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FOLDING LINES IN OUTER SPACE DETERMINE THE
DUAL LAMINATION OF THEIR LIMIT R-TREE

MARTIN LUSTIG

Abstract. The purpose of this note is to draw a connection between
folding lines and dual laminations for R-trees, two subjects within the
domain of Outer space and free group automorphisms which have re-
ceived recently much attention (e.g. see [1], [2], [4], [11], [16], [17]). We

prove that for any folding line (eΓt)t∈I in Outer space which converges
towards an R-tree T with dense orbits, the intersection of the totally

illegal laminations of all eΓt is equal to the dual lamination L2(T ) of T .

1. Introduction

Throughout this paper FN denotes the non-abelian free group of rank
N ≥ 2. In this introduction we assume familiarity of the reader with the
basic terminology around automorphisms of free groups and Outer space;
some details are given in §1, and more of them as well as some back ground
can be found for example in [15] or [18].

For any train track representative f : τ → τ of an iwip automorphism ϕ
of FN the dual lamination L2(T+) of the forward limit tree T+ = T+(ϕ) is
given by biinfinite paths γ in τ which are totally illegal in that they have
the property that any legal subpath γ′ of γ must have length L(γ′) ≤ C,
where C is a constant (called the backtracking constant) that only depends
on f . Indeed (see [12]), L2(T+) is equal to the set of all such paths γ, if one
imposes the additional condition that f t(γ) is also totally illegal, for any
exponent t ≥ 0.

In order to see whether any such statement could be true for more gen-
eral trees T in place of T+, we first observe that, rather than changing γ
by applying powers of the train track map f (which wouldn’t necessarily
be available for a more general such T ), one can stick to γ and change τ ,
by composing the marking isomorphism θ : FN → π1τ from the right with
powers of ϕ. By passing to the universal coverings, this gives a sequence
of metric simplicial trees τ̃t with free action of FN as deck transformations,
via the marking isomorphisms θt = θ ◦ ϕt : FN → π1τ . They define a se-
quence of points [τ̃t] in Culler-Vogtmann’s Outer space CVN which converge
to [T+] ∈ CVN (= the Thurston compactification of Outer space). Equiva-
lently, we can pass to the non-projectivied versions of Outer space and its
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2 M. LUSTIG

closure, denoted cvN and cvN respectively, where the τ̃t converge to T+,
(after proper rescaling). We can now reformulate the above description of
the dual lamination of T+ as follows:

The algebraic lamination L2(T+) is equal to the set of all pairs (X,Y ) ∈
∂FN × ∂FN which have the property that on any of the τ̃t the biinfinite
geodesic γt = γt(X,Y ) which represents (X,Y ) is totally illegal.

Thus a possible generalization of this statement could be given by con-
sidering sequences of free simplicial R-trees Γ̃t ∈ cvN which converge to
T ∈ cvN , if one generalizes the notion of legal paths properly. This has been
done in [15] by considering edge-isometric FN -equivariant maps i : Γ̃ → T

and the gate structure G(i) defined on Γ̃ by such a map i; the details of
these definitions are reviewed here in §2. In particular, any such gate struc-
ture G(i) defines an algebraic lamination L2(G(i)), called the totally illegal
lamination with respect to G(i), which is defined as the set of all pairs
(X,Y ) ∈ ∂2FN := ∂FN × ∂FN r {(X,X) | X ∈ ∂FN} which have the prop-
erty that the biinfinite geodesic γ = γ(X,Y ) in Γ̃ that represents (X,Y ), is
totally illegal with respect to G(i).

Question 1.1. Let T ∈ cvN be an R-tree (say with dense orbits), and let
Γ̃t ∈ cvN be any sequence of free simplicial R-trees, provided with edge-
isometric maps it : Γ̃t → T . Assume that the Γ̃t converge in cvN to T .
Under which conditions can one conclude the equality

L2(T ) = ∩L2(G(it)) ?

This question is phrased too general to be true as stated without imposing
further conditions on the maps it: for example the condition, that G(it) has
at least two gates at any vertex, seems necessary.

In this paper we restrict the set of trees Γ̃t further, still in the spirit of
generalizing the sequence of τ̃t as above: The latter constitute not just any
sequence of points in Outer space converging to T+, but rather each τ̃t+1 is
obtained from folding at τ̃t in the direction of T+. In §3 these terms will
be defined precisely; they go back to one of the early papers on folding in
Outer space, see [14]. In particular, we will define in §3 the term folding line
(Γ̃t)t∈I directed towards T , where the direction of the folding line is given
by a “continuously moving” family of FN -equivariant edge-isometric maps
it : Γ̃t → T .

Theorem 1.2. Let T ∈ cvN be an R-tree with dense orbits, and let (Γ̃t)t∈I be
a folding line which is directed towards T via FN -equivariant edge-isometric
maps it : Γ̃→ T . Assume that the limit volume vollim(Γ̃t) of the Γt is equal
to 0. Then the dual algebraic lamination L2(T ) is equal to the set of pairs
(X,Y ) ∈ ∂2FN which are represented in any Γ̃t by a biinfinite path γt(X,Y )
that is totally illegal with respect to G(it):

L2(T ) = ∩
t∈I

L2(G(it))
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Remark 1.3. For an R-tree T with dense FN -orbits of points, as in the
above Theorem 1.2, the condition that vollim(Γ̃t) = 0 is equivalent to the
assertion that the sequence of Γ̃t converges in cvN for increasing t to the tree
T . Moreover, for any folding path F : I → CVN , t 7→ [Γ̃t] with forward limit
point [T ] there are canonical FN -equivariant edge-injective maps it : Γ̃t → T ,
and we can rescale the edge lengths of the Γt to make the maps it edge-
isometric: this would transform the original folding path F into a directed
folding line as in Theorem 1.2. But the laminations L2(G(it)) do not depend
on the edge lengths of the Γt. This shows that the equality of Theorem 1.2
is actually true for any folding path F : I → CVN , t 7→ [Γ̃t] with forward
limit point [T ] with dense orbits.

Acknowledgements: This note was prepared in view of the AIM workshop
on “The geometry of the outer automorphism group of a free group” in Palo
Alto in October 2010, and its final edition profited from the discussions
during the first days of the workshop. It was also inspired by the authors
ongoing collaboration with Ilya Kapovich at the Max-Planck Institut für
Mathematik in Bonn, in particular the preparation of preprint [12].

2. basics

We denote by cvN the unprojectivized Outer space, i.e. the set of sim-
plicial R-trees Γ̃, provided with a minimal free FN -action by isometries.
Alternatively, a point in cvN is given by a metric graph Γ which is con-
nected and has no valence 1 vertices, and which is provided with a marking
isomorphism θ : FN → π1Γ. Then Γ̃ can be viewed as universal covering of
Γ with lifted edge lengths.

We denote by cvN the bordification of cvN given by the set of all R-trees
T provided with a minimal very small action of FN by isometries.

For any Γ̃ ∈ cvN and any T ∈ cvN an FN -equivariant map i : Γ̃ → T is
called edge-isometric if i restricts on any edge e of Γ̃t to an isometry onto i(e).
The bounded back tracking constant BBT(i) is defined to be the infimum of
all c ≥ 0 such that for any geodesic segment [x, y] ⊂ Γ̃ the image i([x, y]) is
contained in the c-neighborhood Nc([i(x), i(y)]) ⊂ T of the geodesic segment
[i(x), i(y)] in T . It has been shown in [9] that for any edge-isometric map
i : Γ̃→ T one has

BBT(i) ≤ vol(Γ) =:
∑

e∈Edges(Γ)

L(e) ,

where L(e) denotes the length of the edge e.
An R-tree T ∈ cvN is said to have dense orbits if the orbit FN · x is

dense in T , for some (and hence any) point x ∈ T . In [13] for any T ∈ cvN

with dense orbits, a map Q : ∂FN → T ∪ ∂T (where T denotes the metric
completion of T and ∂T its Gromov boundary) has been defined such that
for any (X,Y ) ∈ ∂2FN and any biinfinite geodesic γ = γ(X,Y ) in Γ̃ which
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realizes (X,Y ) (i.e. γ connects the end of Γ̃ defined by X to that defined
by Y ) one has:

i(γ) ⊂ NBBT (i)([Q(X),Q(Y )])
The algebraic lamination dual to T has been defined in [6] as

L2(T ) = {(X,Y ) ∈ ∂2FN | Q(X) = Q(Y )} .
This gives immediately:

Lemma 2.1. For any (X,Y ) ∈ L2(T ) and any edge isometric map i : Γ̃→ T

the geodesic path γ(X,Y ) in Γ̃ which realizes (X,Y ) is mapped by i into the
BBT(i)-neighborhood of Q(X) = Q(Y ). tu

Any edge-isometric map i : Γ̃→ T as before defines a gate structure G(i)
on Γ̃: Two edges e, e′ with common initial vertex v belong to the same gate
g at v if i maps non-degenerate initial segments of e and e′ to the same
segment in T . A turn (e, e′) in Γ, i.e. e and e′ are edges with common initial
vertex, is legal if and only if e and e′ do not belong to the same gate. A
path γ in Γ̃ is legal if it only runs over legal turns: if γ contains the subpath
e e′, then (e, e′) must be a legal turn. Here and elsewhere we denote by e
the edge e with reversed orientation. A turn or path which is not legal is
called illegal. We observe directly from these definitions:

Lemma 2.2. A path γ in Γ̃ is legal if and only if γ is mapped by i isomet-
rically onto the image path i(γ) ⊂ T . tu

Definition 2.3. We define the totally illegal lamination L2(G(i)) to be the
set of all pairs (X,Y ) ∈ ∂2FN such that any legal subpath γ of the geodesic
realization γ(X,Y ) in Γ̃ has length L(γ) ≤ 2BBT(i).

Proposition 2.4. For every T ∈ cvN , Γ̃ ∈ cvN and any edge-isometric map
i : Γ̃→ T one has:

L2(T ) ⊂ L2(G(i))

Proof. This is a direct consequence of the Lemmata 2.1 and 2.2. tu

3. folding lines

A folding line in cvN is a path I → cvN , for some (not necessarily com-
pact) connected subset I ⊂ R, which satisfies certain rules, which can vary
slightly according to the version one preferes to work with. In our context,
a folding line (Γt)t∈I is always directed towards some T ∈ cvN , i.e. for any
t ∈ I the metric tree Γ̃t is equipped with an edge-isometric FN -equivariant
map i : Γ̃t → T , and thus with an induced gate structure G(it) as defined
in the last section.

Before defining our version of folding line formally, we want to give the
reader an intuitive idea:

A generic vertex v of Γ̃ has precisely two gates, one consisting of only
one edge e0, and the other of two edges e1, e2, such that all ei have v as
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initial vertex. (To be precise, it is quite possible that e0 is equal to the
edge ei obtained by reversing the orientation of ei, for i = 1 or i = 2). At
any such generic vertex the folding line is locally defined by moving i(v)
on T continuously into the initial segment of i(e1) = i(e2), with “speed”
depending on the chosen folding line, and by pulling back the resulting edge
lengths from T to Γ̃t to obtain edge-isometric maps it : Γ̃t → T at all times.

For non-generic vertices the folding line will also fold initial segments of
edges which lie in the same gate, but the situation can be more complicated
in that (i) local folding may takes place simultaneously in more than one gate
(so that the vertex itself “multiplies” into several vertices, or (ii) a gate which
contains 3 or more edges can split into several gates, if the folding between
the various edge pairs takes place with distinct speed (again “multiplying”
the original vertex v).

In order to give a formal definition of a folding line (Γt)t∈I , one has to
define first a local version of it: A local folding line starting at any Γ̃t, pro-
vided as above with an FN -equivariant edge-isometric map it : Γ̃t → T , is
given by assigning to any pair of edges e, e′ of Γ̃ in the same gate (with
respect to it) a monotonically (not necessarily strictly) increasing iden-

tification function ide,e′ = ide′,e : [t, t′] → [0, L(eΓt)
3 ] with ide,e′(t) = 0,

where t′ ∈ R is any value with t′ > t, and L(Γ̃t) = min
e∈Edges(Γt)

L(e). We

also require that for any triple of edges e1, e2, e3 in the same gate one has
idei,ej (s) ≥ min(idei,ek

(s), idek,ej (s)), for any choice of parameters satisfying
{i, j, k} = {1, 2, 3} and t ≤ s ≤ t′. Then the family of those identifica-
tion functions defines, for any parameter value s ∈ [t, t′] an FN -equivariant
quotient tree Γ̃s obtained by identifying, for any pair of edges e, e′ in the
same gate, initial segments of length ide,e′(s). The map it factors through
the quotient map is,t : Γ̃t → Γ̃s and hence induces an FN -equivariant edge-
isometric map is : Γ̃s → T . The map [t, t′] → cvN which associates to each
s ∈ [t, t′] the tree Γ̃s equipped with the map is is called a local folding line
directed towards T which starts at Γ̃t.

Definition 3.1. For any interval I ⊂ R and any R-tree T ∈ cvN , a family
(Γ̃t)t∈I , consisting of metric simplicial trees Γ̃t ∈ cvN equipped with an
FN -equivariant edge-isometric map it : Γ̃t → T , is called a folding line
directed towards T , if for all t ∈ I the restriction (Γ̃t)t∈[t,t′] for some suitable
parameter value t′ > t is a local folding line directed towards T which starts
at Γ̃t.

A particularly interesting folding parameter has been exhibited in [14]
by exhibiting “natural” identification functions at the illegal turns for any
of the Γ̃t, which lead to the definition of canonical folding lines. However,
these will not be used here.
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Lemma 3.2. Let (Γt)t∈I be a folding line in cvN , directed towards some
T ∈ cvN . Then for any parameter values t ≤ t′ in I there exists a map
it′,t : Γ̃t → Γ̃t′ which has the following properies:

(1) For all t ≤ t′ in I one has

it = it′ ◦ it′,t

(2) For all t ≤ t′ ≤ t′′ in I one has

it′′,t = it,t′ ◦ it′,t

(3) For all t ≤ t′ in I the maps it′,t is surjective and edge-isometric.

Proof. For any parameter values t and t′ sufficiently close, the map it′,t
is simply given by the isometric identification of initial edge segments of
edges in the same gate, and it clearly has the stated properties (1) - (3).
Furthermore, if itk,t is defined for any sequence of tk with lim tk = t′, then it′,t
is obtained by passing to the limit of the quotient maps itk,t. The properties
(1) - (3) pass over to the limit. It follows now directly from a maximum
argument on t′ − t that by proper concatenation of it′,t for close parameter
values we can define those maps for any t, t′ ∈ I, and that the properties (1)
- (3) always hold. tu

A crucial property in order to prove our main result is given by the fol-
lowing:

Proposition 3.3. Any of the folding maps it′,t : Γ̃t → Γ̃t′ maps legal paths
to legal paths.

Proof. This follows directly from Lemma 3.2 (1), and from Lemma 2.2,
applied to it and to it′ . tu

Remark 3.4. For any folding line (Γ̃t)t∈I as above, directed towards a
tree T ∈ cvN , the co-volume vol(Γt) of the trees Γ̃t decreases monotoni-
cally during the folding process, so that there is a well defined limit volume
vollim(Γ̃t) := inf{vol(Γ̃t) | t ∈ I}. It is not hard to show that vollim(Γ̃t) = 0
implies that the Γ̃t converge in cvN for increasing t to the point T , and that
for T with dense orbits the converse implication also holds. Note that the
inequality at the beginning of §2 implies that in this case one has also that
the backtracking constant BBT(it) converges to 0.

In Proposition 2.4 it has been shown already that L2(T ) is contained in
any of the lamination L2(G(it)). The following proposition gives a converse
statement, thus proving Theorem 1.2.

Proposition 3.5. Let (Γ̃t)t∈I be a folding line in cvN directed towards T ∈
cvN , and assume that the limit volume satisfies vollim(Γ̃t) = 0. Then the
intersection of all L2(G(it)) is contained in L2(T ).
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Proof. It suffices to show that for any (X,Y ) ∈ ∂2FN rL2(T ) there is some
t ∈ I such that (X,Y ) is not contained in L2(G(it)). For any such X
and Y we know by definition of L2(T ) that Q(X) 6= Q(Y ) ∈ T . We now
consider a parameter value t ∈ I with BBT(it) ≤ d(Q(X),Q(Y ))

5 and consider
points x, y on [Q(X),Q(Y )] ∈ T with d(x, y) > 2BBT(it) such that [x, y]
is disjoint from NBBT (it)(Q(X)) and from NBBT (it)(Q(Y )). Let γ be the
shortest subpath of γ(X,Y ) such that i(γ) contains x, y.

By Lemma 2.2 the path γ can not be legal. We now pass to a larger
parameter value t′ > t and observe that the path it′,t(γ) reduces in Γ̃′ to a
geodesic subpath γ′ of the path γ′t(X,Y ) which also has the property that
i(γ′) contains [x, y] (by property (1) of Lemma 3.2). But by Proposition 3.3
the number of illegal turns does not increase when passing from γ to γ′. It
follows directly that for sufficiently small BBT(it′) the path γ′ must contain
a legal subpath γ′′ of length L(γ′′) ≥ 2BBT(it′). Thus, again by Lemma 2.2,
(X,Y ) does not belong to L2(G(it′)), which shows our claim. tu
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pp. 197–224

[16] P. Reynolds, On indecomposable trees in Outer space. arXiv:1002.3141
[17] P. Reynolds, Dynamics of irreducible endomorphisms of Fn. arXiv:1008.3659



8 M. LUSTIG

[18] K. Vogtmann, Automorphisms of Free Groups and Outer Space. Geometriae Ded-
icata 94 (2002), 1–31
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