Automorphisms of non-compact Riemann surfaces

and Riemannian manifolds of negative curvature

R.S. KULKARNI

MPI 86-31

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-StrafBle 26
D - 5300 Bonn 3

Federal Republic of Germany






Automorphisms of non-compact.Riemann surfaces

and Riemannian manifelds of negative curvature

! ' .+
Ravi S. Kulkarni

§1. Introduction (1.1). Let S be a Riemann surface of genus g

and t ends ("ideal boundary components"), O < g, t < «=. Let
G =Aut 5. If t =0 and g > 2, then by a well-known result of
Hurwitz |G| < 84(g-1)  with equality iff é\f 3]P1 and the canonical

! has precisely three branch points with

projection p: s - é\s = 1P
branching indices {2,3,7}, cf. e.g. [4] theorem 1.7.2. Now suppose
that S 1is non-compact, so t > 1. 1In this case Greenberg proved
that if 3 < 2g+t then G is discrete and if moreover, 2g+t < =

then |G| < «, c¢f. [3], theorem 3, cf. also [4] theorem 1.7.1.

It appears however that the following more precise analogue of
Hurwitz's theorem is not in the literature. This analogue has an

interesting. connection with the classical.modular group.

(1.2) Theorem. Let S . be as above with 3 < 2g+t. Then G is
discrete. If t>1 and 3 < 2g+t < . tﬁen‘ | G| < 12(g-1)+6t with
equality iff g\? is homeomorphic to IRz and the canoﬁical projecs
tion p: S ~» é\s has precisely two branéh points with branching

indices {2,3}. Moreover in the case of equality, é\? is biholo-
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morphic to € iff S is biholomorphic to a compact Riemann surface

with finitely many punctures.

This result is better understood in its more geometric.formulation
which also points out the special role played by the modular group.
In case 3 < 2g+t, the universal cover of 'S ﬁay be identified
with the upper half plane :m2 and the deck-transformation group

A :'ﬂ1(S) acts on H® - so A < Aut T2 ® PSLZGR) which is also
the full group of orientation-preserving isometries with respect to
the hyperbolic metric. Let N be the normalizer'of A in Aut]HZ.
Then &{(. ~ G, and the latter part of the above theorem amounts
to the following. The equality |G| = 12(g-1)+6t occurs iff

3

N = Zoy*7 g suppose N = <x,ykx2 =y~ =e>, Let P,Q be the

fixed points of x and vy respectively in.IHz. Then

the hyperbolic distance 4&(P,Q) > &n ¥3 with equality
(1.2.1) iff N is conjugate to the modular group iff the

hyperbolic area of S is finite.

(1.3) In the proof of (1.2) we reprove the part already obtained by
Greenberg by a more geometrie: method. This proof has the advantage
that it partially extends to. the isometry groups of arbitrary
n-dimensional complete Riemannian manifolds of negative curvature.
In this case the notion of the limit set of the deck-transformation
~group and its convex hull have a meaning. We call such a maniféld

non-elementary if the corresponding limit set has at least three

points.



(1.4) Theorem. Let M” be a complete, non-elementary Riemannian
manifold with negative curvature bounded away from zero. Let E

be the convex hull of the corresponding limit set, and I(M) (resp.
IO(M)) denotes the full isometry group of M {resf. the identity
component of I(M)). Then. IO(M) is compact, and has dimension

“

< %\2(@-1)-~.—4-~ where & = n-k, k = dim . In particular if

dim ﬁi n-1 then I(M) 1is discrete.

(1.5) This result partially extends the results of [2], 5.18aaﬁd
5.19. In these results,. Chen and Eberlein allow the curvature to
be non-positive but make a strong hypothesis that the geodesic flow
is non-wandering. It appears. that already in dimension 3 ﬂ1.4) has

wider applicability than the results available in the literature.

A much more subtle question here is to decide the number of compo-

nents of I(M). Using deeper results from Kleinian groups and
3-dimensional topology, one can answer this question substantially

in dimension 3 cf. (3.7) - (3.9). Of course, making strong geometric
hypotheses, e.g. if M is compact or at least has finite volume,
this question can be answered in all dimensions. Buf a weak topo-
logical hypothesis "ﬂ1(M) is finitely generated"”, is not sufficient
to guarantee an affirmative answer.  We discuss some possibilities

in §3. All this is of course very far from the precise understanding

d la Hurwitz in dimension .2. The only works in higher dimensions

in this direction appear to be.Huber [6] and.Im Hof [7].



§2. Proof of. theorem (1.2)

(2.1) . Let § be the universal. cover of . S. Since t > 1 and

3 < 2g+t we see that .m, (8) * alnonébelianﬁfree_group on 2g+t-1

1
generators. It may be realized as a deck—trahsformation group

A < Aut(éi. If JVR is the normalizer of A 1in Aut(é) then

g{vﬂ * Aut S = G. Now S, being non-compact is bihélomorphic to

T or :mz. But Aut(€) is solvable and so cannot contain a non-
abelian free subgroup. So S may be taken to bg& ZMZ, and so G

is also the full group. of orientation-preserving isometries of S
w.r.t. the induced hyperbolic metric. 1In particular G acts éroperly
i.e. for each compact set K &€ S, the subset {g € G|gk N K # ¢}

is compact in G w.r.t. the compact-open topology. We shall also
regard. $ =2M2 as the open unit disk so that Aut S extends to the

closed unit disk.

(2.2) We now assert that G 1is discrete. Indeed, let GO 'resp.

ﬁ{; be the identity component of G resp.,Af‘. Then ng§£g = GO

and since A 1is discrete, J{; is.connected and normalizes A we
see that ‘)(5 -also centralizes A. Let A be the limit set of A
(i.e. the cluster set of an orbit Ap, p EIMZ in the unit circle).
Since )fg centralizes A we see that /Nrb fixes A pointwise.
Since .A 1is ‘infinite A # @.. If. A contains < 2 points then

A would be virtually abelian which is not the case. .So .A contains
at least three points. Let p,q,r be any three distinct points of

A and. y a geodesic éf”:mz‘ joining. p to g, and. s the-foot

of the perpendicular #4 from r to .y. Since )(; fixes p,q{r,

it leaves v and n invariant so it fixes s. Hence .in fact it



fixes. Y pointwise and. so also. the.convex hull € of A in ZHZ.

Since obviously . has interior it follows that N . = {e}. Sso
0]

GO = {e} also.

(2.3) Now assume.that .3.< 2g+t < . We claim that G is compact.
Since S is homeomorphic to a compact surface of genus g with t
points removed, there exists a compact subset K & S such that its
inclusion map is a homotopy equivalence and each component of S-K
is an annulus. Then for each g € G we must have gk N K # ¢§ for
otherwisé gK would be contained.in an annulus ..A and the inclﬁ—

sion gKey Ae» S would fail to be a homotopy equivalence. So G

is compact.

(2.4) Combining (2.2) and (2.3) we now know that G is finite.
Let. Gp denote the isotropy subgroup of G at p. The set £ =

{x € SIGX # el is the singular set of the G-action. Let p: S - 8\?

be the canonical projection. The set B8 = p(§) is called the

branch set of the G-action. We now assert that ,8 and hence B are

finite sets. Indeed let S denote the compact surface obtained
from S by adjoining its t ends.. The finite group G extends
as a group of orientation-preserving homeomorphisms of S. But
then each g € G - {e}l .can have only finitely many fixed points on

—

S. So .8 and hence. B are finite sets.

(275) Now we are 'in a position to apply Hurwitz's analysis. The

relation.
(2.5.1) x(s-148]) = lel x(G\S-lBI)

where X denotes the Euler characteristic, leads to the Riemann-



Hurwitz relation.

(2.5.2) 2-2g-t = [G] {2-2h=- u - I (1- —= )}

xE€B Ny

where h = the genus of d\s, u

S
the number of ends.of é\ and
n, = the branching index at . x € B. Since .d\s is non-compact we
have u >'1. If 2-2h-u < O then |G| < (2g+t-2)/(2h+u-2). If

2-2h-u = 0 then since the L.H.S. of (2.5.2) is < O we see that

|B| > 1 say B = {x}. since n_> 2 we have
|G| < (2g+t-2)/(1- ﬁ:) < 2+(2g+t-2). If 2-2h-u =1 then [B] > 2
: %
and if |B| = 2 say B = {x,y} then we cannot have (nx,ny) = (2,2).

So if |B| > 3 we have
|G| < - (2g+2-2)/1-3/2 = 2(2g+t-2)

I1f |B| = 2 then

|G| < - (2g+2—2)/1-%-§ = 6(2g+t-2) = 12(g-1)+6t.

This proves the first part of theorem 1.

(2.6) The same argument shows that if |6] = 12(g=1)+6t we must
have x(G\S) =1 i.e.- G\F is homeomorphic to R® and there are
precisely two. branch points with branching indices {2,3}. This
implies thatJN” is a free product of two elements say x and vy

of order 2.and 3 respectively.

(2.7) Let P resp. Q be the fixed point of x resp. y in

mz (which we may consider as the upper half-plane}. Let Yo be



a. geodesic passing‘thropgh. P and Q, Y, = a'geodesic through P
perpendicular to Yo and . Yo = a geodesic through Q making an
angle m/3° with Yo in the direction towards P.‘ Let Gi denote
the reflections through the geodesics Y5 i =0,1,2. Then clearly
X = O40qgr ¥ = 050, So xy = 0,0,. If Y1,y2a intersect, say at
R, then xy would fix R. If =xy is of infinite order then N
would not be discrete and if xy has finite order then JNr would

not be a free product of <x> and <y>. So Y4 and Y, do not

intersect. 1If YqrY, -are asymptotic then JN” is clearly conjugate

(in Aut(Ii?n to the modular group. This happens precisely when
d(P,Q0) = &n v3, and then é\s is biholomorphic to @. Otherwise
d(P,Q) > &n ¥3 and we nust have é\s, Homeomorphic but not biholo-

morphic to €. This finishes the proof of the theorem (1.2), and

(1.2.1).



§3. Proof of (1.4) and further comments

(3.1) Proof of (1.4): Let M be as in (1.4), M"  its universal

cover, A % ﬂ1(M) the decktransformation group, and JMﬂ the norma-
lizer of A in I(M). So &?r = I(M). If )fb resp. I (M)
denote the identity components (w.r.t..compaét—open topology) of

N :
){’ resp. I(M) we have, as in (2.2), r;;“? ¥ IO(M), and _Af;
. A
(0]

centralizes A. The ideal boundary of M is defined by classés of
asymptotic geodesics. We denote this boundary by 2. It is well-
known, cf. [2] and the references there, .that w.r.t. an appropriate
topology 98 ¥ Sn_1, and M U3 % a closed n-disk and I(M) ‘extends
continuously to M U 3. Given two distinct points x,y in 3
there exists a unique geodesiciin M ending in x and y. The
limit set A of A 1is the cluster set in 9 of a A-orbit, Ap,

p € M. (It is independent .0of the choice of p.} Let 'ﬁ be the
convex hull of A in M. Exactly by the-afgument in (2.2), since
by hypothesis A contains at least 3 distinct points, we see that
JVB fixes A and E pointwise. Let p be an interior point of
any convex simplex ¢ of maximum dimension (= k say) contained
in\ﬁ .  Then IO(M) fixes.the tangent plane to ¢ at p, and

IO(M) . is isomorphic to a closed subgroup of the orthogonal group

O(g), & = n-k. This implies all the assertions in (1.4.).

g.e.d.

(3.2)} Now we take up the question of determining the number of
components of I(M). If dim M = 2 then (1.2) together with the
well-Known elementary cases O < 2g+t < 2 give a fair understanding

of this guestion. The question for dim M > 3 1is quite subtle.



First we note some well-known cases proved in different ways. We

derive these from our set-up. In the following, throughout M"

denotes a.complete Riemannian .manifold .with negative curvature

bounded away from zero.

(3.3) Proposition. If M" has finite volume, ({(in particular if

it is compact), then 1(M™) is finite.

Proof. It is easy to see (e.g. from the shape of the Dirichlet
fundamental domain) that in this case A = 3, so dim © = n. Hence
by (3.1) I(M) is discrete. If M7 is compact then I(M)4 is
also compact,.so I(M) is finite. ©Now suppose only that M"  has
finite volume. For € > O consider the set M_ = {x € M" | the
injectivity radius at x > e}, i.e. for each x € Me the closed
metric ball Bx(s) of radius € with center .x 1is homeomorphic

to a closed disk. If € is small then M€ # . On the other

hand if M_ were non-compact it would clearly contain infinitely
many mutually disjoint balls of radius €. Each such ball has
Qolume at least equal to that of.the Euclidean ball of radius ¢.
But then M. and hence M would have infinite volume. It‘follows
that 'M€ is compact and as it is clearly invariant under I(M),

we .have .. I (M) = I(Me)' The latter is clearly compact.

(3.4) The argument of (3.3) has wider applicability. E.g. if for

some a,b.€Ryq, M = {x € M | the injectivityrradius at x lies

a,b

in [a,b]} is nonempty and compact.then I(M) is compact.

(3.5) Next consider the case when M 1is elémentary, i.e. [ has



- 10 -

< 2 points. If A =¢g then. M is simply connected. This case

is well-understood, cf. [2] and the references there.

Proposition. If A contains two points. then either I(M) 1is

compact or else I(M) .has a subgroup of index 2 which is isomorphic

to AxB where A 1is compact and B "R or Z.

~

Proof. Let A = {x,y} and ¥ the geodesic in M joining x and
y. Then I(M) 1leaves A and‘ Y invériant and so it has a sub-
group G of index < 2 which fixes x and y. Let ple Y. Clearly
Gp is compact and in fact IGP = {g € G|g fixes Y pointwisel.

Each g € G induces an orientation-preserving isometry of Y.

The group IO(Y) of orientation-preserving isometries of vy is

“:B. Since G acts properly (but possibly ineffectively) on v,

we éee‘that the image of the canonical homomorphism G - IO(Y)

is either e, Z or IR. So either G. and hence I(M) is compact.

or else it is easily seen that G 7 prB with @p compact and

B* Z or IR.
g.e.d.

(3.6) An interesting case is when A = {a point}. In this case
there is a significant contrast between dim M = 2, and dim M>3.
An easy curvature calculation. shows that if N  is a complete
Riemannian manifold with. non-positive.curvature .then M = IRxN

with the metric dt2 + ethsé has curvature < -1, and moreover

I(M) ® I(N) but. A = {a point}. This shows that A = {a point}

implies no predictable general. restrictions on I(M) - especially

if dim M > 4 and indicates that the action of. I (M) on @ weuld et

be in general smoothable. However in case M. is locally homo-
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~geneous then Heintze's results.cf. [5] imply that I(M) is

virtually solvable.
(3.7) Now we restrict to the case dim M = 3.

Proposition. Let M3 be a non-elementary complete Riemannian

manifold with constant curvature = %1, .and finitely generated

T Assume that A # 3. Then I(M) is finite.

Proof. In this case 9 may be identified with the Riemann sphere
52 and (modulo passing to an orientable double cover if necessary)
the deck-transformation group A < ﬂ1(M) acts on 52 by M&bius
transformations. The action of A .on SZ—A is free and properly
discontinuous. Since A 1is finitely generated, by Ahlfors'
fal_- _
finiteness theorem cf. [1],[8], E\(S A yas finitely many compo-
nents and each component is a Riemann surface whose genus g and
2
number of ends t satisfy 3 < 2g+t < ®. Now E\(S -A) may be
considered as an "ideal boundary" of M. The action of I(M) on
. 2 ‘

M naturally extends to &\fs "N 4nd the latter action is by
conformal transformations. Using the above remarks and (1.2) we
see that I(M) has a subgroup H of finite index which acts

. (8% N, % o
trivially on ,\\ . Now H \\ where is a certain sub-

A A

group of the normalizer of- A in I(M). Since H acts trivially

2

on we see that each .h Ejf has the form h = a-h

A 1
where a € A and h, acts trivially on 3-A. But then h, acts
trivially on. the convex hull of 23-A in M. Since this convex
hull has a.non-empty. .(3-dimensional) interior we see that h1 = e

i.e. # = A or H ={e}. Thus I(M) is finite.

g.e.d.
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(3.8) Here is a variant of (3.7) for M° with variable curvature.

Note that a 3-dimensional manifold with finitely generated L

has a well-defined Euler characteristic, cf. [8], [9].

Proposition. Let M3 be a complete Riemannian manifold with

negative curvature bounded away from zero and with finitely gene-
rated Tye Assume that the Euler characteristic x(MB) < 0, and

A #9. Then IM) is finite.

Proof.” We apply the topological analogue of. the Ahlfors' finite-
ness theorem developed in [8] to M3 U 3. For this application
note that the action of the deck-transformation group A * w1(M)

is free and properly discontinuous on ﬁ3 U.(8-A), and this is

the maximal subset of ﬁ3 u 3 “on which the action is properly dis-
_continuous. Now the results in [8] imply that g\(anﬁ) have only
finitely many components with negative Euler characteristic. . The
condition x(M3) < .0 ensures that there is at least one component

6f A\fa—A) with negative Euler characteristic. Moreover again
(a-4)
A

L (9-4) . . (9=-4)
_action of I(M) extends to A\\ and is proper on M U A\\ .

may be considered as an "ideal boundary" of M . and the
Now the argument proceeds exactly as in (3.7) once we notice that
(1.2) is really valid for any group acting properly.

g.e.d.

(3.9) Remark. It may happen'thath_M3 "is a complete Riemannian

manifold with constant negative curvature and with finitely generated

m, and still .I(M) 4is discrete but infinite, In this case, of

course, .one must have A = 37 Indeed let N3 be a fiber bundle

over S1 with fiber an orientable (possibly non-compact) surface



with negative Euler characteristic such that the monodromy is

3 . . . . .
pseudo-Anosov. Then . N admits a complete Riemannian metric of
negative constant curvature and finite volume, cf. (11] - in fact,

this is a crucial case in Thurston's hyperbolization program for

3-manifolds. Let M3 be the regular covering of N3 corresponding

t
O Tl',‘

A =23 so I(M) 4is discrete by (3.1). But obviously I(M) contains
3

(fiber). Then W1TM) ¥ m, (fiber) is finitely generated,

. . ~ . 3
the covering transformation group =~ Z of the covering M~ - N

.. . 3
In some sense these examples are typic¢al. For indeed suppose M
is a complete Riemannian manifold.with. negative curvature bounded

away from zero, with finitely generated and suppose that I(M)

1’

contains a discrete subgroup A ® Z . Then A acts freely and
properly discontinuously on M. Let N = ﬁxﬂ. Since ﬂ1(N) is

finitely generated by [9] N has a compact submanifold N, possi-

1
bly with boundary such that the inclusion N1ce9 N is a homotopy

equivalence. Then clearly one has a surjective homomorphism

ﬁ1(N1) + Z with finitely. generated kernel. 1In this situation

[10] shows that N, in fact fibers over 81.
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