced hyperbolic metric. In particular G acts properly

i.e. for each compact set K C 5, the subset {g E GI9K n K 1 ~}

is compact in G w.r.t. thecompact-open topology. We shall also

regard. S =m 2 as the open unit disk so that Aut 5 extends to the

closed unit disk.

(2.2) We now assert that G is discrete .. Indeed, let GO resp.

~ be the identity component of G resp. jI{' .. Then Nö~ ::: Go

and since' ~ is discrete, ~ is connected and normalizes ~ we

see that ~o .also centralizes ~. Let' A be the limit set of 6

(i.e. the cluster set of an orbit 6p, p Elli
2 in the unit circle).

Since Ko centralizes ~ we see that ){'o fixes A pointwise.

Since . .A, isinfinite !I. 1 ~ ... , If. A contains < 2 points then

6 would be virtually abelian which is not the case. .50 A contains

at leas,t three points. Let p, q, r, be any three, dis.tinct points of
. 2

A and. y a geodesic of .. TI-! j Oini:ng. p to q, and.. s the foot

of the perpendicular ,n from r to.y. Since Ka fixe·s p,q,r,

it leaves y and n invariant so it fixes s. Hence.in fact it
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f':llxes y pointwise and. so also. the .'convex .hull ~ of A in ]lf2.

Since obvious·ly. ~ .has interior. i t follows tha t. X o =' {e} • So

GO = {e}. also.

(2.3) Now assurne . tha t . 3 ...~ 2g+t. < 00. We claim tlja t G is compact.

Since S is homeomorphic to a compact surface of genus g with t

points removed, there exists. a compact subs'et :K ~ S such that its

inclusion map -is a homotopy equivalence and each component of S-K

is an annulus. Then for each 9 E G we must have gK n K ~ 0 for

otherwise gK would be contained. in an annulus ..A and the inclu-

sion gK4 A~ S would fail to be a homotopy.equivalence. So G

is compact.

( 2 . 4 ) Combining (2. 2) and ( 2. 3) we now know that G is finite.

Let. G .denote the isotropy subgroup of G at p. The set ~ =p

{x E SIG t- e} is the singular set of the G-action. Let p: S -+ ~Sx

be the canonical projection. The set ß = p(~) is called the

branch set of the G-action. We now assert that )3; and hence ß are

finite sets. Indeed let S denote the compact surface obtained

from S by adjoining its t ends.. The finite group G extends

as a group of orientation-preserving homeomorphisms of S. But

then each 9 E.G - {e} ·can have only finitely many fixed points on

5. So)5 and hence. ß are finite sets.

'('02:: 5) Now we are' in a posi ti6nto applyHurwi tz I s analysis. The

relation.

(2.5.1)

where X denotes the Euler characteristic, leads ta. the Riemann-
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Hurwitz relation~

(2.5.2) 2-2g-t = IGI' {2-2h~- u - ~ (1.- 1 )}
xEß n~

where h = the genus of G\S" u =the number of ends. of G'\..S and

nx = the branching index ,ai, x.E ß. Since 'G"S is non-compact we

have u >'1. If 2-2h-u< 0 then lGI ~ (2g+t-2)/(2h+u-2). If

2-2h-u = 0 then since the L.H.S. of (2.5.2) is < 0 we see that

IßI > 1 say ß = {x}. Since n > 2 we have
x

IG! < (2g+t-2)/(1- ~~J < 2· (2g+t-2.). If 2-2h~u = 1 then IßI > 2
x

and if IßI = 2 say ß = {x,y} then we cannot have

So if IßI > 3 we have

(n,n) = (2,2).
x y

IGI <

If IßI = 2 then

(2g+2-2)/1-3/2 = 2(2g+t~2)

IGI < - (29+2-2)/1-~-~ = 6 (2g+t-2) '= 12(g-1)+6t.

This proves the first part of theorem 1.

(2.6) The same argument shows that if 161 = 12(g-1)+6t we must

have X (G\S) = 1 i.e.' G\S .is homeomorphic to m2
and there are

precisely two.branch points with branchi~g indices {2,3}. This

implies tha t}(' is a free product of two elements. say x and y

of .order 2.and 3 respectively.

(2.7) Let P resp. Q be the fixed point. of x resp.

E
2

(which we may consider as the upper half-plane). Let

y in

be
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a.: geodesie passi!1g. thro~lgh. P and Q, Y1 = a geodesJ..c through P

perpendicular to YO and. Y2 = a. geodesic.thro~gh Q maki~g an

angle Tr/3' wi th Yo in the direction towards P. Let 0.
~

denote

the reflections through the. geodesics y.
~

i = 0., 1 , 2. Then clearly

x = 0100' Y = 0002. So xy = °1°2 - If Y1 'Y 2 intersect, say at

R, then xy would fix R. If xy is of infinite order then ~

would not be discrete and if xy has finite order then ~ would

not be a free product of <x> and <y>. So Y1 and Y2 do not

intersect. If y 1 ,Y 2 .. are asymptotic then )( is clearly conjugate

(in Aut (Ef)) to the modular group. This happens precisely when

d(P,Q) = Q,n /3, and then is biholomorphic to <I. Otherwise

d(P,Q) > 9..n 13 and we roust have \.5
G

nomeomorphic but not biholo-

morphic to ~. This finishes the proof of the theorem (1.2), and

(1.2.1).



8

§3. Proof Gf, (1.4). and further comments .

( 3 • 1 ) Proof o'f '("1";4): Let M~ be in (1 .4),
-n

its universalas M

cover., 11 :::;
TI 1 (M) the decktransformation group, and )(' the norma-

lizer of ß in I Ü1) • So \J{ :::::: l (M) • If X o resp. IO(M)ß\

denote the identi ty -components (w. r. t. cornpac.t-open topology) of

)(' resp. I (M) we have, as in (2. 2), tJ\~ " 10 (M), andJ{'o

o
""centralizes /1. The ideal boundary of M is defined by classes of

asyrnptbtic geodesics. We denote this boundary by a. It is well-

known, cf. [2] and the references there, .tha t w.r. t. an appropriate

topology and M ua - a closed n-disk and I(M) extends

continuously to MUd. Given twa distinct points x,y in a

there exists a unique geodesie in M ending in x and y. The

limit set A of 11 is the cluster set in a of a l1-arbit, I1p,

P E M. (It is independent .af the choice of p.). Let ~ be the

""convex hull of A in M. Exactly gy the·argument in (2.2), since

by hypothesis A contains at least 3 distinct points, we see that

~ fixes A and ~ pointwise. Let p be an interior point of

any convex simplex 0 of maximum dimension .(= k say) contained

in ~. Then IO(M) fixes~the tangent plane to a at p, and

IO(M) . is isomorphie to a closed s~group of the orthogonal. group

O(~), ~ = n-k. This implies all the assertions in (1.4.).

q.e.d.

(3. 2}) Now we take up .the question of determining .the nurnber of

components of I (M). If dirn M = 2 then '( 1 .2) together wi th the

well-R~own elefuentary cases 0 ~ ~g+t ~ 2 ,give a fair understanding

of this question. The question for dirn M > 3 is quite subtle.
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First we note some well-known cases proved in different ways. We

derive these ,fr'om. our set:"'up. In, the following., throughout Mn

denotes a· complete Riemanniatl.mani'fold' ,'wi'th n"e'ga'tive curvature

bounded away from zero.

(3.3) Proposition. If Mn has finite volume, (in-particular if

it is compact), then I(Mn ) is finite.

Proof. It is easy to see (e.g. from the shape of the Dirichlet

fundamental domain) that in this case A = 0, so dirn ~ = n. Hence

by (3.1) I(M) is discrete. If 'Mn is compact then I(M) is

also compact,·. so I.(M) is fini tee Now suppose only that Mn has

finite volume. For s > 0 consider the set Ms
{x E Mn I the

injectivity radius at x > s}, i.e. for each x E ME the closed

metric ball B (E) of radius E with center .x is homeomorphic
x

to a closed disk. If s is small then M ~~. On the others

hand if M were non-compact it would clearly contain infinitely
s

rnany mutually disjoint balls of radius s. Each such ball has

volume at least equal to that of.the Euclidean ball of radius s.

But then M and hence M would have infinite volume. It followss

that'M is cornpact and as it is clearly invariant under I(M),
s

we.bave .. I(M) = I(M ). The latter is clearly compact.
E

q.e.d.

(3.4) Tha a~gument of (3.3) has wider applicability. E~g. if for

some a, b.~ EJR>o' Ma , b = {x, E M I the inj ectivi ty:;"'"radius at x lies

in [a,.b.].} is nonempty. and compact.then I(M) is compact.

(3.5) Next consider the case when -M is elementary, i.e. K has
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< 2 points. If A = 0 then .. M. is simply connected. This case

is welJ,.~understood,.. cf. [2.] andthe references there.

Proposition. If A contains .two points. then either I(M) is

eompaet er else I(M) .has a subgroup of index 2 whieh is isomorphie

to AXB where A is compaet and B ~ JR or Zl.

Proof. Let A = {x ,'y}

y. Then I(M) leaves

-and y the geodesie in M joining x and

A and y invariant and so it has a sub-

group G of index< 2 which fixes x and y. Let p E y. Clearly

G is compact and in fact JG = {g E Gig fixes y pointwise}.p p

Each 9 E G induees an orientation-preserving isometry of y.

The greup IO(y) of orientation-preserving isometries of y is

~ JR. Since G acts properly (but possibly ineffectively) on y,

we see .that the image of the canonical homornorphism G + IO(y)

is either e, ~ orE. So ei.ther G. and henee reM) is compaet.

or else it is easily seen that .G ~ GpXB with G
p

compact and

or :IR.

q.e.d.

(3.6) An interesting case iswhen A = {a point}. In this case

there iso a significant contrast between dim M = 2, and dirn M > 3.

An easy curvature calculation. shows that i.f .N is a complete

Riemannian .. manifold w.i th. non-posi.tive .. eurvature.then M = ID,xN

with the metrie dt 2 + e2tds~ has curvature < -1, and moreover

I (M) :::; I (N) bu t. A =' {a. poi'nt} . This shows' tha t A = {a point}

implies no predictab.le. general. re~trictions on I(M) - especially

if dirn H > 4 and indicates tha t the action of - I (M) OM dJ 'wool~rito~

be in. general smoothable. However in case M. is loeally homo-
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. geneous then Heintze's results.cf. [5] imply that I(M) is

virtually solvable ..

(3.7) Now we restrict to the case dirn M = 3.

Proposition. Let M3 be a non-elementary complete Riemannian

manifold with constant curvature =. ~1, .and finitely generated

n 1 • Assurne that A ~ 3. Then ~(M) is finite.

Proof. In this case 3 rnay be identified wi.th the Riemann sphere

52 and (modulo passing to an orientable double cover if necessary)

the deck-transformation group ~ z n
1

(M) acts on 8 2 by Möbius

transformations. The action of !J. on 8 2_A is free and properly

discontinuous. 8ince !J. is finitely generated, by Ahlfors'

fini teness theorem cL [1], [8], /:,\:(S 2_11) has fini tely many compo

nents and each component is aRiemann surface whose genus g and

,,' (5
2

_}\)number of ends t satisfy 3 < 2g+t< 00 Now u~ m~y be

considered as an "ideal boundary n of M. The action of I (M) on

(8 2-1\)
M naturally extends to ~" and the latter action is by

conformal transformations. Using the above remarks and (1.2) we

see that reM) has a subgroup

(8 2-1\)
trivially on .~" . Now

H of finite index which acts

where :Jl is a certain sub-

group of.the normalizer of· ~ in I(~). 8ince.H acts trivially

(S2~l\)
on ~\ .. '. we see that each ,h E jf. has the form h = a e h 1

where a E ~ and' h 1 acts' triviallyon 3-11.. But then h 1 acts

trivially on,the convex hull of 3-A in M. 8ince this convex

hull has a" non-empty.. (3-dimensional) interior we see tha t

i.e . .Je = ~ or. H = {e}. Thus I (M) is finite.

h = e1

q.e.d.
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(3.8) Here is a variant o,f (3,. 7) for M
3 wi th variable curva ture.

Note that. a 3-:-d'imensional.manifold with finitely genera ted

has a well~defined Euler characteris.tic, 6f. [8], [9].

Proposition. Let M
3

be a complete Riemannian manifold with

negative curvature bounded away from zero andwith finitely gene
3 .

rated n 1 •· Assume that the Euler characteristic X(M) < 0, and

A # a. 'Then I(M) is finite.

Proof.·.. We apply the topological analogue of. the Ahlfors' fini te

ness theorem developed in [8] to M3 U 3. For this application

note that the action of the deck-transformation group 6 ~ TI
1

(M)

is free and properly discontinuous on ~3 U. (a-A), and this is

the maximal subset of M3
U' 3 on which the action is properly dis

continuous. Now the results in [8] imply that 6,\(3-A) have only

finitely many cornponents with.negative Euler characteristic.. The

may be considered as an I' ideal boundary" of

ensures that there is at least one component

M '.. and the

M U 1'.\(3-1\).

Moreover again

and is proper onextends toI (M)action of

3condition X(M) < ,0

'\. (3-6)6f 6 '\ wi th nega tive Euler characteris,tic.

1'.\( 3-1\)

Now the argument proceeds exactly as in (3.7) once we notice that

(1.2) is really valid for any group acting properly.

q.e.d.

(.3.9) Remark. r.t may happen' tha t. M
3

.is a comp.le,te Riemannian

manifold with con·s·taut negative 'curvature and' wi.th fiuitely generated

TI 1 and still .1 (M) 'i's', d'i's·crete. bu·tinfinite. In this case, of

course, .one must have A = 3~ Indeed' let N3 be a fiber bundle

over with fiber an orientable (possOibly non-compact) surface
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with n~gative' Euler· characteristic such that the monodromy is

pseudo-Anosov. Then N
3

admits a complete Riemannian metric of

negative constant curvature..and finite volume, cf. [11] - in fact,

this is a cruc±al case .in Thurston·'s hyperboli za tion program for

3-manifolds. Let M3 be the regular covering of N3 corresponding

to 1f
1

(fiber). Then 1f1"tM) ::::: 1f 1 (fiber) is .finitely generated,

A = d so I"(M) is discrete by (3.1). But obviously I (M) contains

the covering transformation group ~ ~ of the cove~ing M
3 ~ N

3
.

In some sense these examples are typical. For indeed suppose M
3

is a complete Riemannian manifold.with.negative curvature bounded

away from zero, with finitely genera ted 1f 1 , and suppose that I(M)

contains a discrete subgroup A ~ ~. Then A acts freely and

is

possi-

SinceLet '/M
N = A\-':.

has·a compact submanifold

M.properly discontinuously on

finitely genera ted by [9] N

bly with boundary such that the inclusion N1~ N is a homotopy

equivalence. Then clearly one has a surjective homomorphism

1f
1

(N
1

) + ~ with finitely.generated kernel. In this situation

[10] shows that N1 in fact fibers over 8
1

.



14

References

1) Ahlfors, L., Finitely generated Kleinian groups,
Amer... J ..Hath. 86 (1.96.4), 413 - 429

2) Chen S.S. and Eberlein P., Isometry. groups of simply connected
manifolds of nonpositive curvature,
Illinois Jour. of Ma~h.. 24 (1980)', 73 - 103.

3) Greenberg, L., Conformal.Transformations of Riemann Surfaces.,
Amer.Jour. of.Math. 82 (1960)., 749 - 760

4) ., Finiteness Theorems for Fuchsian and Kleinian
Groups, . in. Discontinuous Groups and Automorphic Functions,
ed. by.W.J. Harvey, Academic Press (1977)

5) Heintze, E., On. homogeneous .manifolds of .negative curvature,
Ma th. Ann. 211 (1 974), 23 - 34

6) Huber, H.,. über die Isometriegruppe einer kompakten Mannig
faltigkeit mit negativer Krümmung, Helv. Phys. Acta 45 (1972),
277 - 288.

7) Im Hof H.C., tlber die Isometriegruppe bei kompakten Mannig
faltigkeiten negativer Krümmung, Comment. Math. Helv. 48
(1 9 7 3), 1 4 - 30

8) KUlkarni, R.S. and Shalen.P.B., On.Ahlfors' finiteness
theorem (ta app~ar)

9) Scatt G.P., Finitely generated 3-manifold groups are finitely
presented, J. London Math. Soc. (2).6 (1973), 437·- 440

10) Stallings., J., On fibering certain 3-manifolds, Prentice-Hall,
Engelwood Cliffs, N.J. (1962), 95 - 100

11) Sullivan, D., Travaux de Thurston sur les groupes quasifuchsiens
er les varietes hyperbolique de dimension 3 fibrees sur
S. Sem. Bourbaki, No. 554 1980, 'Lecture Notes in Ma th.
No. 842, Springer Verlag 1981 .


