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MAPPING PARTITION FUNCTIONS

DI YANG AND DON ZAGIER

Abstract. We introduce an infinite group action on partition functions of WK
type, meaning of the type of the partition function ZWK in the famous result of
Witten and Kontsevich expressing the partition function of ψ-class integrals on
the compactified moduli space Mg,n as a τ -function for the Korteweg–de Vries
hierarchy. Specifically, the group which acts is the group G of formal power series
of one variable ϕ(V ) = V + O(V 2), with group law given by composition, acting
in a suitable way on the infinite tuple of variables of the partition functions. In
particular, any ϕ ∈ G sends the Witten–Kontsevich (WK) partition function ZWK

to a new partition function Zϕ, which we call the WK mapping partition function
associated to ϕ. We show that the genus zero part of logZϕ is independent of ϕ
and give an explicit recursive description for its higher genus parts (loop equation),
and as applications of this obtain relationships of the ψ-class integrals to Gaussian
Unitary Ensemble and generalized Brézin–Gross–Witten correlators. In a different
direction, we use Zϕ to construct a new integrable hierarchy, which we call the WK
mapping hierarchy associated to ϕ. We show that this hierarchy is a bihamiltonian
perturbation of the Riemann–Hopf hierarchy possessing a τ -structure, and prove
that it is a universal object for all such perturbations. Similarly, for any ϕ ∈ G,
we define the Hodge mapping partition function associated to ϕ, prove that it is
integrable, and study its role in hamiltonian perturbations of the Riemann–Hopf
hierarchy possessing a τ -structure. Finally, we establish a generalized Hodge–WK
correspondence relating different Hodge mapping partition functions.
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1. Introduction

The Korteweg–de Vries (KdV) equation

(1)
∂u

∂t
= u

∂u

∂x
+

ε2

12

∂3u

∂x3

was discovered in the study of shallow water waves in the 19th century [12, 65]. It
was shown [66, 84, 85] in the 1960s that this equation can be extended to a family
of pairwise commuting evolutionary PDEs, called the KdV hierarchy:

(2)
∂u

∂ti
=

ui

i!

∂u

∂x
+ ε2Ki

(
u,
∂u

∂x
,
∂2u

∂x2
, . . . ,

∂2i+1u

∂x2i+1
, ε

)
, i ≥ 0 .

Here t0 = x, t1 = t, and Ki, i ≥ 0, are certain polynomials. For more about the
KdV hierarchy see e.g. [44, 45, 94, 98]. The Riemann–Hopf (RH) hierarchy, aka the
dispersionless KdV hierarchy, is defined again as (2) but with ε taken to be 0.

In 1990, Witten [98] made a famous conjecture: the partition function ZWK(t; ε)
of ψ-class integrals on the Deligne–Mumford moduli space of algebraic curves [24]

(3) ZWK(t; ε) = exp

( ∑
g, n≥0

ε2g−2
∑

i1,...,in≥0

ti1 · · · tin
n!

∫
Mg,n

ψi11 · · ·ψinn
)
,

is a τ -function for the KdV hierarchy, and in particular,

(4) uWK(t; ε) := ε2∂2
t0

(logZWK(t; ε))

satisfies the KdV hierarchy (2). Here t = (t0, t1, t2, . . . ) is an infinite tuple of in-
determinates, Mg,n denotes the moduli space of stable algebraic curves of genus g
with n distinct marked points, and ψa (a = 1, . . . , n) denotes the first Chern class
of the ath tautological line bundle onMg,n. Note that the integral appearing in the
right-hand side of (3) vanishes unless the degree-dimension matching condition

(5) i1 + · · · + in = 3g − 3 + n

is satisfied. Witten’s conjecture, that opens the studies of the deep relations between
topology of Mg,n and integrable systems, was first proved by Kontsevich [63] and is
now known as the Witten–Kontsevich theorem. See [6, 22, 61, 62, 83, 91] for several
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other proofs of this theorem. The function ZWK(t; ε) is referred to indifferently as
the WK (Witten–Kontsevich) partition function or as the WK tau-function.

The general notion behind the story, which has appeared in combinatorics, sta-
tistical physics, matrix models, and other places, is that many interesting partition
functions are τ -functions of integrable systems. On one hand, there are axiomatic or
constructive ways approaching topologically interesting numbers [45, 49, 64], the par-
tition functions of which would correspond to some integrable systems. In particular,
Dubrovin and Zhang [45] gave a constructive way of defining a hierarchy of evolu-
tionary PDEs in (1 + 1) dimensions1 associated to essentially any partition function.
For instance, their construction applied to the WK partition function gives the KdV
hierarchy. The Dubrovin–Zhang hierarchy corresponding to the partition function of
Hodge integrals onMg,n depending on an infinite family of parameters [34] will also
play an important role in this paper and will be called simply the Hodge hierarchy.
On the other hand, one is interested in finding certain integrable systems that admit
τ -functions, sometimes called possessing a τ -structure2, which axiomatically leads
to certain classification invariants [34, 45, 72]. The deep relations between these
two notions is revealed most beautifully when there is a one-to-one correspondence
between them, an example being the Hodge universality conjecture in the study of
Hodge integrals (rank 1 cohomological field theories) and τ -symmetric integrable
hierarchies of Hamiltonian evolutionary PDEs [34], which says that the Hodge hier-
archy is a universal object for one-component τ -symmetric integrable Hamiltonian
perturbations of the RH hierarchy,3 i.e., conjecturally any such integrable hierarchy
is equivalent to the Hodge hierarchy.

In this paper we will study the deep relations from a novel perspective that sheds
new light on both sides:

(a) We introduce an infinite group action, different from those of Givental or Sato–
Segal–Wilson, on the arguments (infinite tuples) of partition functions. The group
which acts is the group G of power series of one variable ϕ(V ) = V +O(V 2), acting
on the right on the infinite tuple (denoted t 7→ t.ϕ and defined in equation (16)
below). In particular, if we start with the WK partition function then each element
ϕ of the group defines a new partition function Zϕ(t; ε) := ZWK(t.ϕ−1; ε), which
we will call the WK mapping partition function associated to ϕ. The coefficients of
its logarithm provide new and potentially interesting numbers, although we do not
know their topological meaning. We show that the genus-zero part of this logarithm

1For readers not familiar with some of the terminology, we refer to Section 7 for a brief review.
2In literature (see e.g. [34, 45]), “(bi-)hamiltonian τ -structure” is often specialized to τ -symmetry,

but “τ -structure” in this paper has the broader meaning (for details see Section 8; cf. [44], [96]).
3Here “perturbation of the RH hierarchy” means a hierarchy of evolutionary PDEs whose right-

hand sides differ from those of the RH hierarchy by terms with more than one spatial derivative.



MAPPING PARTITION FUNCTIONS 4

is independent of ϕ, give the dilaton equation and Virasoro constraints, and derive
loop equations determining also the higher genus parts. Now applying the Dubrovin–
Zhang construction to the WK mapping partition function we obtain a new hierarchy
which we will call the WK mapping hierarchy associated to ϕ. We show that this
hierarchy can be obtained by a space-time exchange combined with a Miura-type
transformation on the KdV hierarchy, and then by using a recent result given by
S.-Q. Liu, Z. Wang and Y. Zhang [70], prove the following theorem in Section 9:

Theorem 1. The WK mapping hierarchy is a bihamiltonian perturbation of the RH
hierarchy possessing a τ -structure.

(b) We study the classification of bihamiltonian perturbations of the RH hierarchy
possessing a τ -structure under the Miura-type group action. In [34] a related but
different classification work was studied and it was conjectured that the universal ob-
ject for the τ -symmetric integrable hierarchies of bihamiltonian evolutionary PDEs
is the Volterra lattice hierarchy. Here, however, we consider a larger class by allowing
a weaker form of the τ -symmetry condition used in [34, 45]. It turns out that there
is a rich family of such bihamiltonian perturbations, part of which can be seen from
Theorem 1, and we propose and prove the WK mapping universality theorem: the
WK mapping hierarchy is a universal object in one-component bihamiltonian per-
turbations of the RH hierarchy possessing a τ -structure. This theorem has a precise
numerical meaning and we also give verifications of it to high orders in Section 9.

Similarly, we consider the G-action on the Hodge partition function. The resulting
power series will be called the Hodge mapping partition function, and the Dubrovin–
Zhang hierarchy for the Hodge mapping partition function will be called the Hodge
mapping hierarchy.

Theorem 2. The Hodge mapping hierarchy is an integrable perturbation of the RH
hierarchy possessing a τ -structure.

The proof of a refined version of this theorem is given in Section 11. We expect that
this integrable hierarchy is hamiltonian. Note that our proof for the integrability
also works for the WK mapping hierarchy, and also that Theorem 2 generalizes part
of the result in Theorem 1. We will also propose in Section 11 (see Conjecture 2
there) the Hodge mapping universality conjecture: the Hodge mapping hierarchy is
a universal object in one-component hamiltonian perturbations of the RH hierarchy
possessing a τ -structure (weakening again the τ -symmetry condition from [34, 45]).
This conjecture generalizes the Hodge universality conjecture [34].

For the special case when the group element ϕ is taken to be

(6) ϕspecial(V ) :=
e2qV − 1

2q
,
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by using the loop equation we will prove in Section 10 the Hodge–WK correspondence
described in the following theorem, which is a relationship between a certain special-
Hodge partition function ZΩspecial(q)(t; q) (see (225) and (231) in Section 10 for the
definition) and the WK partition function ZWK(t; ε).

Theorem 3. The following identity holds in C((ε2))[[q]][[t]] :

(7) ZΩspecial(q)(t.ϕspecial; ε) = ZWK(t; ε) .

We note that, although not completely obvious, this theorem is equivalent to a
result of Alexandrov [5]; see Section 10 for more details.

As an application of the Hodge–WK correspondence, we will establish in the fol-
lowing two theorems explicit relationships of the WK partition function ZWK(t; ε) to
the modified GUE partition function ZmeGUE(x, s; ε) and to the generalized BGW
partition function ZcBGW(x, r; ε) (see [35, 41] or Section 10 for the definition of
ZmeGUE(x, s; ε) and see [100] (cf. [3, 13, 53, 82, 100]) for the definition of ZcBGW(x, r; ε)).
Here and below, “GUE” refers to Gaussian Unitary Ensemble, and “BGW” refers to
Brézin–Gross–Witten.

Theorem 4. The following identity holds true in C((ε2))[[x− 1]][[s]] :

(8) ZWK
(
tWK−GUE(x, s); ε

)
e
A(x,s)

ε2 = ZmeGUE

(
x, s;

ε√
2

)
,

where A(x, s) is a quadratic series defined by

A(x, s) =
1

2

∑
j1,j2≥1

j1j2

j1 + j2

(
2j1

j1

)(
2j2

j2

)(
sj1 −

δj1,1
2

)(
sj2 −

δj2,1
2

)
(9)

+ x
∑
j≥1

(
2j

j

)(
sj −

δj,1
2

)
,

and

2m

(2m+ 1)!!
tWK−GUE

m (x, s)(10)

=
2

3
δm,1 +

1

2m+ 1
x +

∑
j≥1

(
m+ j − 1/2

j − 1

)
22j−1

(
sj −

δj,1
2

)
, m ≥ 0 .

We call (8) the WK–GUE correspondence.

Theorem 5. The following identity holds true in Q((ε2))[[x+ 2]][[r]] :

(11) ZWK
(
tWK−BGW(x, r);

√
−4ε

)
e
AcBGW(x,r)

ε2 = ZcBGW(x, r; ε) ,
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where AcBGW(x, r) is a quadratic function given by

(12) AcBGW(x, r) =
1

2

∑
a,b≥0

(ra − δa,0)(rb − δb,0)

a! b! (a+ b+ 1)
− x

∑
b≥0

rb − δb,0
b! (2b+ 1)

,

and

tWK−BGW

m (x, r) = δm,1 + 2 δm,0 +
(2m− 1)!!

2m
x− 2

∑
j≥m

(−1)m

(j −m)!
rj .(13)

We call (11) the WK–BGW correspondence.
Using the Hodge–WK correspondence and the G-action we establish in Theorem 15

an explicit relationship between the Hodge mapping partition function with a special
choice of its parameters associated to an arbitrarily given group element ψ ∈ G
(which will be called the special-Hodge mapping partition function associated to ψ)
and the WK mapping partition function associated to ϕ, where ϕ and ψ are related
by ϕ = ϕspecial ◦ ψ with ϕspecial as in (6), i.e.,

(14) ϕ(V ) =
e2 q ψ(V ) − 1

2 q
, ψ(V ) =

log(1 + 2 q ϕ(V ))

2 q
.

Such a relationship will be called the generalized Hodge–WK correspondence.

Organization of the paper. In Section 2 we introduce the infinite group action
on infinite tuples, define the WK mapping partition function, and prove Theorem 6:
the genus zero part is a fixed point of the group action. In Section 3 we give the
dilaton equation and Virasoro constraints for the WK mapping partition function.
In Section 4 we give a geometric proof of Theorem 6. In Section 5 we prove the
existence of the jet-variable representation for the higher genus WK mapping free
energies, and in Section 6 we derive the loop equation. In Sections 7 and 8 we
study the classification of hamiltonian and bihamiltonian perturbations of the RH
hierarchy possessing a τ -structure. In Section 9 we prove Theorem 1 and prove the
WK mapping universality theorem. A particular example is discussed in Section 10,
where we prove Theorems 3, 4, 5. In Section 11 we prove Theorem 2 and propose
the Hodge mapping universality conjecture. Section 12 is devoted to generalizations.

Acknowledgements. One of the authors D.Y. is grateful to Youjin Zhang and Boris
Dubrovin for their advice and teaching over many years and for specific suggestions
that were important for this paper. Part of the work of D.Y. was done during
his visit in Max Planck Institute for Mathematics; he thanks MPIM for excellent
working conditions and financial support. The work was partially supported by
NSFC No. 12371254, the CAS No. YSBR-032, and by National Key R and D Program
of China 2020YFA0713100.
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2. G-action and the definition of the WK mapping partition function

In this section we define an infinite group action on infinite tuples and the WK
mapping partition function, and prove Theorem 6 below.

Fix a ground ring R (which for us will always be a Q-algebra, usually Q or C
or Q[q]) and let G = V + V 2R[[V ]] be the group of invertible power series of one
variable with leading coefficient 1, with the group law given by composition and
denoted by ◦. We define an affine-linear right action of the group G on tuples t by

(15) t = (t0, t1, t2, . . . ) 7→ t.ϕ = T = (T0, T1, T2, . . . ) ,

where t and T are related by

(16) BT(V ) =
√
ϕ′(V )Bt(ϕ(V ))

with Bt defined for any infinite tuple t by

(17) Bt(v) := v −
∑
i≥0

ti
i!
vi .

Explicitly, if we write ϕ(V ) =
∑∞

k=0 akV
k with a0 = 0, a1 = 1, then

T0 = t0 , T1 = t1 + a2 t0 , T2 = t2 + 4 a2 (t1 − 1) +
(
3a3 − a2

2

)
t0 , . . . ,(18)

t0 = T0 , t1 = T1 − a2 T0 , t2 = T2 − 4 a2 (T1 − 1)−
(
3a3 − 5a2

2

)
T0 , . . . .(19)

Note that if we introduce for any tuple t the 1-form

(20) ωt(v) := Bt(v)2 dv ,

then the defining equation (16) for the G-action can be stated equivalently as

(21) ωT(V ) = ωt(ϕ(V )) .

Let E(t) denote the following power series

(22) E(t) =
∑
n≥1

1

n

∑
i1,...,in≥0

i1+···+in=n−1

ti1
i1!
· · · tin

in!
= t0 + t0 t1 +

2 t0 t
2
1 + t20 t2
2

+ · · · ,

which is the unique power-series solution (see [27, 98]) to the RH hierarchy

(23)
∂E(t)

∂ti
=

E(t)i

i!

∂E(t)

∂x
, i ≥ 0

specified by the initial condition E(x, 0, . . . ) = x, where x := t0. Alternatively, it
can be uniquely determined by the following equation:

(24) Bt(E(t)) = 0
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(see e.g. [27]), sometimes called the genus zero Euler–Lagrange equation [29, 45]. It
is easily seen (and well known) that the power series E(t) has the property:

(25)
∂kE(t)

∂xk
= δk,1 + tk + higher degree terms .

The following two lemmas are important.

Lemma 1. For any ϕ ∈ G, we have the identity:

(26) ϕ(E(T)) = E(t) ,

where t and T are related by (16).

Proof. By definition we have BT(E(T)) = 0. Then by (16) we obtain

(27) Bt(ϕ(E(T))) = 0 .

Note that ϕ(E(T)) can be viewed as a power series of t. The identity (26) then
holds due to the uniqueness of power-series solution to equation (24). �

Remark 1. We can extend the group G to a semi-direct product consisting of all
pairs (m,ϕ) with power series m(V ) ∈ 1 + V R[[V ]] and ϕ(V ) ∈ V + V 2R[[V ]], and
with the group law ∗ given by

(28) (m1, ϕ1) ∗ (m2, ϕ2) = (m1 · (m2 ◦ ϕ1), ϕ1 ◦ ϕ2) ,

where “·” denotes multiplication of power series. It acts on tuples t by sending t to
T = t.(m,ϕ), where BT(V ) = m(V )Bt(ϕ(V )). One can verify that the identity (26)
still holds for ϕ in this larger group. One could therefore also consider partition
functions under the extended group action, but we do not know whether this would
have any interesting applications.

Lemma 2. We have

∂E(T)

∂t0
=
√
ϕ′(E(T))

∂E(T)

∂T0

,(29)

where t and T are related by (16).

Proof. By (16) and (23). �

For convenience, we denote X ≡ T0 and x ≡ t0 as in (23), and write (29) as

(30)
∂E(T)

∂x
=
√
ϕ′(E(T))

∂E(T)

∂X
.
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By using the identities (26), (30) iteratively, one can obtain the map between the
higher x-derivatives of E(t) and X-derivatives of E(T). For instance,

∂E(t)

∂x
= ϕ′(E(T))3/2 ∂E(T)

∂X
,(31)

∂2E(t)

∂x2
= 2ϕ′(E(T))ϕ′′(E(T))

(
∂E(T)

∂X

)2

+ ϕ′(E(T))2 ∂
2E(T)

∂X2
.(32)

By induction we arrive at the following lemma describing this map.

Lemma 3. For each k ≥ 0, there exists a function Mk(V0, . . . , Vk), which is a poly-
nomial of V1, . . . , Vk, such that

(33)
∂E(t)

∂xk
= Mk

(
E(T),

∂E(T)

∂X
, . . . ,

∂kE(T)

∂Xk

)
.

Moreover, for k ≥ 1, the function Mk(V0, . . . , Vk) satisfies the homogeneity condition:

(34)
k∑
j=1

j Vj
∂Mk(V0, . . . , Vk)

∂Vj
= kMk(V0, . . . , Vk) .

The first few Mk are M0(V ) = V , M1(V, V1) = ϕ′(V )3/2V1, M2(V, V1, V2) =
2ϕ′(V )ϕ′′(V )V 2

1 + ϕ′(V )2V2.
Recall that the free energy FWK(t; ε) of ψ-class intersection numbers is defined by

(35) FWK(t; ε) := logZWK(t; ε) .

By definition the free energy FWK(t; ε) admits the following genus expansion:

(36) FWK(t; ε) =:
∑
g≥0

ε2g−2FWK

g (t) .

We call FWK
g (t) (g ≥ 0) the genus g free energy of ψ-class intersection numbers.

Explicitly,

(37) FWK

g (t) =
∑
n≥0

1

n!

∫
Mg,n

t(ψ1) · · · t(ψn) , t(z) :=
∑
i≥0

ti z
i .

Definition 1. Let ϕ ∈ G. The WK mapping free energy associated to ϕ is defined
by

(38) Fϕ(T; ε) := FWK
(
T.ϕ−1; ε

)
,

and define the genus g WK mapping free energy associated to ϕ, denoted as Fϕg (T),
by

(39) Fϕg (T) := FWK

g

(
T.ϕ−1

)
, g ≥ 0 .
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Remark 2. By the degree-dimension matching (5), one can deduce that Fϕ(T; ε)
and Fϕg (T) (g ≥ 0) are well-defined elements in ε−2R[[T]][[ε2]] and R[[T]], respec-
tively. Another consequence of (5) is that we can upgrade our G-action to an action
of the full group of units C[[V ]]× by setting

(40) Fϕ(T; ε) = FWK
(
T.ϕ−1, ε/ϕ′(0)3/2

)
and

(41) Fϕg (T) = ϕ′(0)3g−3FWK

g

(
T.ϕ−1

)
,

and similarly for Zϕ(T; ε) below. Note that formula (40) makes sense even without
choosing a square-root of ϕ′(0), because FWK is an even power series of ε.

Definition 2. For ϕ ∈ G, the WK mapping partition function associated to ϕ is
defined by

(42) Zϕ(T; ε) := ZWK
(
T.ϕ−1; ε

)
.

It is clear from the definitions that Fϕ(T; ε) has a genus expansion

(43) Fϕ(T; ε) =
∑
g≥0

ε2g−2Fϕg (T)

and that

(44) Zϕ(T; ε) = eF
ϕ(T;ε) .

Our first main result says that the power series FWK
0 (t) is G-invariant, i.e.,

(45) FWK

0 (t) = FWK

0 (t.ϕ) , ∀ϕ ∈ G .

In view of the definition of the group action (39), we can state this even more
compactly in the following way.

Theorem 6. For any ϕ ∈ G, we have Fϕ0 = FWK
0 .

Proof. The ψ-class intersection numbers in genus zero have the well-known formula:

(46)

∫
M0,n

ψi11 · · ·ψinn =

(
n− 3

i1, . . . , in

)
, i1, . . . , in ≥ 0 .
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Writing (n− 3)! as
∫∞

0
sn−3e−sds, we find

FWK

0 (t) =
∑
n≥0

1

n!

∑
i1,...,in≥0

i1+···+in=n−3

n∏
j=1

tij
ij!

∫ ∞
0

si1+···+in e−s ds(47)

= resz=0

(∫ ∞
0

e−s
∞∑
n=0

∞∑
i1,...,in=0

si1+···+in

n!
z2−n+i1+···+in

n∏
j=1

tij
ij!
ds dz

)
,

= resz=0

(∫ ∞
0

e−Bt(v)/z dv z dz

)
,

where Bt(v) is defined by (17). Here, in the last equality we employed the change of
variables v = zs.

Therefore,

Fϕ0 (T) := FWK

0 (t) = resz=0

(∫ ∞
0

e−Bt(v)/zdv z dz

)
= resz̃=0

(∫ ∞
0

e−
√
ϕ′(V )Bt(ϕ(V ))/z̃dV z̃ dz̃

)
= resz=0

(∫ ∞
0

e−BT(V )/zdV z dz

)
.

Here, in the first line we used (39) and (47), in the second line we employed the

change of variables v = ϕ(V ) and z̃ =
√
ϕ′(V ) z, and in the last equality we used

the definition (16). The theorem is proved. �

We also note that the power series E(t) defined in (22) is equal to the second
t0-derivative of FWK

0 (t), i.e.,

(48) E(t) =
∂2FWK

0 (t)

∂t20
.

Then from (47) we immediately get an integral representation for E(t) as follows:

E(t) = resz=0

(∫ ∞
0

e−Bt(v)/z dv
1

z
dz

)
(49)

Before ending this section, we make the following remark.

Remark 3. There is another way to state Theorem 6. For any ϕ ∈ G, define
a modified right action, denoted t 7→ T̂ = t|ϕ by the following formula which is
similar to (16), but with the map now being linear rather than affine linear:

(50)
∑
i≥0

T̂i
V i

i!
=
√
ϕ′(V )

∑
i≥0

ti
ϕ(V )i

i!
.
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It is clear from that (16) and (50) that

Ti = T̂i + δi,1 − Ci,
∑
i≥0

Ci
V i

i!
:=
√
ϕ′(V )ϕ(V ) .(51)

It is also easy to deduce from (50) that

BT(V ) =
√
ϕ′(V )Bt+d−c(ϕ(V )) ,

∑
i≥0

ci
vi

i!
:=
√
f ′(v) f(v) , f := ϕ−1 ,(52)

where d = (0, 1, 0, 0, 0, . . . ) and c = (c0, c1, c2, . . . ). Theorem 6 can then be alterna-
tively stated as follows:

(53) F0

(
T̂0, T̂1, T̂2, . . .

)
= F0(t0, t1, t2 − c2, t3 − c3, . . . ) .

One can use the modified group action to define a modified WK mapping partition
function for any ϕ ∈ G. It leads to the same WK mapping hierarchy as before. The
shifts are nevertheless interesting due to their connection to higher Weil–Petersson
volumes [58, 80, 68, 86, 10]) and will be useful for several of the applications later, e.g.
in connection with the Alexandrov formula where the cj (up to a scaling factor qj−1)
are specific numbers (−4, 23,−176, · · · ) (Theorem B in Section 10).

3. Virasoro constraints for the WK mapping partition function

In this section, we give the Virasoro constraints for the WK mapping partition
function.

Recall from [98] that the free energy FWK(t; ε) satisfies the following dilaton and
string equations, respectively:

∑
i≥0

ti
∂FWK(t; ε)

∂ti
+ ε

∂FWK(t; ε)

∂ε
+

1

24
=

∂FWK(t; ε)

∂t1
,(54)

∑
i≥0

ti+1
∂FWK(t; ε)

∂ti
+

t20
2 ε2

=
∂FWK(t; ε)

∂t0
.(55)

Recall also that the Witten–Kontsevich theorem can be equivalently formulated as
an infinite family of linear constraints for ZWK(t; ε), which come from a realization of
half of the Virasoro algebra of central charge 1, called the Virasoro constraints [26,
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45]. More precisely, define the linear operators Lk, k ≥ −1, by

LWK

k =
∑
i≥0

(2i+ 2k + 1)!!

2k+1 (2i− 1)!!
ti

∂

∂ti+k
− (2k + 3)!!

2k+1

∂

∂t1+k

+
δk,0
16

(56)

+
ε2

2

∑
i,j≥0

i+j=k−1

(2i+ 1)!! (2j + 1)!!

2k+1

∂2

∂ti∂tj
+

t20
2 ε2

δk,−1 .

These operators satisfy the Virasoro commutation relations:

(57)
[
LWK

k1
, LWK

k2

]
= (k1 − k2)LWK

k1+k2
, ∀ k1, k2 ≥ −1 .

The Virasoro constraints for ZWK(t; ε) then read

(58) LWK

k

(
ZWK(t; ε)

)
= 0 , k ≥ −1 .

Obviously, the k = −1 constraint in (58) is the same as (55).

Proposition 1. We have∑
i≥0

T̃i
∂Zϕ(T; ε)

∂Ti
+ ε

∂Zϕ(T; ε)

∂ε
+

1

24
Zϕ(T; ε) = 0 ,(59)

L
ϕ

k

(
Zϕ(T; ε)

)
= 0 , k ≥ −1 ,(60)

where T̃i := Ti − δi,1, and L
ϕ

k , k ≥ −1, are linear operators of the form

L
ϕ

k = ε2
∑
i,j≥0

aϕij(k)
∂2

∂Ti∂Tj
+
∑
i,j≥0

bϕij(k) T̃i
∂

∂Tj
+

T 2
0

2ε2
δk,−1 +

δk,0
16

.(61)

Here the coefficients aϕij(k), bϕij(k) depend on ϕ and k.

Proof. For ϕ ∈ G, write

(62) Ti = δi,1 +
i∑

m=0

Mm
i (tm − δm,1) , tm = δm,1 +

m∑
i=0

N i
m (Ti − δi,1) .

Here Mm
i and N i

m have dependence on ϕ. Then we have

(63)
∑
m≥0

(tm − δm,1)
∂

∂tm
=
∑
m≥0

∑
i≥m

(tm − δm,1)Mm
i

∂

∂Ti
=
∑
i≥0

(Ti − δi,1)
∂

∂Ti
.



MAPPING PARTITION FUNCTIONS 14

Similarly,

LWK

k =
T 2

0

2ε2
δk,−1 +

δk,0
16

+
∑
i≥0

(2i+ 2k + 1)!!

2k+1 (2i− 1)!!

i∑
j=0

N j
i T̃j

i+k∑
r=0

M i+k
r

∂

∂Tr

+
ε2

2

∑
i,j≥0

i+j=k−1

(2i+ 1)!! (2j + 1)!!

2k+1

i∑
r1=0

j∑
r2=0

M i
r1
M j

r2

∂

∂Tr1

∂

∂Tr2
.

The proposition is proved. �

We call (59) the dilaton equation for Zϕ(T; ε), and (60) the Virasoro constraints
for Zϕ(T; ε) because the operators L

ϕ

k satisfy the Virasoro commutation relations:

(64)
[
L
ϕ

k , L
ϕ

`

]
= (k − `)Lϕk+` , k, ` ≥ −1 .

4. The WK mapping free energy in genus zero

In this section, we give a different and more geometric proof of Theorem 6.

Lemma 4. The following identity holds:

(65)
∂2FWK

0 (t)

∂ti∂t`
=

∂2(FWK
0 (t.ϕ))

∂ti∂t`
, i, ` ≥ 0 .

Proof. Recall the following well-known identity

∂2FWK
0 (t)

∂ti∂t`
=

E(t)i+`+1

i! `! (i+ `+ 1)
, ∀ i, ` ≥ 0 ,(66)

(see e.g. [29, 45]) with the i = ` = 0 case being the same as (48). From (66) one can
easily deduce:

∂3FWK
0 (t)

∂ti∂t`∂tm
=

E(t)i+`+m

i! `!m!

∂v(t)

∂t0
,(67)

∂3(FWK
0 (t.ϕ))

∂ti∂t`∂tm
=

∑
m1,m2,m3≥0

∂Tm1

∂ti

∂Tm2

∂t`

∂Tm3

∂tm

E(T)m1+m2+m3

m1!m2!m3!

∂E(T)

∂T0

,(68)

where T and t are related by T = t.ϕ, and i, `,m ≥ 0. By using (16) we have

(69)
∞∑
m=0

∂Tm
∂ti

E(T)m

m!
=
√
ϕ′(E(T))

ϕ(E(T))i

i!
.

Using (68), (69) and Lemma 1, we obtain that

∂3(FWK
0 (t.ϕ))

∂ti∂t`∂tm
= ϕ′(E(T))3/2 E(t)i+`+m

i! `!m!

∂E(T)

∂T0

.(70)
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We conclude from (67), (70), (31) that

(71)
∂3FWK

0 (t)

∂ti∂t`∂tm
=

∂3(FWK
0 (t.ϕ))

∂ti∂t`∂tm
, i, `,m ≥ 0 .

So the two sides of (65) can only differ by a constant. The lemma is then proved by
observing that they both vanish when t = 0. �

A second proof of Theorem 6. It follows from the dilaton equation that

(72) 2FWK

0 (t) =
∑
i≥0

ti
∂FWK

0 (t)

∂ti
− ∂FWK

0 (t)

∂t1
.

Differentiating this identity with respect to t` we find

(73)
∂FWK

0 (t)

∂t`
=
∑
i≥0

ti
∂2FWK

0 (t)

∂ti∂t`
− ∂2FWK

0 (t)

∂t1∂t`
, ` ≥ 0 .

From (72), (73) we see that the power series FWK
0 (t) is uniquely determined by

∂2FWK
0 (t)

∂ti∂t`
, i, ` ≥ 0. Combined with Lemma 4, this proves the theorem. �

5. The higher genus WK mapping free energies

In this section, we show that the higher genus WK mapping free energies admit
jet representations.

It is known that [27, 43, 45, 48] the power series FWK
g (t), g ≥ 1, has the (3g−2)-jet

representation, i.e., there exists FWK
g (v1, . . . , v3g−2), such that

(74) FWK

g (t) = FWK

g

(
∂E(t)

∂t0
, . . . ,

∂3g−2E(t)

∂t3g−2
0

)
, g ≥ 1 ,

with

(75) FWK

1 (v1) =
1

24
log v1 .

Moreover, for g ≥ 2, FWK
g (v1, . . . , v3g−2) is a polynomial of v2, . . . , v3g−2 and v−1

1

(see e.g. [43, 45]), that satisfies the following two homogeneity conditions:∑
k≥1

k vk
∂FWK

g (v1, . . . , v3g−2)

∂vk
= (2g − 2)FWK

g (v1, . . . , v3g−2) , g ≥ 2 ,(76)

∑
k≥2

(k − 1) vk
∂FWK

g (v1, . . . , v3g−2)

∂vk
= (3g − 3)FWK

g (v1, . . . , v3g−2) , g ≥ 2 .(77)

By using (39), Lemma 3 and (74)–(77) we arrive at the following proposition.
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Proposition 2. For g = 1 we have the identity:

(78) Fϕ1 (T) = Fϕ
1

(
E(T),

∂E(T)

∂X

)
, with Fϕ

1 (V, V1) :=
1

24
log V1 +

1

16
logϕ′(V ) .

For each g ≥ 2, Fϕg (T) is given by

Fϕg (T) = Fϕ
g

(
E(T), . . . ,

∂3g−2E(T)

∂X3g−2

)
(79)

for some function Fϕ
g (V0, . . . , V3g−2) which is a polynomial in V −1

1 , V2, . . . , V3g−2.
Moreover, this polynomial is weighted homogeneous of degree 2g − 2 (where Vi has
weight i), i.e.,

(80)

3g−2∑
k=1

k Vk
∂Fϕ

g (V0, . . . , V3g−2)

Vk
= (2g − 2)Fϕ

g (V0, . . . , V3g−2) .

What is more, for each g ≥ 1 the differences Fϕg (T)−FWK
g (T) and Fϕ

g (V0, . . . , V3g−2)−
FWK
g (V1, . . . , V3g−2), as power series of a2, a3, a4, . . . , have vanishing constant terms.

For instance, for g = 2 we have the following explicit expression for Fϕ
2 :

Fϕ
2 (V, V1, V2, V3, V4) =

V4

1152V 2
1

− 7V3V2

1920V 3
1

+
V 3

2

360V 4
1

(81)

+
ϕ′′(V )

320ϕ′(V )

V3

V1

− 11ϕ′′(V )

3840ϕ′(V )

V 2
2

V 2
1

+

(
5ϕ(3)(V )

768ϕ′(V )
− 29ϕ′′(V )2

7680ϕ′(V )2

)
V2

+

(
ϕ(4)(V )

384ϕ′(V )
+

ϕ′′(V )3

11520ϕ′(V )3
− ϕ(3)(V )ϕ′′(V )

384ϕ′(V )2

)
V 2

1 .

In the next section we will show that this function, and also the higher Fϕ
g , are

equal to a power of V1 times a weighted homogeneous polynomial in the variables
Vi+1/V

i+1
1 and di(logϕ′(V ))/dV i (eqs (116) and (119)).

From the last statement in Proposition 2 we know that for each g ≥ 1, Fϕg (T)
is a deformation of FWK

g (T), as well as that Fϕ
g (V0, . . . , V3g−2) is a deformation of

FWK
g (V1, . . . , V3g−2). For g = 1, 2, this is obvious from (78), (81). An alternative way

to see this e.g. in genus g = 1 is from the identity

(82) Fϕ1 (T)−FWK

1 (T) =
1

16
logϕ′

(
∂2FWK

0 (T)

∂T 2
0

)
.

6. The loop equation for the WK mapping free energy

This section devotes to the derivation of the loop equations for the WK mapping
free energy.
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Following [45], introduce the following creation and annihilation operators:

(83) ap =

{
ε ∂
∂tp−1/2

, p > 0 ,

ε−1 (−1)p+1/2 (t−p−1/2 − δp,−3/2) , p < 0 ,

where p is a half integer. Let

(84) f =
∑
p∈Z+ 1

2

ap

∫ ∞
0

e−λz zp−1dz =
∑
p∈Z+ 1

2

ap Γ(p)λ−p .

Then

(85) ∂λ(f) = −
∑
p∈Z+ 1

2

ap Γ(p+ 1)λ−p−1 =: −
√
π εA −

√
π

ε
B ,

with

A =
∑
m≥0

(2m+ 1)!!

2m+1
λ−m−3/2 ∂

∂tm
,(86)

B =
∑
m≥0

2m

(2m− 1)!!
λm−1/2 (tm − δm,1) .(87)

It can then be verified that

(88)
∑
k≥−1

Lk
λk+2

:= (T (λ))≤−1 ,

where Lk, k ≥ −1, are the operators defined in (56), and

T (λ) :=
1

2π
: (∂λf)2 : +

1

16λ2
=

ε2

2
A2 + B ◦ A +

1

2ε2
B2 +

1

16λ2
.(89)

The Virasoro constraints (58) can now be written as

(90) (T (λ))−(Z(t; ε)) = 0 .

Here “−” means taking the negative power of λ. By definition we have

(91) (T (λ))−
(
Zϕ(T; ε)

)
= 0 .

Dividing both sides of (91) by Zϕ and taking the coefficients of ε−2, we have

(92) (B ◦ A)−
(
Fϕ0 (T)

)
+

1

2

(
A
(
Fϕ0 (T)

))2
+

1

2
(B2)− = 0 .



MAPPING PARTITION FUNCTIONS 18

For k ≥ 0, applying ∂k+2
X on both sides of the equality (92), one obtains(

A
(
Fϕ0
)
◦ A+ (B ◦ A)−

)
(Vk)(93)

= −
k∑

m=1

(
k

m

)
∂m−1
X

(
A
(
Fϕ0X

))
∂k−mX (A(V ))

− ∂kX
(

(k + 2)
(
BX ◦ A

(
Fϕ0X

))
− +

(
A
(
Fϕ0X

))2
+
(
(BX)2

)
−

)
= −

k∑
m=1

(
k

m

)(
∂m−1
X

(
BX + A

(
Fϕ0X

))
∂k−m+1
X

(
BX + A

(
Fϕ0X

)))
−

− ∂kX
((
BX + A

(
Fϕ0X

))2
)
−
.

Here Fϕ0 := Fϕ0 (T) = F0(T).
Introduce

(94) Fϕh.g. = Fϕh.g.(T; ε) := Fϕ(T; ε)− ε−2F0(T) =
∑
g≥1

ε2g−2Fϕg (T) .

Here and below “h.g.” stands for higher genera. Dividing both sides of (91) by Zϕ

and taking the coefficients of nonnegative power of ε, we find

(B ◦ A)−
(
Fϕh.g.

)
+
ε2

2

((
A
(
Fϕh.g.

))2
+ A2

(
Fϕh.g.

))
(95)

+ A
(
Fϕ0
)
A
(
Fϕh.g.

)
+

1

2
A2
(
Fϕ0
)

+
1

16λ2
= 0 .

Substituting the jet representation (78), (79) for ∆Fϕ into (95), we obtain

−
∑
k≥0

k∑
m=1

(
k

m

)(
∂m−1
X

(
BX + A

(
Fϕ0X

))
∂k−m+1
X

(
BX + A(Fϕ0X)

))
−

∂Fϕh.g.
∂Vk

(96)

−
∑
k≥0

∂kX

((
BX + A

(
Fϕ0X)

)2
)
−

∂Fϕh.g.
∂Vk

+
ε2

2

∑
q1,q2≥0

∂q1+1
X

(
A
(
Fϕ0X

))
∂q2+1
X

(
A
(
Fϕ0X

)) (∂Fϕh.g.
∂Vq1

∂Fϕh.g.
∂Vq2

+
∂2Fϕh.g.
∂Vq1∂Vq2

)
+
ε2

2

∑
m≥0

A2(Vm)
∂Fϕh.g.
∂Vm

+
1

2
A2
(
Fϕ0
)

+
1

16λ2
= 0 .
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Here we also used (93). We note that

A
(
Fϕ0X

)
=
∑
a, i≥0

(2a+ 1)!!

2a+1

E(t)a+i+1

a! i! (a+ i+ 1)

∂ti
∂X

λ−a−3/2 ,(97)

A2
(
Fϕ0
)

=
1

8 (λ− ϕ(E(T)))2
− 1

8λ2
,(98)

BX =
∑
i≥0

∂B

∂ti

∂ti
∂X

=
∑
b≥0

2b b!

(2b− 1)!!
λb−1/2 Coef

(
xb,

1√
ϕ′(ϕ−1(x))

)
.(99)

It follows from the equality (97) and Lemma 1 that

A
(
Fϕ0X

)
=

1

2

∫ E(t)

0

1

(λ− x)3/2

dx√
ϕ′(ϕ−1(x))

=
1

2

∫ E(T)

0

√
ϕ′(x)

(λ− ϕ(x))3/2
dx .(100)

Together with (99) we find via integration by parts that BX + A(Fϕ0X) admits the
following explicit Puiseux expansion as λ→ ϕ(V ):

BX + A
(
Fϕ0X

)
(101)

=

(∑
k≥−1

2k+1

(2k + 1)!!
(λ− ϕ(V ))k+1/2

(
1

ϕ′(V )
∂V

)k+1(
1√
ϕ′(V )

))∣∣∣∣∣
V=E(T)

.

Then by noticing that the genus g part of equation (96) admits a Laurent expansion
as λ → ϕ(V ) and that the vanishing of the coefficients of negative powers in λ is
equivalent to the vanishing of the coefficients of negative powers in λ− ϕ(V ) in the
Laurent expansion, we arrive at

−
∑
k≥0

(
∂k
(
W(λ)2

)
+

k∑
j=1

(
k

j

)(
∂j−1

(
W(λ)

)
∂k+1−j(W(λ)

)))− ∂Fϕh.g.
∂Vk

(102)

+
ε2

2

∑
k,`≥0

∂k+1
(
W(λ)

)
∂`+1

(
W(λ)

)( ∂2Fϕh.g.
∂Vk∂V`

+
∂Fϕh.g.
∂Vk

∂Fϕh.g.
∂V`

)

+
ε2

16

∑
k≥0

∂k+2

(
1

(λ− ϕ(V ))2

)
∂Fϕh.g.
∂Vk

+
1

16

1

(λ− ϕ(V ))2
= 0 ,

where ∂ =
∑

k Vk+1∂/∂Vk,

(103) W(λ) :=
∑
s≥0

2s

(2s− 1)!!
(λ− ϕ(V ))s−1/2

(
1

ϕ′(V )
∂V

)s(
1√
ϕ′(V )

)
,

and (•)− means taking terms having negative powers of λ− ϕ(V ).
We have the following theorem.
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Theorem 7. The generating function

(104) Fϕ
h.g. = Fϕ

h.g.(ε) =
∑
g≥1

ε2g−2 Fϕ
g (V0, . . . , V3g−2)

satisfies

−
∑
k≥0

(
∂k
(
W 2
)

+
k∑
j=1

(
k

j

)
∂j−1

(
W
)
∂k+1−j(W))− ∂Fϕ

h.g.

∂Vk
(105)

+
ε2

2

∑
k,`≥0

(
∂k+1

(
W
)
∂`+1

(
W
))−( ∂2Fϕ

h.g.

∂Vk∂V`
+
∂Fϕ

h.g.

∂Vk

∂Fϕ
h.g.

∂V`

)

+
ε2

16

∑
k≥0

∂k+2

(
1

∆2

)
∂Fϕ

h.g.

∂Vk
+

1

16

1

∆2
= 0 ,

where W is the element in

(106) ϕ′(V )−1/2∆−1/2Q
[
ϕ′(V )±1, ϕ′′(V ), ϕ′′′(V ), . . .

]
[[∆]]

defined by

(107) W :=
∑
s≥0

2s

(2s− 1)!!

((
1

ϕ′(V )

∂

∂V

)s(
1√
ϕ′(V )

))
∆s− 1

2 ,

the operator ∂ is defined on functions of ∆, V0, V1, V2, . . . by

(108) ∂ = −ϕ′(V )V1
∂

∂∆
+
∑
k≥0

Vk+1
∂

∂Vk
,

and (•)− means taking terms having negative powers of ∆. Moreover, the solution
to (105) is unique up to a sequence of additive constants which can be uniquely fixed
by (78) and the following equation:

(109)
∑
k≥1

k Vk
∂Fϕ

g

∂Vk
= (2g − 2)Fϕ

g +
δg,1
24

, g ≥ 1 .

Proof. Observing that W(λ) = W |∆ 7→λ−ϕ(V ), equation (105) is just a rewriting
of (102).
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To see uniqueness, by taking coefficients of powers of ε2g−2, g ≥ 1, in the loop
equation (105) we see that the loop equation (105) is equivalent to∑

k≥0

(
∂k
(
W 2
)

+
k∑
j=1

(
k

j

)
∂j−1

(
W
)
∂k+1−j(W))− ∂Fϕ

g

∂Vk
(110)

=
1

2

∑
k,`≥0

(
∂k+1

(
W
)
∂`+1

(
W
))−( ∂2Fϕ

g−1

∂Vk∂V`
+

g−1∑
m=1

∂Fϕ
m

∂Vk

∂Fϕ
g−m

∂V`

)

+
1

16

∑
k≥0

∂k+2
( 1

∆2

) ∂Fϕ
g−1

∂Vk
+

1

16

1

∆2
δg,1 , g ≥ 1

(setting Fϕ
0 = 0). For each g ≥ 1, since Fϕ

g is a function of V0, . . . , V3g−2 the sum
∑

k

on the left-hand side of (110) is actually is finite sum, and by comparing coefficients
of negatives powers of ∆ we find that (110) is equivalent to the following triangular
inhomogeneous linear system for the gradients of Fϕ

g :

(111) Cg

(
∂Fϕ

g

∂V0

, . . . ,
∂Fϕ

g

∂V3g−2

)T
= Mg ,

where Mg is a column vector which is determined by Fϕ
1 , . . . , F

ϕ
g−1 and W , and Cg

is an upper triangular matrix determined by W . Moreover, by a straightforward
calculation we find

(112) detCg =

3g−2∏
j=0

(2j + 1)!!

2j
ϕ′(V )j−1 6= 0 ,

which implies that (110) gives a recursive formula for the gradients of Fϕ
g , g ≥ 1.

For g = 1, equation (110) reads(
3

2

V1

∆2
− 3

2

ϕ′′(V )

ϕ′(V )2

V1

∆

)
∂Fϕ

1

∂V1

+
1

ϕ′(V )

1

∆

∂Fϕ
1

∂V0

=
1

16 ∆2
.

By equating the coefficients of ∆−1 and ∆−2 to 0, we get

(113)
∂Fϕ

1

∂V1

=
1

24V1

,
∂Fϕ

1

∂V
=

3

2
V1
ϕ′′(V )

ϕ′(V )

∂Fϕ
1

∂V1

=
1

16

ϕ′′(V )

ϕ′(V )
,

which agrees with (78). For g ≥ 2, the homogeneity (109) fixes Fϕ
g by its gradients.

�

When g = 2, the expression of Fϕ
2 obtained using a computer algorithm designed

from the above theorem coincides with the one given by (81). We have made this
double check also for g = 3, 4, 5 with a simple home computer.
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We call (96) or (105) or (110) the Dubrovin–Zhang type loop equation for the WK
mapping partition function, for short, the loop equation.

Remark 4. We note that the existence of solution to the loop equation (96) is a
non-trivial fact. Our construction proves this existence.

Remark 5. For the case that ϕ(V ) = V , the loop equation (105) reduces to

−
∑
k≥0

(
∂k
(

1

∆

)
+

k∑
m=1

(
k

m

)
∂m−1

(
1√
∆

)
∂k−m+1

(
1√
∆

))
∂Fϕ

h.g.

∂Vk

+
ε2

2

∑
k1, k2≥0

∂k1+1

(
1√
∆

)
∂k2+1

(
1√
∆

)(
∂2Fϕ

h.g.

∂Vk∂V`
+
∂Fϕ

h.g.

∂Vk

∂Fϕ
h.g.

∂V`

)

+
ε2

16

∑
k≥0

∂k+2

(
1

∆2

)
∂Fϕ

h.g.

∂Vk
+

1

16 ∆2
= 0 .

This loop equation coincides with the loop equation for the Witten–Kontsevich par-
tition function, derived by Dubrovin and Zhang in [45].

Introduce the polynomial ring

(114) R = Q[w1, w2, . . . ; `1, `2, . . . ] .

As a vector space R decomposes into a direct sum of homogeneous subspaces

(115) R = ⊕m≥0R[m] ,

where elements in R[m] are weighted homogeneous polynomials of degree m in vari-
ables wi and `i of weight i (i ≥ 1). In the remainder of this section we will give a
more elementary description of the functions Fϕ

g by showing that

Fϕ
g (V, V1, . . . , V3g−2) = V 2g−2

1 Pg

( V2

V 2
1

,
V3

V 3
1

, . . . ; l1(V ), l2(V ), . . .
)

(g ≥ 2) ,(116)

where lk(V ) is defined by

(117) lk(V ) =
( d

dV

)k
(logϕ′(V )) , k ≥ 0 ,

and Pg = Pg(w1, w2, . . . ; `1, `2, . . . ) is a polynomial in P [3g−3]. For instance, for g = 2,

P2 =
w3

1152
− 7w1w2

1920
+

w3
1

360
+
`1w2

320
− 11 `1w

2
1

3840
(118)

+

(
5 `2

768
+

7 `2
1

2560

)
w1 +

(
`1 `2

192
+

`3
1

11520
+

`3

384

)
,
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which is much simpler to read than the equivalent expression (81) for Fϕ
2 and belongs

to R[3]. More generally, we will show that

(119)
∂Fϕ

g

∂Vk
= V 2g−2−k

1 Pg,k

( V2

V 2
1

,
V3

V 3
1

, . . . ; l1(V ), l2(V ), . . .
)

(0 ≤ k ≤ 3g − 2)

for some polynomials Pg,k in R[3g−2−k]. Notice that this formula, unlike (116), is true
also in genus 1, with

(120) P1,0 =
`1

16
, P1,1 =

1

24
,

as we see immediately from equation (78).
Let us introduce further some notations. First, we can show that ∂k(W ) for every

k ≥ 1 is
V k1√
ϕ′(V )∆

times a polynomial in 1
y

= ϕ′(V )
∆

, namely,

∂k(W ) =
V k

1√
ϕ′(V )∆

k∑
n=1

Mk,n

( V2

V 2
1

, . . . ,
Vk+1−n

V k+1−n
1

; l1(V ), . . . , lk−n(V )
)
y−n ,(121)

where Mk,n(w1, . . . , wk−n; `1, . . . , `k−n) ∈ R[k−n] with M1,n = δn,1/2. Second, for

k ≥ 0, we define Yk =
∑k

j=0

(
k+1
j+1

)
∂j(W )∂k−j(W ). Then we have that there exist

Yk,n(w1, . . . , wk−1; `1, . . . , `n) ∈ R[n] ,

such that

(122) Yk =
V k

1

ϕ′(V ) ∆

∑
n≥0

Yk,n

( V2

V 2
1

, . . . ,
Vk
V k

1

; l1(V ), . . . , ln(V )
)
yn−k

with Yk,0 = (2k + 1)!!/2k, k ≥ 0. Third, for k ≥ 1 we have
(123)

∂k
( 1

∆2

)
=:

V k
1

ϕ′(V )∆

k+2∑
m=3

Qk,m

( V2

V 2
1

, . . . ,
Vk+3−m

V k+3−m
1

; l1(V ), . . . , lk+2−m(V )
)
y1−m ,

for some Qk,m = Qk,m(w1, . . . , wk+2−m; `1, . . . , `k+2−m) ∈ P [k+2−m] with Q1,3 = 2.

We also introduce the first-order differential operators D
[m]
k : R → R by

D
[m]
k := Dk + δk,1m,

where Dk is the derivation defined by

D0 =
∑
i≥1

`i+1
∂

∂`i
, D1 = −

∑
i≥1

(i+ 1)wi
∂

∂wi
, Dk =

∂

∂wk−1

(k ≥ 2) .

The operators Dk, k ≥ 0, simply correspond to V k
1

∂
∂Vk

when applied to the function

P (V2/V
2

1 , V3/V
3

1 , . . . ; l1(V ), l2(V ), . . . ).
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Theorem 8. The functions Fϕ
g and ∂Fϕ

g /∂Vk are given by equations (116) and (119),

where the polynomials Pg,k ∈ R[3g−2−k] (0 ≤ k ≤ 3g − 2) are defined by the initial
values (120) and the recursion

(2k + 1)!!

2k
Pg,k =

1

16

3g−5∑
`=0

Q`+2,k+1 Pg−1,` −
3g−2∑
j=k+1

Yj,j−k Pg,j

(124)

+
1

2

3g−5∑
k1,k2=0

∑
1≤n1≤k1+1
1≤n2≤k2+1
n1+n2=k

Mk1+1,n1 Mk2+1,n2

(
D

[2g−4−k1]
k2

(Pg−1,k1) +

g−1∑
m=1

Pm,k1Pg−m,k2

)

for g ≥ 2, and the polynomial Pg ∈ R[3g−3] is defined by

(125) Pg =
1

2g − 2

(
Pg,1 +

∑
k≥2

k wk−1 Pg,k

)
(g ≥ 2) .

Moreover, the polynomials Pg and Pg,k are related by

(126) Pg,k =
(
Dk + (2g − 2)δk,1

)
Pg (g ≥ 2) .

Proof. Substituting (121)–(123) in the loop equation (110), and comparing the co-
efficients of powers of y we obtain (124). Dividing (109) by V 2g−2

1 , we find that for
g ≥ 2 the polynomials Pg can be constructed by Pg,k by (125). �

Remark 6. Formulas (120) and (124) define Pg,k for all g and k explicitly by induc-
tion. But the fact that these polynomials and the polynomial Pg defined by (125)
are related by (126) is not at all obvious from this definition. This corresponds to
our previous Remark 4 about the existence of a solution to the loop equation.

Remark 7. Note that the functions Mk(V0, . . . , Vk) given in Lemma 3 for k ≥ 1
have the following more accurate form

(127)
Mk(V0, . . . , Vk)

ϕ′(V )
k
2

+1V k
1

= Nk

(
V2

V 2
1

, . . . ,
Vk
V k

1

; l1(V ), . . . , lk−1(V )

)
,

where Nk = Nk(w1, . . . , wk−1; `1, . . . , `k−1) ∈ R[k−1] with N1 = 1. Then by using (39)
and (74) we get the expressions of the polynomials Pg, g ≥ 2, from FWK

g . For the
reader’s convenience, let us provide here the expressions for the first few Nk, k ≥ 1:

(128) N1 = 1 , N2 = 2 `1 + w1 , N3 =
25

4
`2

1 +
5

2
`2 +

15

2
`1w1 + w2 .
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7. Review of Hamiltonian and bihamiltonian evolutionary PDEs

In this section we review basic terminologies about evolutionary PDEs and Pois-
son structures, referring to [30, 36, 45] for more details. The evolutionary PDEs
considered in this paper are always in (1+1) dimensions, meaning that the unknown
functions have one space variable and one time variable, and also, the number of un-
known functions will be one. (We note that most of the terminology reviewed in this
section and the classification projects in this section and the next can be generalized
without much difficulty to the case when there are several unknown functions, often
called the multicomponent case; we also note that in the last section of this paper, a
more general situation is actually briefly discussed.). For readers from other areas,
we also recall that “evolutionary” simply means that the PDE expresses the partial
derivative of the unknown function with respect to the time variable as a function of
the partial derivatives with respect to the space variable.

Let AU = S(U)[U1, U2, · · · ] be the differential polynomial ring of U , where S(U)
is some suitable ring of functions on U . For instance, S(U) could be Oc(U), the
ring of power series in U − c for some constant c (we often take c = 0). Let ∂ :=∑

m≥0 Um+1∂/∂Um be a derivation. When U is taken as a function of X, we identify
Um with ∂mU/∂Xm, m ≥ 0, and ∂ with ∂/∂X. Define a gradation deg on AU by

the degree assignments degUm = m (m ≥ 1), and we use A[k]
U to denote the set of

elements in AU that are graded homogeneous of degree k with respect to deg. For
` ∈ Z, we also denote

(129) AU [[ε]]` = {a ∈ AU [[ε]] | gr a = ` a} ,

where

gr = −ε ∂
∂ε

+
∑
m≥1

mUm
∂

∂Um
.

An elementM inAU [[ε]]0 can be written in the formM =
∑

k≥0M
[k](U,U1, . . . , Uk)ε

k,

where M [k](U,U1, . . . , Uk) ∈ A[k]
U , k ≥ 0.

A derivation D : AU [[ε]]→ AU [[ε]] is called admissible if it commutes with ∂ and ε.
Following Dubrovin and Novikov [28, 38, 39, 88], we call an admissible derivation
D : AU [[ε]]→ AU [[ε]] a derivation of hydrodynamic type if D(U) has the form

(130) D(U) = S(U)U1 , S(U) ∈ S(U) .

If we replace D by ∂/∂T and think of U as a function of X and T , then we get a
one-component evolutionary PDE of hydrodynamic type [28, 38, 39, 88]:

(131)
∂U

∂T
= S(U)

∂U

∂X
.
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We sat that an admissible derivation D : AU [[ε]]→ AU [[ε]] is of the Dubrovin–Zhang
normal form if D(U) has the form

(132) D(U) =
∑
k≥0

εkSk(U,U1, . . . , Uk+1) , Sk ∈ A[k+1]
U , S0(U,U1) = S(U)U1 .

We also call (132) a perturbation of (130), or say that (130) is the dispersionless
limit (the ε → 0 limit) of (132). A derivation of the Dubrovin–Zhang normal form
is called an infinitesimal symmetry of (132) if it commutes with (132).

For any R(U) ∈ S(U), the derivation of hydrodynamic type D′, specified by

(133) D′(U) = R(U)U1 ,

is an infinitesimal symmetry of (130). We call the following family of derivations of
hydrodynamic type DS, S ∈ Oc(U), defined by

(134) DS(U) = S(U)U1 ,

the abstract local RH hierarchy (see e.g. [30]), sometimes simply the abstract RH
hierarchy. It is obvious that the derivations in (134) pairwise commute. When we
take the countable subfamily of derivations (Si(U) = U i/i!)i≥0 and consider U as
a function of X and Ti, i ≥ 0, then the equations ∂U/∂Ti = Si(U)∂U/∂X, i ≥ 0,
are nothing but the RH hierarchy (23), where we identify X with T0 as we do
before. In practice, some other interesting countable subfamily of derivations like
(sin(ku))k≥1, (eku)k≥1, . . . , can also be taken and the resulting family of equations
are an integrable hierarchy which we call the chord RH hierarchy (sometimes simply
still the RH hierarchy).

By a perturbation of the abstract local RH hierarchy (134), we mean a family of
derivations DS(U), S ∈ Oc(U), each being given by (132). We say that DS(U) is
integrable if DS2DS1(U) = DS1DS2(U), ∀S1, S2 ∈ Oc(U).

Denote by
∫

: AU → AU/∂AU the projection, which extends termwise to a projec-
tion on AU [[ε]]0. Elements in AU [[ε]]0/∂AU [[ε]]−1 =: F are called local functionals.
The variational derivative of a local function

∫
h with respective to U is defined by

(135)
δ
∫
h

δU
=
∑
k≥0

(−∂)k
(
∂h

∂Uk

)
.

Clearly, if h ∈ AU [[ε]]0, then
δ
∫
h

δU
∈ AU [[ε]]0. Also, for a ∈ AU [[ε]]0, it is known

that a ∈ ∂AU [[ε]]−1 if and only if the right-hand side of (135) with h replaced by a
vanishes, so (135) is well defined.

Let P be an operator of the form

(136) P =
∑
k≥0

εkP [k] , P [k] =
k+1∑
j=0

Ak,j ∂
j , Ak,j ∈ A[k+1−j]

U .
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Such an operator P defines a bracket { , }P : F × F → F via

(137)

{∫
F,

∫
G

}
P

=

∫
δF

δu
P

(
δG

δu

)
, ∀F,G ∈ AU [[ε]]0 .

This bracket is obviously bilinear. We say that { , }P is Poisson if it is anti-symmetric
and satisfies the Jacobi identity. We call that P a Poisson or hamiltonian operator if
{ , }P is a Poisson bracket. An equivalent criterion of the operator P to be Poisson
is that

[P, P ] = 0 ,

where [ , ] denotes the Schouten–Nijenhuis bracket (see e.g. [45]). The part P [0]

in (136) is called the dispersionless limit of P . Obviously, if P is Poisson then P [0] is
Poisson. A Poisson operator like P [0] is called a Poisson operator of hydrodynamic
type. According to Dubrovin and Novikov [38], a Poisson operator of hydrodynamic
type corresponds to a contravariant flat pseudo-Riemannian metric (true also for the
multi-component case), i.e., P [0] must have the form

(138) P [0] = g(U) ∂X +
1

2
g′(U)UX ,

where g(U) is a contravariant metric (automatically flat for our one-component case).
We call (132) a hamiltonian derivation of the Dubrovin–Zhang normal form if there

exists a Poisson operator P and an element h ∈ AU [[ε]]0, such that

(139) D(U) = P

(
δ
∫
h

δU

)
.

We call
∫
h the hamiltonian of (139) and h the hamiltonian density. A local func-

tional
∫
r, r ∈ AU [[ε]]0, is called a Casimir for the Poisson operator P if

(140) P

(
δ
∫
r

δU

)
= 0 ,

with r being called the Casimir density.
We will call any transformation of the form

(141) U 7→ M =
∑
k≥0

εkM [k](U,U1, . . . , Uk) ∈ AU [[ε]]0 , M [0](U) ∈ S(U)× ,

a Miura-type transformation. These transformations form a group, called the Miura
group, which contains the local diffeomorphism group as a subgroup. For more details
about Miura-type transformations see e.g. [45, 93].

A further extension is given by the quasi-Miura transformations

(142) U 7→ Q =
∑
k≥0

εkQ[k](U,U1, . . . , UNk) ,
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where Q[k](U,U1, . . . , UNk), k ≥ 0, are usually still required to have polynomial de-
pendence in U2, . . . , UNk for some integers Nk but are now allowed to have rational
dependence in U1.

The class of derivations of the Dubrovin–Zhang normal form, the class of hamil-
tonian derivations of the Dubrovin–Zhang normal form and the class of Poisson
operators are invariant under the Miura-type transformations [45]. In particular,
the hamiltonian derivation of the Dubrovin–Zhang normal form (139) under the
Miura-type transformation (141) transforms to the hamiltonian derivation of the
Dubrovin–Zhang normal form given by

(143) D(M) = P̃

(
δ
∫
h

δM

)
,

where h is understood as an element in AM [[ε2]]0, and

P̃ =
∑
k,`≥0

(−1)`
∂M

∂Uk
◦ ∂k ◦ P ◦ ∂` ◦ ∂M

∂U`
.(144)

To make notations compact we will often write P as P (U) and P̃ as P (M), when U
and M are related by a Miura-type transformation.

If we apply the quasi-Miura transformation (142) to (139), the Poisson operator
still transforms under the rules (144) but the resulting operator could have rational
dependence in M1 and the variational derivative of the hamiltonian could have ra-
tional dependence in M1 (here the definition of the variational derivative is extended
again with the same rule (135)).

Two Poisson operators P1, P2 are called compatible if an arbitrary linear combina-
tion of P1, P2 is a Poisson operator. When P1, P2 are compatible, we call P2+λP1 the
Poisson pencil associated to P1, P2. Following Dubrovin [29], let us start with consid-

ering the dispersionless limit P
[0]
2 +λP

[0]
1 . Fix P

[0]
2 (U)+λP

[0]
1 (U) an arbitrary Poisson

pencil of hydrodynamic type. According to Dubrovin [29] (see also [38, 39]), it cor-
responds to a flat pencil, that is, a pencil of flat contravariant pseudo-Riemannian
metrics g2(U)+λ g1(U). The associated canonical coordinate of the pencil u = u(U) is
defined by u = g2(U)/g1(U). The flat pencil in the u-coordinate reads u g(u)+λ g(u)
with g(u) = g1(U)u′(U)2. A Poisson pencil P2(U) + λP1(U) with the hydrodynamic

limit being P
[0]
2 (U)+λP

[0]
1 (U) is then characterized by the so-called central invariant,

denoted c(u), defined in [36, 73, 77]. On one hand, two Poisson pencils having the

same hydrodynamic limit P
[0]
2 (U) + λP

[0]
1 (U) (or say the same g(u)) are equivalent

under Miura-type transformations if and only if they have the same central invari-
ant [36]. On the other hand, it is shown in [20, 21] (see also [76] for the case g(u) = u)
that, for any given function c(u) there exits a Poisson pencil P2(U) + λP1(U), with

the hydrodynamic limit P
[0]
2 (U) + λP

[0]
1 (U) and with the central invariant c(u); the
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proof is based on a subtle computation of the bihamiltonian cohomology introduced
in [45] and developed in [36, 73]. For example, the Poisson pencil corresponding to
the pair

(145) (g(u), c(u)) =
(
u,

1

24

)
can be obtained from the bihamiltonian structure discovered by Magri [78] of the
KdV equation (1) (see e.g. [36]).

For an element g(U) ∈ Oc(U) that is not identically zero, the abstract local RH
hierarchy (134) can be written in the form:

(146) DS(U) =
(
g(U) ∂ +

1

2
g′(U)U1

)(δ ∫ h[0]
S

δU

)
,

where h
[0]
S is a solution to the following ODE

(147) g(U)
(
h

[0]
S

)′′
+

1

2
g′(U)

(
h

[0]
S

)′
= S(U) .

Obviously, up to a trivial additive constant, the h
[0]
S is unique up to the addition of

a Casimir density for the Poisson operator g(U) ∂X + 1
2
g′(U)UX .

Let us consider the hamiltonian perturbation of the abstract local RH hierar-
chy (146):

(148) DS(U) = P (U)

(
δ
∫
hS

δU

)
, S ∈ Oc(U) ,

where P (U) is a Poisson operator of the form (136) with P [0](U) = g(U) ∂X +
1
2
g′(U)UX , and hS are hamiltonian densities of the form

(149) hS =
∑
k≥0

εkh
[k]
S , h

[k]
S ∈ A

[k]
U ,

with h
[0]
S given by (147). Here, we point out that our labellings of the derivations

and of the hamiltonian densities for the abstract local RH hierarchy and for its
perturbation are different from the one used in [30].

According to [23, 45, 47], the Darboux theorem holds for the hamiltonian opera-
tor P (U), namely, there exists a Miura-type transformation U 7→M of the form

(150) M =
∑
k≥1

εkM [k](U,U1, . . . , Uk) , M [0](U) =

∫ U

U∗

1√
g(U ′)

dU ′ ,

reducing P (U) to P (M) = ∂.
For simplicity, we shall consider in this paper that hS written in the M -coordinate

are power series of ε2.
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Before proceeding we introduce some notations. A partition is a non-increasing
infinite sequence of non-negative integers µ = (µ1, µ2, . . . ). The number of non-zero
components of µ is called the length of µ, denoted by `(µ). The sum

∑
i≥1 µi is

called the weight of µ, denote by |µ|. The set of all partitions is denoted by P ,
and the set of partitions of weight d, d ≥ 0, is denoted by Pd. If `(µ) > 0, we
often write µ as (µ1, . . . , µ`(µ)); otherwise, we write µ either as (0) or as ( ). Denote
µ+1 = (µ1 +1, . . . , µ`(µ) +1) if `(µ) > 0, and ( )+1 = ( ) otherwise. We use multi(µ)
to denote the multiplicity of i in µ, i ≥ 1, and denote mult(µ)! =

∏∞
i=1 multi(µ)!.

For any sequence of indeterminates (y1, y2, . . . ), yµ :=
∏`(µ)

i=1 yµi (clearly, y( ) = 1).
S.-Q. Liu and Y. Zhang found (see also [17, 30, 34]) that performing a canonical [30]

Miura-type transformation M 7→ w = M + · · · , that is, a Miura-type transformation
keeping the Poisson operator ∂ invariant, yields the following unique standard form:

(151) DS(w) = ∂

(
δ
∫
hS

δw

)
,

with the derivation DM [0](U) satisfying

(152) DM [0](U)(w) = ∂

(
δ
∫
hM [0](U)

δw

)
,

where

hM [0](U) =
w3

6
− ε2

24
a0(w)w2

1 +
∑
g≥2

ε2g
∑
λ∈P2g

`(λ)>1, λ1=λ2

αλ(w)wλ .(153)

Here a0(w) and αλ(w) with λ ∈ P2g (g ≥ 2), `(λ) > 1, λ1 = λ2, are functions of w.

Remark 8. It was conjectured by S.-Q. Liu and Y. Zhang that if one imposes the
integrability to the above standard form (153), then the functions αλ(w) appearing
in (153) are uniquely determined by α2m(w), m ≥ 2, and the functions α2m(w),
m ≥ 2, are free functional parameters. In [34] (see also [17]) it is indicated that
if one further imposes a symmetry condition [34, 45] for the hamiltonian densities
(so-called τ -symmetry) then the functional parameters a0(w) and αλ(w) appearing
in (153) all become constants. In this paper, we will impose a new condition, as
already mentioned in Introduction, i.e., to require the hamiltonian system to possess
a τ -structure (see the next section for the details).

In [30], B. Dubrovin considers the bihamiltonian test for the integrable hamiltonian
perturbation and obtained the following theorem.
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Theorem A (Dubrovin [30]) For a0(w), q(w), q′(w) all not identically 0, let P1, P2

be the Poisson operators of the form: P1 = ∂, and

(154) P2(w) = q(w) ∂ +
1

2
q′(w)w1 + · · · ,

where “· · · ” contains higher order terms in ε. The two commutativity properties

(155)

{∫
hS1 ,

∫
hS2

}
P1

= O(ε6) ,

{∫
hS1 ,

∫
hS2

}
P2

= O(ε6) , ∀S1, S2 ,

hold if and only if

(156) α22(w) =
a0(w)2

960

(
5
a′0(w)

a0(w)
− q′′(w)

q′(w)

)
.

The explicit expression for the ε2-term in P2(w) is given in the Appendix of [30].
We have the following proposition.

Proposition 3. The central invariant for the pencil P2 + λP1 in Theorem A is

(157) c(u) =
1

24

a0(q−1(u))

q′(q−1(u))
,

where u = q(w) is the canonical coordinate for the pencil P2(w) + λP1(w).

Proof. Let us perform the following Miura-type transformation:

(158) u = q(w) .

The Poisson operators P1, P2 in the u-coordinate read:

P1(u) =
1

2
q′(q−1(u))2 ◦ ∂ +

1

2
∂ ◦ q′(q−1(u))2 ,(159)

P2(u) =
1

2
u q′(q−1(u))2 ◦ ∂ +

1

2
∂ ◦ u ◦ q′(q−1(u))2 + · · · .(160)

Using [36, formula (1.49)] and using [30, Appendix] we obtain the expression (157)
of the central invariant c(u). The proposition is proved. �

8. Hamiltonian and bihamiltonian perturbations possessing a
τ-structure

Driven by topological field theories and the Witten–Kontsevich theorem (see [26,
27, 29, 45, 63, 98]), the τ -structure for the KdV hierarchy (see [10, 25, 44, 45])
becomes an important notion in the theory of integrable systems. It still makes
sense to speak of a τ -structure for more general evolutionary systems (we will give
a precise definition in a moment). One of our main objects for the rest of the paper
is to give conjectural classifications of hamiltonian and of bihamiltonian systems
possessing a τ -structure with the help of the group G.
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It can be shown (see e.g. [10, 25, 27, 44, 45, 63, 98]) that there exist unique elements
ΩKdV
i,j ∈ Au[ε2], i, j ≥ 0, such that

(161) ε2
∂2 logFWK(t; ε)

∂ti∂tj
= ΩKdV

i,j

∣∣
uk 7→∂kx(uWK(t;ε)), k≥0

, i, j ≥ 0 .

For instance,

(162) ΩKdV

0,0 = u , ΩKdV

0,1 =
u2

2
+ ε2

u2

12
, ΩKdV

1,1 =
u3

3
+ ε2

(
uu2

6
+
u2

1

24

)
+ ε4

u4

144
.

The polynomials (ΩKdV
i,j )i,j≥0 form a τ -structure for the KdV hierarchy (2) and hence

defines τ -functions (see [10, 25, 44, 45, 94]).
Constructively, ΩKdV

i,j can be obtained in the following way. Introduce

(163) uWK(t; ε) := ε2
∂2FWK(t; ε)

∂x2
= E(t) +

∑
g≥1

ε2g
∂FWK

g (t)

∂x2
.

Here x = t0. From (74) we know that it leads to the quasi-Miura transformation

(164) v 7→ u = v +
∑
g≥1

ε2g ∂2
(
FWK

g

)
,

which transforms the abstract local RH hierarchy DS(v) = S(v) v1 to

DS(u) =S(u)u1 +

(
S ′(u)

12
u3 +

S ′′(u)

6
u1u2 +

S ′′′(u)

24
u3

1

)
ε2(165)

+

(
S ′′(u)

240
u5 +

S(3)(u)

80
u4u1 +

S(3)(u)

48
u3u2 +

23S(4)(u)

1440
u3u

2
1

+
31S(4)(u)

1440
u2

2u1 +
S(5)(u)

90
u2u

3
1 +

S(6)(u)

1152
u5

1

)
ε4 + · · · .

By the Witten–Kontsevich theorem, when S(u) = ui/i! (i ≥ 0), equations (165) are
the abstract KdV hierarchy (see (2) and [10, 25, 44, 45]). In general, DS commutes
with Dui/i!, i ≥ 0. We call (165) the abstract local KdV hierarchy. Note that

(166) ε2
∂2 logFWK(t; ε)

∂ti∂tj
=

E(t)i+j+1

i! j! (i+ j + 1)
+
∑
g≥1

ε2g
∂2 logFWK

g (t)

∂ti∂tj
,

where we used (36) and (66). By (74) we know that the right-hand side of (166) can
be represented by the jets v, v1, v2, · · · . Substituting the inverse of the quasi-Miura
transformation into the jet representation of the right-hand side of (166) we get ΩKdV

i,j .
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As in [44] (cf. [10, 45]), we say that a perturbation of the abstract local RH
hierarchy (see (132)) possesses a τ -structure if there exist ΩS1,S2 ∈ AU [[ε]]0, S1, S2 ∈
Oc(U), such that Ω

[0]
1,1 ∈ Oc(U)× and

(167) ΩS1,S2 = ΩS2,S1 , DS1(ΩS2,S3) = DS2(ΩS1,S3) , ∀S1, S2, S3 ∈ Oc(U) .

It can be easily verified that the existence of a τ -structure implies integrability [44]
(cf. also [34]). More general setups for this principle are given in [96]. We refer also
to a related forthcoming joint work announced in [72].

We are ready to give an axiomatic way to approach the class of (bi)-hamiltonian
perturbations of the RH hierarchy possessing a τ -structure.

Lemma 5. The class of hamiltonian perturbations of the RH hierarchy possessing a
τ -structure is invariant under Miura-type transformations.

Proof. We already know that the class of hamiltonian perturbations of the RH hier-
archy is invariant under Miura-type transformations. It is also obvious that under a
Miura-type transformation a τ -structure remains a τ -structure. �

Let us now consider hamiltonian perturbations of the RH hierarchy possessing
a τ -structure with a fixed choice of P [0]. First we use Miura-type transformations
reducing the consideration to the standard form (151)–(153). Then with a help of a
computer program we find that the requirement of existence of a τ -structure implies
that the functions α32(w), α2132(w), α42(w), α2232(w), α2142(w), α52(w) are uniquely
determined by a0(w), α22(w), α23(w), α24(w), α25(w) (agreeing with Remark 8), and
that the functions α22(w), α23(w), α24(w) must have the expressions

α22 =
a0a

′
0

240
+ q1a

3
0 ,(168)

α23 =
31a′′′0 a

2
0

96768
+

527q1a
3
0a
′′
0

1008
+

1800q2
1a

4
0a
′
0

7
+

499q1a
2
0a
′2
0

336
(169)

+
23a′30
45360

+
1613a0a

′
0a
′′
0

967680
+ q2a

6
0 ,
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α24 =
913a′′′′′0 a3

0

46448640
+

1795q1a
′′′′
0 a

4
0

32256
+

10357q2
1a
′′′
0 a

5
0

168
+ 25920q3

1a
6
0a
′′
0(170)

+
167q2a

6
0a
′′
0

105
+

23087q1a
3
0a
′′2
0

40320
+ 155520q3

1a
5
0a
′2
0 +

12528q1q2a
7
0a
′
0

7

+
15635q2

1a
3
0a
′3
0

14
+

593q2a
5
0a
′2
0

70
+

20893q1a0a
′4
0

20160
+

7733a′′′′0 a
2
0a
′
0

30965760

+
212591a′′′0 a

2
0a
′′
0

464486400
+

47953q1a
′′′
0 a

3
0a
′
0

60480
+

56519a′′′0 a0a
′2
0

66355200
+

48785q2
1a

4
0a
′
0a
′′
0

56

+
733q1a

2
0a
′2
0 a
′′
0

224
+

70229a0a
′
0a
′′2
0

58060800
+

1049357a′30 a
′′
0

1393459200
+ q3a

9
0 ,

where q1, q2, q3 are arbitrary parameters (independent of w) and where the arguments
of the functions a0(w), α22(w), α23(w), α24(w) have been omitted. More generally, we
expect that there are unique expressions giving all αλ as polynomials in a0, a

′
0, a
′′
0, . . .

and constants q1, q2, . . . , where qi first appears linearly in α2i+1(w). This implies in
particular that if a0(w) is a constant function, then all of the αλ(w) are constants4.
Moreover, we expect that except for the term qia

3i
0 all terms in α2i+1 contain higher

derivatives of a0, so that when a0 is a constant, then α2i+1 is simply qia
3i
0 .

We continue to consider bihamiltonian perturbations of the (local) RH hierarchy
possessing a τ -structure. Of course, this class of perturbations is again invariant un-
der Miura-type transformations (see Lemma 5). We reduce the considerations to the
standard form as above, and the bihamiltonian axiom will further impose restrictions
on qi’s. Note that in Theorem A, B. Dubrovin already did the bihamiltonian test for
integrable hamiltonian perturbations (hamiltonian perturbations with a τ -structure
belong to this class) up to order 4 in ε. So by using (168) and by using formula (156)
of Theorem A, we find

(171) q(w) =


C1

∫ w
w∗
a0(w′) dw′ + C2 , q1 = 0 ,

C1
1−exp

(
−960 q1

∫ w
w∗ a0(w′) dw′

)
960 q1

+ C2 , q1 6= 0 ,

where C1, C2 are arbitrary constants (that can depend on qi’s) and C1 6= 0. Contin-
uing Dubrovin’s bihamiltonian test, up to the order 8 in ε, we find that

(172) q2 =
6400

3
q3

1 , q3 = 0 .

We expect that q4, q5, · · · are also determined by q1 and a0(w). Note that since q2, q3

do not depend on a0(w), we can further expect this to be true for q4, q5, · · · ; with this

4This occurs, for example, in the presence of τ -symmetry, as shown in [16, 17, 34].
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consideration, we can restrict to the simple case a0(w) ≡ 1 and the corresponding
bihamiltonian test allows us to compute two more values:

(173) q4 = −36805017600000

77
q7

1 , q5 = −45612552683520000000

7007
q9

1 .

We have the following proposition.

Proposition 4. The central invariant for the pencil P2 + λP1 is given by

(174) c(u) =


1

24C1
, q1 = 0 ,

1
24 (C1−960 q1 (u−C2))

, q1 6= 0 .

Proof. By using Proposition 3 and the expression (171). �

Using equations (168), (169), (172), the above proposition, [36, Theorem 1.8] and
[73, Theorems 1 and 2], we arrive at

Theorem 9. A bihamiltonian perturbation of the RH hierarchy with the central
invariant c(u) 6≡ 0 admits a τ -structure up to the ε8 approximation if and only if
1/c(u) is an affine-linear function of u.

The following theorem will be proved in the next section.

Theorem 10. The statement in Theorem 9 holds to all orders in ε.

Notice that when there is a(n) (approximated) bihamiltonian structure, there is a
choice of the associated Poisson pencil. Namely, consider the following change of the
choice of Poisson pencil:

(175) P̃1 := c P2 + dP1 , P̃2 := aP2 + b P1 , ad− bc 6= 0 .

Here a, b, c, d ∈ C are constants. The canonical coordinate of P̃1, P̃2, denoted ũ, is
related to u by

ũ =
a u+ b

c u+ d
.

The pair of functions (g̃, c̃) that characterizes the pencil P̃2 + λP̃1 are given by

g̃(ũ) =
(ad− bc)2

(c u+ d)3
g(u) ,(176)

c̃(ũ) =
c u+ d

ad− bc
c(u) .(177)

In particular, formula (177) was obtained in [36]. So, if the central invariant c(u)
of a Poisson pencil satisfies that 1/c(u) is an affine-linear function of u, then it is
always possible to choose properly the pencil so that the central invariant is 1/24.
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Hence the above Theorem 10 can be more compactly reformulated as follows.

Theorem 10′. A bihamiltonian perturbation of the abstract local RH hierarchy
possesses a τ -structure if and only if under a proper choice of the associated Poisson
pencil the central invariant is 1/24.

Here we recall again that according to [20, 21, 76], the existence of a bihamiltonian
perturbation with central invariant 1/24 is known (actually for arbitrary function
c(u) the existence is also known).

Remark 9. Theorem 10′ was known for the case of the flat-exact Poisson pencils [37],
where the τ -structure is associated to τ -symmetry [34, 45]. The flat-exact condition
implies g(u) = u which is a special case in our general consideration.

9. The WK mapping hierarchy and the WK mapping universality

In this section, we introduce the hierarchy of equations associated to the WK
mapping partition function, call it the WK mapping hierarchy, and prove it to be
integrable and bihamiltonian with the central invariant 1/24. Then we propose and
prove the WK mapping universality.

9.1. The WK mapping hierarchy. For an arbitrary element ϕ ∈ G, let Fϕ(T; ε)
be the WK mapping free energy. Introduce

(178) Uϕ(T; ε) := ε2
∂2Fϕ(T; ε)

∂X2
= E(T) +

∑
g≥1

ε2g
∂Fϕg (T)

∂X2
.

Here X = T0, and we used (43) and Theorem 6. From Proposition 2 we know
that (178) leads to a quasi-Miura transformation

(179) V 7→ Uϕ = V +
∑
g≥1

ε2g ∂2
(
Fϕ
g

)
.

It transforms the abstract local RH hierarchy DS(V ) = S(V )V1 to

DS(Uϕ) = S Uϕ
1 +

(
S ′

12
Uϕ

3 +

(
S ′′

6
+
S ′

8

ϕ′′

ϕ′

)
Uϕ

1 U
ϕ
2(180)

+

(
S ′′′

24
+
S ′′

16

ϕ′′

ϕ′
+

S ′

16

(
ϕ′′′

ϕ′
− ϕ′′2

ϕ′2

))(
Uϕ

1

)3

)
ε2 + · · · ,

which (by Proposition 2 and the Witten–Kontsevich theorem) is a perturbation of
the abstract local KdV hierarchy (165). In (180), ϕ = ϕ(Uϕ), S = S(Uϕ), and
ϕ(k) = ϕ(k)(Uϕ), S(k) = S(k)(Uϕ) for k ≥ 1. We call (180) the abstract local WK
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mapping hierarchy associated to ϕ, for short the abstract local WK mapping hierarchy.
In particular, DUϕ(Uϕ) reads as follows:

DUϕ(Uϕ)(181)

= UϕUϕ
1 + ε2

(
1

12
Uϕ

3 +
ϕ′′

8ϕ′
Uϕ

1 U
ϕ
2 +

(
ϕ′′′

16ϕ′
− ϕ′′2

16ϕ′2

)
(Uϕ

1 )3

)
+ ε4

(
ϕ′′

480ϕ′
Uϕ

5 +

(
7ϕ′′′

480ϕ′
− 11ϕ′′2

960ϕ′2

)
Uϕ

4 U
ϕ
1 +

(
ϕ′′′

48ϕ′
− ϕ′′2

192ϕ′2

)
Uϕ

3 U
ϕ
2

+

(
53ϕ′′3

2880ϕ′3
− 11ϕ′′′ϕ′′

240ϕ′2
+

9ϕ(4)

320ϕ′

)
Uϕ

3 (Uϕ
1 )2

+

(
17ϕ(4)

480ϕ′
− 7ϕ′′3

1440ϕ′3
− 7ϕ′′′ϕ′′

240ϕ′2

)
(Uϕ

2 )2Uϕ
1

+

(
5ϕ(5)

192ϕ′
+

71ϕ′′4

1920ϕ′4
− 13ϕ′′′2

1920ϕ′2
− 13ϕ(4)ϕ′′

320ϕ′2
− ϕ′′′ϕ′′2

64ϕ′3

)
Uϕ

2 (Uϕ
1 )3

+

(
ϕ(6)

384ϕ′
− 23ϕ′′5

640ϕ′5
− ϕ(5)ϕ′′

192ϕ′2
+
ϕ′′′ϕ(4)

768ϕ′2

− 11ϕ(4)ϕ′′2

1920ϕ′3
+

11ϕ′′′ϕ′′3

160ϕ′4
− 33ϕ′′′2ϕ′′

1280ϕ′3

)
(Uϕ

1 )5

)
+ · · · .

Alternatively,

DUϕ(Uϕ) = UϕUϕ
1 +

(
1

12
Uϕ

3 +
l1
8
Uϕ

1 U
ϕ
2 +

l2
16

(Uϕ
1 )3

)
ε2(182)

+

(
l1

480
Uϕ

5 +

(
7 l2
480

+
l21

320

)
Uϕ

4 U
ϕ
1 +

(
l2
48

+
l21
64

)
Uϕ

3 U
ϕ
2

+

(
9 l3
320

+
37 l1l2
960

+
l31

1440

)
Uϕ

3 (Uϕ
1 )2

+

(
17 l3
480

+
37 l1l2
480

+
l31

720

)
(Uϕ

2 )2Uϕ
1

+

(
5 l4
192

+
61 l1l3
960

+
137 l22
1920

+
l21l2
192

)
Uϕ

2 (Uϕ
1 )3

+

(
l5

384
+
l1l4
128

+
7 l2l3
256

+
l21l3

1280
+
l1l

2
2

640

)
(Uϕ

1 )5

)
ε4 + · · · ,

where lk = lk(U
ϕ) are defined in (117). The abstract local WK mapping hierar-

chy (180) reduces to (165) when ϕ(V ) = V . Recalling that S(V ) ∈ Oc(V ), we note
that for c 6= 0 one should modify the infinite group G to G = V −c+(V −c)2R[[V −c]],
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which does not affect the previous formulations. By construction, the power series
Uϕ(T; ε) satisfies the following hierarchy of evolutionary PDEs:

(183)
∂Uϕ(T; ε)

∂Ti
= D(Uϕ)i/i!(U

ϕ(T; ε)) , i ≥ 0 ,

which we call the mapping WK hierarchy associated to ϕ. Here on the right-hand
side it is understood that one replaces Uϕ

k by ∂Uϕ(T; ε)/Xk, k ≥ 1, with X = T0.

Remark 10. Surprisingly, the rational numbers appearing on the right-hand side
of (182) are all positive. This may hold to all orders in ε.

A priori the coefficient of each power of ε2 on the right-hand side of (180) could
be a polynomial in (Uϕ

1 )±1, Uϕ
2 , Uϕ

3 , . . . , but with the help of a general Mathematica
package5 designed by Joel Ekstrand, we find that up to and including the term ε10

there are never any negative powers of Uϕ
1 . We will prove the following theorem.

Theorem 11. The abstract local WK mapping hierarchy (180) has polynomiality:
for any S the right-hand side of (180) belongs to AUϕ [[ε2]]1.

We first prove a special case of Theorem 11.

Proposition 5. Theorem 11 holds when ϕ = id, i.e., for the local KdV hierar-
chy (165). More precisely, the abstract local KdV hierarchy (165) has the form:

DS(u) = ∂

(∫ u

S +
∑
g≥1

ε2g
∑
λ∈P2g

Kλ S
(`(λ)+g−1)(u)uλ

)
(184)

= S(u)u1 +
∑
g≥1

ε2g
∑

µ∈P2g+1

Gµ S
(`(µ)+g−1)(u)uµ ,(185)

where Kλ, Gµ are rational numbers.

Proof. For S(u) = ui/i! (i ≥ 0), it is known that (165), i.e., the abstract KdV
hierarchy, can be written as

(186) Dui/i!(u) = ∂(hi−1(u, u1, u2, . . . , ui)) , i ≥ 0 ,

where hk = hk(u, u1, u2, . . . , uk+1) ∈ Q[u, u1, . . . , uk+1][ε2]0, k ≥ −1, are τ -symmetric
hamiltonian densities for the KdV hierarchy [45] (see also [10, 44]), which satisfy

(187) hk −
uk+2

(k + 2)!
∈ ε2 ·Q[u, u1, . . . , uk+1][ε2]−2 (∀ k ≥ −1),

(188) h−1 = u , Duj/j!(hi−1) = Dui/i!(hj−1) (∀ i, j ≥ 0) ,

5The package is based on the method given in [31, 45, 76].
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and

(189)
∂hi
∂u

= hi−1 , i ≥ 0 .

For S(u) =
∑

m≥0 amu
m/m! with am being arbitrarily given constants, we have

(190) DS(u) =
∑
m≥0

amDum/m!(u) .

The expression (184) follows from (189), (190) and (186). For S ∈ Oc(u) with c 6= 0,
the proof is then similar. Equation (185) follows from (184). �

We note that assuming polynomiality the precise form (184) can also be obtained
as a result of the quasi-trivial transformation combined with (74)–(77).

Remark 11. Let us briefly describe another way of defining the abstract local KdV
hierarchy DS, S ∈ Oc(u). Define Du as an admissible derivation such that Du(u) =
uu1 + ε2 u3

12
. Require DS to be the admissible derivation on Au[ε2] satisfying

(191) DS(u)− S(u)u1 ∈ ε · Au[ε]−2 , [DS, Du] = 0 .

For the uniqueness of DS for any S ∈ Oc(u) see e.g. [14, 74]. The existence of
Dui/i!, i ≥ 0, is well known. For S(u) =

∑
m≥0 amu

m/m!, let DS(u) be assigned as
the right-hand side of (190), then it can be checked that DS satisfies (191). For a
general S ∈ Oc(u) the proof of existence is similar.

It is known (see e.g. [10, 14, 25, 27, 44, 45, 63, 98]) that ΩKdV
i,j , i, j ≥ 0, actually

all belong to Au[[ε2]]0. Then by an argument similar to the proof of Proposition 5
we have ΩKdV

S1,S2
=
∫ u

S1S2 + O(ε2) ∈ Au[[ε2]]0, ∀S1, S2 ∈ Oc(u). Here ΩKdV
S1,S2

is
defined as the substitution of the inverse of the quasi-Miura type transformation (164)
in
∫ u

S1S2 +
∑

g≥1 ε
2gDS1DS2(FWK

g ) (similar to the definition of ΩKdV
i,j ; see (166)).

In order to prove Theorem 11 for general ϕ, we will prove a stronger statement.
(In Section 11 we will give a more direct proof of a generalization of Theorem 11.)
Define two operators Pϕ

1 and Pϕ
2 by

Pϕ
1 :=

∑
k,`≥0

∂Uϕ

∂Vk
◦ ∂k ◦

(
1

2ϕ′(V )
◦ ∂ + ∂ ◦ 1

2ϕ′(V )

)
◦ (−∂)` ◦ ∂U

ϕ

∂V`
,(192)

Pϕ
2 :=

∑
k,`≥0

∂Uϕ

∂Vk
◦ ∂k ◦

(
ϕ(V )

2ϕ′(V )
◦ ∂ + ∂ ◦ ϕ(V )

2ϕ′(V )

)
◦ (−∂)` ◦ ∂U

ϕ

∂V`
,(193)
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where Uϕ is given by the quasi-Miura transformation (179). It readily follows from
the definition that the operators Pϕ

a , a = 1, 2, have the form:

Pϕ
a (Uϕ) =

∑
g≥0

ε2g Pϕ,[g]
a ,(194)

Pϕ,[g]
a =

3g+1∑
j=0

Aϕ2g,j;a ∂
j , Aϕ2g,j;a ∈ Oc(Uϕ)

[
Uϕ

1 , . . . , U
ϕ
3g+1, (U

ϕ
1 )−1

]
,(195)

P
ϕ,[0]
1 =

1

2ϕ′(Uϕ)
◦ ∂ + ∂ ◦ 1

2ϕ′(Uϕ)
,(196)

P
ϕ,[0]
2 =

ϕ(Uϕ)

2ϕ′(Uϕ)
◦ ∂ + ∂ ◦ ϕ(Uϕ)

2ϕ′(Uϕ)
,(197)

∑
m≥1

mUϕ
m

∂Aϕ2g,j;a
∂Uϕ

m
= (2g + 1− j)Aϕ2g,j;a .(198)

We know that [Pϕ
a (Uϕ), Pϕ

b (Uϕ)] = 0, for arbitrary a, b ∈ {1, 2}. The abstract local
WK mapping hierarchy (180) can be written in the following form:

(199) DS(Uϕ) = Pϕ
1 (Uϕ)

(
δ
∫
hϕ1;S

δUϕ

)
= Pϕ

2 (Uϕ)

(
δ
∫
hϕ2;S

δUϕ

)
, i ≥ 0 .

Here, the hamiltonian densities hϕ1;S, hϕ2;S are understood as the substitutions of the
inverse of the quasi-Miura transformation (179) into

hϕ1;S =

∫ V

0

√
ϕ′(x2)

∫ x2

0

S(x1)
√
ϕ′(x1) dx1 dx2 ,(200)

hϕ2;S =

∫ V

0

√
ϕ′(x2)

ϕ(x2)

∫ x2

0

S(x1)

√
ϕ′(x1)

ϕ(x1)
dx1 dx2 .(201)

A priori, the operators Pϕ
a (Uϕ) and the variational derivatives of the hamiltonian

densities hϕa;S with respect to Uϕ, a = 1, 2, could contain negative powers of Uϕ
1 , but

just as in the remark preceding Theorem 11, we can use Ekstrand’s Mathematica
pakage to check that up to and including the ε8 term this does not happen. Explicit
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expressions for P1, P2 up to and including ε2 are given as follows:

Pϕ
1 (Uϕ) =

1

2

1

ϕ′
◦ ∂ +

1

2
∂ ◦ 1

ϕ′
(202)

+
1

2

((
3ϕ′′′2

16ϕ′3
− ϕ(5)

24ϕ′2
+

13ϕ(4)ϕ′′

48ϕ′3
− 15ϕ′′′ϕ′′2

16ϕ′4
+
ϕ′′4

2ϕ′5

)
(Uϕ

1 )3

+

(
7ϕ′′′ϕ′′

8ϕ′3
− ϕ(4)

6ϕ′2
− 3ϕ′′3

4ϕ′4

)
Uϕ

1 U
ϕ
2 +

(
ϕ′′2

6ϕ′3
− ϕ′′′

12ϕ′2

)
Uϕ

3

+

((
3ϕ′′′ϕ′′

8ϕ′3
− ϕ(4)

12ϕ′2
− ϕ′′3

4ϕ′4

)
(Uϕ

1 )2 +

(
ϕ′′2

3ϕ′3
− ϕ′′′

6ϕ′2

)
Uϕ

2

)
◦ ∂

)
ε2 + · · ·

and

Pϕ
2 (Uϕ) =

1

2

ϕ

ϕ′
◦ ∂ +

1

2
∂ ◦ ϕ

ϕ′
(203)

+
ε2

2

((
−ϕϕ

(5)

24ϕ′2
− ϕ(4)

8ϕ′
+

3ϕϕ′′′2

16ϕ′3
+
ϕϕ′′4

2ϕ′5
− ϕ′′3

4ϕ′3

+
13ϕϕ(4)ϕ′′

48ϕ′3
− 15ϕϕ′′′ϕ′′2

16ϕ′4
+

19ϕ′′′ϕ′′

48ϕ′2

)
(Uϕ

1 )3

+

(
−ϕϕ

(4)

6ϕ′2
− ϕ′′′

3ϕ′
− 3ϕϕ′′3

4ϕ′4
+

3ϕ′′2

8ϕ′2
+

7ϕϕ′′′ϕ′′

8ϕ′3

)
Uϕ

1 U
ϕ
2

+

(
ϕϕ′′2

6ϕ′3
− ϕϕ′′′

12ϕ′2
− ϕ′′

12ϕ′

)
Uϕ

3

+

((
−ϕϕ

(4)

12ϕ′2
− ϕ′′′

6ϕ′
− ϕϕ′′3

4ϕ′4
+
ϕ′′2

8ϕ′2
+

3ϕϕ′′′ϕ′′

8ϕ′3

)
(Uϕ

1 )2

+

(
ϕϕ′′2

3ϕ′3
− ϕϕ′′′

6ϕ′2
− ϕ′′

6ϕ′

)
Uϕ

2

)
◦ ∂ +

∂3

4

)
+ · · · .

The following theorem, which is stronger than Theorem 11, gives a refined version
of Theorem 1.

Theorem 12. For a = 1, 2, g ≥ 0 and 0 ≤ j ≤ 3g + 1, the elements Aϕ2g,j;a all

belong to A[2g+1−j]
Uϕ . Moreover, the variational derivatives of the hamiltonians

∫
hϕ1;S

and
∫
hϕ2;S with respect to Uϕ belong to AUϕ [[ε]].
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Proof. First of all, we have

(204) ∂ =
∑
m≥0

∂tm
∂X

Dum/m! .

Here when we use a function of u, say f(u), to label a derivation Df(u) we mean the
corresponding derivation in the abstract local KdV hierarchy. By the definition (16)
we can simplify the above equality to

(205) ∂ = D√
ϕ′(ϕ−1(u))

.

By Proposition 5 we know that D√
ϕ′(ϕ−1(u))

(u) has polynomiality and of course it

commutes with the KdV derivation Du(u). Then, using the results in [70], we know
that by taking ∂ = ∂X as the spatial derivative the abstract local KdV hierarchy is
transformed to a bihamiltonian evolutionary system for u and particularly the ∂x-
flow of the abstract local KdV hierarchy after the transformation is bihamiltonian in
Dubrovin–Zhang’s normal form. Secondly, we note that

(206) Uϕ = ε2
∂2Fϕ(T; ε)

∂X2
= ε2

∑
i,j≥0

∂ti
∂X

∂tj
∂X

ΩKdV

i,j = ϕ−1(u) + O(ε2) .

Since the ∂x-flow for u with ∂ = ∂X as the spatial derivative is an evolutionary PDE
in Dubrovin–Zhang’s normal form and since ΩKdV

i,j ∈ Au[[ε2]]0, we find by doing the

substitution that ΩKdV
i,j are power series of ε2 with coefficients being polynomials of

∂X(u), ∂2
X(u), . . . . This means that equation (206) gives a Miura-type transformation

(with the spacial derivative being ∂). The theorem is proved. �

We note that an equivalent description of the second statement of Theorem 12 is
that the hamiltonian densities hϕa;S, a = 1, 2, modulo certain total ∂-derivatives, both
belong to AUϕ [[ε]] for any S. We also note that the first statement of Theorem 12
implies in particular that Aϕ2g,j;a = 0 for all j ≥ 2g + 2.

Proof of Theorem 11. The theorem follows from Theorem 12. �

Since we have proved Theorem 11, by using the quasi-trivial transformation (179)
with Theorem 8, we can further prove that the abstract local WK mapping hierar-
chy (180) has the more precise form:

(207) DS(Uϕ) = ∂

(∫ Uϕ

S +
∑
g≥1

ε2g
∑
λ∈P2g

`(λ)+g−1∑
j=1

Y ϕ
λ,j(l1(Uϕ), . . . )S(j)(Uϕ)Uϕ

λ

)
,

where Y ϕ
λ,j(`1, . . . ) ∈ R[`(λ)+g−1−j], and lk(U

ϕ) are defined in (117).
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For ϕ ∈ G, we have

(208) ε2
∂2 logFϕ(T; ε)

∂Ti∂Tj
=

E(T)i+j+1

i! j! (i+ j + 1)
+
∑
g≥1

ε2g
∂2 logFϕg (T)

∂Ti∂Tj
.

According to Proposition 2, the right-hand side of (208) can be represented by the
jets V, V1, V2, . . . . Substituting the inverse of the quasi-Miura transformation (179)
into the jet representation of the right-hand side of (208) we get a power series of ε2,
which we denote by Ωϕ

i,j. We have

(209) Ωϕ
i,j =

∑
i1,j1≥0

∂ti1
∂Ti

∂tj1
∂Tj

ΩKdV

i1,j1
, i, j ≥ 0 .

This implies that Ωϕ
i,j belong to AUϕ [[ε2]]. In Section 11 we will give a more general

description about this.

Remark 12. Recall that the Hodge hierarchy is a τ -symmetric integrable Hamilton-
ian perturbation of the RH hierarchy, depending on an infinite sequence of parame-
ters [34] (see also [18, 19]). The Hodge universality conjecture proposed in [34] says
that the Hodge hierarchy is a universal object in τ -symmetric Hamiltonian integrable
hierarchies, meaning that any τ -symmetric Hamiltonian integrable hierarchy in the
sense of [34] is related to the Hodge hierarchy via a Miura-type transformation. The
WK mapping hierarchy is integrable, Hamiltonian (actually bihamiltonian) and pos-
sesses a τ -structure. However, in general its hamiltonian densities cannot be chosen
to satisfy the τ -symmetry condition of [34, 45]. So our result is consistent with [34].

Using the explicit expressions (202)–(203) one can easily compute the central in-
variant of the pencil Pϕ

2 + λPϕ
1 . Although this invariant can be deduced from the

result of [70] or Proposition 3, we give an explicit computation. The canonical coor-
dinate for the pencil Pϕ

2 (Uϕ)+λPϕ
1 (Uϕ) is ϕ(Uϕ). Perform the following Miura-type

transformation to (199):

(210) û = ϕ(Uϕ) .

The Poisson operators P1, P2 in the û-coordinate read:

Pϕ
1 (û) =

1

2
ϕ′(ϕ−1(û)) ◦ ∂ +

1

2
∂ ◦ ϕ′(ϕ−1(û)) + · · · ,(211)

Pϕ
2 (û) =

1

2
û ϕ′((ϕ−1(û)) ◦ ∂ +

1

2
∂ ◦ û ◦ ϕ′(ϕ−1(û)) + · · · ,(212)

where “· · · ” denotes terms containing ε2, ε4, · · · . In particular, the terms contain-
ing ε2 can be obtained from (202)–(203). Now using [36, formula (1.49)] we find that
the central invariant is the constant-valued function 1/24 for any ϕ. So the WK
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mapping hierarchy leads to a construction of the representatives of Poisson pencils
for

(213) (g, c) =
(
ϕ′(ϕ−1(û)),

1

24

)
.

Let us now give a proof of Theorem 10 (or equivalently Theorem 10′).

Proof of Theorem 10. The necessity is already implied by Theorem 9. For the suffi-
ciency, using the argument given after the statement of Theorem 9, we know that,
under a proper choice of the Poisson pencil for the bihamiltonian perturbation under
consideration, the central invariant equals 1/24. Since the WK mapping hierarchy,
which is bihamiltonian, also has central invariant 1/24, the results [73, Theorems 1
and 2] and [36, Theorem 1.8] then imply that the given bihamiltonian perturbation
is Miura equivalent to the WK mapping hierarchy. As the WK mapping hierarchy
has a tau-structure, the sufficiency part is proved by recalling Lemma 5. �

The above proof immediately leads also to a proof of the following theorem, which
we call the WK mapping universality theorem.

Theorem 13. The abstract local WK mapping hierarchy is a universal object for bi-
hamiltonian perturbations of the abstract local RH hierarchy possessing a τ -structure.

To make the content of Theorem 13 clearer, and at the same time as an additional
check that the statement is correct, we provide some direct verifications up to order
ε8 (i.e., up to and including a3), with q2 and q3 given by (172). Namely, the following
Miura-type transformation

(214) Uϕ 7→ w = M(Uϕ) +
4∑

k=1

ε2k
∑
λ∈P2k

Cλ(U
ϕ)Uϕ

λ + O(ε10)

transforms the WK mapping hierarchy (180) to the standard form (152), (153) up
to and including the ε8 term. Here,

(215) M(Uϕ) =

∫ Uϕ

0

√
ϕ′(y) dy ,

(216) a0(w) = M ′(M−1(w)) ,
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and Cλ for |λ| ≤ 8 are explicit expressions, e.g.,

C(2)(U
ϕ) = −q

8
(ϕ′(Uϕ))3/2 ,(217)

C(12)(U
ϕ) = −q

8
(ϕ′(Uϕ))1/2 ϕ′′(Uϕ) +

ϕ′′(Uϕ)2

24ϕ′(Uϕ)3/2
− ϕ(3)(Uϕ)

48
√
ϕ′(Uϕ)

,(218)

C(18)(U
ϕ) = − 107

185794560

ϕ(12)(Uϕ)√
ϕ′(Uϕ)

+ more than two hundred terms .(219)

We end this section with one more remark.

Remark 13. Using the Miura-type transformation we can assume that Ω1,1 = U
in the setting for hamiltonian perturbations (148) of the RH hierarchy possessing a
τ -structure. When Ω1,1 = U , we can define the normal Miura-type transformation,
which has the form

(220) U 7→ Ũ =
∑
k≥0

Ũ [k] εk = U + ε2 ∂2(A(U,U1, U2, . . . ; ε))

for some A ∈ AU [[ε]]0. So normal Miura-type transformations are a special class,
but whenever we use the word “normal” we mean that the transformation does not
just act on the hierarchy as usual, but also acts on the τ -structure by

(221) Ω̃S1,S2 := ΩS1,S2 + ε2DS1DS2(A) .

Since the normal Miura-type transformation changes the resulting τ -function when
A 6= constant, it plays the role of choosing different τ -structures. However, in this
paper, we do not use this terminology.

10. A special group element and the Hodge–WK correspondence

In this section, we will consider the particular example for the WK mapping hier-
archy given by

(222) ϕspecial(V ) =
e2 q V − 1

2 q
= V + q V 2 +

2

3
q2 V 3 + · · · ∈ G

(as in (6)) over the ground ring R = Q[q], where q is a free parameter. The inverse
group element is fspecial(v) = log(1 + 2qv)/2q. We will establish a relationship be-
tween the WK mapping partition function associated to (222) and a Hodge partition
function.

Before entering into the details, we recall some general terminology for the Hodge
side. Let Eg,n be the rank g Hodge bundle on Mg,n. By Hodge integrals we mean
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integrals of the form

(223)

∫
Mg,n

ψi11 · · ·ψinn λj1 · · ·λjm ,

where λj := cj(Eg,n), j = 0, . . . , g, are Chern classes of Eg,n, and 0 ≤ j1, . . . , jm ≤ g.
The degree-dimension matching now reads

(224)
n∑
a=1

ia +
m∑
b=1

jb = 3g − 3 + n .

We also denote by chj(Eg,n), j ≥ 0, the components of the Chern character of Eg,n.
Mumford’s relation tells that even components of the Chern character must vanish.
The Hodge partition function [34, 46, 49] is then defined by

(225) ZΩ(σ)(t; ε) = exp

( ∑
g, n≥0

ε2g−2

n!

∫
Mg,n

Ωg,n(σ) · t(ψ1) · · · t(ψn)

)
where t = (t0, t1, t2, . . . ) as before, σ = (σ1, σ3, σ5, . . . ) is an infinite tuple of param-
eters, and

(226) Ωg,n(σ) = exp

(∑
j≥1

σ2j−1 ch2j−1(Eg,n)

)
.

Obviously, ZΩ(0)(t; ε) = ZWK(t; ε). The logarithm logZΩ(σ)(t; ε) =: FΩ(σ)(t; ε) is
called the free energy of Hodge integrals, for short the Hodge free energy. By definition
the free energy FΩ(σ)(t; ε) admits the genus expansion:

(227) FΩ(σ)(t; ε) =:
∑
g≥0

ε2g−2FΩg(σ)(t) .

We call FΩg(σ)(t) (g ≥ 0) the genus g Hodge free energy.
Faber and Pandharipande in [46] obtain the following explicit formula for the

Hodge partition function:

(228) ZΩ(σ)(t; ε) = e
∑
k≥1

B2k
(2k)!

σ2k−1Dk
(
ZWK(t; ε)

)
,

where Bm denote the mth Bernoulli number, and Dk, k ≥ 1, are operators given by

(229) Dk =
∂

∂tk
−
∑
i≥0

ti
∂

∂ti+2k−1

+
ε2

2

2k−2∑
m=0

(−1)m
∂2

∂tm∂t2k−2−m
.

This formula is interpreted by Givental [49] as a Givental group action, and is gen-
eralized from the viewpoint of Virasoro-like algebra in [72].

It was shown that the Hodge partition function gives rise to a τ -symmetric inte-
grable hierarchy of hamiltonian evolutionary PDEs, called the Hodge hierarchy, so
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that the Hodge partition function is a τ -function for the Hodge hierarchy [18, 19,
34, 45]. Roughly speaking, the Hodge hierarchy is an integrable perturbation of the
KdV hierarchy, with σ’s being the deformation parameters.

The interest of this section will be focused on the following specialization of the
parameters in the Hodge partition function:

(230) σspecial
2j−1 = (4j − 1) (2j − 2)! q2j−1 , j ≥ 1 .

Using relations between the Chern character and the Chern polynomial [34], we have

(231) Ωg,n(σspecial) = Λg,n(2q)2 Λg,n(−q) =: Ωspecial
g,n (q) ,

where Λg,n(z) =
∑g

j=0 λj z
j denotes the Chern polynomial of Eg,n. We call Hodge

integrals with Ωspecial
g,n (q) the special-Hodge integrals, whose significance is manifested

by the Gopakumar–Mariño–Vafa conjecture regarding the Chern–Simons/string du-
ality [50, 81, 67], and is discussed in [34, 35, 40, 100] from the viewpoints of bihamil-
tonian structures and random matrices. We call ZΩspecial(q)(t; ε) and FΩspecial(q)(t; ε)
the special-Hodge partition function and the special-Hodge free energy, respectively.

The Hodge hierarchy [34] under the specialization (230), called the special-Hodge
hierarchy, has the form

∂w

∂t1
= ww′ + ε2

( 1

12
w′′′ +

q

4
w′w′′

)
(232)

+ ε4
( q

240
w′′′′′ +

q2

80
w′w′′′′ +

q2

16
w′′w′′′ +

q3

180
w′2w′′′ +

q3

90
w′w′′2

)
+ O(ε6) ,

∂w

∂ti
=

1

i!
wiw′ + O(ε2) , i ≥ 2 .(233)

Here, w := ε2∂2
t0

(
FΩspecial(q)(t; ε)

)
is the normal coordinate, and, prime, ′, denotes the

derivative with respect to t0.

10.1. The Hodge–WK correspondence. The goal is to connect ZΩspecial(q)(t; ε)
with Zϕspecial(t; ε). Let t and T be related by T = t.ϕspecial as in (16) with ϕspecial

given by (6) or (222). We have the following lemma.

Lemma 6. We have

Ti − δi,1 =
i∑

m=0

A(i,m) qi−m (tm − δm,1) , i ≥ 0 ,(234)

where

(235) A(i,m) :=
1

2mm!

m∑
j=0

(−1)m−j (2j + 1)i
(
m

j

)
,
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or equivalently via the following generating series

T (z) =
∑
m≥0

(tm − δm,1)
zm

(1− qz)(1− 3qz) · · · (1− (2m+ 1)qz)
.(236)

The inverse map is given by

(237) tm − δm,1 =
m∑
i=0

P (m, i) qm−i (Ti − δi,1) ,

where

(238) P (m, i) := (−1)m−i
m∑
j=i

(−2)m−j
(
j

i

)
s(m, j) .

Here, s(m, j) denotes the Stirling number of the first kind.

Proof. Formula (234) can be obtained via a direct verification. The rest of the proof
is an elementary exercise. �

It follows from the definition of Stirling numbers that the P (m, i) admit the gen-
erating function:

(239)
m∑
i=0

P (m, i) zi = (z−1)(z−3)(z−5) · · · (z−(2m−1)) = 2m
(z

2
−2m− 1

2

)
m
,

and also that P (m, 0) and P (m, 1) have the more explicit expressions

(240) P (m, 0) = (−1)m(2m− 1)!! , P (m, 1) = (−1)m−1(2m− 1)!!
m−1∑
j=0

1

2j + 1
,

the first values of P (m, 1) being 0, 1, −4, 23, −176, 1689.
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The loop equation (102) now reads explicitly as follows:

∑
k≥0

k∑
m=1

(
k

m

)(
∂m−1

( √
1 + 2qv

(1 + 2λq)
√
λ− v

)
∂k−m+1

( √
1 + 2qv

(1 + 2λq)
√
λ− v

))
−

∂F
ϕspecial

h.g.

∂Vk

(241)

+
∑
k≥0

∂k
(

1 + 2qv

(1 + 2λq)2(λ− v)

)
−

∂F
ϕspecial

h.g.

∂Vk

− ε2

2

∑
k1,k2≥0

(
∂k1+1

( √
1 + 2qv

(1 + 2λq)
√
λ− v

)
∂k2+1

( √
1 + 2qv

(1 + 2λq)
√
λ− v

))
−

s
(
F
ϕspecial

h.g. , Vk1 , Vk2

)
− ε2

16

∑
k≥0

∂k+2

(
1

(λ− v)2

)
∂F

ϕspecial

h.g.

∂Vk
=

1

16 (λ− v)2
.

(Recall that “h.g.” stands for “higher genera” and refers to the sum over all contri-
butions from g > 0, while ϕspecial is the function defined in (222).)

We are ready to give a proof of the Hodge–WK correspondence.

Proof of Theorem 3. According to Definition 2,

Zϕspecial(T; ε) = ZWK(t, ε) .

To show (7), it is equivalent to show

(242) ZΩspecial(q)(T; ε) = Zϕspecial(T; ε) ,

or equivalently to show for all g ≥ 0, FΩspecial
g (q)(T) = Fϕspecial

g (T). Let us first prove

their genus zero parts are equal, and by Theorem 6 this is equivalent to the following
known fact for Hodge integrals:

(243) FΩspecial
0 (q)(T) = F0(T) .

Let us continue to show the higher genus parts of FΩspecial(q)(T; ε) and Fϕspecial(T; ε)

are equal. To this end, we first notice that both FΩspecial
g (q)(T) and Fϕspecial

g (T) for

g ≥ 1 admit the jet representations. Indeed, for Fϕspecial
g (T), the jet representation is

given by Proposition 2; for FΩspecial
g (q)(T), it is known from for example [34, 35] that

FΩspecial
1 (q)(T) = FΩspecial

1 (q)

(
E(T),

∂E(T)

∂T0

)
,(244)

with

FΩspecial
1 (q)(V0, V1) :=

1

24
log V1 +

q

8
V0 ,(245)
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and that for each g ≥ 2 there exists

FΩspecial
g (q) = FΩspecial

g (q)(V1, . . . , V3g−2) ∈ Q[q]
[
V −1

1 , V1, V2, . . . , V3g−2

]
,

satisfying

3g−2∑
k=1

k Vk
∂FΩspecial

g (q)

∂Vk
= (2g − 2)FΩspecial

g (q) ,(246)

q
∂FΩspecial

g (q)

∂q
+

3g−2∑
k=1

(k − 1)Vk
∂FΩspecial

g (q)

∂Vk
= (3g − 3)FΩspecial

g (q) ,(247)

such that

(248) FΩspecial
g (q)(T) = FΩspecial

g (q)

(
∂V (T)

∂T0

, . . . ,
∂3g−2V (T)

∂T 3g−2
0

)
.

So, in order to show FΩspecial
g (q)(T) = Fϕspecial

g (T), g ≥ 1, it suffices to show that

(249) FΩspecial
g (q) = F

ϕspecial
g .

For g = 1, (249) is true due to (245), (78), (222).

For g ≥ 2, let us compare the loop equations. We use F
Ωspecial(q)
h.g. to denote∑

g≥1 ε
2g−2FΩspecial

g (q). The following loop equation for F
Ωspecial(q)
h.g. can be obtained

from [35]:

∑
k≥0

(
∂k
( 1

P 2

)
+

k∑
r=1

(
k

r

)
∂r−1

( 1

P

)
∂k−r+1

( 1

P

))∂FΩspecial(q)
h.g.

∂Vk
(250)

− ε2

2

∑
k1,k2≥0

∂k1+1
( 1

P

)
∂k2+1

( 1

P

)(∂FΩspecial(q)
h.g.

∂Vk1

∂F
Ωspecial(q)
h.g.

∂Vk2

+
∂2F

Ωspecial(q)
h.g.

∂Vk1∂Vk2

)

− ε2

16

∑
k≥0

∂k+2

(
1

P 4
+

4q

P 2

)
∂F

Ωspecial(q)
h.g.

∂Vk
− q

4P 2
− 1

16P 4
= 0 ,

where P =
√
− 1

2q
− 4 e−2qV

λ
and ∂ =

∑
k Vk+1∂/∂Vk. Recall that the loop equa-

tion (250) holds identically in λ and so holds identically in P . Note that

(251) ∂(P ) = −
(
q P +

1

2P

)
V1 .
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Introduce

(252) P̃ = e−qV

√
λ− e2qV − 1

2q
,

and observe that

(253) ∂
(
P̃
)

= −
(
q P̃ +

1

2P̃

)
V1 ,

which has the same form as (251). Therefore,

∑
k≥0

(
∂k
(

1

P̃ 2

)
+

k∑
r=1

(
k

r

)
∂r−1

(
1

P̃

)
∂k−r+1

(
1

P̃

))
∂F

Ωspecial(q)
h.g.

∂Vk
(254)

− ε2

2

∑
k1,k2≥0

∂k1+1

(
1

P̃

)
∂k2+1

(
1

P̃

)(
∂F

Ωspecial(q)
h.g.

∂Vk1

∂F
Ωspecial(q)
h.g.

∂Vk2

+
∂2F

Ωspecial(q)
h.g.

∂Vk1∂Vk2

)

− ε2

16

∑
k≥0

∂k+2

(
1

P̃ 4
+

4 q

P̃ 2

)
∂F

Ωspecial(q)
h.g.

∂Vk
− q

4P̃ 2
− 1

16P̃ 4
= 0

holds identically in P̃ . Dividing both sides of (254) by (1 + 2λq)2, we obtain

∑
k

k∑
m=1

(
k

m

)
∂m−1

(
eqV /(1 + 2λq)(
λ− e2qV −1

2q

)1/2

)
∂k−m+1

(
eqV /(1 + 2λq)(
λ− e2qV −1

2q

)1/2

)
∂F

Ωspecial(q)
h.g.

∂Vk

+
∑
k≥0

∂k

(
e2qV

(1 + 2λq)2
(
λ− e2qV −1

2q

)) ∂F
Ωspecial(q)
h.g.

∂Vk

− ε2

2

∑
k1,k2≥0

∂k1+1

(
eqV /(1 + 2λq)(
λ− e2qV −1

2q

)1/2

)
∂k2+1

(
eqV /(1 + 2λq)(
λ− e2qV −1

2q

)1/2

)

×

(
∂F

Ωspecial(q)
h.g.

∂Vk1

∂F
Ωspecial(q)
h.g.

∂Vk2

+
∂2F

Ωspecial(q)
h.g.

∂Vk1∂Vk2

)

− ε2

16

∑
k≥0

∂k+2

(
(1 + 2λq)2(
λ− e2qV −1

2q

)2

)
∂F

Ωspecial(q)
h.g.

∂Vk
=

1

16
(
λ− e2qV −1

2q

)2 −
q2

4(1 + 2λq)2
.

This implies that F
Ωspecial(q)
h.g. satisfies equation (241). Since the solution to (241) is

unique with (246), we conclude that F
ϕspecial

h.g. = F
Ωspecial(q)
h.g. . The theorem is proved. �
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We mention that for ϕspecial we have the following explicit v ↔ V map:

M0(Y ; q) =
e2qY0 − 1

2q
,(255)

1

2q
+
∑
j≥1

e−(j+2)qY0 Mj(Y ; q)
λj

j!
=

1

2q

w(Y ;λ; q)2

λ2
(256)

with w = w(Y ;λ; q) = λ+ · · · being the unique element in λ+C[Y, q][[λ]]λ satisfying

(257) w e− q R(Y ;w) = λ , R(Y ;w) :=
∑
k≥1

Yk
wk

k!
.

Although it is not completely obvious, Theorem 3 is equivalent to the following
theorem obtained by Alexandrov.

Theorem B (Alexandrov [5]). Define an invertible t→ T̂ map by

(258) T̂i = Si(t0) , i ≥ 0 ,

where S denotes the following differential operator

(259) S =
∑
m≥0

tm+1
∂

∂tm
+ q

∑
m≥0

(2m+ 1) tm
∂

∂tm
,

and define a sequence of elements cm ∈ Q[q] by

(260) c0 = c1 = 0 , cm = P (m, 1) qm−1

with P (m, 1) as in (240). Then we have

(261) ZΩspecial

(
T̂; ε

)
= ZWK(t; ε)|tm 7→tm−cm,m≥0 .

To see the equivalence between Theorem 3 and Theorem B, first of all, it is an
elementary exercise to verify that the linear t ↔ T̂ map defined by (258) coincides
with the one given in equation (50) specialized to ϕspecial(V ) = (e2qV − 1)/2q. The
equivalence is then proved by using the relation (52).

Since the WK partition function ZWK(t; ε) is a KdV τ -function, Theorem 3 imme-
diately implies the following corollary.

Corollary. The partition function ZΩspecial(q)(t.ϕspecial; ε) is a KdV τ -function.

From (51) we know that the Corollary can be equivalently stated as the following

Proposition A (Alexandrov [4]). The partition function ZΩspecial(q)

(
t|ϕspecial; ε

)
is a

KdV τ -function.

Remark 14. Proposition A was obtained by Alexandrov in [4]. Alexandrov’s proof
in [5] of Theorem B was based on Proposition A. In an early version of the current
paper, we also deduced Theorem B from Proposition A before [5] appeared on arXiv
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with a complete proof (different from Alexandrov’s), and also sketched a second
proof, not based on Proposition A but using the Virasoro constraints (58) instead,
which reduces Theorem B to a few elementary identities including e.g.

n∑
i=m

2i+ 1

2
A(i,m)P (n, i) −

∑
j≥1

4j − 1

2j
B2j

n−(2j−1)∑
i=m

A(i,m)P (n, i+ 2j − 1)

(262)

= δn,m
2m+ 1

2
+ δn≥m+1

(−1)n−m−1

(n−m)(n−m+ 1)

(2n+ 1)!!

2 · (2m− 1)!!
, ∀n ≥ m ≥ 0.

The proof of Theorem 3 given here provides a yet different proof of Theorem B, again
not using Proposition A (and thus self-contained), but using the loop equations
instead. In this proof, we used a technique found during the preparation of the
paper [100] by Q. Zhang and the first-named author of the present paper of identifying
solutions to the loop equations (although in the end that technique was not given
there), whereas our earlier and less self-contained proof preceded [100].

10.2. Two applications. In this subsection we will give two applications of the
Hodge–WK correspondence.

Application I. The WK–GUE correspondence. Recall that the Hodge–GUE corre-
spondence was recently obtained in [35, 40] (see also [34]), which establishes a rela-
tionship between the special-Hodge partition function with q = −1/2 and the even
Gaussian Unitary Ensemble (GUE) partition function (see [2, 11, 41, 54, 98, 99]). So

(263) ϕspecial(V )|q=−1/2 = 1− e−V

is now under consideration.
Let

(264) ZeGUE1

n (s; ε) := 2−
n
2 (πε)−

n2

2

∫
H(n)

e−
1
2ε

trM2+ 1
ε

∑
j≥1 sjtrM

2j

dM

be the normalized even GUE partition function of size n [11, 54, 98]. Here s =
(s1, s2, · · · ) is an infinite tuple of indeterminates, ε is an indeterminate, and “nor-
malized” means that ZeGUE1

n (0; ε) = 1 for all n and ε. According to [11, 54, 55, 56],
the logarithm logZeGUE1

n (s; ε) =: F eGUE1
n (s; ε) has the expansion:

(265) F eGUE1

n (s; ε) =
∑
g≥0

∑
k≥1

∑
j1,...,jk≥1

ag(2j1, . . . , 2jk) sj1 . . . sjk n
2−2g−k+|j| ε|j|−k ,

where |j| := j1 + · · ·+ jk, and

(266) ag(2j1, . . . , 2jk) =
∑

G∈Ribbg(2j1,...,2jk)

2j1 · · · 2jk
|Aut(G)|

.
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Here Ribbg(2j1, . . . , 2jk) denotes the set of connected ribbon graphs of genus g with
k vertices of valencies 2j1, . . . , 2jk. Note that ag(2j1, . . . , 2jk) vanishes unless 2 −
2g − k + |j| > 0. Therefore, logZeGUE1

n (s; ε) ∈ nQ[n, ε][[s]].
Let x = nε denote the t’Hooft coupling constant [55, 56], and introduce

(267) γ(z) =
z2

2

(
log z − 3

2

)
− log z

12
+
∑
g≥2

B2g

2g(2g − 2) z2g−2
,

which satisfies the second-order difference equation

(268) γ(z + 1) − 2 γ(z) + γ(z − 1) = log z

and for z large and integral gives the asymptotic expansion of log(1!2! · · · (z−1)!) up
to an additive affine-linear function ζ ′(−1) + log(2π)z/2 [97]. Following [2, 40, 41],
define the corrected even GUE free energy (for short the even GUE free energy),
denoted F eGUE(x, s; ε), as follows:

F eGUE(x, s; ε) = C(x, ε) + F eGUE1

x/ε (s; ε) ,(269)

where

C(x, ε) = γ(
x

ε
) +

x2

2 ε2
log ε − 1

12
log ε(270)

=
x2

2 ε2

(
log x− 3

2

)
− log x

12
+
∑
g≥2

ε2g−2B2g

2g (2g − 2)x2g−2
.(271)

We also define the even GUE partition function ZeGUE(x, s; ε) as eF
eGUE(x,s;ε). From

the definition we know that F eGUE(x, s; ε) ∈ ε−2Q[[x− 1, ε2]][[s]] and ZeGUE(x, s; ε) ∈
Q((ε2))[[x − 1]][[s]]. For more details about the even GUE partition function see
[11, 32, 35, 40, 41, 54, 98, 99]. For k ≥ 1, and j1, . . . , jk ≥ 1, introduce the notation:

〈mj1 . . .mjk〉(x, ε) =
∂kF eGUE1

x/ε (s; ε)

∂sj1 . . . ∂sjk

∣∣∣∣
s=0

.(272)

Explicitly,

〈mj1 . . .mjk〉(x, ε) = k!
∑

0≤g≤ |j|
2
− k

2
+ 1

2

ag(2j1, . . . , 2jk)x
2−2g−k+|j| ε2g−2 .(273)

The modified even GUE partition function ZmeGUE(x, s; ε) is introduced in [34] (see
also [40]) as the unique element in Q((ε2))[[x− 1]][[s]] such that

(274) ZeGUE(x, s; ε) = ZmeGUE

(
x− ε

2
, s; ε

)
ZmeGUE

(
x+

ε

2
, s; ε

)
.
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This partition function also relates to the Laguerre Unitary Ensemble (LUE) or say
to Grothendieck’s dessins d’enfant [52, 102, 103]. The logarithm logZmeGUE(x, s; ε) =:
FmeGUE(x, s; ε) is called the modified even GUE free energy, which has the form

FmeGUE(x, s; ε) = B(x, ε) +
∑
k≥1

1

k!

∑
j1,...,jk≥1

〈φj1 . . . φjk〉(x, ε) sj1 · · · sjk ,(275)

where

B(x, ε) = γ
( x

2ε
+

1

4

)
+ γ

( x
2ε
− 1

4

)
+

x2

4 ε2
log(2ε) − 5

48
log(2ε)(276)

=
(1

4
log x− 3

8

) x2

ε2
− 5

48
log x − 53 ε2

3840x2
+

599 ε4

64512x4
+ . . . ,(277)

〈φj1 . . . φjk〉(x, ε) =
1

eε∂x/2 + e−ε∂x/2
〈mj1 . . .mjk〉(x, ε) , k, j1, . . . , jk ≥ 1 .(278)

Recall that the Hodge–GUE correspondence says that the following identity holds
true in C((ε2))[[x− 1]][[s]]:

(279) ZΩspecial(−1/2)

(
THodge−GUE(x, s);

√
2ε
)
e
A(x,s)

2ε2 = ZmeGUE(x, s; ε) ,

where A(x, s) is the explicit quadratic series given by (9) and THodge−GUE(x, s) is
defined by

(280) T Hodge−GUE

i (x, s) = −1 + δi,1 + x δi,0 +
∑
j≥1

ji+1

(
2j

j

)
sj , i ≥ 0 .

We are ready to prove Theorem 4.

Proof of Theorem 4. By using (279) and (7). �

Let us denote

(281) fm(x) :=
(2m− 1)!!

2m
x− (2m+ 1)!!

2m
(m ≥ 2).

We will also use Witten’s notation 〈τm1 . . . τmn〉g:

(282) 〈τm1 . . . τmn〉g =

∫
Mg,n

ψm1
1 · · ·ψmnn .

Performing the Taylor expansion with respect to s1, s2, · · · on the logarithms of both
sides of (8) and using the dilaton equation (54), we arrive at the following proposition.



MAPPING PARTITION FUNCTIONS 56

Proposition 6. We have

1
4
− x
ε2
− 1

24
log

3− x
2

(283)

+
∑
g, p≥0

ε2g−2 (x− 1)p

p!

∑
λ∈P3g−3+p

〈τ p0 τλ+1〉g
mult(λ)!

( 2

3− x

)2g−2+`(λ)+p
`(λ)∏
s=1

f1+λs(x)

= B
(
x,

ε√
2

)
,

where B(x, ε) is defined in (276), and for k, j1, . . . , jk ≥ 1,

δk,1
ε2

(
2j1

j1

)(
x− j1

j1 + 1

)
+
δk,2
ε2

j1j2

j1 + j2

(
2j1

j1

)(
2j2

j2

)
(284)

+
∑

m1,...,mk≥0

Um1,...,mk(x, ε)
k∏
i=1

emi, ji

= 〈φj1 . . . φjk〉
(
x,

ε√
2

)
,

where

(285) em,j :=
(2m+ 2j − 1)!!

2m−j(j − 1)!
,

and for m1, . . . ,mk ≥ 0,

Um1,...,mk(x, ε) :=
∑
g≥0

ε2g−2
∑
p≥0

(x− 1)p

p!
(286)

×
∑

λ∈P3g−3+p+k−|m|

〈τ p0 τλ+1τm1 . . . τmk〉g
mult(λ)!

( 2

3− x

)2g−2+`(λ)+k+p
`(λ)∏
s=1

f1+λs(x) .

For instance, using (46) the coefficient of ε−2 of the left-hand side of (283) begins

1

4
− x +

(x− 1)3

3!

[
2

3− x

]
+

(x− 1)4

4!

[( 2

3− x

)3(3

4
x− 5!!

4

)]
(287)

+
(x− 1)5

5!

[( 2

3− x

)4(5!!

8
x− 7!!

8

)
+

6

2!

( 2

3− x

)5(3

4
x− 5!!

4

)2
]

+ · · · ,

which is consistent with the expansion of x2

4
log x− 3

8
x2 as x→ 1. (With the above

given terms one can check the agreement up to and including O((x−1)5).) Similarly,
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using 〈τ0τ2〉1 = 〈τ 3
0 τ3〉1 = 1/24 and 〈τ 2

0 τ
2
2 〉1 = 1/6, the coefficient of ε0 of the left-hand

side of (283) begins

− 1

24
log

3− x
2

+ (x− 1)

[
1

24

( 2

3− x

)2(3

4
x− 5!!

4

)]
(288)

+
(x− 1)2

2!

[
1

24

( 2

3− x

)3(5!!

8
x− 7!!

8

)
+

1

6

1

2!

( 2

3− x

)4(3

4
x− 5!!

4

)2
]

+ · · · ,

which is consistent with the expansion of 5
48

log x as x → 1. The coefficient of ε2 of
the left-hand side of (283) begins[

〈τ4〉2
( 2

3− x

)4(7!!

16
x− 9!!

16

)
+ 〈τ3τ2〉2

( 2

3− x

)5(5!!

8
x− 7!!

8

)(3

4
x− 5!!

4

)
(289)

+
〈τ 3

2 〉2
3!

( 2

3− x

)6(3

4
x− 5!!

4

)3
]

+ (x− 1)
[
· · ·
]

+ · · · ,

which is consistent with the expansion of −1
2

53 ε2

3840x2 as x→ 1 by substituting 〈τ4〉2 =
1/1152, 〈τ3τ2〉2 = 29/5760 and 〈τ 3

2 〉2 = 7/240 [98]. Let us present one more verifi-

cation. Recall that 〈m1〉(x, ε) = x2/ε2, giving 〈φ1〉(x, ε) = x2

2 ε2
− 1

8
. Using (46) the

coefficient of ε−2 of the left-hand side of (284) for k = 1 and j1 = 1 begins

e0,1

{
(x− 1)2

2!

[
2

3− x

]
+

(x− 1)3

3!

[( 2

3− x

)3(3

4
x− 5!!

4

)]
+ · · ·

}
(290)

+ e1,1

{
(x− 1)3

3!

[( 2

3− x

)2
]

+ · · ·
}

+ · · · + 2
(
x− 1

2

)
,

which is consistent with the expansion of x2 as x→ 1.

Application II. The WK–BGW correspondence. The Hodge–BGW correspondence
was recently found in [100], which gives a relationship between the special-Hodge
partition function again with q = −1/2 and the generalized Brézin–Gross–Witten
(BGW) model (see [3, 13, 53, 82]). Let ZcBGW(x, r; ε) denote the generalized BGW
partition function in the sense of [100] (it is denoted by Z(x,T; ~) in [100]), which
is an element in C((ε2))[[x+ 2]][[r]]. Here x is the Alexandrov coupling constant, ε is
an indeterminate, and r = (r0, r1, r2, . . . ) is an infinite tuple of indeterminates. In
particular, we recall that

(291) logZcBGW(x,0; ε) =
x2

4 ε2

(
log
(
−x

2

)
− 3

2

)
+

log
(
−x

2

)
12

−
∑
g≥2

ε2g−2(−2)g−1B2g

2g (2g − 2)x2g−2

For more details about the generalized BGW partition function see e.g. [44, 100, 101]
and the references therein.
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The Hodge–BGW correspondence says that

(292) ZΩ(−1/2)

(
THodge−BGW(x, r);

√
−4ε

)
e
AcBGW(x,r)

ε2 = ZcBGW(x, r; ε) ,

where AcBGW(x, r) is the quadratic series given by (12), and

T Hodge−BGW

i (x, r)(293)

= −
(
−1

2

)i−1

+ δi,1 + x δi,0 − 2
∑
j≥0

1

j!

(
−2j + 1

2

)i
rj , i ≥ 0 .

Both the WK partition function ZWK(t; ε) and the generalized BGW partition
function ZcBGW(x, r; ε) are particular τ -functions for the KdV hierarchy [44]. How-
ever, we would like to remark that the Hodge–WK correspondence (7) is different
from the Hodge–BGW correspondence (292). This can be seen from the simple fact
that the change of the independent variables (293) in the Hodge–BGW correspon-
dence is NOT invertible, while that in the Hodge–WK correspondence is part of a
group action and hence certainly invertible. As far as we know the WK partition
function ZWK(t; ε) cannot be obtained from the generalized BGW partition function
ZcBGW(x, r; ε) by just shifting the independent variables (vice versa). However, these
two different correspondences enable us to establish a relationship between ZWK(t; ε)
and ZcBGW(x, r; ε) (see Theorem 5 below). Of course, some important connections
between ZWK(t; ε) and ZcBGW(x, r; ε) were already known: the genus zero parts of
the WK partition function ZWK(t; ε) and the generalized BGW partition function
ZcBGW(x, r; ε) are different, but they are equal for genus bigger than or equal to 1 in
a non-obvious way. Indeed, for g ≥ 1, the jet representations of the genus g WK free
energy and the genus g generalized BGW free energy are the same, which is actually
the content of the Okuyama–Sakai conjecture [92] proved in [100, 101].

We are ready to prove Theorem 5.

Proof of Theorem 5. By using (292) and (7) with q = −1/2. �

Denote

(294) gm(x) :=
(2m− 1)!!

2m
x (m ≥ 2),

and denote by 〈ωj1 . . . ωjk〉(x, ε) the generalized BGW correlators, i.e.,

(295) 〈ωj1 . . . ωjk〉(x, ε) =
∂k logZcBGW(x, r; ε)

∂rj1 . . . ∂rjk

∣∣∣∣
s=0

.

Similarly to Proposition 6 we have the following proposition.
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Proposition 7. There holds that

x
3

+ 1
2

ε2
− 1

24
log
(
−x

2

)
(296)

+
∑
g,p≥0

(
√
−4ε)2g−2 (x+ 2)p

p!

∑
λ∈P3g−3+p

〈τ p0 τλ+1〉g
mult(λ)!

(
−2

x

)2g−2+`(λ)+p
`(λ)∏
s=1

g1+λs(x)

= logZcBGW(x,0; ε) ,

where the expression of logZcBGW(x,0; ε) is given in (291), and for k ≥ 1 and
j1, . . . , jk ≥ 0,

− δk,1
ε2

1

j1!

( x

2j1 + 1
+

1

j1 + 1

)
+
δk,2
ε2

1

j1!j2!(j1 + j2 + 1)
(297)

+
∑

0≤m1≤j1 ,..., 0≤mk≤jk

Vm1,...,mk(x, ε)
k∏
i=1

Emi, ji

= 〈ωj1 . . . ωjk〉(x, ε) ,

where

(298) Em,j := −2
(−1)m

(j −m)!
,

and for 0 ≤ m1 ≤ j1, . . . , 0 ≤ mk ≤ jk,

Vm1,...,mk(x, ε) :=
∑
g≥0

(−4)g−1ε2g−2
∑
p≥0

(x+ 2)p

p!
(299)

×
∑

λ∈P3g−3+p+k−|m|

〈τ p0 τλ+1τm1 . . . τmk〉g
mult(λ)!

(
−2

x

)2g−2+`(λ)+k+p
`(λ)∏
s=1

g1+λs(x) .

For instance, using (46) the coefficient of ε−2 of the left-hand side of (296) begins

x+
1

2
− 1

4

{
(x+ 2)3

3!

[
−2

x

]
+

(x+ 2)4

4!

[(
−2

x

)3(3

4
x
)]

(300)

+
(x+ 2)5

5!

[(
−2

x

)4(5!!

8
x
)

+
6

2!

(
−2

x

)5(3

4
x
)2
]

+ · · ·
}
,
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which agrees with the expansion of 1
4
x2 log

(
−x

2

)
− 3

8
x2 as x → −2. Similarly, the

coefficient of ε0 of the left-hand side of (296) begins

− 1

24
log
(
−x

2

)
+ (x+ 2)

[
1

24

(
−2

x

)2(3

4
x
)]

(301)

+
(x+ 2)2

2!

[
1

24

(
−2

x

)3(5!!

8
x
)

+
1

6

1

2!

(
−2

x

)4(3

4
x
)2
]

+ · · · ,

which agrees with the expansion of 1
12

log
(
−x

2

)
as x → −2. The coefficient of ε2 of

the left-hand side of (296) begins

− 4

[
〈τ4〉2

(
−2

x

)4(7!!

16
x
)

+ 〈τ3τ2〉2
(
−2

x

)5(5!!

8
x
)(3

4
x
)

(302)

+
〈τ 3

2 〉2
3!

(
−2

x

)6(3

4
x
)3
]
− 4 (x+ 2)

[
· · ·
]

+ · · · ,

which agrees with the expansion of − 1
480

1
x2 as x→ −2. Using (46) the coefficient of

ε−2 of the left-hand side of (297) for k = 1 and j1 = 1 begins

− 1

4
E0,1

{
(x− 1)2

2!

[
−2

x

]
+

(x− 1)3

3!

[(
−2

x

)3(3

4
x
)]

+ · · ·
}

(303)

− 1

4
E1,1

{
(x− 1)3

3!

[(
−2

x

)2
]

+ · · ·
}

+ · · · −
(x

3
+

1

2

)
,

which is consistent with the expansion of x4/96 as x→ −2.

11. The Hodge mapping partition function

In the previous sections, we have introduced a G-action on infinite tuples, have
defined for any ϕ ∈ G the WK mapping partition function associated to ϕ, and have
associated to it the WK mapping hierarchy. In this section, just like the previous
constructions, for any ϕ ∈ G we define the Hodge mapping partition function Zϕ

Ω(σ)

associated to ϕ by

(304) Zϕ
Ω(σ)(T; ε) = ZΩ(σ)

(
T.ϕ−1; ε

)
,

which as we will see also has several nice properties. Here ZΩ(σ)(t; ε) is the Hodge
partition function defined in (225). Obviously, Zϕ

Ω(0)(T; ε) = Zϕ(T; ε).

Recall that the Hodge partition function satisfies the dilaton equation:

(305)
∑
i≥0

ti
∂ZΩ(σ)(t; ε)

∂ti
+ ε

∂ZΩ(σ)(t; ε)

∂ε
+

1

24
ZΩ(σ)(t; ε) =

∂ZΩ(σ)(t; ε)

∂t1
.
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It follows the dilaton equation for the Hodge mapping partition function:

(306)
∑
i≥0

Ti
∂Zϕ

Ω(σ)(T; ε)

∂Ti
+ ε

∂Zϕ
Ω(σ)(T; ε)

∂ε
+

1

24
Zϕ

Ω(σ)(T; ε) =
∂Zϕ

Ω(σ)(T; ε)

∂T1

.

The Virasoro constraints for the Hodge partition function can be found in [72]. So
it is possible to translate them to the Hodge mapping partition function, which we
will do elsewhere.

As before, the logarithm logZϕ
Ω(σ)(T; ε) =: FϕΩ(σ)(T; ε), called the Hodge mapping

free energy, has a genus expansion:

(307) FϕΩ(σ)(T; ε) =:
∑
g≥0

ε2g−2FϕΩg(σ)(T) .

We call FϕΩg(σ)(T), g ≥ 0, the genus g Hodge mapping free energy. By Theorem 6

and the well-known fact FΩ0(σ)(t) ≡ FWK
0 (t) we immediately obtain the following

Proposition 8. For any ϕ ∈ G, we have FϕΩ0(σ) = FWK
0 .

For genus bigger than or equal to 1, it is known from e.g. [34, 43] that the genus
g (g ≥ 1) Hodge free energy FΩg(σ)(t) has the (3g − 2)-jet representation, i.e., there
exists FΩg(σ)(v0, v1, . . . , v3g−2;σ), such that

(308) FΩg(σ)(t) = FΩg(σ)

(
E(t),

∂E(t)

∂t0
, . . . ,

∂3g−2E(t)

∂t3g−2
0

;σ

)
, g ≥ 1 ,

where E(t) is defined by (22). We then have the following

Proposition 9. For g = 1 we have the identity:

(309) FϕΩ1(σ)(T) = Fϕ
Ω1(σ)

(
E(T),

∂E(T)

∂X
;σ

)
,

with

(310) Fϕ
Ω1(σ)(V, V1;σ) :=

1

24
log V1 +

1

16
logϕ′(V ) +

σ1

24
ϕ(V ) .

For each g ≥ 2, there exists Fϕ
Ωg(σ)(V0, . . . , V3g−2;σ) that is a polynomial of σ1, . . . , σ2g−1,

V2, . . . , V3g−2 and a rational function of V1, such that

(311) FϕΩg(σ)(T) = Fϕ
Ωg(σ)

(
E(T), . . . ,

∂3g−2E(T)

∂X3g−2
;σ

)
.

Let

(312) Uϕ
Ω(σ)(T; ε) := ε2

∂2FϕΩ(σ)(T; ε)

∂X2
,
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where X = T0. This gives a quasi-Miura transformation

(313) V 7→ Uϕ
Ω(σ) = V +

∑
g≥1

ε2g ∂2
(
Fϕ

Ωg(σ)

)
,

which transforms the abstract local RH hierarchy DS(v) = S(v) v1 to

DS(U) = S U1 + ε2
(
S ′

12
U3 +

(
ϕ′′S ′

8ϕ′
+
S ′′

6
+
σ1

12
ϕ′S ′

)
U1 U2(314)

+

(
−ϕ

′′2S ′

16ϕ′2
+
ϕ′′′S ′ + ϕ′′S ′′

16ϕ′
+
S ′′′

24
+
σ1

24

(
ϕ′S ′

)′)
U3

1

)
+ · · · ,

where U = Uϕ
Ω(σ), and we omitted the arguments Uϕ

Ω(σ) from ϕ′, ϕ′′, · · · and from

S, S ′, S ′′, · · · . We call (314) the abstract local Hodge mapping hierarchy associated
to ϕ. When ϕ = id, we call (314) the abstract local Hodge hierarchy.

Define ΩHodge

S1(w),S2(w), S1(w), S2(w) ∈ Oc(w), as the substitution of the inverse of the

quasi-Miura type transformation v 7→ w = v +
∑

g≥1 ε
2g ∂2

(
FΩg(σ)

)
in
∫ w

S1S2 +∑
g≥1 ε

2gDS1DS2(FΩg(σ)). Similarly, define Ωϕ,Hodge

S1(U),S2(U), S1(U), S2(U) ∈ Oc(U), as the

substitution of the inverse of (313) in
∫ U

S1S2 +
∑

g≥1 ε
2gDS1(U)DS2(U)(F

ϕ
Ωg(σ)).

The following theorem, which is a refinement of Theorem 2, gives a generalization
of Theorem 11 and some results in [18, 19, 34].

Theorem 14. The abstract local Hodge mapping hierarchy (180) have polynomiality:
for any S the right-hand side of (180) belongs to AUϕ

Ω(σ)
[[ε2]]1. Moreover, the elements

Ωϕ,Hodge

S1(U), S2(U), S1(U), S2(U) ∈ Oc(U), belong to AUϕ
Ω(σ)

[[ε2]]0.

Let us first prove Theorem 14 for the case when ϕ = id. Indeed, similarly to
the proof of Proposition 5, by using the properties of the τ -symmetric hamiltonian
densities of the Hodge hierarchy [34] and the results in [14, 18, 19], we arrive at the
following proposition.

Proposition 10. Theorem 14 holds when ϕ = id. Moreover, the elements ΩHodge

S1(w), S2(w),

S1(w), S2(w) ∈ Oc(w), belong to Aw[[ε2]]0.

Proof of Theorem 14. First,

(315) ∂ =
∑
m≥0

∂tm
∂X

Dwm/m! = D√
ϕ′(ϕ−1(w))

.

Here Dwm/m!, m ≥ 0, are derivations of the abstract Hodge hierarchy. By Proposi-
tion 10 the element D√

ϕ′(ϕ−1(w))
(w) has polynomiality. Note that

(316) Ωϕ,Hodge

U i/i!, Uj/j!
=

∑
i1, j1≥0

∂ti1
∂Ti

∂tj1
∂Tj

ΩHodge

wi1/i1!, wj1/j1!
, i, j ≥ 0 .
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By an iteration, the ∂x-flow for w with ∂ = ∂X as the spatial derivative is an evo-
lutionary PDE in Dubrovin–Zhang’s normal form. Since ΩHodge

wi1/i1!, wj1/j1!
∈ Aw[[ε2]]0

and by substituting the ∂x-flow, we find that ΩHodge

wi1/i1!, wj1/j1!
are power series of ε2

with coefficients being polynomials of ∂X(w), ∂2
X(w), . . . , so are Ωϕ,Hodge

U i/i!, Uj/j!
. This

implies in particular that U = Uϕ
Ω(σ) = Ωϕ,Hodge

1,1 = ϕ−1(w) + . . . gives a Miura-type

transformation. So Ωϕ,Hodge

U i/i!, Uj/j!
∈ AU [[ε2]]0, and thus Ωϕ,Hodge

S1(U), S2(U) ∈ AU [[ε2]]0. Finally,

DS(U)(U) = DS(U)

(
Ωϕ,Hodge

1, 1

)
= ∂

(
Ωϕ,Hodge

1, S(U)

)
∈ AU [[ε2]]1. �

We also verified Theorem 14 directly up to and including terms of ε8.
By using again the definition (i.e., using the quasi-Miura map), we find that the

abstract local Hodge mapping hierarchy (180) has the more precise form:
(317)

DS(U) = ∂

(∫ U

S +
∑
g≥1

ε2g
∑
λ∈P2g

`(λ)+g−1∑
j=1

Y ϕ
λ,j(l1(U), . . . ;m1(U), . . . )S(j)(U)Uλ

)
,

where U = Uϕ
Ω(σ), Y

ϕ
λ,j(`1, . . . ; ρ1, . . . ) are weighted homogeneous polynomials of de-

gree `(λ) + g − 1 − j in variables `i and ρi of weight i (i ≥ 1), li(U) are defined
in (117), and mi(U) = σ2i−1ϕ

′(U)i.
The abstract local Hodge mapping hierarchy (314) can also be written in the form

(318) DS(U) = Pϕ
1 (U)

(
δ
∫
hϕ1;S

δU

)
, S ∈ Oc ,

where U = Uϕ
Ω(σ), P

ϕ
1 (U) is the operator given by

(319) Pϕ
1 (U) :=

∑
k,`≥0

(−1)`
∂U

∂Vk
◦ ∂k ◦

(
1

2

1

ϕ′(V )
◦ ∂ +

1

2
∂ ◦ 1

ϕ′(V )

)
◦ ∂` ◦ ∂U

∂V`
,

and the hamiltonian density hϕ1;S is understood as the substitution of the inverse of
the quasi-Miura transformation (313) into (200). As before, Pϕ(U) has the form:

Pϕ
1 (U) =

∑
g≥0

ε2g P
ϕ,[g]
1;Ω(σ) , P

ϕ,[0]
1;Ω(σ) =

1

2ϕ′(U)
◦ ∂ + ∂ ◦ 1

2ϕ′(U)
,(320)

P
ϕ,[g]
1;Ω(σ) =

3g+1∑
j=0

Aϕ2g,j;Ω(σ) ∂
j , Aϕ2g,j;Ω(σ) ∈ Oc(U)

[
U1, . . . , U3g+1, U

−1
1

]
[σ] ,(321)

∑
m≥1

mUm
∂Aϕ2g,j;Ω(σ)

∂Um
= (2g + 1− j)Aϕ2g,j;Ω(σ) .(322)

We have the following conjecture.
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Conjecture 1. For g ≥ 0 and 0 ≤ j ≤ 3g + 1, the elements Aϕ2g,j;Ω(σ) all belong to

A[2g+1−j]
U . Moreover, for i ≥ 0, the variational derivatives of the hamiltonians

∫
hϕ1;S

with respect to U belong to AU [[ε]].

Motivated by the Hodge universality conjecture proposed in [34] (see Remark 12)
and the classification work mentioned in Section 9, we propose the following Hodge
mapping universality conjecture.

Conjecture 2. The abstract local Hodge mapping hierarchy is a universal object for
hamiltonian perturbations of the abstract local RH hierarchy possessing a τ -structure.

Conjecture 2 generalizes Theorem 13 as well as the Hodge universality conjecture
from [34]. Let us verify Conjecture 2 directly up to and including terms of order 8
in ε. Indeed, the following Miura-type transformation

w = M(U) +
4∑

k=1

ε2k
∑
λ∈P2k

Cλ(U)Uλ + O(ε10)(323)

transforms the abstract local Hodge mapping hierarchy (314) to the standard form (152)
up to ε8, with U = Uϕ

Ω(σ),

(324) M(U) =

∫ U

0

√
ϕ′(y) dy ,

(325) a0(w) = M ′(M−1(w)) ,

and

C(2)(U) = −σ1

24
ϕ′(U)3/2 ,

C(12)(U) = −σ1

24

√
ϕ′(U)ϕ′′(U) +

ϕ′′(U)2

24ϕ′(U)3/2
− ϕ(3)(U)

48
√
ϕ′(U)

,

C(4)(U) = − σ1

240

√
ϕ′(U)ϕ′′(U) +

σ2
1

1920
ϕ′(U)5/2 +

ϕ′′(U)2

384ϕ′(U)3/2
− ϕ(3)(U)

480
√
ϕ′(U)

,

. . . ,

C(18)(U) = − 107

185794560

ϕ(12)(U)√
ϕ′(U)

+ more than two hundred terms .

Here the beginning relationships between the classification invariants q1, q2, · · · and
the Chern-Hodge-Mumford parameters σ1, σ3, · · · are given by

q1 =
σ1

25 32 51
, q2 =

2σ3
1 − σ3

210 35 51
, q3 =

16σ5
1 − 20σ2

1σ3 + σ5

213 36 52 71
.(326)
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We note that the relations in (326) coincide with the ones given in [34] (see also [17]).
Note that in [34, 17] only the case with a0(w) ≡ 1 (i.e., the case with ϕ(V ) = V ) was
considered. But the results in this paper show that the above beginning relations
(326) do not depend on ϕ. In general, this independence of ϕ is expected. Note that
equations (326) specialize to (172) when the σ’s are specialized by (230).

Remark 15. For each CohFT, A. Buryak [15] defined the double ramification (DR)
hierarchy, which is a τ -symmetric hamiltonian system [16, 17]. For the trivial case
(the case when the CohFT is given by Ω(0) = 1), the DR hierarchy coincides with
the KdV hierarchy. For the Hodge CohFT Ω(σ) (see (226)), it is conjectured in [15]
and refined in [16, 34] that the DR hierarchy associated to Ω(σ) is normal Miura-
type equivalent [34, 45] to the Hodge hierarchy. Later it is shown by Buryak,
Dubrovin, Guéré and Rossi [17] that the DR hierarchy is the standard deforma-
tion with a0(w) ≡ 1, and moreover, by an explicit computation in the DR side they
obtained the following conjectural relations between q’s and σ’s when a0(w) ≡ 1:

(327) qg−1 = (3g − 2)

∫
Mg,0

λg exp

(∑
j≥1

σ2j−1 ch2j−1(Eg,0)

)
, g ≥ 2 .

By the discussion given right above this remark, we conjecture this holds for all ϕ
which makes the discussion more explicit. Using formula (327) and the algorithm
in [34] for computing Hodge integrals (or the Hodge–GUE correspondence [34, 35,
40]), we can compute more explicit values for qi in the following table:

i 1 2 3 4 5 6 7

qi
q

253151
q3

273451 0 −13 q7

210345271111
−59 q9

25375272111131
19 q11

211345172111131
1493 q13

29375372131171

12. The generalized Hodge–WK correspondence

In this section, by using the G-action and the Hodge–WK correspondence we obtain
explicit relationships between the WK mapping partition functions and the special-
Hodge mapping partition functions, and we investigate bihamiltonian structures for
the Hodge mapping hierarchy.

Theorem 15. The special-Hodge mapping partitions and the WK mapping partition
functions are related by

(328) Zψ
Ωspecial(q)

= Zϕ ,

where the two power series ψ and ϕ are related by (14).
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Proof. Recall from Section 10 that the Hodge–WK correspondence says

ZΩspecial(q)(T; ε) = ZWK
(
T.ϕ−1

special; ε
)
,

where we recall that ϕspecial is defined as in (222). Therefore,

ZΩspecial(q)

(
T.ψ−1; ε

)
= ZWK

(
T.ψ−1 ◦ ϕ−1

special; ε
)

= ZWK
(
T.(ϕspecial ◦ ψ)−1; ε

)
.

The theorem is proved. �

We call (328) the generalized Hodge–WK correspondence. From the definition, an
alternative form of (328) is

(329) Zψ
Ωspecial(q)

(t.ϕ; ε) = ZWK(t; ε) ,

where ϕ and ψ are related by (14).
Let us consider the Poisson geometry behind this theorem. Indeed, via a bihamil-

tonian test, we find that up to order ε8, the Hodge mapping hierarchy associated to an
arbitrarily given group element ψ ∈ G is bihamiltonian if and only if its parameters
have the specific values

(330) σ1 = 3 q , σ3 = 30 q3 , σ5 = 1512 q5 , σ7 = 183600 q7 .

This specialization is remarkable because it does not depend on ψ. For the case when
ψ(V ) = V , we already know that the answer is the special-Hodge specialization (230),
conjectured6 in [34]. So we expect that the Hodge mapping hierarchy associated to

ψ ∈ G is bihamiltonian if and only if σ2j−1 = σspecial
2j−1 = (4j − 1) (2j − 2)! q2j−1,

j ≥ 1, of which the first four values are the ones given in equation (330). We call the
Hodge mapping hierarchy associated to ψ with this specialization the special-Hodge
mapping hierarchy associated to ψ. The following corollary gives the sufficiency part.

Corollary 1. The special-Hodge mapping hierarchy associated to ψ has a bihamilto-
nian structure with the Poisson pencil Qψ

2

(
Uψ

Ωspecial(q)

)
+ λQψ

1

(
Uψ

Ωspecial(q)

)
given by

(331) Qψ
1

(
Uψ

Ωspecial(q)

)
:=

∑
k,`≥0

(−1)`
∂Uψ

Ωspecial(q)

∂Vk
◦ ∂k ◦Qψ,[0](V ) ◦ ∂` ◦

∂Uψ
Ωspecial(q)

∂V`
,

(332) Q
ψ,[0]
1 (V ) :=

1

2

e−2 q ψ(V )

ψ′(V )
◦ ∂ +

1

2
∂ ◦ e

−2 q ψ(V )

ψ′(V )
,

(333) Qϕ
2

(
Uψ

Ωspecial(q)

)
:=

∑
k,`≥0

(−1)`
∂Uϕ

Ωspecial(q)

∂Vk
◦ ∂k ◦Qψ,[0]

2 (V ) ◦ ∂` ◦
∂Uψ

Ωspecial(q)

∂V`
,

6About this known conjecture, the sufficiency part is proved by the Hodge–GUE correspon-
dence [35] but the necessity part is still open.
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(334) Q
ψ,[0]
2 (V ) :=

1

2

1− e−2 q ψ(V )

2 q ψ′(V )
◦ ∂ +

1

2
∂ ◦ 1− e−2 q ψ(V )

2 q ψ′(V )
.

Proof. By Theorem 12 and Theorem 15. �

Note that, by definition, the Schouten bracket of Qψ
2

(
Uψ

Ωspecial(q)

)
+ λQψ

1

(
Uψ

Ωspecial(q)

)
and itself vanishes identically in λ, so the non-trivial part of the above corollary
is about the polynomial dependence of the coefficients of both Qψ

1

(
Uψ

Ωspecial(q)

)
and

Qψ
2

(
Uψ

Ωspecial(q)

)
. We also verified the polynomiality directly up to and including the

terms of order 8 in ε. It also follows from Theorem 12, Theorem 15 and the com-
putation for (213) that for any ψ ∈ G, the central invariant of the Poisson pencil

Qψ
2

(
Uψ

Ωspecial(q)

)
+ λQψ

1

(
Uψ

Ωspecial(q)

)
is 1/24 identically in q.

There can be choices for Qψ
a

(
Uψ

Ωspecial(q)

)
, a = 1, 2, for a pencil. Our choice satisfies

(335) Qψ
2

(
Uψ

Ωspecial(q)

)
+

1

2 q
Qψ

1

(
Uψ

Ωspecial(q)

)
= Pψ

(
Uψ

Ωspecial(q)

)
,

where Pψ
(
Uψ

Ωspecial(q)

)
is defined in (319). Note that we did not choose either the

Poisson operator Qψ
1

(
Uψ

Ωspecial(q)

)
or Qψ

2

(
Uψ

Ωspecial(q)

)
to simply be Pψ

(
Uψ

Ωspecial(q)

)
, but

we choose them to match with the Poisson pencil for the bihamiltonian structure
for the WK mapping hierarchy, along the generalized Hodge–WK correspondence.
For the particular case when ψ(V ) = V , a similar but different choice was made

in [34], where Qψ
2

(
Uψ

Ωspecial(q)

)
was chosen to be −Pψ

(
Uψ

Ωspecial(q)

)
and Qψ

1

(
Uψ

Ωspecial(q)

)
was chosen the same as above, giving rise also to the central invariant 1/24.

Before ending the paper, we would like to mention a generalization of part of our
constructions to semisimple Frobenius manifolds. This will be studied in a subse-
quent publication.

Let M be an n-dimensional calibrated semisimple Frobenius manifold. Denote
by ZM(t) and ZM,Ω(σ)(t) the topological partition function of M and the Hodge
partition function of M , respectively. Here t = (tα,k)α=1,...,n,k≥0 is an infinite tuple of
indeterminates. Recall that the integrable hierarchies corresponding to the partition
functions ZM and ZM,Ω(σ) are the Dubrovin–Zhang hierarchy of M (aka the integrable
hierarchy of topological type of M) and the Hodge hierarchy of M , respectively. The
logarithm logZM =: FM is called the topological free energy of M , and logZM,Ω(σ) =:
FM,Ω(σ) the Hodge free energy of M . Both FM and FM,Ω(σ) have genus expansions:

(336) FM(t; ε) =
∑
g≥0

ε2g−2FM, g(t) , FM,Ω(σ)(t; ε) =
∑
g≥0

ε2g−2FM,Ω(σ), g(t) .

In this more general context, the group G is replaced by a more general group of
affine-linear transformations such that FM, 0(t) = FM,Ω(σ), 0(t) is invariant under the
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transformation. For any such transformation ϕ we define the mapping partition func-
tion of M associated to ϕ as before by Zϕ

M(T; ε) := ZM(T.ϕ−1; ε) and the Hodge map-
ping partition function of M associated to ϕ by Zϕ

M,Ω(σ)(T; ε) := ZM,Ω(σ)(T.ϕ
−1; ε).

Since Zϕ
M,Ω(0)(T; ε) = Zϕ

M(T; ε), it is enough to study the Hodge mapping partition

function of M . Let X = T 1,0 and let

(337) Uϕ
α,M,Ω(σ)(T; ε) := ε2

∂2Fϕ
M,Ω(σ)(T; ε)

∂X∂Tα,0
, α = 1, . . . , n .

By the arguments similar to the proof of Theorem 14, we know that Uϕ
α,M,Ω(σ)(T; ε),

α = 1, . . . , n, satisfy an integrable hierarchy of evolutionary PDEs, which we call
the Hodge mapping hierarchy of M associated to ϕ. We expect that this hierarchy
is hamiltonian. In particular, when σ = 0 we call it the Dubrovin–Zhang mapping
hierarchy of M associated to ϕ, which is bihamiltonian for reasons similar to the
proof of Theorem 12 (cf. [45, 69, 70]). We also call Zϕ

M,Ωspecial(q)
(T; ε) the special-

Hodge mapping partition function of M associated to ϕ, and the integrable hierarchy
satisfied by Uϕ

α,M,Ωspecial(q)
(T; ε) is called the special-Hodge mapping hierarchy of M

associated to ϕ.
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