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Coefficient convexity of divisors of xn − 1

Andreas Decker and Pieter Moree

Abstract

We say a polynomial f ∈ Z[x] is strongly coefficient convex if the set of
coefficients of f consists of consecutive integers only. We establish various
results suggesting that the divisors of xn − 1 that are in Z[x] have the
tendency to be strongly coefficient convex and have small coefficients. The
case where n = p2q with p and q primes is studied in detail.

1 Introduction

Let f(x) =
∑∞

j=0 cjx
j be a polynomial. We put C0(f) = {cj}. Trivially C0(f) =

C(f) ∪ {0}, where C(f) = {cj : 0 ≤ j ≤ deg(f)} denotes the set of coefficients
of f . If there exist integers a and b such that C0(f) consists of the consecutive
integers a, a + 1, . . . , b − 1, b, then we say that f is coefficient convex and write
C0(f) = [a, b]. If C(f) = [a, b], then we say that f is strongly coefficient convex.
We say that f is flat if C(f) ⊆ [−1, 1]. Note that if f is flat, then f is also
coefficient convex. Typically we denote polynomial coefficients by cj and dj.

The nth cyclotomic polynomial Φn(x) (see the next section for details) has the
property that its coefficients tend to be small in absolute value, e.g., for n < 105
it is flat. If n has at most three distinct odd prime factors, it can be shown
[5] that Φn is coefficient convex. Since Φn(x) is a polynomial divisor of xn − 1
the question arises what one can say about the flatness of the other divisors of
xn−1, the size of their coefficients and coefficient convexity. Since the number of
divisors of xn− 1 rapidly increases, we are only able to say something conclusive
in case n has a modest number of divisors. If n = pq or n = p2q, then xn− 1 has
16, respectively 64 monic divisors (these cases are covered by Theorems 2, 3, 4
and 5).

An exception here is the case where n is a prime power, say n = pe. Then
the number of divisors can get large, but they have a simple structure. Using the
uniqueness of the base p representation Pomerance and Ryan [11] proved that
the divisors of xp

e−1 are all flat. We leave it to the reader to prove the following
easy strengthening of this result.

Theorem 1 Let e ≥ 1 be an integer and g be a monic divisor of xp
e−1. We have

C(g) = {1} if g = (xp
j − 1)/(x − 1) for some 0 ≤ j ≤ e. Furthermore, if p = 2
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and g = (x − 1)(x2
j − 1)/(x2 − 1), then for 1 ≤ j ≤ e we have C(g) = {−1, 1}.

In the remaining cases we have

C(g) =

{
[0, 1] if x− 1 - g;
[−1, 1] if x− 1|g.

Theorem 2 Let p < q be primes. Except for (x − 1)Φpq(x) and Φp(x)Φq(x) all
monic divisors of xpq − 1 are flat. The set of coefficients of (x − 1)Φpq(x) is
of the form {−2,−1, 1, 2} if p ≤ 3 and {−2,−1, 0, 1, 2} otherwise. The set of
coefficients of Φp(x)Φq(x) is {1, . . . ,min(p, q)}.

Corollary 1 All divisors f ∈ Z[x] of xpq − 1 are coefficient convex.

Theorem 3 Let p and q be distinct primes. Then the monic polynomial divisors
of xp

2q−1 are coefficient convex, with the exception (in case q = 2), (x+1)ΦpΦ2p2,
where the coefficient set equals {−2, 0, 1, 2}. If min(p, q) > 3, then all monic
divisors - except x− 1 - are strongly coefficient convex.

Pomerance and Ryan [11] conjectured and Kaplan [7] proved that the maximum
coefficient that occurs amongst all monic divisors of xp

2q − 1 equals max(p2, q).
Letting B+(n) denote the maximum amongst all the coefficients of all the monic
divisors, and −B−(n) the minimum, we have the following generalization of Ka-
plan’s result.

Theorem 4 Let p and q be distinct primes. Let 1 ≤ p∗ ≤ q − 1 be the inverse
of p modulo q. We have B−(p2q) = min(p, p∗) + min(p, q − p∗) and B+(p2q) =
min(p2, q)

Note that if q < p, then the result gives B−(p2q) = B+(p2q) = q. (For a more
formal definition of B±(n) see Section 4.) The analogue of the latter theorem in
case n = pqr is not known, for some partial results see Kaplan [7]. Ryan et al.
[14] posed some conjectures on the basis of extensive numerical calculation.

The results stated above (except for Theorem 1) are special cases of Theorem
5, our main result, e.g., Theorem 2 can be read off from Table 1A. In the derivation
of Theorem 4 we have to use in addition that min(p, p∗) + min(p, q − p∗) ≥
min(p, q). A ‘tableless’ reformulation of Theorem 5 is given in Section 3.1.

Theorem 5 Let p and q be distinct primes. Let f(x) ∈ Z[x] be a monic divisor
of xp

2q − 1. Then there exists an integer 0 ≤ k ≤ 63 such that

f(x) = fk(x) = Φk0
1 Φk1

p Φk2
q Φk3

pqΦ
k4
p2Φ

k5
p2q,

with 0 ≤ kj ≤ 1 and k =
∑5

j=0 kj2
j the binary expansion of k. The set of

coefficients of fk, C(fk), is given in Table 1.

The difficulty of computing C(f) varies rather dramatically; from utterly trivial
to challenging in case of f25, f38 and f43..
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2 Preliminaries

The nth cyclotomic polynomial Φn(x) is defined by

Φn(x) =

ϕ(n)∑
k=0

an(k)xk =
∏
d|n

(xd − 1)µ(n/d), (1)

where µ(n) is the Möbius function and ϕ(n) Euler’s totient function. Let p 6= q
be primes. From (1) we deduce, e.g., that

Φpq(x) =
(x− 1)(xpq − 1)

(xp − 1)(xq − 1)
, (2)

a formula that will be used repeatedly.
We will need the following elementary properties of Φn(x) (see, e.g., Thangadu-

rai [15] for proofs and a nice introduction to cyclotomic polynomials). Through-
out we use the letters p and q to denote primes.

Lemma 1
1) Φn(x) ∈ Z[x].
2) Φn(x) is irreducible over the rationals.
3) xn − 1 =

∏
d|n Φd(x).

4) Φp(x) = (xp − 1)/(x− 1) = 1 + x+ . . .+ xp−1.
5) If p|n, then Φpn(x) = Φn(xp).
6) If n > 1 is odd, then Φ2n(x) = Φn(−x).
7) For all positive integers n > 1, we have Φn(1/x)xφ(n) = Φn(x), that is Φn(x)
is self-reciprocal.

For a nonzero polynomial f ∈ C[x], we define its height H(f) to be the largest
coefficient of f in absolute value. For a nonzero polynomial f ∈ R[x], we define
H+(f), respectively H−(f) to be the largest, respectively smallest coefficient of
f . (In that case H(f) = max{H+(f), |H−(f)|}.) As in [11], the observation that
if H(f) = m, then H((xk − 1)f(x)) ≤ 2m for any positive integer k will be used
a few times. We also use that if f, g ∈ Z[x] with deg(f) ≤ deg(g), then

H(fg) ≤ (1 + deg(f))H(f)H(g). (3)

Another easy observation we need is that if k > deg(f), and m ≥ 1 is an arbitrary
integer, then

C0(f(x)(1 + xk + x2k + · · ·+ xkm)) = C0(f). (4)

If k > deg(f) + 1, then C(f(x)(1 + xk + x2k + · · ·+ xkm)) = C(f)∪{0}. A closely
related observation is that

C(Φp(x)f(xp)) = C(f). (5)

To see this note that if in the coefficient string of f we replace each coefficient
by its p-fold repetition, we get the coefficient string of Φp(x)f(xp).
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2.1 Binary cyclotomic polynomials

In this subsection we consider the binary cyclotomic polynomials Φpq(x) with p
and q distinct primes.

In 1883 Migotti proved that Φpq is flat. Carlitz [3] noted that if we drop the
zero coefficients in Φpq(x), the positive and negative terms occur alternately, as,
e.g., in

Φ21(x) = x12 − x11 + x9 − x8 + x6 − x4 + x3 − x+ 1.

(To prove this, one can invoke Lemma 3 below together with (2)). Lenstra [9]
(see also Lam and Leung [8]) gave an explicit description of the coefficients of
Φpq(x).

Lemma 2 Let p and q be distinct odd primes. Let ρ and σ be the (unique) non-
negative integers for which 1 + pq = (ρ+ 1)p+ (σ + 1)q. Let 0 ≤ m < pq. Then
either m = α1p + β1q or m = α1p + β1q − pq with 0 ≤ α1 ≤ q − 1 the unique
integer such that α1p ≡ m(mod q) and 0 ≤ β1 ≤ p − 1 the unique integer such
that β1q ≡ m(mod p). The cyclotomic coefficient apq(m) equals{

1 if m = α1p+ β1q with 0 ≤ α1 ≤ ρ, 0 ≤ β1 ≤ σ;
−1 if m = α1p+ β1q − pq with ρ+ 1 ≤ α1 ≤ q − 1, σ + 1 ≤ β1 ≤ p− 1;
0 otherwise.

The latter lemma does not include the case where p = 2 and q is odd. However,
by Lemma 1 we have Φ2q(x) = Φq(−x) = 1− x+ x2 − · · ·+ xq−1.

2.2 Inverse cyclotomic polynomials

We define Ψn(x) = (xn − 1)/Φn(x) =
∑n−ϕ(n)

k=0 cn(k)xk to be the nth inverse
cyclotomic polynomial. It is easy to see, see, e.g., Moree [10], that Ψ1(x) = 1,
Ψp(x) = x− 1 and

Ψpq(x) = −1− x− x2 − . . .− xp−1 + xq + xq+1 + . . .+ xp+q−1. (6)

For n < 561 the polynomials Ψn(x) are flat. Let 2 < p < q < r be odd primes. It
is not difficult to show that |cpqr(k)| ≤ [(p− 1)(q − 1)/r] + 1 ≤ p− 1. Let us call
a ternary inverse cyclotomic polynomial Ψpqr(x) extremal if for some k we have
|cpqr(k)| = p−1. Moree [10] showed that a ternary inverse cyclotomic polynomial
is extremal iff

q ≡ r ≡ ±1(mod p) and r <
(p− 1)

(p− 2)
(q − 1).

Moreover, he showed that for an extremal ternary inverse cyclotomic polynomial
Ψpqr(x) one has C(Ψpqr) = [−(p − 1), p − 1], and thus that they are strongly
coefficient convex.

2.3 Inclusion-exclusion polynomials

Let ρ = {r1, r2, . . . , rs} be a set of natural numbers satisfying ri > 1 and (ri, rj) =
1 for i 6= j, and put

n0 =
∏
i

ri, ni =
n0

ri
, ni,j =

n0

rirj
[i 6= j], . . .
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For each such ρ we define a function Qρ by

Qρ(x) =
(xn0 − 1)

∏
i<j(x

ni,j − 1) · · ·∏
i(x

ni − 1)
∏

i<j<k(x
ni,j,k − 1) · · ·

It turns out that Qρ is a polynomial, the inclusion-exclusion polynomial. This
class of divisors of xn0 − 1 was introduced by Bachman [1]. He showed that
with Dρ = {d : d|n0 and (d, ri) > 1 for all i}, we have Qρ(x) =

∏
d∈D Φd(x).

Furthermore, he showed that ternary (s = 3) inclusion-exclusion polynomials
are coefficient convex. Earlier Gallot and Moree [5] (for alternative proofs, see
Bzdȩga [2] and Rosset [13]) had shown that in case s = 3 and r1, r2, r3 are distinct
primes, this result is true.

2.4 On the coefficient convexity of Φn and Ψn

In [5] Theorems 7 and 8 were announced and it was promised that the present
paper would contain the proofs. Here this promise is fulfilled.

In [5] the following result was established. (Its analogue for Ψn is false in
general.)

Theorem 6 Let n be ternary, that is n = pqr with 2 < p < q < r odd primes.
Then, for k ≥ 1, |an(k)− an(k − 1)| ≤ 1.

It follows that if n is ternary, then Φn is strongly coefficient convex. Using the
latter result one easily proves the following one.

Theorem 7 Suppose that n has at most 3 distinct prime factors, then Φn is
coefficient convex.

Proof. In case n has at most two distinct odd factors, by Lemma 2 and Lemma
1 we infer that Φn is flat and hence coefficient convex. Now suppose that n is
odd. Let κ(n) =

∏
p|n p be the squarefree kernel of n. Then, by part 4 of Lemma

1 we have C(Φn) = C(Φγ(n)) ∪ {0} if κ(n) < n. The proof is now completed on
invoking Theorem 6. 2

Numerical computation suggest that if Φn is ternary, then Φ2n is coefficient con-
vex. If this would be true, then in Theorem 7 one can replace ‘3 distinct prime
factors’ by ‘3 distinct odd prime factors’. This is best possible as the following
examples show:
n = 7735 = 5 · 7 · 13 · 17, C(n) = [−7, 5]− {−6}
n = 530689 = 17 · 19 · 31 · 53, C(n) = [−50, 52]\{−48, 47, 48, 49, 50, 51}.

Theorem 8 Suppose that n has at most 2, respectively 3, distinct odd prime
factors, then Ψn is flat, respectively, coefficient convex.

Proof. If p|n, then Ψpn(x) = Ψn(xp). Thus we may restrict to the case where n
is squarefree. If n = 1, then Ψ1 = 1. If n is a prime, then Ψn = x − 1. If n is
composed of two primes, n = pq, with p < q, then

Ψpq = −1− x− x2 − · · · − xp−1 + xq + xq+1 + · · ·+ xp+q−1.
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If 2 < p < q, then Ψ2pq = (1 − xpq)Ψpq(−x). Note that the degree of Ψpq is
smaller than pq and since Ψpq(−x) is flat, it follows that Ψ2pq is flat. We conlude
that if n has at most two distinct odd prime factors, then Ψn is flat. It remains
to consider the case where n = pqr, 2 < p < q < r, repectively n = 2pqr with
2 < p < q < r.
Case 1. n = pqr. We have Ψpqr(x) = Φpq(x)Ψpq(x

r). From this identity we infer
that

cpqr(k) =

[k/r]∑
j=0

apq(k − jr)cpq(j).

Put Vn = {cn(k) : 0 ≤ k ≤ n−ϕ(n)}. Choose k1 such that cpqr(k1) = maxVpqr =
µ+. Then since |apq(k−jr)cpq(j)| ≤ 1, we infer that {1, . . . , µ+} ⊆ {cpqr(k1−jr) :
0 ≤ j ≤ [k1/r]}. Similarly one choses k2 such that cpqr(k1) = minVpqr = µ−
and finds that {µ−, . . . ,−1} ⊆ {cpqr(k2 − jr) : 0 ≤ j ≤ [k2/r]} and hence
Vpqr = {µ−, . . . , µ+} (by [10, Lemma 3] we have 0 ∈ Vpqr). Thus Φpqr is coeffi-
cient convex.
Case 2. n = 2pqr. A small modification of the above argument gives that
Ψpqr(−x) is coefficient convex. Using that Ψ2n(x) = (1− xn)Ψn(−x) if n is odd
and that n > n− ϕ(n) = deg(Ψn), we infer that also Ψ2pqr is coefficient convex.

Thus the proof is completed. 2

Gallot considered the coefficient convexity of Ψn for many n and found that the
smallest n for which it is non-convex is n = 23205 = 3 · 5 · 7 · 13 · 17. Here the
height is 13, but 12 (and −12) are not included in C(Ψn). Further examples (in
order of appearance) are 46410 (height 13,±12 not there), 49335 (height 34, ±33
not found), 50505 (height 15, ±14 not found). There are also examples where a
whole range of values smaller than the height is not in C(Ψn).

2.5 Auxiliary polynomials

In this subsection we determine C(f) for various auxiliary polynomials f (where
possible we have adopted the notation of Theorem 5).

Lemma 3 Let u > 1 and v > 1 be coprime natural numbers. Put

τu,v(x) =
(x− 1)(xuv − 1)

(xu − 1)(xv − 1)
.

Then τu,v(x) ∈ Z[x] is a self-reciprocal flat divisor of xuv − 1. If 1 < u < v, then

C(τu,v) =

{
{−1, 1} if u = 2;
[−1, 1] otherwise.

The non-negative coefficients of τu,v alternate in sign.

Proof. The assumption on u and v ensures that (xu − 1, xv − 1) = x− 1. Using
this assumption we infer that τu,v(x) ∈ Z[x]. That τu,v(x) is a self-reciprocal
divisor of xuv − 1 is obvious. We claim that all coefficients rj with j < uv
in (1 + xu + x2u + · · ·)(1 + xv + x2v + · · ·) =

∑
rjx

j are in {0, 1}. Now if
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rj ≥ 2 and j < uv, we can find non-negative α1, α2, β1 and β2 such that
j = α1u + β1v = α2u + β2v, with α1 6= α2 both smaller than v. The latter
equality implies however v|(α1 − α2). This contradiction completes the proof of
the claim. It follows that C(τu,v) ∈ {−1, 0, 1} and that the non-negative signs al-
ternate. The claim regarding C(τu,v) follows on noting that τu,v = (xv+1)/(x+1)
if u = 2 and τu,v ≡ 1− x(mod x3) if u ≥ 3. 2

Remark. Given relatively prime positive integers a1, . . . , an there is a largest
number g(a1, . . . , an), called the Frobenius number, that is not representable
as a non-negative integer combination of a1, . . . , an. Let n = 2 and a1 and
a2 be coprime. Using properties of τa1,a2(x) it is shown at p. 34 in [12] that
g(a1, a2) = a1a2− a1− a2. It is no coincidence that deg τu1,u2 = g(u1, u2) + 1, see
e.g., [5, Section 2].

In case p = 3, the next lemma shows that τ3,v(x) can be easily explicitly given.

Lemma 4 If v ≡ 1(mod 3), then τ3,v(x) equals

(1− x)(1 + x3 + x6 + · · ·+ xv−1) + xv + (x− 1)(xv+1 + xv+4 + · · ·+ x2v−3).

If v ≡ 2(mod 3), then τ3,v(x) equals

(1− x)(1 + x3 + x6 + · · ·+ xv−2) + xv + (x− 1)(xv+2 + xv+5 + · · ·+ x2v−3).

Proof. Let us denote the polynomial above by fv(x). Modulo xv we have

τ3,v(x) =
(x− 1)(x3v − 1)

(x3 − 1)(xv − 1)
≡ (1− x)(1 + x3 + x6 + · · ·).

We infer that fv(x) ≡ τ3,v(x)(mod xv). To finish the proof it is enough to show
that fv(x) is self-reciprocal (clearly τ3,v(x) is self-reciprocal). That is, we have to
show that fv(1/x)x2(v−1) = fv(x). That this is the case is easily seen on rewriting
fv(x), in case v ≡ 1(mod 3) as

(1− x)(1 + x3 + x6 + · · ·+ xv−4) + xv−1 + (x− 1)(xv+1 + xv+4 + · · ·+ x2v−3),

and as

(1− x)(1 + x3 + x6 + · · ·+ xv−2) + xv−1 + (x− 1)(xv−1 + xv+2 + · · ·+ x2v−3),

in case v ≡ 2(mod 3). 2

The latter lemma shows that identical consecutive coefficients do not appear in
τ3,v(x) if (3, v) = 1. The following lemma determines all polynomials τ3,v(x) with
this property.

Lemma 5 Let 1 < u < v be coprime integers. Consecutive coefficients of τu,v(x)
are always distinct iff u ≤ 3.

Corollary 2 We have 0 ∈ C((x− 1)τu,v(x)) iff u > 3.
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Proof. If u = 2 we have τ2,v(x) = (xv + 1)/(x+ 1) and so consecutive coefficients
are always distinct. If u = 3 it is seen from Lemma 4 that this property also
holds. Proceding as in the proof of Lemma 4 we find that modulo xv we have
τu,v(x) ≡ (1 − x)(1 + xu + x2u + · · ·) and hence, if u ≥ 4, the second and third
coefficient of τu,v(x) both equal zero. 2

Lemma 6 Let 1 < u < v be coprime numbers. Put h = (x− 1)τu,v(x). We have

C(h) =

{
{−2,−1, 1, 2} if u ≤ 3;
{−2,−1, 0, 1, 2} otherwise.

Proof. Put d = (u− 1)(v − 1). Using the self-reciprocity of τu,v(x) we infer that
h(x) = xd − xd−1 + · · · − x + 1. On writing h =

∑
j cjx

j, we now deduce that
c0 = −1, c1 = 2, cd = −2 and cd+1 = 1. Since clearly C(h) ⊆ [−2, 2] (use Lemma
3), we infer that

{−2,−1, 1, 2} ⊆ C(h) ⊆ {−2,−1, 0, 1, 2}.

On invoking Corollary 2, the proof is then completed. 2

Lemma 7 Let u, v be natural numbers. Put

σu,v(x) =
(xu − 1)

(x− 1)

(xv − 1)

(x− 1)
=

u+v−2∑
j=0

cjx
j

W.l.o.g. assume that u ≤ v. We have

cj =

{
j + 1 if 0 ≤ j ≤ u− 1;
u if u ≤ j ≤ v − 1;
v + u− j − 1 if v ≤ j ≤ v + u− 2.

It follows that C(σu,v) = {1, . . . , u}. If (u, v) = 1, then σu,v(x)|xuv − 1.

Corollary 3 If u < v, then C((x− 1)σu,v(x)) = [−1, 1].

Corollary 4 If (u, v) = 1, then B(uv) ≥ B+(uv) = min(u, v).

Corollary 5 Put f22 = ΦpΦqΦp2. Then C(f22) = [1,min(p2, q)].

Proof. Modulo xu we have

σu,v(x) ≡ 1

(1− x)2
≡

u∑
j=1

jxj−1(mod xu),

showing that cj = j + 1 if 0 ≤ j ≤ u − 1. That cj = u if u ≤ j ≤ v − 1 is
obvious. Using that σu,v is self-reciprocal, it then follows that cj = v + u− j − 1
if v ≤ j ≤ v + u− 2.

If (u, v) = 1, then ((xu − 1)/(x− 1), (xv − 1)/(x− 1)) = 1 and using this we
infer that σu,v(x)|xuv − 1. 2
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Lemma 8 Let p and q be distinct primes. Put f20 = ΦqΦp2 We have

C(f20) =

{
{1, . . . ,min([ q−1

p
] + 1, p)} if p < q;

{0, 1} if p > q.

In particular, f20 is flat iff p > q.

Proof. Left as an exercise to the interested reader. 2

Lemma 9 Let a, b, c be positive integers. Put

ga,b,c(x) = (1 + x+ . . .+ xa−1 + 2xa + . . .+ 2xa+b−1)(1 + x+ x2 + . . .+ xc−1).

Alternatively one can write

ga,b,c(x) =
(2xa+b − xa − 1

x− 1

)(xc − 1

x− 1

)
.

Suppose a is odd. Then g(= ga,b,c) is coefficient convex. We have C(g) = [1, µ],
with

µ =

{
2c if c ≤ b;
min(b+ c, a+ 2b) if c > b.

Corollary 6 Put g = xa+b+c−2ga,b,c(1/x). We have

g = ga,b,c =
(xa+b + xb − 2

x− 1

)(xc − 1

x− 1

)
.

If a is odd, then g is coefficient convex and C(g) = {1, . . . , µ}.

Proof. To find the maximum coefficient of g is easy. It is the coefficient convexity
that is slightly less trivial. Write g =

∑a+b+c−2
j=0 djx

j. We consider two cases.
Case 1. c ≥ a+b. We have to show that all coefficients 1, 2, . . . , µ, where µ = a+
2b, occur. It is easy to see that {d0, . . . , da+b−1} contains all odd number≤ µ (here
we use the assumption that a is odd). Likewise one sees that {dc, . . . , da+b+c−2}
contains all even integers ≤ µ.
Case 2. c < a + b. Here we proceed by induction with respect to c. For c = 1
we have 1 and 2 as coefficients and we are done. Suppose the result is true up to
c1. We want to show it for c = c1 + 1. Here at most two new coefficient values
can arise, namely the previous maximum, µc1 , with 1 added and the previous
maximum with 2 added. In the latter case (which only arises if c ≤ b) we have
to show that µc1 + 1 also occurs as coefficient. The coefficient of da+c−1 = 2c is
the new maximum here. Note that da+c−2 = 2c − 1. Thus using the induction
hypothesis the set of coefficients equals {1, 2, . . . , µc1 , µc1 +1, µc1 +2} and is hence
coefficient convex. 2

By [f ]xk we denote the coefficient of xk in f .

Lemma 10 Let p and q be distinct primes. Put f24 = ΦpqΦp2. Let 1 ≤ p∗ ≤ q−1
be the inverse of p modulo q. Write f24 =

∑
j cjx

j.
1) We have

C(f24) =

{
{−min(q − p∗, p), . . . ,min(p∗, p)} if both p and q are odd;
{−min(q − p∗, p), . . . ,min(p∗, p)}\{0} otherwise.
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In particular, f24 is flat iff q = 2.
2) Let k ≥ 0 and min(p, q) > 2. We have c1+kp = −[σq−p∗,p(x)]xk and ckp =
[σp∗,p(x)]xk . If 2p∗ < q, then c2+kp = [xq−2p

∗
σp∗,p(x)]xk . If 2p∗ > q, then c−1+kp =

−[x2p
∗−qσq−p∗,p(x)]xk .

Proof. 1) The case where p or q is even is left to the reader. So let us assume
that both p and q are odd. The kth coefficient, ck, in f equals∑

0≤k−jp<pq, 0≤j≤p−1

apq(k − jp).

Since this is a sum of binary cyclotomic coefficients by Lemma 2 we have

−(q − 1− ρ) ≤ ck ≤ ρ+ 1 and − p ≤ ck ≤ p.

On noting that ρ + 1 = p∗ we thus obtain that −m2 ≤ cj ≤ m1 with m2 =
min(q − p∗, p) and m1 = min(p∗, p). Using Lemma 2 we obtain that cjp =∑j

j1=0 apq(j1p) = j + 1 for 0 ≤ j ≤ m1 − 1. Likewise we find on using that
1 = (ρ + 1)p + (σ + 1)q − pq that cjp+1 = −j − 1 for 0 ≤ j ≤ m2 − 1. Since
f24 ≡ 1− x(mod x3), it follows that 0 ∈ C(f24).
2) Note that c1+kp is the coefficient of x1+kp in

Φp(x
p)
∑

0≤j<q

apq(1 + jp)x1+jp.

Using Lemma 2 we then infer that the latter polynomial equals

−x
(xp(q−p∗) − 1

xp − 1

)(xp2 − 1

xp − 1

)
.

It follows that c1+kp is the coefficient of xk in −σq−p∗,p(x). A similar argument
implies ckp = [σp∗,p(x)]xk . From 1 + pq = p∗p + q∗q we obtain 2 = 2p∗p + (2q∗ −
p)q − pq. The assumption 2p∗ < q implies q∗ > p/2 and hence 1 ≤ 2p∗ < q and
1 ≤ 2q∗ − p < q∗. Reasoning as before we then find that c2+kp is the coefficient
of xk in xq−2p

∗
σp∗,p(x). Likewise the final assertion is established. 2

Lemma 11 Put f25 = (x−1)ΦpqΦp2. Define γ(p, q) = min(p, p∗)+min(p, q−p∗).
Suppose min(p, q) > 2. Write f25 =

∑
djx

j. We have {d1+kp}∞k=0 = [0, γ(p, q)]. If
2p∗ < q, then {d2+kp}∞k=0 = [−γ(p, q), 0]. If 2p∗ > q, then {dkp}∞k=0 = [−γ(p, q), 0].

Proof. Using part 2 of Lemma 10 we find that d1+kp = ckp − c1+kp = [σp∗,p(x) +
σq−p∗,p(x)]xk . Note that

τ(x) := σp∗,p(x) + σq−p∗,p(x) =
(xq−p∗ + xp

∗ − 2

x− 1

)(xp − 1

x− 1

)
.

We have

τ(x) =

{
gq−2p∗,p∗,p(x) if q > 2p∗;
g2p∗−q,q−p∗,p(x) if q < 2p∗.
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On invoking Corollary 6 we then obtain, after an easy computation to verify that
µ = γ(p, q), that {d1+kp}∞k=0 = C(τ) ∪ {0} = [0, γ(p, q)].

Using part 2 of Lemma 10 and the assumption q > 2p∗, we find that

d2+kp = −c2+kp + c1+kp = −[xq−2p
∗
σp∗,p(x) + σq−p∗,p(x)]xk .

Now

xq−2p
∗
σp∗,p(x) + σq−p∗,p(x) =

(2xq−p
∗ − xq−2p∗ − 1

x− 1

)(xp − 1

x− 1

)
= gq−2p∗,p∗,p(x).

Using Lemma 9 we obtain that {d2+kp}∞k=0 = C(−τ) ∪ {0} = [−γ(p, q), 0].
The proof of the final assertion is similar and left to the reader. 2

Lemma 12 Let q > 3 be a prime. Then the coefficients of the polynomial
g := (x− 1)(1 + x3 + x6)Φ3q(x) are all non-zero.

Proof. Since the polynomial under consideration is anti self-reciprocal, it suffices
to show that ci 6= 0 for 0 ≤ i ≤ q + 2. Using Lemma 4 we see that modulo
xq, we have g ≡ (1− 2x + x2)h(x3), where h is a polynomial with only negative
coefficients. If q ≡ 1(mod 3), then using Lemma 4 we find that cq = 5, cq+1 = −1
and cq+2 = −4. For q = 5 one checks that c5, c6, c7 are all non-zero. If q > 5 and
q ≡ 2(mod 3), one computes that cq = −4, cq+1 = −1 and cq+2 = 5. 2

Lemma 13 Let p > 3 be a prime. Then 0 ∈ C((x− 1)Φ3pΦp2).

Proof. Put f(x) = (x − 1)Φ3pΦp2 . If p ≡ 1(mod 3), then by Lemma 4 we find
that

f(x) ≡ −(1− x)2(1 + x3 + . . .+ xp−4)− xp−1(mod xp+1),

and hence cp = 0. If p ≡ 2(mod 3), then by Lemma 4 we find that

f(x) ≡ −(1− x)2(1 + x3 + . . .+ xp−2)− 2xp + 3xp+1(mod xp+3),

and hence cp+2 = 0. 2

Lemma 14 Put f25 = (x−1)ΦpqΦp2. Define γ(p, q) = min(p, p∗)+min(p, q−p∗).
Then

C(f25) =

{
[−γ(p, q), γ(p, q)]\{0} if p ≤ 3 and q 6= 2;
[−γ(p, q), γ(p, q)] otherwise.

In particular, f25 is never flat.

Proof. Note that if C(f) ⊆ [−a, b] with a and b non-negative, then C((x− 1)f) ⊆
[−a− b, a+ b]. By Lemma 10 we thus infer that C(f25) ⊆ [−γ(p, q), γ(p, q)].
If q = 2, then γ(p, 2) = 2 and one easily sees that C(f25) = [−2, 2].
If p = 2 and q = 3, then C(f25) = [−γ(2, 3), γ(2, 3)]\{0} = [−3, 3]\{0}.
If p = 2 and q > 3, then the coefficients of f24 are alternating in sign and so
0 6∈ C(f25). One infers that C(f25) = [−γ(2, q), γ(2, q)]\{0} = [−4, 4]\{0}.
Assume that min(p, q) > 2. Then from C(f25) ⊆ [−γ(p, q), γ(p, q)] and Lemma 11
we conclude that C0(f25) = [−γ(p, q), γ(p, q)]. It remains to determine whether
0 ∈ C(f25).
If min(p, q) > 3, then the coefficient of x3 is zero, so assume that min(p, q) = 3.
If p = 3, then by Lemma 12 we see that 0 6∈ C(f25).
If q = 3, then by Lemma 13 we see that 0 ∈ C(f25). 2
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Lemma 15 Let p and q be distinct primes. Put f26 = ΦpΦpqΦp2 and f27 =
(x− 1)f26. Then C(f26) = [0, 1] and C(f27) = [−1, 1].

Proof. Write f26 =
∑

j cjx
j and f27 =

∑
j djx

j. Note that f26 = (ΦpΦpq)Φp(x
p) =

Φp(x
q)Φp(x

p) and thus f26 has only non-negative coefficients. Since the equation
aq + bp = a′q + b′p with a, a′ ≤ p − 1 has only the solution a = a′ and b = b′ it
follows that C(f26) ⊆ [0, 1]. On checking that c0 = 1 and c1 = 0 it follows that
C(f26) = [0, 1] and hence C(f27) ⊆ [−1, 1]. Note that d0 = −1, d1 = 1. Using
that, in case q = 2,

−f27 ≡
xp + 1

x+ 1
(mod xp+1),

we easily compute that dj = 0 with

j =


9 if p = 2, q = 3;
4 if p = 2, q > 3;
p q = 2, p ≥ 3;
2 if p ≥ 3, q ≥ 3.

This concludes the proof. 2

Lemma 16 Let p and q be distinct primes. Put f30 = ΦpΦqΦpqΦp2. We have

C(f30) = {1, . . . ,min(p, q)}.

Proof. Note that f30 = (1 + x + . . . + xpq−1)(1 + xp + . . . + x(p−1)p). Write
f30 =

∑
ckx

k. We have

0 ≤ ck =
∑

0≤k−jp<pq
0≤j≤p−1

1 ≤ min(p, q).

For 0 ≤ r ≤ min(p, q) − 1 we have crp = r + 1. It is easy to see that 0 is not in
C(f30). 2

Lemma 17 We have C(f36) = [−1, 1].

Proof. Rewriting shows that f36(x) = Φq(x)Φpq(x
p). Because of the alternat-

ing character of the coefficients of Φpq after dropping the zeros, we immediately
conclude that H+(f36) = 1 and H−(f36) ≥ −1. It is also obvious that we have
H−(f36) = −1 if p > q. In case p < q we express f36 differently:

f36(x) = Φq(x)Φp2q(x) =
(xq − 1)

(x− 1)
· (xp

2q − 1)

(xpq − 1)
· (xp − 1)

(xp2 − 1)
.

Using the power series for (1− xp2)−1 we obtain

f36(x) =
(xp − 1)(xq − 1)

1− x
· x

p2q − 1

xpq − 1
· 1

1− xp2

f36(x) = (1 + x+ . . .+ xp−1 − xq − xq+1 − . . .− xp+q−1) ·
(1 + xpq + . . .+ x(p−1)pq) · (1 + xp

2

+ x2p
2

+ . . .). (7)
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Let us assume that H−(f36) > −1. If we look at the coeffcient of xq we can see
that −xq occurs as a combination of −xq from the first factor and 1 from the
other two factors. Since pq > q a positive contribution can only occur if q can be
written as n·p2+r with 1 ≤ r ≤ p−1. But if we assume q = n·p2+r for such n and
r, the coefficient of xp+q−1 is −1, because we have the combination −xp+q−1 with
twice the factor 1. There cannot be any positive contribution because otherwise
p+ q− 1 can be written as n′ · p2 + r′ with 1 ≤ r′ ≤ p− 1. But this would imply
p−1 = n′ ·p2 + r′−n ·p2− r and because p2 > 2p−1 we even have p−1 = r′− r.
But obviously r′− r ≤ (p− 1)− 1. Therefore the assumption that H−(f36) > −1
must be false and we conclude H−(f36) = −1.

From (7) we infer that the coefficient of xp is zero if p < q. If p > q, then
clearly f36 ≡ Φq(x)(mod xq+1) and the coefficient of xq is zero. We conclude that
the coefficient of xmin(p,q) is zero and hence the proof is completed. 2

Lemma 18 Let p and q be distinct primes. Put f38 = ΦpΦqΦp2q and β(p, q) =
min(p, q, q(mod p2), p2 − q(mod p2)). We have

C(f38) =

 {−2, 0, 1, 2} if q = 2;
{−1, 1, 2} if p = 2 and q = 3;
[−β(p, q),min(p, q)] otherwise.

Proof. Note that f38 = Φpf36 = Φqf34. On using that H(f34) = 1 (trivial) and
H(f36) = 1 (by Lemma 7) and invoking (3), it follows that H(f38) ≤ min(p, q).
1) q = 2. We have Φ2p2(x) = Φ2p(x

p) = Φp(−xp). Then f38(x) = (1 + x + . . . +

xp−1)(1+x)(1−xp+x2p− . . .+xp2−p). Since (1+x+ . . .+xp−1)(1−xp+x2p− . . .+
xp

2−p) = 1+x+. . .+xp−1−xp−xp+1−. . .−x2p−1+. . .+xp
2−p+xp

2−p+1+. . .+xp
2−1,

we have f38(x) = 1 + 2x + 2x2 + . . . + 2xp−1 − 2xp+1 − 2xp+2 − · · · − 2x2p−1 +
2x2p+1 + . . .+ 2xp

2−1 + xp
2
.

2) q > 2. Put z1 = min(p, q). On noting that, modulo xz1 ,

f38 ≡ ΦpΦq ≡
1

(1− x)2
≡

z1∑
j=1

jxj−1,

we find that 1, . . . ,min(p, q) are amongst the coefficients. If q < p, calculating
the coefficient of xp+q−1 shows that this is −q, because p+ q − 1 < pq.

f38(x) = Φp(x)Φq(x)Φpq(x
p)

= (1 + 2x+ . . .+ qxq−1 + . . .+ qxp−1 + . . .+ xp+q−2)(1− xp + xpq ∓ . . .)
= 1 + 2x+ . . .+ qxq−1 + . . .+ qxp−1 + . . .+ xp+q−2

−xp − 2xp+1 − . . .− qxp+q−1 − . . .− qx2p−1 − . . .− x2p+q−2 + xpq ± . . .

Furthermore, if q ≥ 3 then 2p+ q − 2 < 3p− 1 < pq, so we have the coefficients
[−q, 0] from −qx2p−1 to 0x2p+q−1.
Now assume that p < q.

f38(x) = Φp(x)Φq(x)Φpq(x
p)

= (1 + 2x+ . . .+ pxp−1 + . . .+ pxq−1 + . . .+ xp+q−2)(1− xp + xp
2 ∓ . . .)
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Now write q = fp2 + g, Φpq(x) =
∑
akx

k and (p − 1)(q − 1) = ρp + σq with
0 < g < p2. Note that f < ρ, because otherwise using σ ≤ p − 2 and f ≥ ρ we
have

ρp+ σq ≤ pq − 2q + fp = pq − q − p+ ((f + 1)p− q)
≤ pq − p− q < (p− 1)(q − 1),

which contradicts ρp+ σq = (p− 1)(q − 1).
Therefore afp = 1 and even a(f+1)p = 1. In analogy f < q− ρ, because f ≥ q− ρ
implies

ρp+ σq ≥ pq − fp > pq − q/p > pq − q > (p− 1)(q − 1).

So we also have afp+1 = −1. Because (fp+1) < q, the terms xfp−xfp+1+x(f+1)p

occur consecutively in Φpq(x).
Let 0 ≤ y ≤ β(p, q). Now we are able to calculate the coefficient of xy+q−1 in
f38(x), for y 6= p. We use the fact that the signs of the coefficients in Φpq(x)
alternate. So it is sufficient to know the the lowest and the highest (by degree)
influencing term of Φpq(x

p). The lowest one is obviously 1 combined with (p −
y)xy+q−1 of the first factor. Since y ≤ p2 − g, we have y + q − 1 < p2 − g +
fp2 + g = (f + 1)p2, so the highest contribution is −x(fp+1)p combined with
(g + y − p)xg−1+y−p if p− y < g < 2p− y or pxg−1+y−p if g ≥ 2p− y. Therefore
the coefficient of xy+q−1 for the case 2p− y ≤ g < p2 is:

(p− y) + p− p+ . . .+ p− p = −y.

Now allow y = p as one possibility and calculate the coefficient of x2p+q−y−1 in
f38(x). The lowest contribution is −xp together with yxq+p−y−1. The highest
contribution is −x(fp+1)p, if (f +1)p2 > q+2p−1−y or equivalently p2−g+y >
2p − 1. If y = p, then p2 − g ≥ β(p, q) ≥ y, so p2 − g + y > 2p − 1. Otherwise
just assume y > 2p− 1− (p2− g). The second factor then contributes pxg+p−1−y,
the coefficient p arises because

p− 1 ≤ g + p− 1− y ≤ g − 1 ≤ q − 1.

So in this case the coefficient is

−y + p− p+ . . .+ p− p = −y.

The argument for the first coefficient does not work for 2p − y > g, that is for
y < 2p − g, the second one does not work for y ≤ 2p − 1 − (p2 − g), that is for
y < 2p− (p2− g). If both fail, then 0 ≤ 2y ≤ 4p− p2− 2, so p = 2 and y ∈ {0, 1}
or p = 3 and y = 0.
If p = 2 we have to find a −1 and a zero coefficient in

f38(x) = Φ2(x)Φq(x)Φ2q(x
2)

= (1 + 2x+ . . .+ 2xq−1 + xq)(1− x2 + x4 − x6 + . . .+ x2q−2)

For q = 3 there is no 0 coefficient. If q ≥ 5 it is easy to see that the coefficient of
x3 is 0. Furthermore the coefficient of xq+1 is −1, because

2xq−1 · (−x2) + 2xq−3 · x4 + 2xq−5 · (−x6) . . .+ 1 · (±xq+1)
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is either (−2+2−2± . . .+2−1)xq+1 = −xq+1 or (−2+2−2± . . .−2+1)xq+1 =
−xq+1.
If p = 3 we have to find a 0 coefficient. We have

f38(x) = Φ3(x)Φq(x)Φ3q(x
3)

= (1 + 2x+ 3x2 . . .+ 3xq−1 + 2xq + xq+1)(1− x3 + x9 . . .)

If q ≥ 7 it is easy to see that the coefficient of x5 is 0. If q = 5 then the coeffcient
of x9 is 0 (by explicit computation).
So it remains to be shown that in the cases 0 < g < p and p2 − p < g < p2 all
other coefficients are larger than or equal to −g and −(p2 − g), respectively.
Therefore we use:

Φpq(x) =
∑

akx
k

=
(xpq − 1)(x− 1)

(xp − 1)(xq − 1)

= (1− x)(1 + xp + . . .+ xp(q−1))(1 + xq + x2q . . .).

Let S be the numerical semigroup generated by the primes p and q, that is the
set of all linear combination of p and q of the form mp+ nq with m,n ≥ 0.
Note that ak = 1 if k ∈ S and k − 1 6∈ S, ak = −1 if k 6∈ S and k − 1 ∈ S and
ak = 0 in the remaining cases (cf. [5]).

For the lower bound of the coefficients we consider the coefficient of xj in f38,
called dj. Since f38(x) = (1+2x+ . . .+pxp−1 + . . .+pxq−1 + . . .+xp+q−2)Φpq(x

p),
contributions depend on combinations of these two factors. So we may express
the j-th coefficient as

dj =
∑

0≤j−kp≤p+q−2

min{j − kp+ 1, p, p+ q − 1− j + kp} · ak.

Let

ek =

{
min{j − kp+ 1, p, p+ q − 1− j + kp} if 0 ≤ j − kp ≤ p+ q − 2
0 otherwise,

so dj =
∑
ekak.

To get a lower bound denote with n the smallest number such that an = −1 and
0 ≤ j − np ≤ p+ q − 2, so we have a negative contribution in the above sum. In
analogy denote N as the largest number such that aN = −1 and 0 ≤ j − Np ≤
p+ q− 2. Put d = N −n. If n and N do not exist, then dj ≥ 0 and we are done,
so next assume that n and N exist.

If d > 0 (and hence n < N) a lower bound for the coefficient of xj can
be determined by using the alternate character of Φpq(x

p). If n < k < N ,
then p ≤ j − Np + p ≤ j − kp ≤ j − np − p ≤ p + q − 2 − p = q − 2. So
min{j − kp+ 1, p, p+ q − 1− j + kp} = p. This implies that

dj =
∑

0≤j−kp≤p+q−2

min{j − kp+ 1, p, p+ q − 1− j + kp} · ak
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≥
∑

n≤k≤N

min{j − kp+ 1, p, p+ q − 1− j + kp} · ak

= −min{j − np+ 1, p, p+ q − 1− j + np}+ p− p± . . .− p+ p

−min{j −Np+ 1, p, p+ q − 1− j +Np}
≥ p− (p+ q − 1− j + np)− (j −Np+ 1) = −q +Np− np.

We infer that
dj ≥ −fp2 − g + dp. (8)

The above inequality does not suffice to deal with small d. To this end we will
need the following claims.
Claim 1: Let m be an arbitrary integer. If d < mp, then there exist non-negative
integers x and y with x < n ≤ N < y such that y − x ≤ mp and ax = ay = 1.
We now prove the claim. Note that an = −1 implies that n 6∈ S and n−1 ∈ S and
further we have N 6∈ S and N − 1 ∈ S. Using n− 1 ∈ S we have n− 1 +mp ∈ S.
Because n− 1 +mp ≥ N , n− 1 +mp ∈ S and N 6∈ S we have n− 1 +mp > N .
So there is at least one N < y < n + mp with y − 1 6∈ S and y ∈ S, so ay = 1.
But again y − 1 6∈ S implies y − 1−mp 6∈ S and we have n− 1 ∈ S. Therefore
there exists an x with y − mp ≤ x < n and x − 1 6∈ S and x ∈ S, so ax = 1.
Furthermore we have y − x ≤ mp and x < n ≤ N < y.
Claim 2: Given the above situation, we have ex + ey ≥ min{q −mp2 + p, p}.
The proof is rather short. If j−yp+1 ≥ p then ey = p, because p+q−1−j+yp ≥
p+ q − 1− j +Np+ p ≥ p and we are done. Otherwise

p+ q − 1− j + xp ≥ p+ q − 1− j + yp−mp2 = p+ q −mp2 − ey

and clearly j − xp+ 1 ≥ j − np+ 1 + p ≥ p, so ex + ey ≥ p+ q −mp2.
Now we are able to finish this lemma with the two following cases.
Case 1: 0 < g < p.
If d ≥ fp, then by (8) we have dj ≥ −g, so we may assume that d < fp. Using
Claim 1 we find x and y like described above. Now using Claim 2 we find that
q − fp2 + p = p+ g and

dj =
∑

ekak ≥ ex +
∑

n≤k≤N

ekak + ey

≥ min{q − fp2 + p, p} − p+ p∓ . . .+ p− p = min{g + p, p} − p = 0.

Case 2: p2 − p < g < p2.
If d ≥ (f + 1)p, then by (8) we have dj ≥ p2 − g > 0, so we may assume that
d < (f + 1)p.
Now we can use again Claim 1 and Claim 2 to find that q−(f+1)p2+p = p+g−p2
and

dj =
∑

ekak ≥ ex +
∑

n≤k≤N

ekak + ey

≥ min{q − (f + 1)p2 + p, p} − p+ p∓ . . .+ p− p
= min{g + p− p2, p} − p = −(p2 − g),

which finishes the proof. 2
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Lemma 19 Let p and q be distinct primes. Put f39 = (x−1)ΦpΦqΦp2q. We have
C(f39) = {−2,−1, 0, 1, 2}.

Proof. Since f39 = f36(x
p − 1) and H(f36) = 1 by Lemma 17, we immediately

conclude that C(f39) ⊆ {−2,−1, 0, 1, 2}. Since f39 is anti self-reciprocal it is
enough to show that, e.g. 0, 1, 2 are in C(f39). Because f39 is monic, this is clear
for 1. Write f39 =

∑
j cjx

j.

If p > q, we see that f39(x) = (−1− x− . . .− xq−1 + xp + . . . + xp+q−1)Φpq(x
p).

On noting that Φpq(x
p) ≡ 1− xp(mod xp+1), we obtain f39(x) = −1− x− . . .−

xq−1 + 2xp(mod xp+1). On noting that Φpq(x
p) = 1− xp + xpq ∓ . . ., it is obvious

that the coefficient of xq equals 0. It is also easy to note that there are only two
combinations for xp which sum to a coefficient of two. Hence cq = 0 and cp = 2.
If p < q, we have f39(x) = (−1− x− . . .− xp−1 + xq + . . .+ xp+q−1)Φpq(x

p) and
Φpq(x

p) = 1− xp + xp
2
. . .. We will show that the coefficients −2 and 0 occur in

this case (thus also 2 by self-reciproity). If p = 2 either the coefficient of xq or
xq+1 is 0. If p 6= 2 and q > 2p it is easy to see that the coefficient of x2p is 0. In
case of p < q < 2p and p 6= 2, 3 the coefficient of xp

2−1 equals 0. The last case
is p = 3 and q = 5, where 0 ∈ C(f39) can be shown by explicit computation (x15

and x16).
Let ρ and σ be as in Lemma 2. Write Φpq(x) =

∑
akx

k and q = mp + g with
0 < g < p and M = m + 1. Finally M + kMpq = ρMp + σMq with 0 ≤ ρM < q,
0 ≤ σM < p and 0 ≤ kM ≤ 1. Note that m < M < q.
Now we study six different cases.
If ρM ≤ ρ and σM ≤ σ then aM = 1 by Lemma 2 and of course a1 = −1.
Now determine the coefficient of xp+q. The only contributions arise from xq of
the first factor times −xp of the second factor and −xg times xMp. Therefore
cp+q = a1 − aM = −2.
Before discussing the last five cases, we will establish a small useful result.
If aj = 1 and aj+M = −1, then the coefficient of xjp+p+q−1 is 2. This is easy
to check since obviously the only contributions are xp+q−1 times xjp and −xg−1
times −x(j+M)p.
The next case we study is ρM > ρ and σM > σ. Since a0 = 1 and aM = −1, we
can use the result above.
The third case is ρM > ρ and σM = 0. But this is not an actual case, as it would
imply

pq + 1 = (ρ+ 1)p+ (σ + 1)q ≤ (ρM + 1− 1)p+ (σ + 1)q

= M + (σ + 1)q < (σ + 2)q ≤ pq,

which is a contradiction.
The next case is ρM > ρ and 0 < σM ≤ σ.
Because of M < q and σM > 0 we must have kM = 1. Now a(σ+1−σM )q = 1 and
a(σ+1)q+ρMp−pq = −1 and (σ+1)q+ρMp−pq−(σ+1−σM)q = ρMp+σMq−pq = M ,
so we can use the result above.
The case ρM = 0 and σM > σ again does not occur, because then M + kMpq =
σMq < pq and therefore kM = 0 and so M = σMq ≥ q, contradicting M < q.
The last remaining case is 0 < ρM ≤ ρ and σM > σ.
Again, M < q and σM > σ > 0, so kM = 1. Now a(ρ+1−ρM )p = 1 and
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a(ρ+1)p+σM q−pq = −1 and (ρ+1)p+σMq−pq−(ρ+1−ρM)p = σMq+ρMp−pq = M ,
so we can use the result above. 2

Lemma 20 We have

C(f41) =

{
{−2,−1, 1, 2} if q ≤ 3;
{−2,−1, 0, 1, 2} otherwise.

Proof. We have

f41 = (x− 1)ΦpqΦp2q =
(x− 1)2(xp

2q − 1)

(xq − 1)(xp2 − 1)
= (x− 1)f40 = (x− 1)τp2,q(x).

Since H(f40) = 1 by Lemma 3, it follows that H(f41) ≤ 2. Modulo x2 the
congruence f41 ≡ −(x−1)2 ≡ −1+2x holds. Using that f41 is anti-self-reciprocal
we infer from this that {−2,−1, 1, 2} ∈ C(f41).
If q = 2, then f41 = −1 + 2x− 2x2 + · · · − 2xp

2−1 + xp
2

and hence 0 6∈ C(f41).
If q = 3, then f41 ≡ −(1 + xp

2
)
∑

k(x
3k − 2x3k+1 + x3k+2) mod x2p

2
, from which

we infer that 0 6∈ C(f41).
If q ≥ 5, then f41 ≡ −(x− 1)2 ≡ −1 + 2x− x2 (mod x4) and hence 0 ∈ C(f41). 2

2.5.1 The polynomials f42 and f43

Let p and q be distinct primes. Put f42 = ΦpΦpqΦp2q =
∑
cjx

j and f43 =
(x − 1)f42 =

∑
djx

j. It is not difficult to find cases where only very few of the
coefficients of f43 are equal to 2. For example, if (p, q) is in the following set:

{(11, 241), (13, 377), (17, 577), (19, 181), (29, 421), (41, 3361), (43, 3697)},

there are precisely two coefficients equal to 2 (as computed by Yves Gallot). This
suggests that perhaps the following resuls is not so easy to establish.

Lemma 21 We have

C(f43) =

{
{−2,−1, 1, 2} if q = 2;
{−2,−1, 0, 1, 2} otherwise.

The analogue of this result for f42 is easy enough. Note that

deg(f42) = p2(q − 1) + p− q.

Lemma 22 We have C(f42) = {−1, 0, 1}.

Proof. Write f42 =
∑

j cjx
j. Note that

f42 =
(xp − 1)(xp

2q − 1)

(xq − 1)(xp2 − 1)
.

Around x = 0, f42 has power series

(1 + xq + x2q + · · ·)(1− xp + xp
2 − xp2+p + · · ·+ x(q−1)p

2 − x(q−1)p2+p). (9)
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Note that if cj ≥ 2, then there exist non-negative α1, α2, β1 and β2 such that

α1 6= α2, β1 6= β2, j = α1q + β1p
2 = α2q + β2p

2 ≤ deg(f42) < p2q.

This is impossible. By a similar argument one sees that cj ≥ −1. Since clearly
{−1, 0, 1} ∈ C(f42), the proof is completed. 2

Indeed, some work needs to be done to infer that {−2, 2} ∈ C(f43). The idea
is to show that in f42 the combinations 1,−1 and −1, 1 appear as consecutive
coefficients and then use that f43 = (x− 1)f42.

Let us denote by {a; b} the smallest non-negative integer m such that m ≡
a(mod b).

Lemma 23 Write f42 =
∑
cjx

j and f43 =
∑
djx

j. Put

k1 = 1 + {p− 1

p2
; q}p2 and k2 = 1 + {p− 1

q
; p2}q.

1) Suppose that 1 < k1 ≤ deg(f42). If furthermore,

{1

q
; p2}q + {1

p
; q}p2 > p2q (10)

and

{−1

q
; p}pq + {−1

p2
; q}p2 + p+ 1 > p2q, (11)

then ck1−1 = 1, ck1 = −1 and dk1 = 2.
2) Suppose that k2 ≤ deg(f42). If furthermore,

{−1

q
; p2}q + {−1

p
; q}p2 + p+ 1 > p2q (12)

and

{1

q
; p}pq + { 1

p2
; q}p2 > p2q, (13)

then ck2−1 = 1, ck2 = −1 and dk2 = 2.

Proof. We say that k is p-representable if we can write k = m1q + m2p
2 with

m1 ≥ 0 and 0 ≤ m2 ≤ q − 1. We say that k is m-representable if we can write
k = n1q+n2p

2 + p with n1 ≥ 0 and 0 ≤ n2 ≤ q− 1. From the proof of Lemma 22
it follows that if k ≤ deg(f42), then k can be p-representable in at most one way
and be m-representable in at most one way. We infer that if k ≤ deg(f42), then

ck =

{
1 if k is p-representable, but not m-representable;
−1 if k is m-representable, but not p-representable;
0 otherwise.

(14)

We have {
k1 ≡ 1(mod p2);
k1 ≡ p(mod q),

and

{
k2 ≡ p(mod p2);
k2 ≡ 1(mod q).

(15)

Suppose that k1 ≤ deg(f42). Clearly k1 is m-representable, because k1 > 1
implies k1 > p. Condition (10) ensures that k1 is not p-representable. Thus,
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by (14), we have ck1 = −1. On the other hand we see that k1 − 1 is p-
representable, but not m-representable by (11). It follows that ck1−1 = 1. Since
dk1 = ck1−1 − ck1 = 1 − (−1) = 2, we have established part 1. Part 2 can be
derived in a similar way, but here it is not needed to require k2 > 1. 2

We will show that some of the numbers appearing in the latter lemma are actually
equal. For this the reciprocity law formulated in Corollary 7 is needed. As usual
by (m,n) we denote the greatest common divisor of m and n.

Lemma 24 Let a and b be coprime integers exceeding one. Then

(a− {1

b
; a}, {1

a
; b}) = ({1

b
; a}, b− {1

a
; b}) = 1.

Corollary 7 Suppose that both a > 1 and b > 1 are odd and coprime. Then the
congruence { 1

a
; b} ≡ {1

b
; a}(mod 2) holds.

Proof. If { 1
a
; b} is even, then a− {1

b
; a} must be odd and hence {1

b
; a} is even. If

{ 1
a
; b} is odd, then b− { 1

a
; b} is even and hence {1

b
; a} must be odd. 2

Proof of Lemma 24. Put δ(a, b) = ({ 1
a
; b})({1

b
; a})− (a− {1

b
; a})(b− { 1

a
; b}). It is

enough to show that δ(a, b) = 1. Since clearly −ab+1 < δ(a, b) < ab, it is enough
to show that δ(a, b) ≡ 1(mod ab). We have δ(a, b) ≡ {1

b
; a}b ≡ 1(mod a) and

δ(a, b) ≡ { 1
a
; b}a ≡ 1(mod b), and on invoking the Chinese remainder theorem

the proof is completed. 2

Lemma 25 We have

{1

q
; p2}q + {1

p
; q}p2 = {−1

q
; p}pq + {−1

p2
; q}p2 + p+ 1

and

{−1

q
; p2}q + {−1

p
; q}p2 + p+ 1 = {1

q
; p}pq + { 1

p2
; q}p2.

Proof. Denote the numbers appearing in the left hand sides of (10), (11), (12)
and (13), by r1(p, q), s1(p, q), r2(p, q), s2(p, q), respectively. We have to show that
r1(p, q) = s1(p, q) and r2(p, q) = s2(p, q). On noting that {−1

q
; p} = p − {1

q
; p},

etc., it is easily seen that r1(p, q) = s1(p, q) implies r2(p, q) = s2(p, q), thus it is
enough to show that r1(p, q) = s1(p, q). By considering r1, r2, s1, s2 modulo p2

and q and invoking the Chinese remainder theorem we infer that

kj ≡ rj(p, q) ≡ sj(p, q)(mod p2q) for 1 ≤ j ≤ 2. (16)

Note that
{rj(p, q), sj(p, q)} ∈ {kj, kj + p2q} for 1 ≤ j ≤ 2. (17)

Thus it is enough to show that r1(p, q) ≡ s1(p, q)(mod 2p2q).
1) p = 2. Recall that the Legendre symbol (−1

q
) equals (−1)(q−1)/2 in case q

is odd. We have r1(2, q) = {1
q
; 4}q + {1

2
; q}4 = 4q + 2 − (−1

q
)q, on noting that
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{1
q
; 4} = 2 − (−1

q
) and {1

2
; q} = (q + 1)/2. On noting that {−1

q
; 2} = 1 and

{−1
4

; q}4 = (2− (−1
q

))q − 1, one infers that

s1(2, q) = {−1

q
; 2}2q + {−1

4
; q}4 + 2 + 1 = 4q + 2− (

−1

q
)q = r1(2, q).

2) q = 2. By an argument easier than that for case 1 one infers that r1(p, 2) =
s1(p, 2) = 2p2 + 1.
3) p, q odd. It suffices to show that r1(p, q) ≡ s1(p, q)(mod 2). Now using Corol-
lary 7 we have {1

q
; p2} = { 1

p2
; q}(mod 2) and {1

p
; q} = {1

q
; p}(mod 2) and hence

{1

q
; p2}q + {1

p
; q}p2 ≡ {1

q
; p2}+ {1

p
; q} ≡ { 1

p2
; q}+ {1

q
; p}

≡ q − { 1

p2
; q}+ p− {1

q
; p} ≡ {−1

p2
; q}+ {−1

q
; p}

≡ {−1

q
; p}pq + {−1

p2
; q}p2 + p+ 1 (mod 2),

which finishes the proof. 2

Lemma 26 There is a unique integer 1 ≤ j ≤ 2 such that the conditions of part
j of Lemma 23 are satisfied and hence dkj = 2. Furthermore, ddeg(f42)−kj+1 = −2.

Proof. First, suppose that p 6≡ 1(mod q) (which especially excludes q = 2). This
implies k1 > 1. From (15) we infer that k1 + k2 ≡ 1 + p(mod p2q). Since clearly
1 + p < 1 + p2 ≤ k1 + k2 < 1 + p+ 2p2q, we infer that

k1 + k2 = 1 + p+ p2q. (18)

Let us suppose that k1 ≥ p2(q − 1) + p − q + 1 = deg(f43) > deg(f42). By (18)
we then have k2 ≤ p2 + q. Since q ≥ 3 and p2 + p ≥ 6 it follows that

k2 ≤ p2 + q ≤ 2p2 + p+ q − 6 = 3(p2 − 2) + p+ q − p2

≤ q(p2 − 2) + p+ q − p2 = qp2 + p− q − p2 = (q − 1)p2 + p− q,

so k2 ≤ deg(f42). Since r2(p, q) > p2 + q ≥ k2 and r2(p, q) ≡ k2(mod p2q),
we have r2(p, q) = k2 + p2q > p2q. Since r2(p, q) = s2(p, q) by Lemma 25, it
follows that if k1 > deg(f42) and thus the conditions of part 1 are not satisfied,
then the conditions of part 2 are satisfied. By a similar argument we infer that
if k2 > deg(f42) and thus the conditions of part 2 are not satisfied, then the
conditions of part 1 are satisfied.

It remains to deal with the case where kj ≤ deg(f42) for 1 ≤ j ≤ 2. Note that

r1(p, q) + r2(p, q) = 1 + p+ 2p2q. (19)

Hence rj(p, q) > p2q for some 1 ≤ j ≤ 2. Let us assume that r2(p, q) > p2q. Now
if r1(p, q) > p2q, then

r1(p, q) + r2(p, q) = k1 + p2q + r2(p, q) > 1 + p2 + 2p2q,
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contradicting (19).
Now suppose that p ≡ 1(mod q), so p = kq + 1. This implies that k1 =

1 + 0p2 = 1 and k2 = 1 + kq = p and hence the conditions of part 1 are not
satisfied. It is easy to see that c0 = 1 and c1 = 0, so d1 = 1.
For part 2 we have k2 = p ≤ deg(f42). On noting that {−1

q
; p2} = k2q + 2k and

{−1
p

; q} = q − 1, the left side of equation (12) becomes:

(k2q + 2k)q + (q − 1)p2 + p+ 1 = k2q2 + 2kq + p2q − p2 + p+ 1 = p2q + p > p2q.

Similarly we have for the left side of equation (13):

(p− k)pq + 1 · p2 = p2q − p(p− 1) + p2 = p2q + p > p2q.

(Alternatively one can invoke Lemma 25 to deduce that the left hand side of (13)
equals the left hand side of (12) and hence exceeds p2q.) It follows that either
the conditions of part 1 or those of part 2 are satisfied, but cannot be satisfied
at the same time.

The final asseertion follows on noting that f42 is self-reciprocal and using that
f43 = (x− 1)f42. 2

Example. Using the latter lemma, one can derive the following examples (in each
case one of k1, k2 is larger than deg(f42) and hence the remaining one satisfies all
conditions.
1) If p2 + p− 1 ≡ 0(mod q), then dp2+p = 2.
2) If p2 − p+ 1 ≡ 0(mod q), then dp2+1 = 2.
3) If q ≡ 1− p(mod p2), then dq+p = 2.
4) If q ≡ p− 1(mod p2), then dq+1 = 2.
5) If p ≡ 1(mod q), then dp = 2.

Proof of Lemma 21. By (3) and Lemma 22 we find that C(f43) ⊆ {−2,−1, 0, 1, 2}.
By Lemma 26 we have {−2, 2} ⊆ C(f43). Since d0 = −1 and ddeg(f43) = 1, it
remains to be shown when 0 ∈ C(f43). If both p and q are odd, then d2 = 0. If
q = 2, then f43 has the power series (around x = 0)

f43 = (−1 + xp − xp2 + xp
2+p)(1− x+ x2 − x3 + x4 − x5 + · · ·)

and since p is odd we find that dj 6= 0 for j ≤ deg(f43) = p2 + p − 1. If p = 2,
then f43 has the power series (around x = 0)

f43 = (1 + xq + x2q + x3q)
∞∑
k=0

(−x4k + x4k+1 + x4k+2 − x4k+3).

From this we see that dq = 0 if q ≡ 1(mod 4) and dq+1 = 0 if q ≡ 3(mod 4).
Since q + 1 < deg(f43) = 3q − 1, it follows that 0 ∈ C(f43) if p = 2. 2

3 The proof of the main theorem

Proof of Theorem 5. From xn − 1 =
∏

d|n Φd(x) and the fact that the Φd are
irreducible over the rationals, we infer that any divisor of xn − 1 with integer
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coefficients is of the form ±
∏

d|n Φed
d (x), with ei ∈ {0, 1}. Thus we have 2d(n)

monic divisors, where d(n) denotes the number of divisors of n.
From the identity

xp
2q − 1 = Φ1(x)Φp(x)Φq(x)Φpq(x)Φp2(x)Φp2q(x), (20)

we infer that xp
2q − 1 has 64 divisors. We denote these by f0, . . . , f63. If k =∑5

j=0 kj2
j is the base 2 expansion of k, then we put

fk(x) = Φ1(x)k0Φp(x)k1Φq(x)k2Φpq(x)k3Φp2(x)k4Φp2q(x)k5 .

Thus {f0(x), . . . , f63(x)} is the set of all monic divisors of xp
2q − 1. Note that

Φ1(x) = x− 1, Φp(x) = 1 + x+ · · ·+ xp−1 and Φq(x) = 1 + x+ · · ·+ xq−1. Thus
these three divisors have all height 1. By Lemma 2 we have H(Φpq(x)) = 1. On
noting that Φp2(x) = Φp(x

p) and Φp2q(x) = Φpq(x
p), it then follows that each of

the six cyclotomic polynomials appearing in (20) is flat.
We will only establish the less trivial cases in Table 1, the easier ones being

left as exercises to the reader.
-f0, f1, f2, f3, f4, f5, f16, f17, f18, f19: Use Theorem 1.
-f6. Use Lemma 7.
-f7. Use Corollary 3.
-f8: Use Lemma 3.
-f9. Use Lemma 6.
-f16, f17, f18, f32, f33, f34: Use identity (4).
-f20: See Lemma 8.
-f21, f37: Note that Φ1(x)Φq(x) = xq − 1.
-f22: See Corollary 5.
-f19, f23, f27. Use that Φ1(x)Φp(x)Φp2(x) = xp

2 − 1.
-f24: Invoke Lemma 10.
-f25: Invoke Lemma 14.
-f26, f27: Invoke Lemma 15.
-f28: We have f28 = Φp(x

p)Φq(x
p). On invoking the result that C(ΦpΦq) =

[1,min(p, q)] (follows by Lemma 7), the assertion follows.
-f29: If p = 2, then consecutive coefficients in f28 are distinct and hence 0 6∈
C(f29).
-f30: See Lemma 16.
-f31. Note that f31 = (xp

2q − 1)/Φp2q(x) = Ψp2q(x) = Ψpq(x
p). Thus, C(f31) =

[−1, 1] by (6).
-f34: Using (5) we find that C(f34) = C(f8).
-f35: f35 = (xp − 1)Φpq(x

p) = f9(x
p). Now invoke Lemma 6.

-f36: Invoke Lemma 17.
-f37: We have f37 = (xq − 1)Φpq(x

p). Noting that q + jp 6= kp, we infer that
C(f37) = [−1, 1].
-f38: Invoke Lemma 18.
-f39. Invoke Lemma 19.
-f40: We have f40 = τp2,q(x). Now invoke Lemma 3.
-f41. We have f41 = (x− 1)τp2,q(x). Now invoke Lemma 6.
-f42. Invoke Lemma 22.
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-f43. Invoke Lemma 21.
-f44: We have Φq(x)Φpq(x)Φpq(x

p) = (xp
2q − 1)/(xp

2 − 1).
-Let 0 ≤ j ≤ 15. Note that

fj+48 = fjΦp2(x)Φp2q(x) = fjΦp(x
p)Φpq(x

p) = fj(1 + xpq + x2pq + · · ·+ x(p−1)pq),

it follows by (4) that if deg(fj) < pq − 1, then C(fj+48) = C(fj) ∪ {0}.
We have deg(fj) > pq − 1 iff
-q = 2, j = 11;
-p = 2, j = 13;
-j = 14;
-j = 15. Using these two observations and Table 1A, one easily arrives at Table
1D. 2

Table 1A

f Φ1(x) Φp(x) Φq(x) Φpq(x) Φp2(x) Φp2q(x) C(f)

0 0 0 0 0 0 0 {1}
1 1 0 0 0 0 0 {−1, 1}
2 0 1 0 0 0 0 {1}
3 1 1 0 0 0 0 [−1, 1]
4 0 0 1 0 0 0 {1}
5 1 0 1 0 0 0 [−1, 1]
6 0 1 1 0 0 0 [1,min(p, q)]
7 1 1 1 0 0 0 [−1, 1]
8 0 0 0 1 0 0 [−1, 1]
9 1 0 0 1 0 0 [−2, 2]
10 0 1 0 1 0 0 [0, 1]
11 1 1 0 1 0 0 [−1, 1]
12 0 0 1 1 0 0 [0, 1]
13 1 0 1 1 0 0 [−1, 1]
14 0 1 1 1 0 0 {1}
15 1 1 1 1 0 0 [−1, 1]

If min(p, q) = 2, then C(f8) = {−1, 1}.
If min(p, q) ≤ 3, then C(f9) = {−2,−1, 1, 2}.
If q = 2, then C(f11) = {−1, 1}.
If p = 2, then C(f13) = {−1, 1}.

We put α(p, q) = min([ q−1
p

] + 1, p).

By p∗ we denote the unique integer with 1 ≤ p∗ < q such that pp∗ ≡ 1(mod q).
We define γ(p, q) = min(p, p∗) + min(p, q − p∗).
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Table 1B

f Φ1(x) Φp(x) Φq(x) Φpq(x) Φp2(x) Φp2q(x) C(f)

16 0 0 0 0 1 0 [0, 1]
17 1 0 0 0 1 0 [−1, 1]
18 0 1 0 0 1 0 {1}
19 1 1 0 0 1 0 [−1, 1]
20 0 0 1 0 1 0 [min([ q

p
], 1), α(p, q)]

21 1 0 1 0 1 0 [−1, 1]
22 0 1 1 0 1 0 [1,min(p2, q)]
23 1 1 1 0 1 0 [−1, 1]
24 0 0 0 1 1 0 [−min(p, q − p∗),min(p, p∗)]
25 1 0 0 1 1 0 [−γ(p, q), γ(p, q)]
26 0 1 0 1 1 0 [0, 1]
27 1 1 0 1 1 0 [−1, 1]
28 0 0 1 1 1 0 [0,min(p, q)]
29 1 0 1 1 1 0 [−min(p, q),min(p, q)]
30 0 1 1 1 1 0 [1,min(p, q)]
31 1 1 1 1 1 0 [−1, 1]

If p = 2, then C(f17) = {−1, 1}.
If min(p, q) = 2, then C(f24) = [−min(p, q − p∗),min(p, p∗)]\{0}.
If p ≤ 3 and q 6= 2, then C(f25) = [−γ(p, q), γ(p, q)]\{0}.
If p = 2, then C(f29) = {−2,−1, 1, 2} = [−min(2, q),min(2, q)]\{0}.

Table 1C

f Φ1(x) Φp(x) Φq(x) Φpq(x) Φp2(x) Φp2q(x) C(f)

32 0 0 0 0 0 1 [−1, 1]
33 1 0 0 0 0 1 [−1, 1]
34 0 1 0 0 0 1 [−1, 1]
35 1 1 0 0 0 1 [−2, 2]
36 0 0 1 0 0 1 [−1, 1]
37 1 0 1 0 0 1 [−1, 1]
38 0 1 1 0 0 1 [−β(p, q),min(p, q)]
39 1 1 1 0 0 1 [−2, 2]
40 0 0 0 1 0 1 [−1, 1]
41 1 0 0 1 0 1 [−2, 2]
42 0 1 0 1 0 1 [−1, 1]
43 1 1 0 1 0 1 [−2, 2]
44 0 0 1 1 0 1 [0, 1]
45 1 0 1 1 0 1 [−1, 1]
46 0 1 1 1 0 1 [0, 1]
47 1 1 1 1 0 1 [−1, 1]
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We put β(p, q) = min(p, q, q(mod p2), p2 − q(mod p2)).
If p = 2, then C(f33) = {−1, 1}.
If min(p, q) = 2, then C(f34) = {−1, 1}.
If q = 2, then C(f38) = {−2, 0, 1, 2}.
If q = 3 and p = 2, then C(f38) = {−1, 1, 2}.
If q = 2, then C(f40) = {−1, 1}.
If q ≤ 3, then C(f41) = {−2,−1, 1, 2}.
If q = 2, then C(f43) = {−2,−1, 1, 2}.

Table 1D

f Φ1(x) Φp(x) Φq(x) Φpq(x) Φp2(x) Φp2q(x) C(f)

48 0 0 0 0 1 1 [0, 1]
49 1 0 0 0 1 1 {−1, 1}
50 0 1 0 0 1 1 [0, 1]
51 1 1 0 0 1 1 [−1, 1]
52 0 0 1 0 1 1 [0, 1]
53 1 0 1 0 1 1 [−1, 1]
54 0 1 1 0 1 1 [0,min(p, q)]
55 1 1 1 0 1 1 [−1, 1]
56 0 0 0 1 1 1 [−1, 1]
57 1 0 0 1 1 1 [−2, 2]
58 0 1 0 1 1 1 [0, 1]
59 1 1 0 1 1 1 [−1, 1]
60 0 0 1 1 1 1 [0, 1]
61 1 0 1 1 1 1 [−1, 1]
62 0 1 1 1 1 1 {1}
63 1 1 1 1 1 1 [−1, 1]

If q = 2, then C(f59) = {−1, 1}.
If p = 2, then C(f61) = {−1, 1}.

3.1 Compact reformulation of Theorem 5

For reference purposes a more compact version of Theorem 5 might be useful.
We give it here (this reformulation was given by Yves Gallot).

Theorem 9 Let p and q be distinct primes. Let f(x) ∈ Z[x] be a monic divisor
of xp

2q − 1. There exists an integer k =
∑5

j=0 kj2
j with kj ∈ {0, 1 } (the binary

expansion of k) such that

f(x) = fk(x) = Φk0
1 · Φk1

p · Φk2
q · Φk3

pq · Φ
k4
p2 · Φ

k5
p2q.

Let p∗ be the unique integer with 1 ≤ p < q such that pp∗ ≡ 1 (mod q) and
I(fk) be the integer interval:

• [1, 1] for k ∈ {0, 2, 4, 14, 18, 62 },

• [0, 1] for k ∈ {10, 12, 16, 26, 44, 46, 48, 50, 52, 58, 60 },
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• [−2, 2] for k ∈ {9, 35, 39, 41, 43, 57 },

• [1, min(p, q)] for k ∈ {6, 30 },

• [0, min(p, q)] for k ∈ {28, 54 },

• [min(bq/pc, 1),min(b(q − 1)/pc+ 1, p)] for k = 20,

• [1, min(p2, q)] for k = 22,

• [−min(p, q − p∗), min(p, p∗))] for k = 24,

• [−min(p, p∗)−min(p, q − p∗), min(p, p∗) + min(p, q − p∗)] for k = 25,

• [−min(p, q), min(p, q)] for k = 29,

• [−β(p, q) = min(p, q, q(mod p2), p2 − q(mod p2), min(p, q)] for k = 38,

• [−1, 1] otherwise.

Then C0(fk) = I(fk) except for k = 38 and q = 2. If q = 2, C0(f38) = C(f38) =
{−2, 0, 1, 2 }. We have C(fk) = C0(fk) except for the following cases (where

C(fk) = C0(fk) \ {0}):

• k = 1,

• k ∈ {13, 17, 29, 33, 61 } and p = 2,

• k ∈ {11, 40, 43, 59 } and q = 2,

• k ∈ {8, 24, 34 } and min(p, q) = 2,

• k = 9 and min(p, q) ≤ 3,

• k = 25 and p ≤ 3 and q 6= 2,

• k = 38 and p = 2 and q = 3,

• k = 41 and q ≤ 3.

3.2 Earlier work on xp
2q − 1

The only earlier work we are aware of is that by Kaplan [7], who proved that if
p 6= q, then B(p2q) = min(p2, q). He first remarks that since B(pq) = min(p, q),
it remains to deal with the 48 divisors of xp

2q − 1 that do not divide xpq − 1. For
those in his Table 1 he gives an upper bound on the height. Since as we have
seen in the proof of Theorem 5, H(fj+48) = H(fj) for 0 ≤ j ≤ 15, it is actually
enough to deal with only 32 divisors (namely those in our Table 1B and 1C). A
further remark is that where in his Table 1, p is given as upper bound, one needs
min(p, q) (as not always p ≤ min(p2, q)). As Kaplan pointed out to the authors
it is easy to see that this replacement can be made. On doing so and comparing
with our results the upper bound he gives for the height are seen to be equalities,
except (for certain choices of p and q) in the cases listed in Table 2.
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Table 2

f H(f) H(f)
Kaplan exact

20 ≤ min(p, q) min(p, [ q−1
p

] + 1)

24 ≤ min(p, q) min(p, p∗)
25 ≤ min(p, q) min(p, p8) + min(p, q − p∗)
45 ≤ 2 1

Note that two of the three ‘challenging’ polynomials mentioned in the introduc-
tion do not appear in the table. For f38 it is easy to see that H(f38) = min(p, q)
(but challenging to determine C(f38)). For f43 it is easy to see that H(f43) ≤ 2,
but challenging to establish that H(f43) = 2. Of course in order to compute
B(p2q) it is not the best strategy to compute H(f) exactly for every divisor of
xp

2q − 1.

4 Heights of divisors of xn − 1

For a polynomial f ∈ Z[x], we define

H∗(f) = max{H(g) : g|f and g ∈ Z[x]}.

Put B(n) = H∗(xn − 1). Sofar little is known about this function. Pomerance
and Ryan [11] have established the following three results concerning B(n), the
fourth is due to Justin [6] and, independently, Felsch and Schmidt [4].

Theorem 10
1) Let p < q be primes. Then B(pq) = p.
2) We have B(n) = 1 if and only if n = pk.
3) We have

lim
n→∞

sup
log logB(n)

log n/ log log n
= log 3.

4) B(n) is bounded above by a function that does not depend on the largest prime
factor of n.
5) Let p and q be different primes. Then B(p2q) = min(p2, q).

In their paper Pomerance and Ryan observe that from their limited numerical
data it seems that part 5 holds. This was subsequently proven by Kaplan [7]. Our
work presented here leads to a reproof. Kaplan’s paper contains various further
results on B(n).

For a polynomial f ∈ Z[x], we define

H∗±(f) = max{|H±(g)| : g|f and g ∈ Z[x]}.

Furthermore we define B±(n) = H∗±(xn − 1). Numerical observations suggest
that often B+(n) > B−(n), and this is our main motivation for introducing these
functions. In fact, if p < q are primes, then B+(pq) = p and B−(pq) = 2.
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5 Flat divisors of xn − 1

The present article suggests that many divisors of xn − 1 are flat. It seems
therefore natural to try to obtain an estimate for the number of flat divisors of
xn − 1.

The following result offers a modest contribution in this direction.

Theorem 11 Let p and q be distinct primes. Let fe be the number of flat monic
divisors of xp

eq − 1. Then fe+1 ≥ 2fe + 2e+2 − 1.

Proof. Every divisor of xp
e+1q − 1 is of the form

a) f(x)
b) f(x)Φpe+1(x)
c) f(x)Φpe+1q(x),
or
d) f(x)Φpe+1(x)Φpe+1q(x),
with f(x) a divisor of xp

eq − 1. Lower bounds for the number of flat divisors
amongst the various types are considered below:
a) The divisors of this form contribute fe to fe+1.
b) Note that we can write f(x)Φpe+1(x) = f(x)Φp(x

pe). Suppose f(x) divides

xp
e − 1. Since f(x)Φp(x

pe)|xpe+1 − 1 it is flat by Theorem 1. Since xp
e − 1 has

21+e monic divisors, we see that there are at least 21+e flat divisors of xp
e+1q − 1

of the form b.
c) Note that we can write f(x)Φpe+1q(x) = f(x)Φpq(x

pe). Suppose f(x) di-
vides xp

e − 1. In case f(x) = xp
e − 1, then H(f(x)Φpq(x

pe)) = 2 by Lemma
6. In the remaining case deg(f) < pe and by (4) and Theorem 1 we infer that
H(f(x)Φpq(x

pe)) = H(f(x)) = 1. We conclude that there are at least 21+e − 1
flat divisors of xp

e+1q − 1 of the form c.
d) We have Φpe+1(x)Φpe+1q(x) = (xp

e+1q − 1)/(xp
eq − 1). In case f(x) = xp

eq − 1,

then H(f(x)Φpq(x
pe)) = H(xp

e+1q − 1) = 1. In the remaining cases we find, by
(4), that H(f(x)Φpe+1(x)Φpe+1q(x)) = H(f(x)). Thus there are at least fe flat

divisors of xp
e+1q − 1 of the form d.

On adding the contributions of each of the four forms, the result follows. 2

Remark 1. The above argument with e = 1 in combination with Theorem 2 leads
to the following list of 35 divisors of xp

2q − 1 that are flat:
a) f0, . . . , f15, excluding f6 and f9
b) f16, f17, f18, f19
c) f32, f33, f34
d) f48, . . . , f63, excluding f54 and f57.
Note that the full list of flat divisors is longer.

Remark 2. By induction one easily proves that for e ≥ 2 we have

fe ≥ 2e−1f1 + (4e− 5)2e−1 + 1.

By Theorem 2 we have f1 = 14 and hence it follows that fe ≥ (4e + 9)2e−1 + 1.
The total number of divisors of xp

eq − 1 is 22+2e, denote this by ne. Then fe �√
ne log ne. Can one improve on this ?
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6 A variation

We have H(f6) = min(p, q) = B(pq). Likewise we have H(f22) = min(p2, q) =
B(p2q). Both f6 and f22 are special in the sense that they have only non-negative
coefficients. It might therefore be more reasonable to consider only balanced
divisors of xn − 1, that is divisors having both positive and negative coefficients.
Let us denote this analogue of B(n) by B′(n). Put

C(n) = max{|C0(f)| − 1 : f |xn − 1, f is balanced}.

Theorem 12 We have
1) B′(pq) = 2 and C(pq) = 4.
2) B′(p2q) = B−(p2q) = min(p, p∗) + min(p, q − p∗) and C(p2q) = 2B′(p2q).

This result is a corollary of Theorem 5.
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